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Abstract

The quantification of wave loading on offshore structures and components is a crucial element in the

assessment of their useful remaining life. In many applications the well-known Morison’s equation is

employed to estimate the forcing from waves with assumed particle velocities and accelerations. This

paper develops a grey-box modelling approach to improve the predictions of the force on structural

members. A grey-box model intends to exploit the enhanced predictive capabilities of data-based

modelling whilst retaining physical insight into the behaviour of the system; in the context of the

work carried out here, this can be considered as physics-informed machine learning. There are a

number of possible approaches to establish a grey-box model. This paper demonstrates two means

of combining physics (white box) and data-based (black box) components; one where the model is a

simple summation of the two components, the second where the white-box prediction is fed into the

black box as an additional input. Here Morison’s equation is used as the physics-based component in

combination with a data-based Gaussian process NARX - a dynamic variant of the more well-known

Gaussian process regression. Two key challenges with employing the GP-NARX formulation that are

addressed here are the selection of appropriate lag terms and the proper treatment of uncertainty

propagation within the dynamic GP. The best performing grey-box model, the residual modelling GP-

NARX, was able to achieve a 29.13% and 5.48% relative reduction in NMSE over Morison’s Equation

and a black-box GP-NARX respectively, alongside significant benefits in extrapolative capabilities of

the model, in circumstances of low dataset coverage.
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1. Introduction

Many engineering structures within the North Sea have already exceeded or are close to their initially

specified 20-25 year design lives [1]. The financial incentive for continued operation of structures,

beyond their design lives, brings attention to the need for accurate prediction of remaining fatigue life.

Safety concerns around the operation of ageing structures are a key priority and confidence within

prognosis is, therefore, paramount.

Offshore engineering structures operate in harsh environments, in which accurate representation of

dynamic behaviour and prediction of remaining fatigue life is difficult. In such extreme environ-

ments, physics-based (white-box) models are often unable to fully capture the complexity of dynamic

behaviour. For example, phenomena including movement of mechanical joints, thermal effects and

humidity are difficult to characterise and, therefore, model and validate in a dynamic context.

A data-based (black-box) approach aims to provide a more flexible alternative, where machine learning

techniques may be used to characterise relationships between variables directly from data. The nature

of the variables being modelled is arbitrary and no prior understanding of the physics is required.

Although purely data-based approaches have proven to be effective in the prediction of structural

responses in changing environments [2, 3, 4], machine learning models have their drawbacks. Black-box

models are generally poor at extrapolation, with performance suffering in conditions outside the scope

of provided training data. Overfitting and the adoption of unnecessarily complex model structures

during training can also be an issue [5, 6].

A grey-box approach combines physics-based modelling and data-based learning with the aim of having

a flexible model that is informed by physical insight. A key area of expected improvement concerns

extrapolation; it is hoped that the structured white-box component of the model will assist inference in

areas where training data coverage is low. Improvement of performance outside the observed training

conditions would reduce the current demand for increasingly large training datasets and associated

monitoring efforts.

The dataset used within this paper was collected from the Christchurch Bay Tower (CBT), an offshore

test facility constructed with the intention to develop better understanding of wave and current action

[7]. The tower was equipped with Perforated ball Velocity Meters (PVMs) to measure water particle

velocity and acceleration, along with force sleeves to measure the horizontal force acting on the tower.

This provides a dataset capturing a real sea state environment with valuable measurements of the

modelling target, wave loading force, which allows for the validation and performance measurement of

modelling approaches.

Within research communities, the study of Computational Fluid Dynamics (CFD) has dominated the
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quantification of wave loading forces [8, 9]. Within industrial applications however, the high com-

putational resource requirements of CFD and difficulty of model validation for structures in complex

environments, has led to a preference, in some industries at least, for more simplistic empirical meth-

ods. A common example of one such method is Morison’s Equation [10], which offers an empirical

solution for wave loading with minimal computational resources. This paper will explore methods of

combining Morison’s Equation with black-box Gaussian process and Gaussian process NARX models.

The aim being improving predictive performance, still within a reasonable computational budget.

2. Model Architectures

This section details the modelling methodology proposed for the prediction of wave loading. Morison’s

Equation forms the basis for the white-box model construction (with Bayesian linear regression for

parameter estimation), whilst a GP-NARX model is used for the black-box. Methods of combining

the approaches to form grey-box models are also presented in this section.

2.1. White-box

Morison’s equation has been a widely used tool for the modelling of wave loading on slender members

since its introduction in 1950 [10], being used in applications including wind turbine design [11] and

characterising dynamic behaviour of offshore spar platforms [12]. Its popularity has been helped, in

part, by benefits in computation time over more complex, CFD approaches. To achieve such benefits,

Morison’s Equation relies on a number of simplifying assumptions:

• The waves are not affected by the presence of the submerged members. For a cylindrical structure,

the wavelength and water depth should far exceed the diameter [11].

• Flow should be unidirectional [13].

• The wave force may be separated in to a velocity-dependant drag term and an acceleration-

dependant inertia term, simplifying the wave-structure interaction [13].

• The considered waves are surface waves and unbroken [10].

The simplest form of Morison’s equation assumes the structure on which the wave force acts is a rigid,

slender cylinder. For a given wave velocity U and acceleration U̇ , the force per unit axial length F is

given as:

F =
1

2
ρDCd

︸ ︷︷ ︸

C ′

d

U |U |+
1

4
πρD2Cm

︸ ︷︷ ︸

C ′

m

U̇ (1)

where ρ is the fluid density, D is the cylinder diameter, Cd is the drag coefficient and Cm is the inertia

coefficient. The dimension specific terms may be grouped to form two constants C ′

d and C ′

m relating
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to the drag and inertia forces of the wave. This leads to the simplified version of Morison’s equation

used within this paper:

F = C ′

dU |U |+ C ′

mU̇ (2)

The construction of the white-box model presented will rely on the estimation of the grouped parame-

ters within Morison’s equation. The simplicity of this approach will aid in minimising the complexity

of the final combined grey-box models presented in later sections, although a non-dimensional form

can be readily used.

Parameter estimation and model prediction with Morison’s equation is achieved via Bayesian linear

regression, an introduction to which is provided in Appendix A.1. Approaching the regression in a

Bayesian manner provides distributions over the parameter estimates and confidence intervals for the

predictions, which can then be compared with the Gaussian process models used later.

2.2. Black-box

Gaussian Process Regression (GPR), utilised here, is a non-parametric, flexible, Bayesian machine

learning technique [14]. The return of confidence intervals with predictions, minimal requirement for

prior knowledge and modelling capabilities under the presence of noise have lead to the popularity of

GPR within a wide range of usage applications. These span from standard regression tasks [15], to

image processing [16], to more engineering relevant examples [17, 2, 18]. A dynamic-variant of a GP

regression model is employed here, namely a GP-NARX [19, 20, 21].

A Nonlinear AutoRegressive model with eXogenous inputs (NARX) is a function of previous signal

values and additional (exogenous) inputs, in which both are fed through some nonlinear function f(x).

yt = f([ut, ut−1, ..., ut−lu , yt−1, yt−2, ..., yt−ly ]) + ε (3)

The previous signal values, yt−i and exogenous inputs, ut−j are considered up to ly and lu lagged time

steps respectively. For the wave force estimation in this paper, the exogenous inputs, u, considered

are the velocity, U and acceleration, U̇ of the wave particles.

The nonlinear function, f(x), in a NARX model is commonly fixed to be a polynomial [22, 23], but in

the case of a GP-NARX, a Gaussian process (GP) is used. With a GP one avoids needing to fix the

functional form explicitly, instead, the selection of a mean and covariance function defines a family of

feasible functions that may explain the data. An overview of basic GP theory is given in Appendix

A.2, with the reader encouraged to consult [14] for a more detailed understanding.
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2.2.1. One step ahead and model predicted output

There are two types of prediction that may be calculated from any autoregressive model form: One

Step Ahead (OSA) and Model Predicted Output (MPO)1. For OSA, previously measured values of

the output signal are used as lagged inputs to the model, whilst MPO requires the feedback of the

model prediction itself. The MPO performance will generally be worse than that of OSA due to the

compounding of model errors, however, it is a much more representative measure of how well the model

has captured the true dynamics of the process and therefore a more rigorous test.

The practical use of an OSA prediction occurs most naturally in a control setting, where continual

measurements of the target of interest are available. In a Structural Health Monitoring (SHM) context,

the assumption is that continual measurement of the wave force itself will not be available, meaning

that an OSA prediction will not generally be useful. This paper, therefore, focuses on the MPO task.

The focus on an MPO necessitates careful attention to how the hyperparameters in the GP covariance

function are optimised. In a standard static implementation of a GP, the hyperparameters, θ of the

covariance function, which control things like the roughness of predictions, are set by optimising a

negative log marginal likelihood:

θ̂ = argmax
θ

{−log p(y|X,θ)} (4)

where y are the set of targets in the training set, with corresponding inputs X. This optimisation

doesn’t reflect the dynamic nature of the GP-NARX and strongly favours the performance of OSA

predictions if used.

The cost function should always be aligned with the desired performance criteria of the model, in

this case the MPO. Here, therefore, a more appropriate choice of cost function is the Negative Log

Predictive Likelihood of the Model Predicted Output (MPO NLPL):

θ̂ = argmax
θ

{−log p(y|E(y∗),V(y∗),θ)} (5)

The NLPL of the MPO is calculated as a joint Gaussian likelihood of each measured data point yt

coming from the corresponding predictive distribution y∗t ∼ N (E(y∗t ),V(y
∗

t )) of the GP-NARX output

(the full formulation of this is shown in Appendix A.2 for the interested reader). The authors suggesting

using an independent validation dataset for this step. The process is defined in Algorithm 1.

where Ut:t−lu
and U̇t:t−lu

refer to the lagged exogenous input vectors of velocity and acceleration,

yt−1:t−ly
refers to the lagged vector of measured wave force and y∗

t−1:t−ly
the lagged vector of

predicted wave force.

1In some communities these are referred to as the prediction and simulation tasks for OSA and MPO respectively.
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Algorithm 1: MPO NLPL cost function for GP-NARX optimisation.

1 Calculate training set covariance matrix K(X,X) for hyperparameters θ

2 Initialise GP-NARX for validation set from Ut:t−lu
, U̇t:t−lu

and yt−1:t−ly

3 for t = 1 : T do

4 Calculate: p(y∗t |Ut:t−lu
, U̇t:t−lu

,E(y∗

t−1:t−ly
),θ) = N (E(y∗t ),V(y

∗

t ))

5 end

6 NLPL = −
∑T

t=1 logN (yt|E(y
∗

t ),V(y
∗

t ))

2.2.2. Uncertainty propagation in a GP-NARX

One of the benefits of using a Bayesian regression approach, such as GPR, is access to the full posterior

distribution and therefore availability of confidence intervals on any prediction made. This causes an

issue, however, in a NARX MPO setting, as model predictions get fed back and used as model inputs at

the next step. Previous uses of GP-NARX models have generally avoided the tricky issue of uncertainty

propagation in an MPO setting.

Without alteration, the confidence intervals of the GP-NARX fail to account for the full uncertainty

within the prediction. The MPO requires the feedback of the model prediction, for use as subsequent

lagged output. This is typically taken as a point estimate of the expected value of the GP-NARX

prediction, failing to acknowledge that the output of the model is in fact a distribution. This does not

account for the potential variation in the feedback of model outputs which would have a cumulative

effect over time. This causes an uncertain input problem in the GP which is hard to compute.

Uncertainty propagation within the GP-NARX can be achieved via the use of Monte Carlo sampling

[20, 24]. Instead of feeding back the model output mean, a sample from the output distribution ŷt is

used. This may be repeated for N samples to form a series of N potential realisations for the model

output y
(n)
t∗ from which more realistic posterior distributions may be estimated. The procedure for

generating the Monte Carlo sampled Model Predicted Output (MC MPO) is summarised in the block

diagram within Figure 1.

2.3. Grey-box

A grey-box model combines physics and data-based approaches with the aim of extracting benefits

from each of the model types: structure, insight and extrapolative performance from the white-box

component and flexibility and ability to model unknown phenomena from the black-box component.

There are two potential architectures presented here, both of which combine the earlier discussed

Morison’s equation with GP and GP-NARX models.
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Figure 1: Block diagram of Monte Carlo uncertainty propagation within the GP-NARX.

2.3.1. Residual modelling

Perhaps the simplest approach to grey-box modelling is to sum the predictions of a white and black-

box model. If the white-box takes a fixed form, this summation is equivalent to using the black-box

to model the residual error between the white-box and any collected data. In the FE modelling

community the practice of using a machine learner (often a GP) to model the residuals from an FE

model is often referred to as ‘bias correction’, acknowledging that there is likely to be some error in

the complex FE representation of the structure. It is possible to apply the approach to more simplistic

base models such as Morison’s Equation, with the modelling of polynomial regression residuals using

a GP being explored as early as 1975 [25].

It is known that Morison’s Equation simplifies the behaviour of wave loading, not accounting for effects

such as vortex shedding or other complex behaviours [26] and will typically have residual errors in the

region of 20%[27]. Through the use of a black-box component, these residual errors may be modelled

and the result added to the white-box, producing a model of the form:

yt = Fmor
︸ ︷︷ ︸

White−box

+ f([U, U̇ ]) + ε
︸ ︷︷ ︸

Black−box

(6)

Here, the parameters in Morison’s equation will be established via Bayesian linear regression. The

GP or GP-NARX model is set up identically to those discussed within the black-box section, except

that the target is now the residual error of Morison’s Equation rather than the measured wave force

itself. The intention is to capture the missing physics excluded by the simplifications present within

Morison’s Equation.

The magnitude of the black-box term can be interpreted as being the extent to which the data confirms

the prediction of Morison’s Equation. In regions of high uncertainty, outside the observed training

data, the GP will revert to its prior of zero with the overall model therefore outputting Morison’s

Equation. An equivalent view of this is the usage of a white-box mean function within the GP or

GP-NARX [14].
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2.3.2. Input augmentation

An alternative means by which physics and data-based approaches may be combined is via the in-

clusion of the white-box model output as an additional input to the black-box. Models involving the

manipulation of the non-parametric components of black-boxes using physics have been termed ‘type

B’ [28] grey-box models within the nonlinear system identification community, whilst the transforma-

tion of model input data through physical insight has been referred to as ‘semi-physical’ modelling

[29]. This approach was used in [30] to model and optimise hydroelectric power generation. Input

augmentation has been shown to offer performance increases over white and black-box approaches in

the context of a nonlinear cascaded tanks system, particularly in the case of an extended physical

model [31].

Here, the result of Morison’s Equation is used along with the originally included water particle velocity

U and acceleration U̇ as the input to the GP or GP-NARX. The model is of the form:

yt =

Black−box
︷ ︸︸ ︷

f([Fmor,
︸ ︷︷ ︸

White−box

U, U̇ ]) + ε (7)

The output of the white-box model is carried forward to provide an input for the GP that is strongly

linked to the physics of the problem. An advantage of this approach over residual modelling is the

maintaining of the signal to noise ratio. This is particularly important in cases of high fidelity physics-

based models, where the residual of the model will be small in comparison to the model noise.

3. Case study: Christchurch Bay Tower

This section presents implementations of the proposed model architectures on a dataset collected from

the Christchurch Bay Tower (CBT) [7]. This provided a test of model performance within a real sea

environment. A schematic of the structure is shown in Figure 2.

The structure is comprised of a large central column, 2.8m in diameter, and a smaller column, 0.48m

in diameter, each equipped with an array of sensors. Perforated ball Velocity Meters (PVMs), pressure

transducers, force sleeves and wave buoys were used to create a 41 channel dataset [7]. Although this

is a historic dataset, the sensor network here is more densely populated than those that might be

employed on offshore structures today due to the CBT being constructed specifically as a test facility.

Three subsets of 1000 data points, sampled at 13.25Hz, were selected from the complete dataset for

use as training, validation and test sets. A region of 3000 points was selected where the ratio of the x-

velocity to y-velocity of the wave was a maximum to ensure that the flow was primarily unidirectional.

This was then split in to 3 sequential subsets. The study here focuses on data from the small column

where the assumptions of Morison’s equation around slender members are more likely to be valid.
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Figure 2: Schematic of Christchurch Bay Tower [20].

The parameters for Morison’s equation are found via Bayesian linear regression on the training dataset.

The prior Cd and Cm coefficients used were obtained from Clauss [32] and DNV-RP-C205 [33]. Note

here that Cd and Cm refer to the specific drag and inertia coefficients rather than the grouped constants

C ′

d and C ′

m. The data used was taken from one of the high intensity measurement runs of the complete

CBT dataset in which the Reynolds number (Re) > 1 × 105 and the Keulegan–Carpenter number

(Kc) was in the range 17 < Kc < 26 [7]. For these flow conditions, Clauss [32] suggests a drag

coefficient of Cd = 0.6. For the inertia coefficient, DNV-RP-C205 [33] also considers the effect of

surface roughness, which for a heavily instrumented cylinder gives Cm = 1.2. The presence of the

force sleeve, accelerometers and numerous pressure transducers along the cylinders length significantly

increase the surface roughness.

3.1. Results

This section will present and compare the different model implementations on the CBT dataset. In all

cases, the training, validation and test sets remain the same, and unless otherwise specified, all results

correspond to performance on the unseen test set. The GP-NARX implementation included three lags

of the autoregressive terms and one lag of the exogenous input terms; the selection of these lag terms

is discussed the Appendix.
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3.1.1. GP-NARX uncertainty propagation

The consideration of the uncertainty present within the feedback of GP-NARX outputs via implemen-

tation of MC MPO was found to contribute a significant amount to the overall uncertainty within

predictions. Figure 3 compares GP-NARX MPO and MC MPO predictions, where one can see a sig-

nificant difference between the widths of confidence intervals. The average increase in ±3σ confidence

interval width was 75.0%.

Figure 3: Comparison of black-box GP-NARX MPO and MC MPO predictions on the test set.

Although a perceived increase of model uncertainty may be argued a disadvantage, the underlying

uncertainty present within the modelling processes has remained the same. What has instead changed

is the proportion of the uncertainty that has been captured. A model should aim to be as realistic

as possible about uncertainty within its predictions in order to prevent circumstances of ‘confidently

wrong’ predictions. At around time points 840 and 910, instances can be seen of poorer model per-

formance when a sudden downwards spike in the measured data occurs. The data under study here

are selected from a time when the wave state was close to unidirectional. It is likely that these spikes

occur at times when the wave direction changed. This results in both a data-based component that is

unable to characterise the unseen conditions well and a physics-based component where the underlying

assumptions are likely less valid. In the case of the MPO prediction, the confidence bounds are not

wide enough to accommodate the measured data. For the MC MPO prediction however, the confidence

interval width can be seen to increase significantly in these areas and is able to account for the true

behaviour. A general trend of increased uncertainty in areas of poor performance can be seen within

the MC MPO.

In contrast to the confidence intervals, very little variation between the mean outputs can be seen.

For the majority of the test set prediction, the MPO (solid line) and MC MPO (dotted line) are

difficult to distinguish. For the purposes of uncertainty feedback, 10,000 Monte Carlo samples were
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used which were enough to ensure the convergence of NMSE within a 0.001% tolerance and average

variance within a 0.01N tolerance. With the wave load exceeding a 200N magnitude in many areas,

this level of precision was deemed acceptable. If the number of samples were to be increased, the mean

output of MC MPO should continue to converge towards the MPO. This similarity in response means

that the advantages in uncertainty representation are achieved without deterioration in performance

of the mean output.

From here onwards, the MC MPO will be considered the primary prediction type of interest.

3.1.2. Model predictive performance

The performance of each model was assessed using the response prediction on an unseen test-set

that was not used in the estimation of any parameters or hyperparameters. For the purposes of

model comparison, two measures are used: the Normalised Mean Square Error (NMSE) to assess the

performance of each models expected output and the Mean Standardised Log Loss (MSLL) to provide

a probabilistic measure. The NMSE is expressed:

NMSE =
100

nσ2
y

(y⋆ − y∗)T (y⋆ − y∗) (8)

where n is the sample size, σ2
y is the signal variance, y⋆ is the measured test signal and y∗ is the model

prediction. An NMSE of zero implies perfect prediction whilst an NMSE of 100 would be equivalent

to predicting the mean for all observations.

To construct the MSLL, one must first consider the negative log predictive likelihood of the model,

−log p(y⋆|X⋆, X,y), where y⋆ is the measured test signal, X⋆ is the set of test inputs, X is the set

of training inputs and y is the training target. Taking the negative here returns a loss rather than

a utility which may be standardised by subtraction of the loss calculated when predictions equal the

mean and variance of the training set. This returns a Standardised Log Loss (SLL):

SLL = −log p(y⋆|X⋆, X,y) + log p(y⋆;E(y),V(y)) (9)

The SLL, and therefore the MSLL, will be equal to zero for the baseline case of predicting with the

training set mean and variance and increasingly negative for improved model predictions.

A comparison of metrics for the models and their various prediction types is shown in Table 1. Com-

parisons of the full test set posterior between the model with the lowest NMSE, the grey-box residual

modelling GP-NARX, and other model types are shown in Figures 4-6. All results presented within

this section relate to models constructed using the full training and validation sets.

A stand out observation from the results in Table 1 is the significant performance gap, in terms of

both NMSE and MSLL, between the GP-NARX OSA and all other prediction types. This is to be

expected due to the nature of OSA predictions and inclusion of lagged measured outputs within the
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Table 1: Performance comparison of model types.

Model Model type NMSE (%) MSLL

Morison’s Equation White-box 19.528 −0.813

Static GP

Black-box 16.433 −0.939

Residual modelling 16.751 −0.914

Input augmentation 15.627 −0.951

GP-NARX OSA

Black-box 2.702 −1.444

Residual modelling 5.212 −1.012

Input augmentation 2.947 −1.429

GP-NARX MPO

Black-box 14.773 −0.968

Residual modelling 13.862 −0.872

Input augmentation 14.072 −0.994

GP-NARX MC MPO

Black-box 14.643 −0.788

Residual modelling 13.840 −0.835

Input augmentation 14.088 −0.791

model inputs. The prediction of a single time step ahead is of very limited use in SHM applications,

particularly in the case of high sample rates, thus the good performance is of little benefit.

The NMSE of the white-box linear regression was found to be 19.528% which is in line with the expected

20% [27] residuals of Morison’s Equation. Although this is around 3-6% higher than the NMSE of

other models, the result is achieved with reduced modelling complexity and computational burden.

Considering the simplified version of Morison’s Equation used had only the two model parameters C ′

d

and C ′

m to model the relatively complex wave load, even moderate levels of model performance are

commendable.

All models including a machine learning component were able to offer significant reductions in NMSE

over the white-box model. The success of the grey and black-box models was to be expected due

to the failure of Morison’s Equation to account for complex behaviours present within wave loading

such as vortex shedding [26]. The inclusion of the black-box component, whether this be a GP or

GP-NARX, increased model flexibility, allowing the representation of such behaviours. This indicates

that previously missed underlying structure within the wave force was then able to be captured.

For all grey-box models except the residual modelling static GP, modest improvements in NMSE

over the equivalent black-box approach were observed, implying that the inclusion of physics through
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the white-box component was able to aid model performance. For the residual modelling static GP,

the inability of the black-box component to model the dynamics in the white-box residuals led to a

reduction in performance. The fact that the residual modelling GP-NARX was the best performing

grey-box model suggests the presence of some structure within the residuals only able to be captured

by the GP-NARX and not by the static GP. In terms of missed phenomena from the model, this would

be a process captured well by an autoregressive model exhibiting features such as periodicity over a

small time scale.

In general, a larger increase in performance can be seen between the grey-box and white-box models,

than between the grey-box and black-box models. The primary reason for this is when the full training

and validation sets are used, the model is deemed to be mostly interpolating (See Section 3.1.3). Black-

box and grey-box models are expected to achieve a similar performance in interpolation, with a physics-

based component being most useful to assist with extrapolation. The specific type of components used

to construct a grey-box model will also affect the relative differences in performance. Here, Morison’s

Equation – an approximate wave loading solution, is combined with a GP-NARX – a relatively powerful

black-box architecture. The computational balance is heavily weighted in favour of the GP-NARX

and it is to be expected that the performance of the grey-box would be more similar to the black-box

than the white box in this case.

The MSLL of Morison’s Equation was −0.813, which being in line with the MSLL of the residual

modelling GP-NARX MC MPO of −0.835, indicated a strong model performance. Although a similar

MSLL results in a similar prediction likelihood, it does not describe other aspects of model performance.

Morison’s Equation achieved the result with the highest NMSE of all models and the residual modelling

GP-NARX the lowest. The similar MSLL was achieved through the lower prediction variance of

Morison’s Equation which can be seen from the narrower confidence interval width within Figure 4.

The trade-off between variance and NMSE would generally be preferred in favour of NMSE with wider

confidence intervals better able to contain the measured result.

The earlier discussed effect of GP-NARX uncertainty propagation can be seen within the increase in

MSLL between the MPO and MC MPO of the GP-NARX. The increased prediction variance caused

by the feedback of output distribution samples reduced the likelihood of the prediction significantly.

However, the proper treatment of uncertainty is important in preventing overestimation of prediction

likelihood and overconfidence within predictions far from the observation.

3.1.3. Model performance during extrapolation

A major drawback of black-box models is poor performance in conditions outside those experienced

within the training and validation sets. In an engineering context, this necessitates the collection of

data across all possible operating conditions of the structure or system of interest. Such a demand
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Figure 4: Test set prediction comparison between the white-box linear regression (solid line) and the MC MPO of the

grey-box residual modelling GP-NARX (dotted line).

Figure 5: Test set prediction comparison between the MC MPO of the black-box (solid line) and grey-box residual

modelling GP-NARX (dotted line).

Figure 6: Test set prediction comparison between the MC MPO of the grey-box input augmentation (solid line) and

residual modelling (dotted line) GP-NARX models.
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may be extremely costly, or impossible in some cases. Improvements in extrapolative capabilities

would relax the dataset coverage of conditions required for effective machine learning implementation,

thereby reducing the associated monitoring efforts. This is where one would expect a grey-box model

to be of particular use.

To consider the extent to which a model is extrapolating, it is useful to consider how the training,

validation and test sets overlap within the input space, which for the case of wave loading is formed

of the velocity U and acceleration U̇ of the wave particles, and their lags. In the idealised case, all

conditions within the test set will lie within the area/volume2 covered by the training and validation

sets; this guarantees that the model is interpolating at all times (assuming the training and validation

set are representative of the behaviour of the system). Obtaining such a dataset is challenging in

my many contexts, particularly for offshore environments where conditions are highly variable and

measured data for extreme events is rare. Model performance in extrapolation is, therefore, very

important in such cases.

For fewer than four dimensions, one may visualise the input space for the training, validation and

test sets, and consequently their overlap. Here, considering the input space in terms of the only the

velocity and acceleration of the wave particles and not their lags, Figure 7 plots the boundaries for

the three datasets used in the previous section. The boundaries of the dataset are determined to

be the maximum projections from the origin of the input space in all directions encompassed by the

measured data. In areas where the testing set overlaps the training and validation sets, the model

will be interpolating, else it will be extrapolating. It is worth noting that even the ‘complete’ datasets

used here represent only a small proportion of conditions able to be experienced by the structure (as

the data were chosen where flow conditions were close to uni-directional, as discussed at the start of

Section 3). The 2D boundaries of wave velocity and acceleration were found to be comparable to the

boundaries of the first 2 input space PCA components which accounted for 95% of total variance and

deemed representative of the input space as a whole.

For this two dimensional case, one may use a coverage measure to assess the extent to which one is

extrapolating. Here the coverage is calculated as the proportion of area within the test set boundary

that lies within the boundaries of both the training and validation sets:

Coverage = 100

(
A′

A

)

(10)

where A′ is the area within the test set boundary also enclosed by both the training and validation set

boundaries and A is the total area within the test set boundary. Although the density of points within

2In most cases this is likely to be an n−dimensional volume, as the input space will generally have more than two

dimensions
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Figure 7: 2D visualisations of training, validation and test set boundaries and their overlapping region of interpolation.

The black lines represent the boundaries enclosing the coloured points from each dataset. The blue, green and grey

shaded regions represent the areas covered by each dataset whilst the shaded teal region represents the area of the test

set considered interpolation.

boundaries can vary at each coverage level, a relative measure of extrapolation is achieved, allowing

for an investigation in to extrapolative performance of the models. Note that outliers will have a

considerable impact on the calculated coverage level, leading to an over estimation of actual coverage

and should be removed from datasets where appropriate. In order to assess model performance at a

range of coverage levels, the sizes of the training and validation sets were adjusted to achieve desired

levels of coverage. As the number of points used increases, the boundary covered by the datasets

will grow and hence cover a larger area of the test set. The rate of growth of the boundary will be

highest at low quantities of training and validation points where each additional data point will have

a higher chance of widening the boundary. Plots of overlapping boundaries for a range of training and

validation set sizes and their respective coverage levels are shown in Figure 8. Results of model NMSE

from 0% to 80% coverage levels in 5% coverage intervals is shown in Figure 9.

Figure 8: Plots of 10%, 30%, 50% and 70% test set coverage at increasing quantities of training and validation points.

The blue, green and grey shaded regions represent the areas covered by each dataset whilst the shaded teal region

represents the area of the test set considered interpolation.

The largest difference in model performance is visible at the lowest levels of coverage, with the NMSE

of the black-box and input augmentation models increasing steeply as the coverage approaches zero.

With no supplied data and zero coverage, all models revert to their prior, resulting in an NMSE of

100% for both the black-box and input augmentation models. The poor performance of black-models
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Figure 9: NMSE vs coverage for the MC MPO of black-box and grey-box GP-NARX models and Morison’s Equation

with all models constructed using the restricted sizes of training and validation sets and prior Cd and Cm coefficients

suggested by Clauss [32] and DNV-RP-C205 [33].

at low levels of coverage is to be expected, however, the input augmentation model failed to offer

improvement despite being supplied with the same Morison’s Equation prediction and prior Cd and

Cm coefficients as the residual modelling approach. The physics-based component was unable to assist

the input-augmentation model at low coverage due to being supplied as GP input, since the inputs of a

GP may only influence a prediction within a proximity to observed data determined by the lengthscale.

When far from observed data, the inclusion of Morison’s equation as an input will have minimal benefit.

The performance of residual modelling suffers significantly less when the coverage is reduced, indicating

an improvement in extrapolative capabilities. In the case where no data is supplied, the black-box

component of the model reverts to a zero prior, so that the predicted output of the model is now

just the prediction of Morison’s equation. The usage of Morison’s Equation with prior Cd and Cm

coefficients was able to achieve an NMSE of 54.03%, a significant improvement over the black-box and

input augmentation models. The white-box acts as a baseline performance for the model which may

be improved if data is provided but will not override the improved black-box predictive capabilities

in areas where data is available. Residual modelling combined the same white-box and black-box

components as the input augmentation model but in a means that achieved superior extrapolative

performance.

An alternative investigation in to the effect of coverage on model performance assumed an existing

white-box model could be used to assist with predictions, with C ′

d and C ′

m fixed independently of the

supplied training data. This scenario represents the possible case of machine learning implementation
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within industry where a white-box model is already established and in use. To mimic an established

white-box model, the coefficients of Morison’s equation were established via Bayesian Linear Regression

using the complete validation set, which would not ordinarily be used in white-box model creation,

and kept constant throughout the variation of coverage. Results of model NMSE from 0% to 80%

coverage levels in 5% coverage intervals is shown in Figure 10.

Figure 10: NMSE vs coverage for the MC MPO of black-box and grey-box GP-NARX models and Morison’s Equation

with C′

d
and C′

m calculated independently of the supplied training data and kept constant throughout the variation of

coverage.

By incorporating an existing white-box model rather than beginning model construction from scratch,

a significant increase in residual modelling performance at low coverage levels can be seen. Where

previously, the model performance here was heavily dependant on the selected prior Cd and Cm

coefficients, the model is now able to revert to the prediction of the existing white-box model, thereby

reducing model NMSE to 21.26% at zero coverage. Provided that the existing model has been validated

for use over the intended prediction range, this highlights the benefit of incorporating existing models

within the newly created architectures. At high levels of coverage the incorporated existing model has

a minimal effect on predictions, with models relying more heavily on their black-box component in

areas where data is available.

4. Conclusions

The combining of physics-based white-box and data-based black-box modelling techniques in the form

of two grey-box architectures was found to offer benefits in predictive performance over either ap-

proach used alone. The best performing grey-box model, the residual modelling GP-NARX, achieved

a 29.13% and 5.48% relative reduction in NMSE over Morison’s Equation and a black-box GP-NARX
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respectively. It was expected that grey-box models would be of specific help in assisting with extrapo-

lation, an area in which data-based methods typically experience difficulty, and this was indeed found

to be the case. Residual modelling was found to offer significant benefits in performance outside the

range of observed training conditions, particularly in instances where a pre-established white-box may

be available for inclusion in to the combined model.

This paper investigated the combining of Morison’s Equation with both GP and GP-NARX regression

models to predict wave loading in predominantly unidirectional flow conditions. Further work, incor-

porating the use of higher fidelity physics models to account for flow in both x and y directions would

allow investigation in to prediction capabilities over a wider range of conditions.
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Appendix A. Appendix

Appendix A provides details on the implementation of Bayesian linear regression and determination of

the grouped coefficients C ′

d and C ′

m of Morison’s Equation along with an overview of Gaussian process

regression.

Appendix A.1. Bayesian linear regression

By gathering the inputs of Morison’s Equation, they may be expressed as a single design matrix X

along with model parameters β:

X = [U |U |, U̇ ] (A.1)

β =




C ′

d

C ′

m



 (A.2)

Morison’s equation can then be expressed in matrix form:

F = Xβ + ε where ε ∼ N (0, σ2
nI) (A.3)

A Bayesian linear regression can be set up for the model.

p(F |X,β, σ2
n) = N (Xβ, σ2

β) (A.4)

In order to retrieve the desired posteriors over the parameters for Morison’s Equation β and noise

variance σ2
n, it is necessary to place priors over the parameters. Here a Normal-Inverse-Gamma semi-

conjugate prior is used:

p(β) = N (mβ , σ
2
β) (A.5)

p(σ2
n) = IG(a, b) (A.6)

A Gaussian prior over the parameters for Morison’s Equation allows for a positive or negative mean

mβ with a given variance σ2
β . The selection of appropriate C ′

d and C ′

m priors can be made using the

dimension specific terms for the structure and standards relating to flow specific drag Cd and inertia

Cm coefficients such as DNV-RP-C205 [33]. An Inverse Gamma (IG) prior can encode belief about

the noise variance through hyperparameters a and b, whilst restricting to only positive values.

The full joint posterior p(β, σ2
n|F , X) is unavailable in closed form and it is therefore necessary to

calculate the conditional posterior for each parameter: p(β|F , X, σ2
n), p(σ

2
n|F , X,β). The parameter

posterior distributions were recovered via Gibbs sampling with 10,000 draws. This provided a com-

putationally efficient method for accurate estimation of the conjugate conditional distributions [34].

Once the parameter distributions were retrieved, further sampling was used to recover the posterior

distribution of the test set force prediction from (A.4).
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Appendix A.2. Gaussian Process Regression

A Gaussian process (GP) is comprised of a set of random variables, any finite number of which, share

a joint Gaussian distribution. A popular view of a GP is as a distribution over functions, where each

individual draw from the GP represents a realisation of one of the infinitely many potentially generated

functions.

A Gaussian process is completely defined by its mean m(x) and covariance k(x, x′) functions. The

primary component of interest is typically the covariance function with the mean function often taken

as zero. For a pair of inputs x and x′ a GP may be written:

f(x) ∼ GP(m(x), k(x, x′)) (A.7)

Upon observing a set of training points X of sample size N , a GP is realised as a joint Gaussian

distribution of dimensionality N . For a prediction y∗ at new set of test points X⋆, the covariance

matrices for the training points K(X,X), the test points K(X⋆, X⋆) and between the training and test

points K(X,X⋆) are required. For predictions based on noisy observations with an assumed Gaussian

noise of variance σ2
n, the problem may be formulated:




y

y∗



 ∼ N



0,




K(X,X) + σ2

nI K(X,X⋆)

K(X⋆, X) K(X⋆, X⋆) + σ2
nI







 (A.8)

Expressions for the expected mean and variance of the predicted target y∗ may then be derived [14]:

E(y∗) = K(X⋆, X⋆)(K(X,X) + σ2
nI)

−1y (A.9)

V(y∗) = K(X⋆, X⋆)−K(X⋆, X)(K(X,X) + σ2
nI)

−1K(X,X⋆) + σ2
nI (A.10)

Note here that for the predictive distribution a noisy test target, the noise variance σ2
n should be

accounted for within the expected variance.

In this work a squared exponential kernel with Automatic Relevance Determination (ARD) is used.

This allows an independent length scale for each input parameter and offers increased model flexibility

when operating with multiple types of input parameter.

k(xi, xj) = σ2
f exp

(

−
1

2
(xi − xj)

TΛ−1(xi − xj)

)

(A.11)

where σ2
f is the signal variance and Λ is the matrix of length scales such that diag(Λ) = [l21, l

2
2, ..., l

2
D]

for a D dimensional input. These parameters are typically optimised over the Negative Log Marginal

Likelihood (NLML) of model predictions on a training set:

−log p(y|X,θ) =
1

2
yT (K + σ2I)−1y +−

1

2
log|K + σ2I|+

n

2
log(2π) (A.12)
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As discussed in the main body of the paper, a more appropriate choice of cost function for a GP-

NARX is the Negative Log Predictive Likelihood of the Model Predicted Output (MPO NLPL) on

an independent validation set. Here, a training set is used to construct a GP-NARX model with the

MPO generated by propagating through validation set time steps. The process is defined in Algorithm

1.

The NLPL of the MPO is calculated as a joint Gaussian likelihood of each measured data point yt

coming from the corresponding predictive distribution y∗t ∼ N (E(y∗t ),V(y
∗

t )) of the GP-NARX output.

The MPO NLPL may be derived as:

−log p(y|E(y∗),V(y∗),θ) =
1

2
(y−E(y∗))TV(y∗)−1(y−E(y∗))+

1

2

n∑

t=1

log(V(y∗t ))+
n

2
log(2π) (A.13)

Appendix B. GP-NARX Implementation for CBT dataset

Appendix B details specifics of GP-NARX implementation including the optimisation of hyperparam-

eters, selection of lagged terms within the model and a comparison of computation time with other

models.

Appendix B.1. Hyperparameter optimisation

Quantum Behaved Particle Swarm Optimisation (QPSO) [35] was used as a global, gradient-free

method for the determination of hyperparameters in GP covariance functions, although it would be

possible to use any other appropriate optimisation scheme. To ensure stable convergence, optimisation

runs were repeated and the hyperparameters cross checked. The swarm size and cost function stability

tolerance were adjusted accordingly until stability was achieved over 12 repeated optimisation runs.

The required parameter settings for stable convergence of the GP and GP-NARX models are shown

in Table B.2.

Table B.2: QPSO parameter settings used for GP and GP-NARX optimisation.

Model type Swarm size (n) Cost function stability tolerance (t)

GP 200 1× 10−3

GP-NARX 1000 1× 10−5

In order to achieve stable convergence of hyperparameters, the GP-NARX required both a higher

swarm size and a tighter cost function stability tolerance than the static GP. There were two major

reasons for this: the increased number of hyperparameters introduced via additional length scales

for lagged inputs and the increased complexity of the cost function. The additional hyperparameters

increased the dimensionality of the search space whilst the propagation present within the calculation

of the MPO NLPL cost function led to a high sensitivity to changes in hyperparameters.
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Appendix B.1.1. GP-NARX lag selection

The selection of lag terms within a GP-NARX model has a significant effect on the structure and

performance of the model. The number of lags included for both the previous signal values and

exogenous inputs can be optimised by considering lu and ly as hyperparameters. The optimal model

may then be chosen via calculation of an appropriate model selection criterion.

Here we use the Akaike Information Criterion (AIC) [36] and Bayesian Information Criterion (BIC)

[37] in combination for the selection of lags, where for the AIC, the second order variant (AICc) [38]

is appropriate due to the low sample size relative to the number of model parameters.

The primary difficulty faced within GP-NARX lag selection is the computational cost of the search.

Even when considering only the maximum lags, rather than the full combinatorial problem, a significant

number of models are required to be constructed and evaluated. Due to the long training time of

the GP-NARX, particularly when using the MPO NLPL cost function and accounting for repeated

optimisation starts, the computational cost of covering even moderate search spaces becomes an issue.

A proposed solution is to perform the search on a computationally inexpensive AutoRegressive model

with eXogeneous inputs (ARX) and carry the lag selections forward for use in the full GP-NARX

model. Although still autoregressive in nature and trained using the same datasets as the GP-NARX,

it should be noted that the ARX is a linear model and will thus capture a reduced range of behaviours

when compared with the GP-NARX. This will likely introduce slight deviation from the optimal lag

selections, however the result is expected to provide a sensible lag selection with performance of the

final GP-NARX model close to optimal. The pragmatic decision was taken here to make a compromise

between computation time and potential improvements in model performance.

An ARX model is considered for the lag selection search of the form:

yt =

lu∑

i=0

αiut−i +

ly∑

i=1

βiyt−i + ε (B.1)

where similarly to the GP-NARX, the previous signal values, y are the wave force and the exogenous

inputs considered are the velocity, U and acceleration, U̇ of the wave particles.

uT = [U |U |t, U̇t, U |U |t−1, U̇t−1, ..., U |U |t−lu
, U̇t−lu

] (B.2)

α = [C ′

d0, C ′

m0, C ′

d1, C ′

m1, ..., C ′

dlu
, C ′

mlu
] (B.3)

yT = [yt−1, yt−2, ..., yt−ly
] (B.4)

β = [C ′

y1, C ′

y2, ..., C ′

yly
] (B.5)
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A search space of up to 20 lagged time steps was considered for both the outputs and exogenous inputs.

A heatmap of ∆AICc and ∆BIC values for both the OSA and MPO prediction of the ARX model is

shown in Figure B.11. The blue areas represent lower values of ∆i and superior models whilst yellow

indicates higher ∆i values and therefore worse models.

The optimum lags were found to be lu = 1 and ly = 3 for both the OSA and MPO predictions of

∆BIC and the OSA prediction of ∆AICc. The MPO prediction of ∆AICc narrowly suggested lu = 1

and ly = 4 as optimal with lu = 1 and ly = 3 having a ∆AICc of 1.67. This still provided ‘substantial’

[39] evidence in favour of the lags lu = 1 and ly = 3 which were therefore selected for the model.

Figure B.11: Heatmaps of lag selection metrics for the OSA and MPO predictions of the ARX model.

The results suggest that, uniformly, there is little benefit in considering more than one lag for the

particle velocity and acceleration terms. Instead, the richer dynamics are expressed through the

autoregressive terms for the force.

Appendix B.1.2. Computation time

The trade-off between performance and computational demand is an important consideration, partic-

ularly within industrial applications. Across all models, perhaps unsurprisingly, the general trend is

that those that perform best require an increased computation time. For the training and prediction

of a single model this ranges from 0.9 seconds for the linear regression, to an average of 81 seconds
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for GPs and 2 hours 11 minutes for the extreme case of GP-NARX models.3 This difference is only

exaggerated when taking in to account repeated optimisation runs to ensure stable convergence of GP

and GP-NARX hyperparameters.

There are two major reasons for the considerably higher computation time of the GP-NARX models:

the complexity and computational demand of the MPO NLPL cost function and the requirement of MC

samples to propagate uncertainty within the output. During optimisation, for any considered approach

[40], the complexity of the cost function is tied to the computational cost of the search. For the case

of the MPO NLPL, the cost function was both slow to evaluate due the requirement of propagation

through an independent validation set and highly sensitive to small changes in parameters, thereby

creating a complex search space with high numbers of local minima. Hyperparameter sensitivity was a

particular issue within the GP-NARXMPO and MCMPO due to the feedback of predictions within the

model. This meant that the hyperparameters not only had an effect on predictions at the current time

step but again for every instance the prediction was used as a lagged input. The high hyperparameter

sensitivity meant that an increased swarm size and tighter convergence tolerance had to be used with

QPSO to ensure stable optimisation which further slowed computation time. Although the larger factor

within the overall run time of the GP-NARX model, the MPO NLPL cost function only affected the

training time of the model, whilst the requirement of MC samples for the propagation of uncertainty

affected the prediction time of the model. The computational demand within prediction is a priority for

machine learning techniques as models are generally required to be trained once but make predictions

repeatedly. In order to reduce prediction time, it would be possible to explore reductions within the

number of MC samples used and achieve compromises between predictive stability and computation

time.

An alternative means by which to reduce computation cost, with a more specific focus on training

time, is through the use of sparse GPs. A subset of training points or set or pseudo-input points [41]

is used to approximate the true posterior of the GP. The computational cost of training is reduced

from O(n3) to O(nm2) [42], where n is the number of data points and m is the size of the subset.

These methods are most useful in cases of very large datasets, with a training set of n = 700, 000 and

m = 1000 being effective for the estimation of flight delay times [15]. Their implementation should be

considered if the dataset was expanded to cover a wider range of conditions.

3Runtimes achieved on a laptop with specification: 16GB RAM, Intel i7-9850H processor (6 core, 2.60-4.60GHz)
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