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Many experiments in the field of quantum foundations seek to adjudicate between quantum theory and

speculative alternatives to it. This requires one to analyze the experimental data in a manner that does not

presume the correctness of the quantum formalism. The mathematical framework of generalized proba-

bilistic theories (GPTs) provides a means of doing so. We present a scheme for determining which GPTs

are consistent with a given set of experimental data. It proceeds by performing tomography on the prepa-

rations and measurements in a self-consistent manner, i.e., without presuming a prior characterization of

either. We illustrate the scheme by analyzing experimental data for a large set of preparations and mea-

surements on the polarization degree of freedom of a single photon. We first test various hypotheses for the

dimension of the GPT vector space for this degree of freedom. Our analysis identifies the most plausible

hypothesis to be dimension 4, which is the value predicted by quantum theory. Under this hypothesis, we

can draw the following additional conclusions from our scheme: (i) that the smallest and largest GPT state

spaces that could describe photon polarization are a pair of polytopes, each approximating the shape of

the Bloch sphere and having a volume ratio of 0.977 ± 0.001, which provides a quantitative bound on the

scope for deviations from the state and effect spaces predicted by quantum theory, and (ii) that the maximal

violation of the Clauser, Horne, Shimony, and Holt inequality can be at most 1.3% ± 0.1 greater than the

maximum violation allowed by quantum theory, and the maximal violation of a particular inequality for

universal noncontextuality can not differ from the quantum prediction by more than this factor on either

side. The only possibility for a greater deviation from the quantum state and effect spaces or for greater

degrees of supraquantum nonlocality or contextuality, according to our analysis, is if a future experiment

(perhaps following the scheme developed here) discovers that additional dimensions of GPT vector space

are required to describe photon polarization, in excess of the four dimensions predicted by quantum theory

to be adequate to the task.

DOI: 10.1103/PRXQuantum.2.020302

I. INTRODUCTION

Despite the empirical successes of quantum theory, it

may one day be supplanted by a novel, postquantum

theory [1]. Many researchers have sought to anticipate
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what such a theory might look like based on theoreti-

cal considerations, in particular, by exploring how various

natural physical principles narrow down the scope of pos-

sibilities in the landscape of all physical theories (see

Ref. [2] and references therein). In this paper, we consider

a complementary problem: how to narrow down the scope

of possibilities directly from experimental data.

Most experiments in the field of quantum foundations

aim to adjudicate between quantum theory and some spec-

ulative alternative to it. They seek to constrain (and per-

haps uncover) deviations from the quantum predictions.

Although a few proposed alternatives to quantum theory

can be articulated within the quantum formalism itself,

such as models that posit intrinsic decoherence [3–6],

most are more radical. Examples include Almost Quantum

Theory [7,8], theories with higher-order interference
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[9–14] (or of higher order in the sense of Ref. [15]), and

modifications to quantum theory involving the quaternions

[16–19].

In order to assess whether experimental data provides

any evidence for a given proposal (and against quantum

theory), it is clearly critical that one not presume the cor-

rectness of quantum theory in the analysis. Therefore, it

is inappropriate to use the quantum formalism to model

the experiment. A more general formalism is required.

Furthermore, it would be useful if rather than implement-

ing dedicated experiments for each proposed alternative to

quantum theory, one had a technique for directly determin-

ing the experimentally viable regions in the landscape of

all possible physical theories. The framework of general-

ized probabilistic theories (GPTs) provides the means to

meet both of these challenges.

This framework adopts an operational approach to

describing the content of a physical theory. It has

been developed over the past 20 years in the field of

quantum foundations (see Refs. [15,20–22], as well as

Refs. [8,23–30]), continuing a long tradition of such

approaches [31–34]. It is operational because it takes the

content of a physical theory to be merely what it predicts

for the probabilities of outcomes of measurements in an

experiment.

The GPT framework makes only very weak assump-

tions, which are arguably unavoidable if an operational-

ist’s conception of an experiment is to be meaningful.

One is that experiments have a modular form, such that

one part of an experiment can be varied independently

of another, such as preparations and measurements for

instance; another is that it is possible to repeat a given

experimental configuration in such a way that it constitutes

an i.i.d. source of statistical data. Beyond this, however,

it is completely general. It has been used extensively to

provide a common language for describing and compar-

ing abstract quantum theory, classical probability theory,

and many foils to these, including quantum theory over the

real or quaternionic fields [19], theories with higher-order

interference [35–37], and the generalized no-signaling the-

ory (also known as Boxworld) [20,27].

Using this framework, we propose a technique for ana-

lyzing experimental data that allows researchers to over-

come their implicit quantum bias—the tendency of view-

ing all experiments through the lens of quantum concepts

and the quantum formalism—and take a theory-neutral

perspective on the data.

Despite the fact that the GPT formalism is ideally suited

to the task, to our knowledge, it has not previously been

applied to the analysis of experimental data (with the

exception of Ref. [38], which applied it to an experimental

test of universal noncontextuality and which inspired the

present work).

In this paper, we aim to answer the question: given

specific experimental data, how does one find the set of

GPTs that could have generated the data? We call this the

“GPT inference problem.” Solving the problem requires

implementing the GPT analog of quantum tomography.

Quantum-tomography experiments that have sought to

characterize unknown states have typically presumed that

the measurements are already well characterized [39–45],

and those that have sought to characterize unknown mea-

surements have typically presumed that the states are

known [46,47]. If one has no prior knowledge of either

the states or the measurements, then one requires a tomog-

raphy scheme that can characterize them both based on

their interplay. We call such a tomographic scheme self-

consistent. To solve the GPT inference problem, we intro-

duce such a self-consistent tomography scheme within the

framework of GPTs.

We also illustrate the use of our technique with an exper-

iment on the polarization degree of freedom of a single

photon. For each of a large number of preparations, we

perform a large number of measurements, and we analyze

the data using our self-consistent tomography scheme to

infer a GPT characterization of both the preparations and

the measurements.

To clarify what, precisely, our analysis implies, we begin

by distinguishing two ways in which nature might deviate

from the predictions of quantum theory within the frame-

work of GPTs. The first possibility is that it exhibits a

deviation (relative to what quantum theory predicts for the

system of interest) in the particular shapes of the spaces of

GPT state vectors and GPT effect vectors but no deviation

in the dimensionality of the GPT vector space. The second

possibility is that it deviates from quantum expectations

even in the dimensionality.

From our experimental data, we find no evidence of

either sort of deviation. If nature does exhibit deviations

and these are of the first type (i.e., deviations to shapes

but not to dimensions), then we are able to put quanti-

tative bounds on the degree of such deviations. If nature

exhibits deviations of the second type (dimensional devi-

ations), then although our GPT inference technique may

fail to detect them in a given experiment, it does provide

an opportunity for doing so. In the next few paragraphs,

we try to explain the precise sense in which there is such

an opportunity.

If dimensional deviations from quantum theory hap-

pen to only be significant for some exotic new types

of preparations and measurements, then insofar as our

experiment only probes a photon’s polarization in con-

ventional ways (using wave plates and beam splitters),

there is nothing in its design ensuring that such deviations

are found. Nonetheless, it is still the case that our exper-

iment (and any other that implements our technique on

data obtained by probing a system in conventional ways)

has an opportunity to discover such deviations, even in the

absence of any knowledge of the type of exotic procedures

required to make such deviations significant. To see why
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this is the case, note that there are two ways in which an

experiment might discover new physics: the “terra-nova”

strategy, wherein one’s experiment probes a new phe-

nomenon or regime of some physical quantity, and the

“precision” strategy, wherein one’s experiment achieves

increased precision for a previously explored phenomenon

or regime.

To illustrate the distinction, consider a counterfactual

history of physics, wherein the special theory of relativ-

ity was not discovered by theoretical considerations but

was instead inferred primarily from experimental discover-

ies. Imagine, for instance, that it began with the discovery

of corrections to the established (nonrelativistic) formulas

for properties of moving bodies, such as the expression

for their kinetic energy or the Doppler shift of the radi-

ation they emit. On the one hand, an experimenter who,

for whatever reason, had found herself investigating the

behavior of systems accelerated to speeds that were a sig-

nificant fraction of the speed of light (without necessarily

even knowing that the speed of light was a limit) would

have found significant deviations from various nonrela-

tivistic formulas. On the other hand, an experimenter who

probed systems at unexceptional speeds (i.e., speeds small

compared to the speed of light) but with a degree of pre-

cision much higher than had been previously achieved

could still have discovered the inadequacy of nonrelativis-

tic formulas by detecting small but statistically significant

deviations from these.

The experiment we report provides an opportunity to

discover a deviation (from quantum theory) in the dimen-

sion of the GPT vector space required to describe photon

polarization because it provides a precision characteri-

zation of a large set of preparations and measurements

thereon. If experimental setups designed to realize conven-

tional preparations and measurements inadvertently extend

some small distance into the space of exotic preparations

and measurements, say, by fluctuations or small systematic

effects, then our technique can reveal this fact by showing

that the expected dimensionality for the GPT vector space

does not fit the data. The full scope of possible preparations

and measurements for photon polarization might be radi-

cally different from what our quantum expectations dictate

(incorporating new exotic procedures), and yet one could,

by serendipity, experimentally realize a set of preparations

and measurements that are tomographically complete for

this full set rather than being merely sufficient for char-

acterizing the conventional procedures. In other words,

the realized set could manage to span the full postquan-

tum GPT vector space in spite of their not having been

designed to do so. In Sec. III A, we provide a more detailed

discussion of this point [48].

Applying our GPT inference technique to our experi-

mental data, we find that our experiment is best represented

by a GPT of dimension 4, which is what quantum the-

ory predicts to be the appropriate dimension for photon

polarization. In other words, we find no evidence for

a deviation in the dimension of the GPT vector space,

relative to quantum expectations, at the precision frontier

using conventional means of probing photon polarization.

We can therefore conclude that one of the following possi-

bilities must hold: (i) there are no dimensional deviations,

(ii) there are dimensional deviations, which exotic prepara-

tions and measurements would reveal, but the procedures

realized in our experiment contain strictly no exotic com-

ponent, (iii) there are dimensional deviations, which exotic

preparations and measurements would reveal, and the pro-

cedures realized in our experiment do contain some exotic

component, but the latter is not visible at the level of

precision achieved in our experiment.

We now describe what further conclusions we can draw

from our experiment supposing that the realized prepa-

rations and measurements in our experiment are tomo-

graphically complete, that is, supposing that they have

nontrivial components in all dimensions of the GPT vector

space describing photon polarization and that these com-

ponents are visible at the level of precision achieved in

our experiment. In other words, we now describe what

further conclusions we can draw from our experiment if

we suppose that it is possibility (i), rather than possi-

bilities (ii) or (iii), that holds. In this case, we are able

to place bounds (at the 1% level) on how much the

state and effect spaces of the true GPT might deviate

from those predicted by quantum theory. In addition, we

are able to draw explicit quantitative conclusions about

three types of such putative deviations, which we now

outline.

The no-restriction hypothesis [21] asserts that if some

measurement is logically possible (i.e., it gives positive

probabilities for all states in the theory) then it should be

physically realizable. It is true of quantum theory—indeed,

it is a popular axiom in many axiomatic reconstructions

thereof. A failure of the no-restriction hypothesis, there-

fore, constitutes a departure from quantum theory. We put

quantitative bounds on the possible degree of this failure,

that is, on the potential gap between the set of measure-

ments that are physically realizable and those that are logi-

cally possible. Recalling the scope of possible conclusions

(i)–(iii) above, the only way for any future experiment

to overturn this conclusion about deviations from the no-

restriction hypothesis is if it demonstrated the need for

dimensional deviations.

We can also put an upper bound on the amount by

which nature might violate Bell inequalities in excess of

the amount predicted by quantum theory. Specifically, for

the Clauser, Horne, Shimony, and Holt (CHSH) inequality

[49], we show that, for photon polarization, any greater-

than-quantum degree of violation is no more than 1.3% ±
0.1 higher than the quantum bound. To our knowledge,

this is the first proposal for how to obtain an experimental

upper bound on the degree of Bell inequality violation in
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nature. The only possibility for a future experiment on pho-

ton polarization to violate the quantum bound by more than

1.3% ± 0.1 is if it demonstrated the need for dimensional

deviations.

In a similar vein, we consider noncontextuality inequal-

ities. These are akin to Bell inequalities, but test the

hypothesis of universal noncontextuality [50] rather than

local causality. Here, our technique provides both an upper

and a lower bound on the degree of violation. For a par-

ticular noncontextuality inequality, described in Ref. [51],

we find that the true value of the violation is no more than

1.3% ± 0.1 higher and no less than 1.3% ± 0.1 lower than

the quantum bound. As with Bell inequalities, the only way

for any future experiment on photon polarization to find a

violation outside this range is if it demonstrated the need

for dimensional deviations.

Although we have not here sought to implement any

terra-nova strategy for finding deviations from quantum

theory, any future experiment that aims to do so can make

use of our GPT inference technique to analyze the data

and evaluate the evidence. Inasmuch as terra-nova strate-

gies, relative to precision strategies, provide a comple-

mentary (and presumably better) opportunity for finding

new physics, our GPT inference technique is also sig-

nificant insofar as it provides the means to analyze such

experiments.

II. THE FRAMEWORK OF GENERALIZED

PROBABILISTIC THEORIES

A. Basics

For any system, in any physical theory, there will in

general be many possible ways for it to be prepared, trans-

formed, and measured. Here, each preparation procedure,

transformation procedure and measurement procedure is

conceived as a list of instructions for what to do in the lab-

oratory. The different combinations of possibilities for each

procedure defines a collection of possible experimental

configurations. We here restrict our attention to experi-

mental configurations of the prepare-and-measure variety:

these are the configurations where there is no transforma-

tion intervening between the preparation and the measure-

ment and where the measurement is terminal (which is

to say that the system does not persist after the measure-

ment). We further restrict our attention to binary-outcome

measurements.

A GPT aims to describe only the operational phe-

nomenology of a given experiment. In the case of a

prepare-and-measure experiment, it aims to describe only

the relative probabilities of the different outcomes of each

possible measurement procedure when it is implemented

following each possible preparation procedure. For binary-

outcome measurements, it suffices to specify the probabil-

ity of one of the outcomes since the other is determined by

normalization. If we denote the outcome set {0, 1}, then it

suffices to specify the probability of the event of obtaining

outcome 0 in measurement M . This event is termed an

effect and denoted [0|M ].

Thus a GPT specifies a probability p(0|P, M ) for each

preparation P and measurement M . Denoting the car-

dinality of the set of all preparations (respectively, all

measurements) by m (respectively, n), the set of these prob-

abilities can be organized into an m × n matrix, denoted D,

where the rows correspond to distinct preparations and the

columns correspond to distinct effects,

D ≡

⎛

⎜

⎝

p(0|P1, M1) p(0|P1, M2) · · · p(0|P1, Mn)

p(0|P2, M1) p(0|P2, M2) · · · p(0|P2, Mn)

· · · · · · · · ·
p(0|Pm, M1) p(0|Pm, M2) · · · p(0|Pm, Mn)

⎞

⎟

⎠
.

We refer to D as the probability matrix associated to the

physical theory. Because it specifies the probabilities for all

possibilities for the preparations and the measurements, it

contains all of the information about the putative physical

theory for prepare-and-measure experiments [52].

Defining

k ≡ rank(D)

then one can factor D into a product of two rectangular

matrices,

D = SE, (1)

where S is an (m × k) matrix and E is a (k × n) matrix.

Denoting the ith row of S by the row vector sT
Pi

(where T

denotes transpose) and the j th column of E by the column

vector e[0|Mj ], we can write

D =

⎛

⎜

⎜

⎜

⎝

sT
P1

sT
P2

· · ·
sT

Pm

⎞

⎟

⎟

⎟

⎠

(

e[0|M1] e[0|M2] · · · e[0|Mn]

)

, (2)

so that

p(0|Pi, Mj ) = sPi
· e[0|Mj ]. (3)

Factoring D in this way allows us to associate to each

preparation P a k-dimensional vector sP and to each effect

[0|M ] a k-dimensional vector e[0|M ] such that the proba-

bility of obtaining the effect [0|M ] on the preparation P is

recovered as their inner product, p(0|P, M ) = sP · e[0|M ].

The vectors sP and e[0|M ] are termed GPT state vectors and

GPT effect vectors, respectively. A particular GPT is spec-

ified by the sets of all allowed GPT state and effect vectors,

denoted by S and E , respectively.

Because the n GPT effect vectors associated to the set of

all measurement effects lie in a k-dimensional vector space,
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only k of them are linearly independent. Any set of k mea-

surement effects whose associated GPT effect vectors form

a basis for the space is termed a tomographically complete

set of measurement effects. The terminology stems from

the fact that if one seeks to deduce the GPT state vector of

an unknown preparation from the probabilities it assigns to

a set of characterized measurement effects (the GPT analog

of quantum-state tomography) then this set of GPT effect

vectors must form a basis of the k-dimensional space. Sim-

ilarly, any set of k preparations whose associated GPT state

vectors form a basis for the space is termed tomograph-

ically complete because to deduce the GPT effect vector

of an unknown measurement effect from the probabilities

assigned to it by a set of known preparations, the GPT state

vectors associated to the latter must form a basis.

For any GPT, we necessarily have that the rank of D

satisfies k ≤ min{m, n}, but in general, we expect k to be

much smaller than m or n.

There is a freedom in the decomposition of Eq. (1).

Specifically, for any invertible (k × k) matrix R, we have

D = SE = (SR−1)(RE). Thus, there are many decompo-

sitions of D of the type described. The vectors {sPi
}i

and {e[0|Mj ]}j depend on the specific decomposition cho-

sen. However, for any two choices of decompositions

SE and S′E′, the vectors {sPi
}i and {s′

Pi
}i (and the vec-

tors {e[0|Mj ]}j and {e′
[0|Mj ]}j ) are always related by a linear

transformation.

Note that any basis of the k-dimensional vector space

remains so under a linear transformation, so the property

of being tomographically complete is independent of the

choice of representation.

It is worth noting that for any physical theory, the GPT

framework provides a complete description of its opera-

tional predictions for prepare-and-measure experiments. In

this sense, the GPT framework is completely general. Fur-

thermore, one can show that under a very weak assumption

it provides the most efficient description of the theory, in

the sense that it is a description with the smallest number

of parameters. The weak assumption is that it is possi-

ble to implement arbitrary convex mixtures of preparations

without altering the functioning of each preparation in the

mixture, so that for any set of GPT state vectors that are

admitted in the theory, all of the vectors in their convex hull

are also admitted in the theory. See Theorem 1 of Ref. [24]

for the proof.

We here make this weak assumption and restrict our

attention to GPTs wherein any convex mixture of prepara-

tion procedures is another valid preparation procedure, so

that the set of GPT state vectors is convex [15]. We refer to

the set S of GPT states in a theory as its GPT state space.

We also make the weak assumption that any convex mix-

ture of measurements and any classical postprocessing of

a measurement is another valid measurement. This implies

that the set of GPT effect vectors consists of the intersec-

tion of two cones, which can be described as follows: there

is some set of ray-extremal GPT effect vectors, such that

the first cone is the convex hull of all positive multiples of

these vectors, and the second cone is the set of vectors that

can be summed with a vector in the first cone to yield the

unit effect vector u (defined below). (This ensures that if a

given effect e is in the GPT, then so is the complementary

effect ē := u − e.) We use the term “diamond” to describe

this sort of intersection of two cones, and we refer to the

set E of GPT effects in a theory as its GPT effect space.

It is worth noting that GPTs that fail to be closed under

convex mixtures and classical postprocessing are of the-

oretical interest—there are interesting foils to quantum

theory of this type [50,53]—one does not expect them to

be candidates for the true GPT describing nature because

there seems to be no obstacle in practice to mixing or post-

processing procedures in an arbitrary way. To put it another

way, the evidence suggests that the GPT describing nature

must include classical probability theory as a subtheory,

thereby providing the resources for implementing arbitrary

mixtures and postprocessings.

Distinct physical theories (i.e., distinct GPTs) are distin-

guished by the shapes of the GPT state space and the GPT

effect space, where these shapes are defined up to a linear

transformation, as described earlier.

We end by highlighting some conventions we adopt in

representing GPTs. Define the unit measurement effect as

the one that occurs with probability 1 for all preparations

(it is represented by a column of 1s in D), and denote it by

u. Because each sP will have an inner product of 1 with

u (by normalization of probability), it follows that there

are only k − 1 free parameters in the GPT state vector. We

make a conventional choice (i.e., a particular choice within

the freedom of linear transformations) to represent the unit

effect by the GPT effect vector (1, 0, 0, . . .)T. This choice

forces the first component of all of the GPT state vectors to

be 1. In this case, one can restrict the search for factoriza-

tions D = SE to those for which the first column of S is a

column of 1s. It also follows that the projection of all GPT

state vectors along one of the axes of the k-dimensional

vector space has value 1, and consequently it is useful to

only depict the projection of the GPT state vectors into the

complementary (k−1)-dimensional subspace.

B. Examples

Some simple examples serve to clarify the notion of a

GPT. First, consider a two-level quantum system (qubit).

The set of all preparations is represented by the set of all

positive trace-one operators on a two-dimensional com-

plex Hilbert space, that is, ρ ∈ L(C2) with L denoting

the linear operators, such that ρ ≥ 0 and Tr(ρ) = 1. Each

measurement effect is associated with a positive operator

less than identity, 0 ≤ Q ≤ I. Each measurement effect and

each preparation can also be represented by a vector in a

real four-dimensional vector space by simply decomposing
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the operators representing them relative to any orthonor-

mal basis of Hermitian operators. The Born rule is repro-

duced by the vector space inner product because it is sim-

ply the inner product of the associated operators relative to

the Hilbert-Schmidt norm.

The most common example of such a representation

is the one that uses (a scalar multiple of) the four

Pauli operators, { 1
2
I, 1

2
σx, 1

2
σy , 1

2
σz}, as the orthonormal

basis of the space of operators. A preparation repre-

sented by a density operator ρ is associated with the

four-dimensional real vector s ≡ (s0, s1, s2, s3), via the

relation ρ = 1
2
s · σ , where σ ≡ (I, σx, σy , σz), or equiv-

alently, ρ = 1
2

(

s0I + s1σx + s2σy + s3σz

)

. The condition

Tr(ρ) = 1 implies that s0 = 1, and the conditions Tr(ρ) =
1 and ρ ≥ 0 together imply that

√

s2
1 + s2

2 + s2
3 ≤ 1. Con-

sequently, there is only a three-dimensional freedom in

specifying a quantum state. Geometrically, the possible

s describe a ball of radius 1, conventionally termed the

Bloch sphere [54] and depicted in Fig. 1(a)(i). A measure-

ment effect represented by an operator Q is associated with

the four-dimensional real vector e ≡ (e0, e1, e2, e3), via the

relation Q = e · σ . The conditions Q ≥ 0 and Q ≤ I imply

that 0 ≤ e0 ≤ 1,

√

e2
1 + e2

2 + e2
3 ≤ e0 and

√

e2
1 + e2

2 + e2
3 ≤

1 − e0, which constrains e to lie within the intersection

of two four-dimensional cones, which we refer to as the

Bloch diamond and depict via a pair of three-dimensional

projections in Fig. 1(a)(ii)–(iii) [55].

As noted in the discussion of the GPT framework, this

geometric representation of the quantum state and effect

spaces is only one possibility among many. If we define

a linear transformation of the state space by any invert-

ible 4 × 4 matrix and we take the corresponding inverse

linear transformation on the effect space, the new state

and effect spaces will also provide an adequate represen-

tation of all prepare-and-measure experiments on a single

qubit. (Note that implementing a linear transformation

of this form is equivalent to representing quantum states

and effects with respect to a different basis of Hermitian

operators.)

Classical probabilistic theories can also be formulated

within the GPT framework. Consider the simplest case

of a classical system with two possible physical states,

i.e., a classical bit, for which k = 2. The set of possi-

ble preparations of this system is simply the set of nor-

malized probability distributions on a bit, �µ = (µ0, µ1),

where 0 ≤ µ0, µ1 ≤ 1 and µ0 + µ1 = 1. The most general

measurement effect is a pair of probabilities, specifying

the probability of that effect occurring for each value of

the bit, that is, �ξ = (ξ0, ξ1), where 0 ≤ ξ0, ξ1 ≤ 1. The

probability of a particular measurement effect occurring

when implemented on a particular preparation is clearly

just the inner product of these, �µ · �ξ . The positivity and

normalization constraints imply that the convex set of state

(a)

(b)

(c)

(d)

(e)

FIG. 1. Some paradigm examples of GPTs. The solid shapes

represent the true state and effect spaces for that GPT, while

the black wireframe shapes represent the duals of these (for the

duality relation described in Sec. II C). (i) The true state space

(solid blue) and the space of logically possible states (wireframe).

(ii)–(iii) The true effect space (solid green) and the space of log-

ically possible effects (wireframe). For the cases where k = 4,

the effect spaces are four dimensional, and we depict them by

a pair of three-dimensional projections. (a) A qubit (k = 4). (b)

A classical bit (k = 2). (c) The k = 4 system in Boxworld. (d)

The convex closure of the Spekkens toy theory for the simplest

system (k = 4). (e) A generic GPT with k = 4, obtained from a

randomly generated rank-4 matrix of probabilities.

vectors describes a line segment from (1, 0) to (0, 1), and

the set of effect vectors is the square region with vertices

(0, 0), (1, 0), (0, 1), and (1, 1).

For ease of comparison with our examples of GPTs,

it is useful to consider a linear transformation of this

representation, corresponding geometrically to a rotation

by 45◦. We represent each preparation by a state vec-

tor s = (1, s1), where −1 ≤ s1 ≤ 1, and each measurement

effect by an effect vector e = (e0, e1), where −1/2 ≤ e1 ≤
1/2 and e0 ≥ |e1| and e0 ≤ 1 − |e1| (with the experimen-

tal probabilities still given by their inner product, s · e).

The convex set of these state vectors can then be depicted

as a horizontal line segment, and the set of effect vec-

tors by a diamond with a line segment at its base, as in

Fig. 1(b). This representation makes it clear that the state
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and effect spaces of a classical bit are contained within

those of a qubit (as the quantum states and effects whose

representation as operators are diagonal in some fixed basis

of the Hilbert space).

One can also consider GPTs that are neither classical

nor quantum. In the GPT known as “Boxworld” [20,27]

(originally called “generalized no-signaling theory”), cor-

relations can be stronger than in quantum theory, violating

Bell inequalities by an amount in excess of the maxi-

mum quantum violation. The k = 3 system in Boxworld,

known as the “generalized no-signaling bit,” has received

a great deal of attention. A pair of such systems can gen-

erate the stronger-than-quantum correlations known as a

Popescu-Rohrlich box [56] from which the name Box-

world derives. These achieve a CHSH inequality violation

equal to the algebraic maximum. Such correlations are

achievable in Boxworld because there are some states that

respond deterministically to multiple effects, and there are

also some effects that respond deterministically to multi-

ple states. Boxworld also has a k = 4 system, which shares

features of the generalized no-signaling bit and is, in cer-

tain respects, more straightforward to compare to a qubit.

It is the latter that we depict in Fig. 1(c).

Another alternative to classical and quantum theories is

the toy theory introduced by one of the authors [57]. We

here consider a variant of this theory, wherein one closes

under convex combinations. The simplest system has k =
4 and has the state and effect spaces depicted in Fig. 1(d)

[58].

Finally, Fig. 1(e) illustrates a generic example of a

GPT with k = 4. We construct this GPT by generating

a rank-4 matrix of random probabilities, and found GPT

representations of the state and effect spaces from that.

In this paper, we describe a technique for estimating

the GPT state and effect spaces that govern nature directly

from experimental data. The examples described above

illustrate the diversity of forms that the output of our

technique could take.

C. Dual spaces

Finally, we review the notion of the dual spaces of GPT

state and effect spaces. We call a vector s ∈ Rk a log-

ically possible state if it assigns a valid probability to

every measurement effect allowed by the GPT. Mathemati-

cally, the space of logically possible states, denoted Slogical,

contains all s ∈ Rk such that ∀e ∈ E : 0 ≤ s · e ≤ 1 and

such that s · u = 1. From this definition, it is clear that

Slogical is the intersection of the geometric dual of E and

the hyperplane defined by s · u = 1; as a shorthand, we

refer to Slogical simply as “the dual of E ,” and denote the

relation by Slogical ≡ dual(E). Analogously, the set of log-

ically possible effects, denoted Elogical, contains all e ∈ Rk

such that ∀s ∈ S : 0 ≤ s · e ≤ 1. Defining the set of sub-

normalized states by Ŝ ≡ {ws : s ∈ S , w ∈ [0, 1]}, Elogical

is the geometric dual of Ŝ . For simplicity, we refer to

Elogical simply as “the dual of S ,” and denote the relation

by Elogical ≡ dual(S).

GPTs in which Slogical = S and Elogical = E (the two

conditions are equivalent) are said to satisfy the no-

restriction hypothesis [21]. In a theory that satisfies the

no-restriction hypothesis, every logically allowed GPT

effect vector corresponds to a physically allowed measure-

ment, and (equivalently) every logically allowed GPT state

vector corresponds to a physically allowed preparation.

In theories wherein Slogical 
= S and Elogical 
= E , by con-

trast, there are vectors that do not correspond to physically

allowed states but nonetheless assign valid probabilities to

all physically allowed effects, and there are vectors that

do not correspond to physically allowed effects but are

nonetheless assigned valid probabilities by all physically

allowed states.

For each of the examples in Fig. 1, we depict the dual

to the effect space alongside the state space and the dual

of the state space alongside the effect space, as wire-

frames. Quantum theory, classical probability theory, and

Boxworld provide examples of GPTs that satisfy the no-

restriction hypothesis, as illustrated in Figs. 1(a)–1(c),

while the GPTs presented in Figs. 1(d) and 1(e) are

examples of GPTs that violate it.

D. The GPT inference problem

The true GPT state and effect spaces, S and E , are the-

oretical abstractions, describing the full set of GPT state

and effect vectors that could be realized in principle if one

could eliminate all noise. However, the ideal of noiseless-

ness is never achieved. Therefore, the GPT state and effect

vectors describing the preparation and measurement effects

realized in any experiment are necessarily bounded away

from the extremal elements of S and E . Geometrically, the

realized GPT state and effect spaces are contracted relative

to their true counterparts.

There is another way in which the experiment necessar-

ily differs from the theoretical abstraction: it may be impos-

sible for the set of experimental configurations in a real

experiment to probe all possible experimental configura-

tions allowed by the GPT. For instance, for quantum theory

there are an infinite number of convexly extremal prepa-

rations and measurements even for a single qubit, while

a real experiment can only implement a finite number of

each.

Because we assume convex closure, the realized GPT

state and effect spaces are polytopes. If the experiment

probes a sufficiently dense sample of the preparations and

measurements allowed by the GPT, then the shapes of

these polytopes ought to resemble the shapes of their true

counterparts.

We term the convex hull of the GPT states that are

actually realized in an experiment the realized GPT state
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space, and denote it by Srealized. Because every preparation

is noisier than the ideal version thereof, this will necessar-

ily be strictly contained within the true GPT state space S .

Similarly, we term the diamond defined by the GPT mea-

surement effects that are actually realized in an experiment

the realized GPT effect space, and denote it Erealized. Again,

we expect it to be strictly contained within E . By dualiza-

tion, Srealized defines the set of GPT effect vectors that are

logically consistent with the realized preparations, which

we denote by Econsistent, that is, Econsistent ≡ dual(Srealized).

Similarly, the set of GPT state vectors that are logi-

cally consistent with the realized measurement effects is

Sconsistent ≡ dual(Erealized).

Suppose one has knowledge of the realized GPT state

and effect spaces Srealized and Erealized for some experiment.

What can one then infer about S and E? The answer is

that S can be any convex set of GPT states that lies strictly

between Srealized and Sconsistent. For every such possibility

for S , E could be any diamond of GPT effects that lies

between Erealized and dual(S) ⊂ Econsistent. These inclusion

relations are depicted in Fig. 2.

The larger the gap between Srealized and Sconsistent, the

more choices of S and E there are that are consistent

with the experimental data. An example helps illustrate

the point. Suppose that one found Srealized and Erealized to

be the GPT state and effect spaces depicted in Fig. 1(d).

In this case Srealized is represented by the blue octahedron

in Fig. 1(d)(i), and Erealized is the green diamond with an

octahedral base depicted in Fig. 1(d)(ii)–(iii). The wire-

frame cube in Fig. 1(d)(i) is the space of states Sconsistent

that is the dual of Erealized, and the wireframe diamond with

a cubic base in Fig. 1(d)(ii)–(iii) is the space of effects

Econsistent that is the dual of Srealized. Which GPTs are can-

didates for the true GPT in this case? The answer is those

whose state space contains the blue octahedron and is con-

tained by the wireframe cube in Fig. 1(d)(i) and whose

effect space contains the green diamond with the octohe-

dral base in Fig. 1(d)(ii)–(iii) (the consistency of the effect

space with the state space is a given if one grants that the

pair is a valid GPT). By visual inspection of Figs. 1(a)

and 1(c), it is clear that the GPTs representing both quan-

tum theory and Boxworld are consistent with this data.

The GPT for a classical four-level system [i.e., the k = 4

generalization of the classical bit in Fig. 1(b) [29] ] is

as well.

When there is a large gap between Srealized and Sconsistent,

it is important to consider the possibility that this is due

to a shortcoming in the experiment and that probing more

experimental configurations will reduce it. For instance, if

an experiment on a two-level system is governed by quan-

tum theory, but the experimenter considers only experi-

mental configurations involving eigenstates of Pauli oper-

ators, then Srealized and Erealized would be precisely those

of the example we describe [depicted in Fig. 1(d)], imply-

ing many possibilities besides quantum theory for the true

GPT. However, further experimentation would reveal that

this seemingly large scope for deviations from quantum

theory is merely an artifact of probing a too-sparse set of

configurations. Only if one continually fails to close the

gap between Srealized and Sconsistent, in spite of probing the

greatest possible variety of experimental configurations,

should one consider the possibility that in fact S ≃ Srealized

and E ≃ Erealized and that the true GPT fails to satisfy the

no-restriction hypothesis. By contrast, if the gap between

Srealized and Sconsistent is very small, the experiment has

found a tightly constrained range of possibilities for the

true GPT, and it successfully rules out a large class of

alternative theories.

(a) (b) (c)
Sconsistent

Slogical

Srealized

S

Econsistent

Elogical

Erealized

E

FIG. 2. Illustration of the inclusion relations among the different spaces of states and effects considered in this work. We use a

generic k = 3 example for ease of depicting set inclusions. (a) The different spaces of states. (b),(c) The two-dimensional projections

of the different spaces of effects. The GPT specifies a space of true states, S , and effects, E . From these, one can find the sets of

logically possible states, Slogical, and effects Elogical. Elogical is the dual of S , and it represents all effects that return probabilities between

0 and 1 when applied to every possible state in S . Similarly, Slogical is the dual of E . The logical state (effect) space must always

contain the true state (effect) space. The spaces Srealized and Erealized are the GPT representations of the preparations and measurement

effects actually realized in the experiment. As any real experiment necessarily contains a finite amount of noise, Srealized will always

be contained within S , and Erealized will always be contained within E . Econsistent is the dual of Srealized (and thus will always contain

Elogical), and it represents all effects that are logically consistent with the set of states realized in the experiment. Similarly, Sconsistent

will always contain Slogical as it is the dual of Erealized.
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III. SELF-CONSISTENT TOMOGRAPHY IN THE

GPT FRAMEWORK

We see from the above that any real experiment defines

a set of realized GPT states, Srealized, and a set of realized

GPT effects, Erealized, and it is from these that one can infer

the scope of possibilities for the true spaces, S and E , and

thus the scope of possibilities for deviations from quantum

theory.

But how can one estimate Srealized and Erealized from

experimental data? In other words, how can one imple-

ment tomography within the GPT framework? This is the

problem whose solution we now describe. The steps in our

scheme are outlined in Fig. 3.

A. Tomographic completeness and the precision

strategy for discovering dimensional deviations

In the introduction, we distinguish two ways in which

the true GPT describing a given degree of freedom might

deviate from quantum expectations. The first possibility

for deviations is in the shapes of the state and effect spaces,

assuming no deviation in the dimension of the GPT vector

space in which these are embedded. The second possibil-

ity is more radical—a deviation in the dimension. In this

section, we evaluate what sort of evidence one can obtain

about the dimension of GPT required to model a given

degree of freedom.

We presume that there is a principle of individuation

for different degrees of freedom, which is to say a way to

distinguish what degree of freedom an experiment is prob-

ing. For instance, we presume that we can identify certain

experimental operations as preparations and measurements

of photon polarization and not of some other degree of

freedom.

As noted earlier, the dimension of the GPT vector space

associated to a degree of freedom is the minimum cardi-

nality of a tomographically complete set of preparations

(or measurements) for that degree of freedom. Therefore,

for the dimension implied by our data analysis to be the

true dimension, the sets of preparations and measurements

that are experimentally realized must be tomographically

complete for that degree of freedom.

Because one cannot presume the correctness of quantum

theory, however, one does not have any theoretical grounds

for deciding which sets of measurements (preparations)

are tomographically complete for a given system. Indeed,

whatever set of preparations (measurements) one considers

as a candidate for a tomographically complete set, one can

never rule out the possibility that tomorrow a novel variety

of preparations (measurements) will be identified whose

statistics are not predicted by those in the putative tomo-

graphically complete set, thereby demonstrating that the

set was not tomographically complete after all. As such,

any supposition of tomographic completeness is always

tentative.

FIG. 3. Overview of the self-consistent GPT tomography pro-

cedure. We begin with the experimental data, finite-run relative

frequencies for each configuration realized in the experiment,

and arrange it into a matrix, F , which is a noisy version of the

matrix of true probabilities, Drealized. To estimate the dimension,

k, of the data, we find the rank-k matrix that best fits F for a set

of values of k. We call this set of best-fit rank-k matrices the can-

didate model set. A statistical analysis on the candidate model

set (using the χ2 goodness-of-fit test and the Akaike information

criterion) determines the value of k that gives us the best fit, and

therefore which of the candidate models is the best approxima-

tion to Drealized. We denote this best approximation by D̃realized.

We find a decomposition D̃realized = S̃realizedẼrealized, in order to

estimate the spaces of states and effects realized in the experi-

ment. Each row of S̃realized is a GPT state vector representing one

of the preparation procedures in the experiment, and each col-

umn of Ẽrealized is a GPT effect vector representing one of the

measurement procedures. This completes the GPT tomography

procedure.

As Popper emphasized, however, all scientific claims

are vulnerable to being falsified and therefore have a ten-

tative status [59]. We are therefore recommending to treat

the hypothesis that a given set of measurements and a given

set of preparations are tomographically complete as Popper

recommends treating any scientific hypothesis: one should

try one’s best to falsify it and as long as one fails to do so,

the hypothesis stands.
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FIG. 4. Experimental setup. Pairs of polarization-separable

single photons are created via spontaneous parametric down-

conversion. The herald photon is sent to a detector. The signal

photon’s polarization travels through a polarizer then a quarter-

and half-wave plate, which prepares its polarization state. The

photon is then coupled into single-mode fiber, which removes

any information that may be encoded in the photon’s spatial

degree of freedom. Three static wave plates undo the polar-

ization rotation caused by the fiber. Two wave plates and a

polarizing beam splitter with detectors in each output port per-

form a measurement on the photon. One output port is labeled

“0,” and the other is labeled “1.” Coincident detections between

the herald detector, Dh, and the detector in the transmitted port,

Dt, are counted, as well as coincidences between Dh and the

reflected-port detector Dr. PPKTP, periodically poled potassium

titanyl phosphate; PBS, polarizing beam splitter; GTPBS, Glan-

Thompson polarizing beam splitter; IF, interference filter; HWP,

half-wave plate; QWP, quarter-wave plate.

As noted in the introduction, it is useful to distinguish

between two types of opportunities for falsifying a hypoth-

esis about what sets of preparations and measurements are

tomographically complete: terra-nova strategies and preci-

sion strategies. In this paper, we pursue the latter approach.

To explain how a precision strategy provides an opportu-

nity for detecting deviations from the quantum prediction

for the dimension of the GPT vector space, we offer an

illustrative analogy.

Suppose that the GPT describing the world is indeed

quantum theory. Now consider an experiment on photon

polarization wherein the experimentally realized prepara-

tions and measurements are restricted to a real-amplitude

subalgebra of the full qubit alebra, that is, a rebit subalge-

bra.

In this case, the realized GPT state and effects cor-

respond, respectively, to a restriction of the Bloch ball

in Fig. 1(a)(i) to an equatorial disc and to a restric-

tion of the ball-based diamond in Fig. 1(a)(ii)–(iii) to the

diamond with the disc as its base [which is the three-

dimensional projection, depicted in Fig. 1(a)(ii), of the full

four-dimensional qubit effect space].

Suppose an experimenter did not know the ground truth

about the GPT describing photon polarization, which by

assumption in our example is the GPT associated to the

full qubit algebra. If they mistakenly presumed that the

preparations and measurements realized in the rebit exper-

iment were tomographically complete, they would be led

to a false conclusion about the GPT describing photon

polarization. Nonetheless, and this is the point we wish

to emphasize, high-precision experimental data provides

them with an opportunity for recognizing their mistake.

The key observation is that the only case in which the

experimental data contains strictly no evidence of states

and effects beyond the restricted subalgebras is if the real-

ized preparations and measurements obey the restriction

exactly. However, any real implementation of experimen-

tal procedures is necessarily imperfect, and certain types

of imperfections (e.g., systematic errors) will result in

preparations and measurements that do extend into the

higher-dimensional space—in our example, from the rebit

spaces into the full qubit spaces, hence from dimension 3

to dimension 4. For instance, they might lead to prepa-

rations that were not strictly restricted to an equatorial

disc but rather a fattened pancake-shaped subset of the

Bloch ball, and similarly for the measurements. The real-

ized preparations and measurements in this case would still

be very far from sampling the full qubit state and effect

spaces, but they would nonetheless attest to the need for

a GPT vector space of dimension 4 rather than one of

dimension 3. Of course, if the deviation is small, then

one requires a correspondingly small degree of statistical

error in the characterization of the state and effect spaces

in order to detect it. Hence the need for precision in the

characterization of the states and effects.

If, in our imagined example, an experimentalist detected

a deviation from their expectations regarding dimensional-

ity in this fashion, they would be prompted to look for new

preparations and measurements that might extend further

into this fourth dimension. We can easily imagine that, via

such a precision-based discovery of an anomaly, the exper-

imentalist could come to learn that what at first appeared

to be a rebit was in fact a qubit.

We can now draw the analogy between this sort of exam-

ple and the experiment we analyze here. Despite the fact

that we did not intentionally seek to do anything exotic in

our preparations and measurements of photon polarization,

it could nonetheless be the case that the GPT vectors rep-

resenting these had small components in additional dimen-

sions of GPT vector space, beyond the four dimensions

that quantum theory stipulates as sufficient for model-

ing photon polarization. In this case, our scheme would

find that the data is only fit well by a GPT of dimension

greater than 4. To the extent that one was confident that the

experimental procedures did not inadvertently probe some

additional degrees of freedom beyond photon polarization,

this would constitute evidence for postquantum physics.

We turn now to describing the self-consistent GPT

tomography procedure.

B. Inferring best-fit probabilities from finite-run

statistics

We suppose that, for a given system, the experimenter

makes use of a finite number m of preparation procedures
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(Pi, i ∈ {1, . . . , m}) and a finite number, n, of binary-

outcome measurement procedures (Mj , j ∈ {1, . . . , n}).
We denote the outcome of each measurement by a ∈ {0, 1}.
For each choice of preparation and measurement, (Pi, Mj ),

the experimenter records the outcome of the measurement

in a large number of runs and computes the relative fre-

quency with which a given outcome a occurs, denoted

f (a|Pi, Mj ). For the binary-outcome measurements under

consideration, it is sufficient to specify f (0|Pi, Mj ) for

each pair (Pi, Mj ), because f (1|Pi, Mj ) is then fixed by

normalization.

The set of all experimental data, therefore, can be

encoded in an m × n matrix F , whose (i, j )th component

is f (0|Pi, Mj ).

The relative frequency f (0|Pi, Mj ) one measures will

not coincide exactly with the probability p(0|Pi, Mj ) from

which it is assumed that the outcome in each run is sampled

[60]. Rather, f (0|Pi, Mj ) is merely a noisy approximation

to p(0|Pi, Mj ). The statistical variation in f (0|Pi, Mj ) can,

however, be estimated from the experiment.

It follows that the matrix F extracted from the experi-

mental data is merely a noisy approximation to the matrix

Drealized that encodes the predictions of the GPT for the

mn experimental configurations of interest. Because of the

noise, F will generically be full rank, regardless of the rank

of Drealized [61]. Therefore, the experimentalist is tasked

with estimating the m × n probability matrix Drealized given

the m × n data matrix F , where the rank of Drealized is a

parameter in the fit.

We aim to describe our technique in a general manner, so

that it can be applied to any experiment. However, in order

to provide a concrete example of its use, we intersperse

our presentation of the technique with details about how

it is applied to the particular experiment we conduct. We

begin, therefore, by providing the details of the latter.

C. Description of the experiment

To illustrate the GPT tomography scheme, we perform

an experiment on the polarization degree of freedom of

single photons (Fig. 4). Pairs of photons are created via

spontaneous parametric down-conversion, and the detec-

tion of one of these photons, called the herald, indicates

the successful preparation of the other, called the signal.

We manipulate the polarization of the signal photons with a

quarter- and half-wave plate before they are coupled into a

single-mode fiber; each preparation is labeled by the angles

of these two wave plates.

Upon emerging from the fiber, the signal photons

encounter the measurement stage of the experiment, which

consists of a quarter- and half-wave plate followed by a

polarizing beam splitter with single-photon detectors at

each of its output ports. Each measurement is labeled by

the angles of the two wave plates preceding the beam

splitter.

The frequency of the 0 outcome is defined as the ratio

of the number of heralded signal photon detections in

the 0 output port to the total number of heralded detec-

tions. We ignore experimental trials in which either the

herald or the signal photon is lost by postselecting on

coincident detections, so that our measurements are only

performed on normalized states. This is akin to making

a fair-sampling assumption, that is, we assume that the

statistics of the detected photons are representative of the

statistics we would have measured if our experiment had

perfect efficiency. Postselecting on coincident detections

has the additional benefit of allowing us to filter out back-

ground counts that are caused by, for example, stray room

light or “dark” counts from our detectors.

We choose m = 100 wave-plate settings for the prepa-

rations, and n = 100 wave-plate settings for the settings,

corresponding to mn = 104 experimental configurations in

all, one for each pairing.

We choose m = n so that the GPT state space and the

GPT effect space are equally well characterized. We detect

coincidences at a rate of approximately 2250 counts/s, and

count coincidences for each preparation-measurement pair

for a total of 8 s, allowing us to achieve a standard devia-

tion on each data point below the 1% level. Because of the

additional time it takes to mechanically rotate the prepara-

tion and measurement wave plates, it takes approximately

84 h to acquire data for 104 preparation-measurement

pairs.

Our method of selecting which 100 wave-plate set-

tings to use is described in Appendix B. Note that

although the choice of these settings is motivated by our

knowledge of the quantum formalism, our tomographic

scheme does not assume the correctness of quantum the-

ory: our reconstruction scheme could have been applied

equally well if the wave-plate settings had been chosen at

random [62].

The raw frequencies are arranged into the data matrix

F . Entry Fij is the frequency at which the 0 outcome is

obtained when measurement Mj is performed on a photon

that is subjected to preparation Pi. As noted in Sec. II A, we

adopt a convention wherein M1 is the unit measurement,

implying that the first column of F is a column of 1s. The

data matrix for our experiment is presented in Fig. 5. As

expected, we find that F is full rank.

D. Estimating the probability matrix D
realized

We turn now to the problem of estimating from F the

m × n probability matrix Drealized. The first item of business

is to estimate the rank of Drealized, which is equivalent to

estimating the cardinality of the tomographically complete

set of preparations (or measurements) of the GPT model of

the experiment.

For a given hypothesis k about the value of the rank,

and for a given data matrix F , we find the rank-k
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FIG. 5. The raw frequencies at which outcome a = 0 is

obtained for every pair of preparation and measurement settings.

The maximum standard deviations in the data are approximately

4 × 10−3. Every entry in the left-most column is equal to 1—this

represents the unit measurement effect, which returns a = 0

regardless of the state of the input. The striped pattern of the

data is simply an artefact of the order in which we choose

to implement the preparations and measurements (described in

Appendix B).

matrix D̃realized that is the maximum-likelihood estimate

of the rank-k probability matrix Drealized that generates

F . In other words, D̃realized is the rank-k matrix that

minimizes the weighted χ2 statistic, defined as χ2 ≡
∑

i

∑

j

[

(

D̃realized
ij − Fij

)2

/
(

�Fij

)2

]

, where
(

�Fij

)2
is the

statistical variance in Fij . This minimization problem is

known as the weighted low-rank approximation problem,

which is a nonconvex optimization problem with no ana-

lytical solution [63,64]. Nonetheless, one can use a fitting

algorithm based on an alternating-least-squares method

[64]. In the algorithm, it is important to constrain the

entries of D̃realized to lie within the interval [0, 1] so that

they may be interpreted as probabilities. Full details are

provided in Appendix C.

To estimate the rank of the true model underlying the

data, one must compare different candidate model ranks.

(For our experiment, we consider k ∈ {2, 3, . . . , 10}.) For

each candidate rank k, one first computes the χ2 of the

maximum-likelihood model of that rank, denoted χ2
k , in

order to determine the extent to which each model might

underfit the data. Second, one computes, for the max-

likelihood model of each rank, the Akaike information

criterion (AIC) score [65,66] in order to determine the rel-

ative extent to which the various models either underfit or

overfit the data.

We begin by describing the method by which one finds

the rank-k probability matrix D̃realized, which minimizes χ2.

Note that an m × n matrix with rank k is specified by a set

of rk = k(m + n − k) real parameters [67], thus if the true

probability matrix Drealized is rank k, then we expect that

χ2
k is sampled from a χ2 distribution with mn − k(m + n −

k) = (m − k)(n − k) degrees of freedom [68].

For our experiment, we calculate the variances (�Fij )
2

in the expression for χ2 by assuming that the number of

detected coincident photons follows a Poissonian distri-

bution. Figure 6(a) displays the interval containing 99%

of the probability density for a χ2 distribution with (m −
k)(n − k) degrees of freedom, as well as χ2

k , for each value

of k ∈ {2, 3, . . . , 10}. For k < 4, χ2
k lies far outside the

expected 99% range, and we rule out these models with

high confidence.

The Akaike information criterion assigns a score to

each model in a candidate set, termed its AIC score.

The Kullback-Leibler (KL) divergence is a measure of

the information lost when some probability distribution f

is used to represent some other distribution g [69], and

the AIC score of a candidate model is a measure of the

KL divergence between the candidate model and the true

model underlying the data. Since the true model is not

known, the KL divergence cannot be calculated exactly.

What each candidate model’s AIC score represents is its

KL divergence from the true model, relative to all models

in the candidate set. The candidate model with the lowest

AIC score is closest to the true model (in the KL sense),

and thus it is the most likely representation of the data

among the set of candidates.

The AIC scores can be used to determine which model

among a set of candidate models is the most likely to

describe the data. If AICk denotes the AIC score of the

kth model, and �k denotes the difference between this

score and the minimum score among all candidate models,

�k := AICk − mink′AICk′ , then its AIC weight is defined

as wk := e−(1/2)�k/
∑10

k=2 e−(1/2)�k [69]. The AIC weight

wk represents the likelihood that the kth model is the model

that best describes the data, relative to the other models in

the set of candidate models.

In our experiment, the candidate models differ by rank,

and the AIC score of a rank-k candidate model is defined

as AICk = χ2
k + 2rk [69]. The first term rewards models

in proportion to how well they fit the data, and the second

term penalizes models in proportion to their complexity,

as measured by the number of parameters. For our exper-

iment, the set of candidate models is the set of best-fit

rank-k models for k ∈ {2, . . . , 10}. We plot the AIC values

for each candidate model in Fig. 6(b). AICk is minimized

for k = 4, and we conclude that the true model underlying

our dataset is most likely rank 4. The relative likelihood

of each candidate model is shown in Fig. 6(c). We find

w4 = 0.9998, w5 = 1.99 × 10−4, and wk < 10−12 for other

values of k.
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FIG. 6. Determining the true rank of the model underlying the datasets for our two experiments. (a)–(c) is data for the first experi-

ment, in which we characterize 100 preparation and measurement procedures. (d)–(f) The second experiment, in which we characterize

1006 preparation and measurement procedures. (a),(d) Comparison of the fitted χ2 value to the expected value for a good fit, for var-

ious model ranks. Black circles are χ2 values returned by our fitting routine. Light red bars indicate the interval in which we expect

(with 99% confidence) the χ2 value to lie, under the assumption that the true model underlying the data is rank k. Models with k < 4

do not fit either dataset well. (b),(e) AIC scores for each candidate model of best fit. For both datasets the rank-4 model has the lowest

AIC score, and therefore is most likely the best model among the set of candidate models. (c),(f) Relative likelihood of each model in

the set of candidate models (each model without a bar has a relative likelihood less than 10−25). For both datasets, the rank-4 model is

most likely to describe the data.

The χ2 goodness-of-fit test indicates that the max-

likelihood rank-4 model fits the data well, and the AIC

test indicates that this same model is the most likely of

all nine candidate models to have generated the data, with

relative probability 0.9998. We conclude with high confi-

dence that the GPT that best describes our experiment has

dimension 4.

Recall that it is still possible that the true GPT describing

photon polarization has dimension greater than 4 because it

is possible that the sets of preparations and measurements

we implement in our experiment are not tomographically

complete for photon polarization.

Nonetheless, the focus of much of the rest of this section

and the focus of all of Sec. IV is to describe what additional

conclusions can be drawn from our experimental data if

we adopt the hypothesis that the preparations and mea-

surements we realize are, in fact, tomographically com-

plete for photon polarization, with the understanding that

this hypothesis could in principle be overturned by future

experiments that achieved higher precision or realized an

exotic new variety of preparations and measurements for

photon polarization. These additional conclusions con-

cern the possibility of deviations from quantum theory

in the shape of the state and effect spaces, rather than

in the dimension of the vector space in which these are

embedded.

E. Estimating the realized GPT state and effect spaces

The realized GPT state space, Srealized and the real-

ized GPT state space, Erealized define the probability matrix

Drealized from which the measurement outcomes in the

experiment are sampled.

As noted above, the matrix D̃realized for the rank-4 fit

provides our best estimate of the true probability matrix

Drealized. To obtain an estimate of the realized GPT state

and effect spaces from D̃realized, we must decompose it in

the manner described in Sec. II A, that is, as D̃realized =
S̃realizedẼrealized.

Recall that this decomposition is not unique. A con-

venient choice is a modified form of the singular-value

decomposition, where one constrains the first column of
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S̃realized to be a column of ones, and one constrains the other

columns of S̃realized to be orthogonal to the first (a detailed

description of this decomposition is given in Appendix D).

If quantum theory is the correct theory of nature, then

the experimental data should be consistent with the GPT

state space being the Bloch ball and the GPT effect space

being the Bloch diamond [depicted in Fig. 1(a)], up to a

linear invertible transformation.

Our estimate of the realized GPT state space, S̃realized, is

simply the convex hull of the rows of the matrix S̃realized.

In the case of the effects, we can again take convex mix-

tures, but because one also has the freedom to postprocess

measurement outcomes, our estimate of the realized GPT

effect space is slightly more complicated.

There are two classes of convexly extremal classi-

cal postprocessings that can be performed on a binary-

outcome measurement. We call the first class of convexly

extremal postprocessings the outcome-swapping class. In

such a postprocessing, the outcome returned by a mea-

surement device is deterministically swapped to the other

outcome. The outcome-swapping of the outcome-0 effect

for a specific measurement procedure, e[0|M ], is represented

by that measurement’s outcome-1 effect, e[1|M ], which is

the complement of e[0,M ] relative to the unit effect, e[1|M ] :=
u − e[0,M ].

We call the second class of convexly extremal post-

processings the outcome-fixing class. In such a postpro-

cessing, the outcome returned by a measurement device is

ignored, and deterministically replaced by a fixed outcome,

0 or 1. For the case where the outcome is replaced by 0, the

image of this postprocessing is the unit effect u, and for the

case where it is replaced by 1, the image is the complement

of the unit effect (represented by the zero vector).

The full set of postprocessings is obtained by taking all

convex mixtures of these extremal ones. Hence Ẽ realized

is the closure under convex mixtures and classical post-

processing of the vectors defined by the columns of the

matrix Ẽrealized. As we already include the unit measure-

ment effect in D̃realized, it is represented in Ẽrealized as well.

Therefore, Ẽrealized is the convex hull of the union of the set

of column vectors in the matrix Ẽrealized and the set of their

complements.

Our estimate of the realized GPT state space, S̃realized,

and our estimate of the realized GPT effect space, Ẽrealized,

are displayed in Figs. 7(a)–7(c). Omitting the first column

of S̃realized (because it contains no information), we visu-

alize the realized GPT state space by plotting the convex

hull of the vectors defined by the last three entries of each

row of S̃realized in a three-dimensional space [the solid light

blue polytope in Fig. 7(a)]. As all four entries of each col-

umn of Ẽrealized contain information, the convex hull of the

vectors defined by these is four-dimensional. To visual-

ize the realized GPT effect space, therefore, we plot two

three-dimensional projections of it, namely, the projections

e 
→ (e0, e1, e2) and e 
→ (e1, e2, e3) [the solid light green

polytopes in Figs. 7(b) and 7(c), respectively] [70]. Qual-

itatively, Srealized is a ball-shaped polytope, and Ẽrealized

is a four-dimensional diamond with a ball-shaped poly-

tope as its base. Note that they are qualitatively what one

would expect if quantum theory is the correct description

of nature.

Next, we compute the duals of these spaces. How this

is done is described in detail in Appendix E. Our esti-

mate of the set of GPT state vectors that are consistent

with the realized GPT effects, S̃consistent = dual(Ẽrealized),

is plotted alongside S̃realized in Fig. 7(a) as a wireframe

polytope. Similarly, our estimate of the set of GPT effect

vectors consistent with the realized GPT states, Ẽconsistent =
dual(S̃realized), is plotted as a wireframe alongside Ẽrealized

in Figs. 7(b) and 7(c).

The smallness of the gap between S̃realized and S̃consistent

implies that the possibilities for the true GPT are quite

limited. Obviously, our results easily exclude all of the

nonquantum examples of GPTs presented in Fig. 1.

Our results can be used to infer limits on the extent to

which the true GPT might fail to satisfy the no-restriction

hypothesis. One way of doing so is by bounding the vol-

ume ratio of S to Slogical. From the discussion in Sec. II D,

it is clear that this is upper bounded by the volume ratio of

Srealized to Sconsistent. Given our estimates of the latter two

spaces, we can compute an estimate of this ratio. We find

it to be 0.9229 ± 0.0001.

The error bar is the standard deviation in the volume

ratio from 100 Monte Carlo simulations. We begin each

simulation by simulating a set of coincidence counts. Each

set of counts is found by sampling each count from a

Poisson distribution with mean and variance equal to the

number of photons counted in the true experiment [71].

To our knowledge, this is the first quantitative limit on the

extent to which the GPT governing nature might violate

the no-restriction hypothesis.

F. Increasing the number of experimental

configurations

Because the vertices of the polytopes describing S̃realized

in Figs. 7(a)–7(c) are determined by the finite set of prepa-

rations and measurement effects that are implemented, the

observed deviation from sphericity is obviously an artifact

of an insufficiently dense set of experimental configura-

tions, and not evidence for any lack of smoothness of

the true GPT state and effect spaces. A higher density of

experimental configurations probed in both S̃realized and

S̃consistent would imply a more constrained set of possibil-

ities for S and Slogical. For instance, with a denser set of

experimental configurations, the volume ratio of S̃realized to

S̃consistent would provide a tighter upper bound on the vol-

ume ratio of S to Slogical [72]. As such, having a much

020302-14



EXPERIMENTALLY BOUNDING DEVIATIONS... PRX QUANTUM 2, 020302 (2021)

(a) (b) (c)
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FIG. 7. GPT states and effects for the preparations and measurements realized in our two experiments and their duals. (a)–(c) First

experiment, in which we characterize 100 preparation and 100 measurement procedures. (d)–(f) Second experiment, in which we

characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each experiment, the estimated space of realized GPT

states, S̃realized is the convex polytope depicted in blue, while the wireframe convex polytope, which surrounds it is the estimated space

of logically possible GPT states, S̃consistent, calculated from the realized GPT effects. The true state space of the GPT describing nature

must lie somewhere in between S̃realized and S̃consistent, modulo experimental uncertainty. The gap between these two spaces is smaller

for the second set of data, and hence this dataset does a better job at narrowing down the possibilities for the state space. (b),(e),(c),(f)

Solid green shapes are each a different three-dimensional projection of our estimates of the four-dimensional realized effect spaces,

Ẽrealized. The wireframe convex polytopes are three-dimensional projections of the estimated effect space consistent with the realized

preparations, Ẽconsistent.

denser set of experimental configurations would allow one

to put a stronger bound on possible deviations from quan-

tum theory, and in particular on possible deviatons from

the no-restriction hypothesis.

There is therefore a strong motivation to increase the

number m of different preparations and the number n of

different measurement effects that are probed in the exper-

iment. It might seem at first glance that doing so is infea-

sible, on the grounds that it implies a significant increase

in the number, mn, of preparation-measurement pairs that

need to be implemented and thus an overwhelmingly long

data-acquisition time.

However, this is not the case; one can probe more

preparations and measurements by not implementing every

measurement on every preparation. The key insight is that

in order to characterize the GPT state vector associated

to a given preparation, one need not find its statistics on

every measurement effect in the set being considered: it

suffices to find its statistics on a subset thereof, namely, any

tomographically complete subset of measurement effects.

Similarly, in order to characterize the GPT effect vector

associated to a given measurement effect, one need not

implement it on the full set of preparations being consid-

ered, but just a tomographically complete subset thereof.

The first experiment provided evidence for the conclusion

that the tomographically complete sets have cardinality

4. It follows that one should be able to characterize m

preparations and n measurements with just 4(m + n − 4)

experimental configurations, rather than mn.

Despite the good evidence about the cardinality from

the first experiment, we deemed it worthwhile to perform

the second experiment in such a manner that the analysis

of the data did not rely on any evidence drawn from the

first experiment. Furthermore, we are motivated to have

the second experiment provide an independent test of the

hypothesis that the cardinality of the tomographically com-

plete sets is indeed 4. Given that the closest competitors to

the rank-4 model on either side are those of ranks 3 and 5,

we decide to restrict our set of candidate models to those

having ranks in the set k ∈ {3, 4, 5}. In order for the exper-

imental data to be able to reject the hypothesis of rank k

as a bad fit, it is necessary that one have at least k + 1
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measurements implemented on each preparation, and at

least k + 1 preparations on which each measurement is

implemented; otherwise, one can trivially find a perfect fit.

To be able to assess the quality of fit for a rank-5 model,

therefore, we need to choose at least six measurements

that are jointly tomographically complete to implement on

each of the m preparations and at least six preparations that

are jointly tomographically complete on which each of the

n measurements is implemented. We choose to use pre-

cisely six in each case, yielding a total of 6(m + n − 6)

experimental configurations. Without exceeding the bound

of approximately 104 experimental configurations being

probed (implied by the data acquisition time), we are

able to take m = n = 1000 and thereby probe a factor of

10 more preparations and measurements than in the first

experiment.

We refer to the set of six measurement effects (prepa-

rations) in this second experiment as the fiducial set. Our

choice of which six wave-plate settings to use in each of

the fiducial sets is described in Appendix B. Our choice

of which 1000 wave-plate settings to pair with these is

also described there. Our choices are based on our expec-

tation that the true GPT is close to quantum theory and

the desire to densely sample the set of all preparations and

measurements. (Note that although our knowledge of the

quantum formalism informed our choices, our analysis of

the experimental data does not presume the correctness of

quantum theory.) In the end, we also implement each of our

six fiducial measurement effects on each of our six fiducial

preparations, so that we have m = n = 1006.

We also add the unit measurement effect to our set of

effects. We thereby arrange our data into a 1006 × 1007

frequency matrix F , with the big difference to the first

experiment being that F now has a 1000 × 1000 submatrix

of unfilled entries.

We perform an identical analysis procedure to the one

described in Sec. III D: for each k in the candidate set of

ranks, we seek to find the rank-k matrix D̃realized of best

fit to F . For the entries in the 1000 × 1000 submatrix of

D̃realized corresponding to the unfilled entries in F , the only

constraint in the fit is that each entry be in the range [0, 1],

so that it corresponds to a probability. The results of this

analysis are presented in Figs. 6(d)–6(f).

The χ2 goodness-of-fit test [Fig. 6(d)] rules out the rank-

3 model, and therefore all models with rank less than 3

as well. Calculating the AIC scores for the maximum-

likelihood rank-3, rank-4, and rank-5 models shows that

the rank-4 model is the one among these that is most likely

to describe the data [Figs. 6(e) and 6(f)]. Indeed the relative

probability of the rank-5 model is on the order of 10−414.

The reason that the likelihood of the rank-5 model is so

low is because the number of parameters required to spec-

ify a rank-k m × n matrix is rk = k(m + n − k), and since

m = n ∼ 1000, the rank-5 model requires approximately

2000 more parameters than the rank-4 model. The number

of model parameters is multiplied by a factor of 2 in the

formula for the AIC score, and the difference between χ2
5

and χ2
4 is only approximately 2000. This means that if the

AIC score is used to calculate the likelihood of each model,

the rank-5 model is approximately e−2000/2 ∼ 10−414 as

likely as the rank-4 model.

The AIC formula we use is derived in the limit where

the number of data points is much greater than the number

of parameters in the model. In our second experiment the

number of data points is roughly equal to the number of

parameters in each model, and thus any conclusions which

derive from use of the AIC formula must be taken with

a grain of salt. We should instead use a corrected form

of the AIC, called AICC [69]. However, the formula for

AICC depends on the specific model being used, and to the

best of our knowledge a formula has not been found for

the weighted low-rank approximation problem. However,

every AICC formula that we find for different types of mod-

els increases the amount by which models are penalized

for complexity [69]. Hence we hypothesize that the proper

AICC formula would lead to an even smaller relative like-

lihood for the rank-5 model, and thus that we have strong

evidence that a rank-4 model should be used to represent

the second experiment. Finding the correct AICC formula

for the weighted low-rank approximation problem is an

interesting problem for future consideration.

Modulo this caveat, the second experiment corroborates

the conclusion of the first experiment, namely, that our best

estimate of the dimension of the GPT governing single-

photon polarization is 4 [73].

We decompose the rank-4 matrix of best fit and plot our

estimates of the realized state space, S̃realized, and the real-

ized effect space, Ẽrealized, in Figs. 7(d)–7(f). The realized

GPT state and effect spaces reconstructed from the second

experiment are smoother than those from the first, and the

gap between S̃realized and S̃consistent is smaller as well.

The volume ratio of S̃realized to S̃consistent is found to be

0.977 ± 0.001, where the error bar is calculated from 100

Monte Carlo simulations. Compared to the first experi-

ment, this provides a tighter bound on any failure of the

no-restriction hypothesis.

IV. BOUNDING DEVIATIONS FROM QUANTUM

THEORY IN THE SHAPE OF THE STATE AND

EFFECT SPACES

A. Consistency with quantum theory

We now check to see if the possibilities for the true GPT

state and effect spaces implied by our experiment include

the quantum state and effect spaces.

As noted in Sec. II D, because it is in practice impos-

sible to eliminate all noise in the experimental procedures,

we expect that under the assumption that all of our realized

preparations are indeed represented by quantum states,
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they will all be slightly impure (that is, their eigenval-

ues are bounded away from 0 and 1). Their GPT state

vectors should therefore be strictly in the interior of the

Bloch sphere. Similarly, we expect such noise on all of

the realized measurement effects (with the exception of

the unit effect and its outcome-swapped counterpart, which

are theoretical abstractions), implying that their GPT effect

vectors are strictly in the interior of the four-dimensional

Bloch diamond. This, in turn, implies that the extremal

GPT state vectors in Sconsistent are strictly in the exterior of

the Bloch sphere. The size of the gap between Srealized and

Sconsistent, therefore, is determined by the amount of noise

in the preparations and measurements.

Naïvely, one might expect that for the quantum state and

effect spaces for a qubit to be consistent with our experi-

mental results, Squbit must fit geometrically between our

estimates of Srealized and Sconsistent, up to a linear trans-

formation. That is, one might expect the condition to be

that there exists a linear transformation of Squbit that fits

geometrically between S̃realized and S̃consistent.

However, noise in the experiment also leads to statisti-

cal discrepancies between the vertices of S̃realized and those

of Srealized, and between the vertices of Ẽrealized and those

of Erealized. This noise could lead to estimates of the real-

ized GPT state and effect vectors being longer than the

actual realized GPT state and effect vectors. If the esti-

mates of any of these lie outside the qubit state and effect

spaces, then one could find that it is impossible to find a

linear transformation of Squbit that fits between S̃realized and

S̃consistent, even if quantum theory is correct!

We test the above intuition by simulating the first exper-

iment under the assumption that quantum theory is the

correct theory of nature. We assume that the states we

actually prepare in the lab are slightly depolarized ver-

sions of the set of 100 pure quantum states that we are

targeting, and that the measurements we actually per-

form are slightly depolarized versions of the set of 100

projective measurements we are targeting. We estimate

the amount of depolarization noise from the raw data,

and use the estimated amount of noise to calculate the

outcome probabilities for each depolarized measurement

on each depolarized state. We arrange these probabili-

ties into a 100 × 100 table and use them to simulate

1000 sets of photon counts, then analyze each of the

1000 simulated datasets with the GPT tomography proce-

dure.

We find that, for every set of simulated data, we are

unable to find a linear transformation of Squbit that fits

between the simulated S̃realized and S̃consistent, confirming

the intuition articulated above.

Nonetheless, we can quantify the closeness of the fit

as follows. We find that if, for each simulation, we artifi-

cially reduce the length of the GPT vectors in the simulated

S̃realized and Ẽrealized by multiplying them by a factor slightly

less than 1, then we can fit a linearly transformed Squbit

between the smaller S̃realized and larger S̃consistent. On aver-

age, we find we have to shrink the vectors making up

S̃realized and Ẽrealized by 0.11% ± 0.02%, where the error

bar is the standard deviation over the set of simulations.

To perform the above simulations we use CVX, a software

package for solving convex problems [74,75].

We quantify the real data’s agreement with the sim-

ulations by performing the same calculation as on the

simulated datasets. We first notice that there is no lin-

ear transformation of Squbit that fits between S̃realized and

S̃consistent, as in the simulations. Furthermore, we find that

we can achieve a fit if we shrink the vectors making up

S̃realized and Ẽrealized by 0.14%, which is consistent with the

simulations. Thus the spaces S̃realized and Ẽrealized recon-

structed from the first experiment are consistent with what

we expect to find given the correctness of quantum theory.

When analyzing data from the second experiment it

takes approximately 4 h to run the code that solves the

weighted low-rank approximation problem. It is therefore

impractical to perform 1000 simulations of this experi-

ment. Instead, we extrapolate from the simulation of the

first experiment.

We note two significant ways in which the second

experiment differs from the first. First, we perform approx-

imately 10 times as many preparation and measurement

procedures in the second experiment than in the first, yet

accumulate roughly the same amount of data. Hence, each

GPT state and effect vector in the second experiment is

characterized with approximately 10 times fewer detected

photons than in the first experiment, and so we expect

the uncertainties on the second experiment’s reconstructed

GPT vectors to be approximately
√

10 times larger than the

same uncertainties in the first experiment. We expect this√
10 increase in uncertainty to translate to a

√
10 increase

in the amount we need to shrink S̃realized and Ẽrealized before

we can fit a linearly transformed Squbit between S̃realized and

S̃consistent. Second, S̃realized and Ẽrealized each contain 1006

GPT vectors, a factor of 10 more than in the first exper-

iment. Since there are a greater number of GPT vectors

in the second experiment it is likely that the outliers (i.e.,

the cases for which our estimate differs most from the true

vectors) in the second experiment will be more extreme

than those in the first experiment. This should also lead to

an increase in the amount we need to shrink the vectors in

S̃realized and Ẽrealized before we can fit a linearly transformed

Squbit between S̃realized and S̃consistent.

We find that, for the data from the second experiment,

we need to shrink S̃realized and Ẽrealized by 0.65%, a factor

only 4 times greater than the 0.14% of the first experi-

ment, which seems reasonable given the estimates above.

We therefore conclude that the second experiment gives us

no compelling reason to doubt the correctness of quantum

theory.
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The arguments presented above also support the notion

that our experimental data is consistent with quantum the-

ory according to the usual standards by which one judges

this claim: if we had considered fitting the data with quan-

tum states and effects rather their GPT counterparts (which

one could accomplish by doing a GPT fit while constrain-

ing the vertices of the realized and consistent GPT state

spaces to contain a sphere between them, up to linear trans-

formations), we would have found that the quality of the fit

was good.

B. Upper and lower bounds on violation of

noncontextuality inequalities

One method we use to bound possible deviations from

quantum theory is to consider the maximal violation of a

particular noncontextuality inequality [51]. From our data

we infer a range in which the maximal violation can lie,

and compare this to the quantum prediction. We briefly

introduce the notion of noncontextuality, then discuss the

inferences we make. The notion of noncontextuality was

introduced by Kochen and Specker [76]. We here consider

a generalization of the Kochen-Specker notion, termed

universal noncontextuality, defined in Ref. [50].

Noncontextuality is a notion that applies to an ontolog-

ical model of an operational theory. Such a model is an

attempt to understand the predictions of the operational

theory in terms of a system that acts as a causal medi-

ary between the preparation device and the measurement

device. It postulates a space of ontic states �, where the

ontic state λ ∈ � specifies all the physical properties of the

physical system according to the model. For each prepa-

ration procedure P of a system, it is presumed that the

system’s ontic state λ is sampled at random from a prob-

ability distribution p(λ|P). For each measurement M on a

system, it is presumed that its outcome O is sampled at ran-

dom in a manner that depends on the ontic state λ, based

on the conditional probability p(O|λ, M ). It is presumed

that the empirical predictions of the operational theory are

reproduced by the ontological model,

p(O|M , P) =
∑

λ∈�

p(O|λ, M )p(λ|P). (4)

We can now articulate the assumption of noncontextuality

for both the preparations and the measurements.

Preparation noncontextuality. If two preparation proce-

dures, P and P′, are operationally equivalent, which in the

GPT framework corresponds to being represented by the

same GPT state vector, then they are represented by the

same distribution over ontic states:

sP = sP′ =⇒ p(λ|P) = p(λ|P′). (5)

Measurement noncontextuality. If two measurement

effects, [O|M ] and [O′|M ′], are operationally equivalent,

which in the GPT framework corresponds to being rep-

resented by the same GPT effect vector, then they are

represented by the same distribution over ontic states:

e[O|M ] = e[O′|M ′] =⇒ p(O|λ, M ) = p(O′|λ, M ′). (6)

To assume universal noncontextuality is to assume non-

contextuality for all procedures, including preparations and

measurements [77].

There are now many operational inequalities for testing

universal noncontextuality. Techniques for deriving such

inequalities from proofs of the Kochen-Specker theorem

are presented in Refs. [78–80]. In addition, there exist

other proofs of the failure of universal noncontextuality

that cannot be derived from the Kochen-Specker theorem.

The proofs in Ref. [50] based on prepare-and-measure

experiments on a single qubit are an example, and these

too can be turned into inequalities testing for universal

noncontextuality (as shown in Refs. [38] and [81]).

We here consider the simplest example of a noncontex-

tuality inequality that can be violated by a qubit, namely

the one associated to the task of two-bit parity-oblivious

multiplexing (POM), described in Ref. [51]. Bob receives

as input from a referee an integer y chosen uniformly

at random from {0, 1} and Alice receives a two-bit input

string (z0, z1) ∈ {0, 1}2, chosen uniformly at random. Suc-

cess in the task corresponds to Bob outputting the bit

b = zy , that is, the yth bit of Alice’s input. Alice can send

a system to Bob encoding information about her input, but

no information about the parity of her string, z0 ⊕ z1, can

be transmitted to Bob. Thus, if the referee performs any

measurement on the system transmitted, he should not be

able to infer anything about the parity. The latter constraint

is termed parity obliviousness [82].

An operational theory describes every protocol for

parity-oblivious multiplexing as follows. Based on the

input string (z0, z1) ∈ {0, 1}2 that she receives from the ref-

eree, Alice implements a preparation procedure Pz0z1
, and

based on the integer y ∈ {0, 1} that he receives from the

referee, Bob implements a binary-outcome measurement

My , and reports the outcome b of his measurement as his

output. Given that each of the eight values of (y, z0, z1) are

equally likely, the probability of winning, denoted C, is

C ≡ 1

8

∑

b,y,z0,z1

δb,zy p(b|Pz0z1
, My), (7)

where δb,zy is the Kronecker delta function. The parity

obliviousness condition can be expressed as a constraint

on the GPT states, as

1

2
sP00

+ 1

2
sP11

= 1

2
sP01

+ 1

2
sP10

. (8)

This asserts the operational equivalence of the parity-0

preparation (the uniform mixture of P00 and P11) and
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the parity-1 preparation (the uniform mixture of P01 and

P10), and therefore it implies a nontrivial constraint on

the ontological model by the assumption of preparation

noncontextuality [Eq. (5)], namely,

1

2
p(λ|P00) + 1

2
p(λ|P11) = 1

2
p(λ|P01) + 1

2
p(λ|P10). (9)

It was shown in Ref. [51] that if an operational theory

admits of a universally noncontextual ontological model,

then the maximal value of the probability of success in

parity-oblivious multiplexing is

CNC ≡ 3

4
. (10)

We refer to the inequality

C ≤ CNC (11)

as the POM noncontextuality inequality [83].

It was also shown in Ref. [51] that in operational quan-

tum theory, the maximal value of the probability of success

is

CQ ≡ 1

2
+ 1

2
√

2
≃ 0.8536, (12)

which violates the POM noncontextuality inequality,

thereby providing a proof of the impossibility of a non-

contextual model of quantum theory and demonstrating

a quantum-over-noncontextual advantage for the task of

parity-oblivious multiplexing. A set of four quantum states

and two binary-outcome quantum measurements that sat-

isfy the parity-obliviousness condition of Eq. (8) and that

lead to success probability CQ are illustrated in Fig. 9.

For a given GPT state space S and effect space E , we

define

C(S,E) ≡ max
{sPz0z1

}∈S
{eb|My }∈E

1

8

∑

b,y,z0,z1

δb,zy sPz0z1
· eb|My , (13)

where the optimization must be done over choices of

{sPz0z1
} ∈ S that satisfy the parity-obliviousness constraint

of Eq. (8). If S and E are the state and effect spaces of a

GPT, then sPz0z1
· eb|My is the probability p(b|Pz0z1

, My) and

C(S,E) has the form of Eq. (7) and defines the maximum

probability of success achievable in the task of parity-

oblivious multiplexing for that GPT. (We see below that

it is also useful to consider C(S,E) when the pair S and E do

not define the state and effect spaces of a GPT.)

As discussed in Sec. II D, no experiment can specify S

and E exactly. Instead, what we find is a set of possibil-

ities for (S , E) that are consistent with the data, and thus

are candidates for the true GPT state and effect spaces. We

denote this set of candidates by GPTcandidates. To determine

the range of possible values of the POM noncontextuality

inequality violation in this set, we need to determine

Cmin ≡ min
(S,E)∈GPTcandidates

C(S,E), (14)

and

Cmax ≡ max
(S,E)∈GPTcandidates

C(S,E). (15)

See Fig. 8(a) for a schematic of the relation between the

various C quantities we consider.

Cmin and Cmax are each defined as a solution to an opti-

mization problem. As noted in Sec. II D, there is a large

freedom in the choice of S given Srealized and Sconsistent, and

there is a large freedom in the choice of E for each choice

of S . Finally, for each pair (S , E) in this set, one still needs

to optimize over the choice of four preparations and two

measurements defining the probability of success.

(a)

(b)

(c)

FIG. 8. Bounding maximal inequality violations with GPT

tomography. (a) Relation between the true value of the maxi-

mal violation of the POM inequality for the true GPT describing

our experiment, C(S ,E), and the bounds that we place on it.

The interval [Cmin, Cmax] is the range of possible values for

C(S ,E) that one can in principle infer from an experiment, and

the interval [LB(Cmin),UB(Cmax)] is a conservative estimate of

[Cmin, Cmax]. (b) The interval [LB(Cmin),UB(Cmax)] inferred from

our data (area labeled “consistent with experiment”). The true

value C(S ,E) differs from the quantum prediction, CQ by at

most ±1.3 ± 0.1%. Our data violates the POM inequality. (c)

The interval [LB(Bmin),UB(Bmax)] inferred from our data (area

labeled “consistent with experiment”). The true value B(S ,E) is

at most 1.3 ± 0.1% greater than the maximal quantum violation,

CQ. Error bars are too small to be visible on the plots.
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It turns out that the choice of (S , E) that determines Cmin

is easily identified. First, note that the definition in Eq. (13)

implies the following inference:

S
′ ⊆ S , E ′ ⊆ E =⇒ C(S′,E ′) ≤ C(S,E). (16)

Given that Srealized ⊆ S and Erealized ⊆ E for all (S , E) ∈
GPTcandidates, it follows that

C(Srealized,Erealized) ≤ Cmin. (17)

And given that (Srealized, Erealized) is among the GPT candi-

dates consistent with the data, we conclude that

Cmin = C(Srealized,Erealized). (18)

However, calculating C(Srealized,Erealized) still requires solving

the optimization problem defined in Eq. (13), which is

computationally difficult.

Much more tractable is the problem of determining a

lower bound on Cmin, using a simple inner approximation

to Srealized and Erealized. This is the approach we pursue here.

We denote this lower bound by LB(Cmin).

Let Sw
qubit denote the image of the qubit state space Squbit

under the partially depolarizing map Dw, defined by

Dw(ρ) ≡ wρ + (1 − w)
1

2
I Tr(ρ), (19)

with w ∈ [0, 1]. Similarly, let Ew′
qubit denote the image of

Equbit under Dw′ .
Consider the two-parameter family of GPTs defined by

{(Sw
qubit, E

w′
qubit) : w, w′ ∈ (0, 1)}. These correspond to quan-

tum theory for a qubit but with noise added to the states and

to the effects. Letting w1 be the largest value of the parame-

ter w such that Sw
qubit ⊆ Srealized and letting w′

1 be the largest

value of the parameter w′ such that Ew
qubit ⊆ Erealized, then

S
w1
qubit and E

w′
1

qubit provide inner approximations to Srealized

and Erealized, respectively, depicted in Fig. 9. From these,

we get the lower bound

LB(Cmin) = C
(S

w1
qubit

,E
w′

1
qubit

)
. (20)

A subtlety that we avoid mentioning thus far is that the

depolarized qubit state and effect spaces are only defined

up to a linear transformation, so that in seeking an inner

approximation, one could optimize over not only w but

linear transformations as well. To simplify the analysis,

however, we take Sw
qubit to be a sphere of radius w and Ew′

qubit

to be a diamond with a base that is a sphere of radius w′,
and we optimize over w and w′. (Optimizing over all lin-

ear transformations would simply give us a tighter lower

bound.)

(a) (b)

FIG. 9. Depictions of the rescaled qubit state and effect spaces,

which provide our inner and outer approximations to the esti-

mated realized GPT state and effect spaces. We also depict the

states and effects that achieve the maximum probability of suc-

cess in parity-oblivious multiplexing in quantum theory (orange

squares), and those that achieve our lower (magenta circles) and

upper (yellow triangles) bounds. The left figure depicts the GPT

state vectors of the four preparations, labeled by the possible val-

ues of the pair of bits Alice must encode, and the right figure

depicts the GPT effect vectors of each outcome of each of the

pair of measurements.

For the GPT (Sw
qubit, E

w′
qubit), a set of four preparations

and two binary-outcome measurements that satisfy the

parity-obliviousness condition of Eq. (8) and that yield the

maximum probability of success are the images, under the

partially depolarizing maps Dw and Dw′ respectively, of

the optimal quantum choices. These images are depicted

in Fig. 9.

For this GPT, one finds that the probability of success

in parity-oblivious multiplexing is the quantum value with

probability ww′, and 1/2 the rest of the time,

C
(Sw

qubit
,Ew′

qubit
)
= ww′

(

1

2
+ 1

2
√

2

)

+ (1 − ww′)
1

2
,

= 1

2
+ ww′ 1

2
√

2
. (21)

From our estimates of the realized GPT state and effect

spaces, S̃realized and Ẽrealized, we obtain an estimate of w1 by

identifying the largest value of w such that Sw
qubit ⊆ S̃realized

and we obtain an estimate of w′
1 by identifying the largest

value of w′ such that Ew′
qubit ⊆ Ẽrealized.

Determining these estimates from the data of the first

experiment, then substituting into Eq. (21) and using

Eq. (20), we infer the lower bound LB(Cmin) = 0.8303 ±

020302-20



EXPERIMENTALLY BOUNDING DEVIATIONS... PRX QUANTUM 2, 020302 (2021)

0.0002. A similar analysis for the second experiment yields

an even tighter bound,

LB(Cmin) = 0.8427 ± 0.0005. (22)

This provides a lower bound on the interval of C values

in which the true value could be found, as depicted in

Fig. 8(b) [84].

We now turn to Cmax. Given that for all (S , E) ∈
GPTcandidates, S ⊆ Sconsistent, and E ⊆ Econsistent, it follows

from Eq. (16) that Cmax ≤ C(Sconsistent,Econsistent) [85]. We can

therefore compute an upper bound on Cmax using outer

approximations to Sconsistent and Econsistent. We choose outer

approximations consisting of rescaled qubit state and effect

spaces, defined as before, but where the parameter w can

now fall outside the interval [0, 1].

Letting w2 be the smallest value of the parameter w such

that Sconsistent ⊆ Sw
qubit and letting w′

2 be the smallest value

of the parameter w′ such that Econsistent ⊆ Ew′
qubit, then S

w2
qubit

and E
w′

2
qubit provide outer approximations to Sconsistent and

Econsistent ,respectively, and so we get an upper bound

UB(Cmax) = C
(S

w2
qubit

,E
w′

2
qubit

)

. (23)

Even though we are now allowing supernormalized state

and effect vectors, via w and w′ values outside of [0, 1], a

simple calculation shows that C
(Sw

qubit
,Ew′

qubit
)

is still given by

Eq. (21).

Our estimates S̃consistent and Ẽconsistent for the state and

effect spaces of the first experiment imply estimates for w2

and w′
2 [86] and substituting these into Eqs. (23) and (21),

we infer UB(Cmax) = 0.8784 ± 0.0002. The same analysis

on the second experiment yields

UB(Cmax) = 0.8647 ± 0.0005. (24)

This provides an upper bound on the interval of C val-

ues in which the true value could be found, as depicted

in Fig. 8(b).

Recalling that the quantum value is CQ ≃ 0.8536, it fol-

lows from Eqs. (22) and (24) that the scope for the true

GPT to differ from quantum theory in the amount of con-

textuality it predicts (relative to the POM inequality) is

quite limited: for the true GPT, the maximum violation

of the POM noncontextuality inequality can be at most

1.3% ± 0.1 less than and at most 1.3% ± 0.1 greater than

the quantum value.

C. Upper bound on violation of Bell inequalities

Bell’s theorem famously shows that a certain set of

assumptions, which includes local causality, is in contra-

diction with the predictions of operational quantum theory

[87]. It is also possible to derive inequalities from these

assumptions that refer only to operational quantities and

thus can be directly tested experimentally.

The CHSH inequality [49] is the standard example. A

pair of systems are prepared together according to a prepa-

ration procedure PAB, then one is sent to Alice and the

other is sent to Bob. At each wing of the experiment, the

system is subjected to one of two binary-outcome mea-

surements, M A
0 or M A

1 on Alice’s side and M B
0 and M B

1 on

Bob’s side, with the choice of measurement being made

uniformly at random, and where the choice at one wing is

spacelike separated from the registration of the outcome at

the other wing. Denoting the binary variable determining

the measurement choice at Alice’s (Bob’s) wing by x (y),

and the outcome of Alice’s (Bob’s) measurement by a (b),

the operational quantity of interest, the “Bell quantity” for

CHSH, is defined as follows (where a, b, x, y ∈ {0, 1}, and

⊕ is addition modulo 2)

B ≡ 1

4

∑

a,b,x,y

δa⊕b,xyp(a, b|M A
x , M B

y , PAB). (25)

The maximum value that this quantity can take in a model

satisfying local causality and the other assumptions of

Bell’s theorem is

Bloc ≡ 3

4
, (26)

so that such models satisfy the CHSH inequality

B ≤ Bloc. (27)

Meanwhile, the maximum quantum value is [88]

BQ ≡ 1

2
+ 1

2
√

2
≃ 0.8536. (28)

Experimental tests have exhibited a violation of the

CHSH inequality [89] and various loopholes for escaping

this conclusion have been sealed experimentally [90–95].

These experiments provide a lower bound on the value of

the Bell quantity, which violates the local bound.

It has not been previously clear, however, how to derive

an upper bound on the Bell quantity. Doing so is necessary

if one hopes to experimentally rule out postquantum corre-

lations such as the Popescu-Rohrlich box [56,88]. We here

demonstrate how to do so.

First note that the probability for obtaining outcomes a

and b given settings x and y, which appears in Eq. (25),

can be expressed in the GPT framework as

p(a, b|M A
x , M B

y , PAB) = sPAB · (ea|MA
x

⊗ eb|MB
y
), (29)

where sPAB is the GPT state on the composite system AB

representing the preparation PAB (it is said to be entangled
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if it cannot be written as a convex mixture of states that

factorize on the vector spaces of the components [30]), and

where ea|MA
x

(eb|MB
y

) is the GPT effect on A (B) representing

the outcome a (b) of measurement M A
x (M B

y ). Learning that

the M A
x measurement is implemented on the preparation

PAB and yielded the outcome a can be conceived of as a

preparation for system B, which we denote by PB
a|x. The

GPT state representing this remote preparation, which we

denote by sPB
a|x

, is defined by

pa|xsPB
a|x

:= (ea|MA
x

⊗ I B)TsPAB , (30)

where we introduce the shorthand pa|x ≡ p(a|M A
x , PAB),

and where I B represents the identity operator on system

B. Given this definition, one can re-express the probability

appearing in the Bell quantity as

p(a, b|M A
x , M B

y , PAB) = pa|xsPB
a|x

· eb|MB
y

, (31)

which involves only GPT states and GPT effects on system

B. In this case, one is conceptualizing the Bell experi-

ment as achieving one of a set of remote preparations

of the state of Bob’s system—commonly referred to as

“steering”—followed by a measurement on Bob’s system.

The assumption of spacelike separation implies that

there is no signaling between Alice and Bob, and this con-

strains how Bob’s system can be steered. Since pa|x is the

probability that Alice obtains outcome a given that she

performs measurement M A
x on the preparation PAB, the

marginal GPT state of Bob’s subsystem when one does not

condition on a is given by
∑

a pa|xsPB
a|x

. The no-signaling

assumption forces this marginal state to be independent of

Alice’s measurement choice x. In the CHSH scenario the

no-signaling constraint is summarized with the following

equation:

p0|0sPB
0|0

+ p1|0sPB
1|0

= p0|1sPB
0|1

+ p1|1sPB
1|1

. (32)

Because we are assuming that the true GPT includes clas-

sical probability theory as a subtheory (see Sec. II A), it

follows that the local value, Bloc, is a lower limit on the

range of possible values of the Bell quantity among exper-

imentally viable candidates for the true GPT. This is a

trivial lower limit. In order to obtain a nontrivial lower

limit on this range (i.e., one greater than Bloc), one would

need to perform an experiment involving two physical sys-

tems such that one can learn which GPT states for the

bipartite system are physically realizable (in particular,

whether there are any entangled states that are realized)

and thus which steering schemes are physically realizable.

Because our experiment is on a single physical system, it

cannot attest to the physical realizability of any bipartite

states and hence cannot attest to the physical realizability

of any particular instance of steering.

Nonetheless, our experiment can attest to the logical

impossibility of particular instances of steering, namely,

any instance of steering wherein the ensemble on Bob’s

system contains one or more GPT states outside of

Sconsistent, because such states by definition assign values

outside [0, 1]—which cannot be interpreted as probabili-

ties—to some physically realized GPT effects (i.e., some

GPT effects in Erealized). This in turn implies the nonex-

istence of any bipartite GPT state (together with a GPT

measurement on Alice’s system), which could be used

to realize such an instance of steering, even though the

experiment probes only a single system rather than a pair.

Therefore, we can use our experimental results to deter-

mine an upper limit on the range of values of the Bell

quantity among experimentally viable candidates for the

true GPT.

The maximum violation of the CHSH inequality achiev-

able if Bob’s system is described by a state space S and an

effect space E , is

B(S,E) ≡ max
{pa|x}

{s
PB

a|x
}∈S

{e
b|MB

y
}∈E

1

4

∑

a,b,x,y

δa⊕b,xypa|xsPB
a|x

· eb|MB
y

, (33)

where one varies over {pa|x}, {sPB
a|x

} that satisfy the no-

signaling constraint, Eq. (32). If the pair S and E together

form a valid GPT, then pa|xsPB
a|x

· eb|MB
y

is a probability and

we recover Eq. (25).

The upper limit on the range of possible values of

the CHSH inequality violation among the theories in

GPTcandidates, which we denote by Bmax, is defined analo-

gously to Cmax in Eq. (15).

Calculating Bmax is a difficult optimization problem

that involves varying over every pair (S , E) consistent

with the experiment, and for each pair implementing the

optimization in Eq. (33).

Instead of performing this difficult optimization, we

derive an upper bound on Bmax, denoted UB(Bmax). This

is achieved in the same manner that the upper bound on

Cmax is obtained in the previous section, namely, using a

qubitlike outer approximation.

For qubitlike state and effect spaces, it turns out that the

maximum violation of the CHSH inequality is the greater

of 3
4

or the value given for the probability of success in

POM in (21). The proof is provided in Appendix F.

Thus, we infer from Eq. (24) that

UB(Bmax) = 0.8647 ± 0.0005. (34)

This provides an upper bound on the interval of B values

in which the true value of the maximal CHSH inequality

violation lies, as depicted in Fig. 8(c). As noted ear-

lier, our experiment provides only the trivial lower bound
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LB(Bmin) = Bloc. Nontrivial lower bounds have, of course,

been provided in previous Bell experiments using photon

polarization, such as Ref. [96].

V. DISCUSSION

We describe a scheme for constraining what GPTs can

model a degree of freedom on which one has statistical data

from a prepare-and-measure experiment. It proceeds by a

tomographic characterization of the GPT states and effects

that best represent the preparations and measurements real-

ized in the experiment. By computing the duals of these,

one constrains the possibilities for the true GPT state and

effect spaces. The tomographic scheme is self-consistent in

the sense that it does not require any prior characterization

of the preparations and measurements.

The rank of the GPT describing the preparations and

measurements realized in our experiment can be deter-

mined with very high confidence by our method. Because

the models we consider have k(m + n − k) parameters,

where k is the rank of the model, m is the number of prepa-

rations and n is the number of measurements, increasing

the rank of the model by 1 increases the parameter count

by hundreds in the first experiment and by thousands in the

second. For this reason, the Akaike information criterion

can deliver a decisive verdict against models that have a

rank higher than the smallest rank that yields a respectable

χ2 on the grounds that such higher-rank models grossly

overfit the data.

Our experimental results are consistent with the con-

clusion that in prepare-and-measure experiments, photon

polarization acts like a two-level quantum system, corre-

sponding to a GPT vector space of dimension 4.

As emphasized in the introduction and Sec. III A, how-

ever, any hypothesis concerning the tomographic com-

pleteness of a given set of preparations or measurements is

necessarily tentative. Our experiment provided an oppor-

tunity for discovering that the cardinality of a tomograph-

ically complete set of preparations (measurements) for

photon polarization (or equivalently the dimension of the

GPT describing them) deviated from our quantum expec-

tations, but it found no evidence of such a dimensional

deviation.

Under the assumption that the set of preparations and

measurements we realize are tomographically complete,

the technique we describe provides a means of obtaining

experimental bounds on how the shapes of the state and

effect spaces might deviate from those stipulated by quan-

tum theory. We focus in this paper on three examples of

such deviations, namely, the failure of the no-restriction

hypothesis, supraquantum violations of Bell inequalities,

and supraquantum or subquantum violations of noncontex-

tuality inequalities.

Modifications of quantum theory that posit intrinsic

decoherence imply unavoidable noise and thereby a failure

of the no-restriction hypothesis. We focus on the volume

ratio of Slogical to S as a generic measure of the failure

of the no-restriction hypothesis, and we obtain an upper

bound on that measure via the volume ratio of Sconsistent

to Srealized. This provides an upper bound on the degree of

noise in any intrinsic decoherence mechanism.

If one makes more explicit assumptions about the deco-

herence mechanism, one can be a bit more explicit about

the bound. Suppose that the noise that arises from intrin-

sic decoherence in a prepare-and-measure experiment on

photon polarization corresponds to a partially depolarizing

map D1−ǫ [Eq. (19)] where ǫ is a small parameter describ-

ing the strength of the noise, then GPT tomography would

find Srealized ⊆ Sv
qubit and Erealized ⊆ Ev′

qubit, where vv′ = 1 −
ǫ. The best qubitlike inner approximations to Srealized and

Erealized, denoted by S
w1
qubit and E

w′
1

qubit in our paper, define a

lower bound on vv′, namely, w1w′
1 ≤ vv′, and thereby an

upper bound on ǫ, namely, ǫ ≤ 1 − w1w′
1. From our sec-

ond experiment, we obtain the estimate w1w′
1 = 0.969 ±

0.001, which implies that ǫ ≤ 0.031 ± 0.001.

We also provide experimental bounds on the amount by

which the system we study could yield Bell and noncon-

textuality inequality violations in excess of their maximum

quantum value.

Because violation of each of the inequalities we con-

sider is related to an advantage for some information-

processing task—specifically, parity-oblivious multiplex-

ing and the CHSH game—it follows that our experimental

upper bounds on these violations imply an upper bound on

the possible advantage for these tasks. More generally, our

techniques can be used to derive limits on advantages for

any task that is powered by nonlocality or contextuality.

Our results also exclude deviations from quantum theory

that have some theoretical motivation. For instance, Bras-

sard et al. [97] have shown that communication complexity

becomes trivial if one has CHSH inequality violations of
1
2

+ 1/
√

6 ≃ 0.908 or higher. If one assumes that this is

the actual threshold at which communication complexity

becomes nontrivial (as opposed to being a nonstrict upper

bound) and if one endorses the nontriviality of commu-

nication complexity as a principle that the true theory of

the world ought to satisfy, then one has reason to spec-

ulate that the true theory of the world might achieve a

CHSH inequality violation somewhere between the quan-

tum bound of 0.8536 and 0.908. Our experimental bound,

however, rules out most of this range of values.

Our experiment also provides a test (and exclusion)

of the hypothesis of universal noncontextuality. In this

capacity, it represents a significant improvement over the

best previous experiment [38] especially vis-a-vis what

was identified in Ref. [38] to be the greatest weakness

of that experiment, namely, the extent of the evidence

for the claim that a given set of measurements or prepa-

rations should be considered tomographically complete.
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Recall that every assessment of operational equivalence

among two preparations (measurements)—from which one

deduces the nontrivial consequences of universal noncon-

textuality—rests upon the assumption that one has com-

pared their statistics for a tomographically complete set of

measurements (preparations).

The experiment reported in Ref. [38] implemented eight

distinct effects and eight distinct states on single-photon

polarization and consequently it had the opportunity to dis-

cover that a GPT of dimension 4 did not provide a good

fit to the data. In other words, the experiment reported in

Ref. [38], just like the experiment reported here, had the

opportunity to discover that the cardinality of the tomo-

graphically complete sets of effects and states for photon

polarization (hence the dimension of the GPT) was not

what quantum theory would lead one to expect, via the sort

of precision strategy for detecting dimensional deviations

described in the introduction and in Sec. III A. Conse-

quently, it had an opportunity to discover that quantum

expectations regarding operational equivalences were also

violated.

The experimental test of noncontextuality reported in

the present article, however, improves on that of Ref. [38]

insofar as it provided a much better opportunity for detect-

ing dimensional deviations from quantum theory and

hence a much better opportunity for uncovering violations

of our quantum expectations regarding what sets of prepa-

rations and measurements are tomographically complete,

the grounds for all assessments of operational equiva-

lences. In particular, instead of probing just eight states

and effects, we probe 100 of each in the first experiment

and 1000 in the second, and then we explicitly explore the

possibility that GPT models with rank greater than 4 might

provide a better fit to the data. In particular, we use the

Akaike criterion, which incorporates not only the quality

of fit of a model (χ2) but also the number of parameters

it requires to achieve this fit, to determine which rank of

model is most likely given the data.

It is important to recall that our experiment probes only

a single type of system: the polarization degree of freedom

of a photon. A question that naturally arises at this point is:

to what extent can our conclusions be ported to other types

of systems?

Consider first the question of portability to other types

of two-level systems (by which we mean systems that are

described quantumly by a two-dimensional Hilbert space).

If it were the case that different two-level systems could

be governed by different GPTs, this would immediately

lead to a thorny problem of how to ensure that the dif-

ferent restrictions on their behaviors were respected even

in the presence of interactions between them. Indeed, the

principle that every n-level system has the same GPT state

and effect spaces as every other has featured in many

reconstructions of quantum theory within the GPT frame-

work (see, e.g., the subspace axiom in Ref. [15], and its

derivation from other axioms in Ref. [98]) and is taken to

be a very natural assumption. This suggests that there are

good theoretical grounds for thinking that our experimen-

tal constraints on possible deviations from quantum theory

are applicable to all types of two-level systems.

It is less clear what conclusions one might draw for

n-level systems when n 
= 2. For instance, although quan-

tumly the maximum violation of a CHSH inequality is the

same regardless of whether Bob’s system is a qubit or a

qutrit, this might not be the case for some nonquantum

GPT. Therefore, although there are theoretical reasons for

believing that our upper bound on the degree of CHSH

inequality violation (assuming no dimensional deviation)

applies to all two-level systems, we cannot apply those rea-

sons to argue that violations will be bounded in this way

for n-level systems. Nonetheless, if one does assume that

all two-level systems are described by the same GPT, then

we have constraints on the state and effect spaces of every

two-level system that is embedded (as a subspace) within

the n-level system. This presumably restricts the possibil-

ities for the state and effect spaces of the n-level system

itself. How to infer such restrictions—for instance, how

to infer an upper bound on the maximal CHSH inequality

violation for a three-level system from one on a two-level

system—is an interesting problem for future research.

There is evidently a great deal of scope for further exper-

iments of the type described here. An obvious direction

for future work is to apply our techniques to the charac-

terization of higher-dimensional systems and composites.

Another interesting extension would be to generalize the

technique to include GPT tomography of transformations,

in addition to preparations and measurements. This is the

GPT analog of quantum process tomography, on which

there has been a great deal of work due to its application

in benchmarking experimental implementations of gates

for quantum computation. It is likely that many ideas in

this sphere can be ported to the GPT context. A partic-

ularly interesting case to consider is the scheme known

as gate set tomography [99–101], which achieves a high-

precision characterization of a set of quantum gates in a

self-consistent manner.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Photon source

The 20-mm-long PPKTP crystal is pumped with 0.29

mW of continuous-wave laser light at 404.7 nm, produc-

ing pairs of 809.4-nm photons with orthogonal polariza-

tions. We detect approximately 22% of the herald photons

produced, and approximately 9% of the signal photons pro-

duced. In order to characterize the single-photon nature

of the source we perform a g2(0) measurement [102] and

find g2(0) = 0.001 84 ± 0.000 03. This low g2(0) mea-

surement implies that the ratio of double pairs to single

pairs produced by the source is approximately 1 : 2000.

We find that if we increase the pump power then a rank-

4 model no longer fits the data well. This is because

the two-photon state space has a higher dimension than

the one-photon state space. The avalanche photodiode

single-photon detectors we use respond nonlinearly to the

number of incoming photons [103]; this makes our mea-

surements sensitive to the multipair component of the

down-converted light and ultimately limits the maximum

power we can set for the pump laser.

2. Measurements

After a photon exits the measurement PBS, the proba-

bility that it is detected depends on which port of the PBS

it exited from. This is because the efficiencies of the two

paths from the measurement PBS to the detector are not

exactly equal, and also because the detectors themselves

do not have the same efficiency. To average out the two

different efficiencies we perform each measurement in two

stages.

We use language from quantum mechanics to explain

our procedure. Say we want to perform a projective mea-

surement in the |ψ〉-|ψ⊥〉 basis, for some polarization |ψ〉
and its orthogonal partner |ψ⊥〉. We first rotate our mea-

surement wave plates so they rotate |ψ〉 to the horizontal

polarization, |H 〉 (and thus, |ψ⊥〉 is rotated to the verti-

cally polarized state |V〉). In each output port, we record

the number of photons detected in coincidence with the

herald, over an integration time of 4 s. We label detec-

tions in the transmitted port with “0” and detections in

the reflected port with “1.” Second, we rotate the measure-

ment wave plates such that |ψ〉 → |V〉 and |ψ⊥〉 → |H 〉.
We then swap the labels on the measurement outcomes

such that the reflected port corresponds to outcome “0” and

the transmitted port to “1.” We again record the number of

coincidences between each output port and the herald for 4

s. Finally, we sum the total number of “0” detections, and

also the total number of “1” detections over the total 8-s

measurement time. The measured frequency at which we

obtain outcome “0” is then the total number of “0” detec-

tions divided by the sum of the total number of “0” and “1”

detections.

a. Threefold coincidences

Sometimes, all three detectors in the experiment fire

within a single coincidence window. These events are

most likely caused by either a multipair emission from the

source, or the successful detection of both photons in a sin-

gle pair in conjunction with a background count at the third

detector. We choose to interpret each threefold coincidence

as a pair of pairwise coincidences; one between the herald

and transmitted port detectors, and one between the herald

and reflected port detectors.

Since we are only interested in characterizing the single-

pair emissions from our source (and not multipair ones),

we could have chosen to instead discard all threefold-

coincidence events completely. We note that if we had

done this, the raw frequency data to which we fit our GPT

would change, on average, by an amount that is only 0.01%

of the statistical uncertainty on these frequencies. Using

the Akaike information criterion, we would still have con-

cluded that the GPT most likely to describe the data is

rank 4. Finally, the probabilities in the rank-4 GPT of best

fit would be essentially unchanged, and the shapes of the

reconstructed GPT state and effect spaces (and therefore

also the inferences made about the achievable inequality

violations) would not be affected in any significant way.

APPENDIX B: CHOICE OF PREPARATION AND

MEASUREMENT SETTINGS

We choose the preparation and measurement settings in

our experiment with the aim of characterizing the largest

volume of the state and measurement effect spaces as pos-

sible. The state and effect spaces in any GPT are convex,

and thus fully characterizing the boundaries of these spaces

fully determines the full spaces. Thus our aim is to find

preparation and measurement settings that map out the

boundaries of the state and effect spaces as best we can,

given the finite number of settings we are able to perform.

We use quantum theory to inform our choice of settings.

We expect the GPT describing our experiment to be equal

to (or very closely approximated by) the GPT for a qubit.

The surface of the Bloch sphere (i.e., the space of pure

qubit states) determines the qubit state space, and prepar-

ing a set of states that are evenly distributed around the

surface of the Bloch sphere should do a good job at char-

acterizing the GPT state space describing our experiment.

The qubit effect space is characterized by the surface of the

sphere representing projective measurement effects, plus

the unit effect, I, and its complement, the zero effect. Thus,

we aim to perform a set of measurements whose effects are

evenly distributed on the outside of the sphere of projective

effects.
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(a) (b)

FIG. 10. Quantum description of the target states created and

measurements performed in our experiment. An evenly dis-

tributed set of points lying on a spiral was used to choose

the settings for (a) the 100 preparations and measurements

characterized in the first experiment and (b) the 1000 nonfidu-

cial preparations and measurements characterized in the second

experiment. Each red dot corresponds to a quantum state |ψi〉,
and the wave-plate angles (i.e., preparation settings) are chosen

as those which, under the assumption of the correctness of quan-

tum theory, would prepare those states. Each red dot also defines

an effect |ψi〉〈ψi|, which is part of the projective measurement

{|ψi〉〈ψi|, I − |ψi〉〈ψi|}.

To choose the preparation settings we first find a set

of pure quantum states labeled with |ψi〉 that are approxi-

mately evenly distributed around the surface of the Bloch

sphere. We then find the quarter- and half-wave plate

angles necessary to create each of those states, and each

pair of quarter- and half-wave plate angles is one prepa-

ration setting. The space of projective effects is also

determined by the Bloch sphere, since every projective

(a) (b)

FIG. 11. Quantum description of the fiducial states and mea-

surement effects performed in the second experiment. (a) Red

dots represent the six fiducial states used to characterize the 1000

measurements in Fig. 10(b). These correspond to the +1 and

−1 eigenstates of the three Pauli operators σx, σy , and σz . (b)

Red dots represent the six fiducial measurement effects used to

characterize each of the states in Fig. 10(b). These effects lie

on six of the twelve vertices of an icosahedron, and they cor-

respond to the outcome-“0” effect of a projective measurement.

Each outcome-“0” effect has a corresponding outcome-“1” effect;

each outcome-“1” effect is represented by one of the other six

vertices on the icosahedron.

effect |ψi〉〈ψi| can be associated with the state to which it

responds deterministically, |ψi〉. The measurement settings

are the wave-plate angles that implement the projective

measurements {|ψi〉〈ψi|, I − |ψi〉〈ψi|}.
We use a method due to Rakhmanov, Saff, and Zhou

[104] to find the set of approximately uniformly distributed

points on the surface of the Bloch sphere. The points lie

on a spiral that begins at the south pole of the sphere,

and winds up around the sphere and ends at the north

pole. The quantum states corresponding to each of the

100 preparation settings in the first experiment are shown

in Fig. 10(a), and the 1000 states corresponding to each

preparation setting in the second experiment are displayed

in Fig. 10(b).

In the second experiment, we also implement a set of six

fiducial preparations, which we use to characterize each

of the 1000 effects in Fig. 10(b), and a set of six fidu-

cial measurements, which we use to characterize each of

the 1000 states in Fig. 10(b). The fiducial preparation and

measurement sets are shown in Fig. 11.

APPENDIX C: FINDING THE RANK-k MATRIX D̃

THAT BEST FITS THE FREQUENCY MATRIX F

In this section we explain the algorithm we use to find a

low-rank matrix that best fits the matrix of raw frequency

data.

For an m × n matrix of frequency data, F , we define the

rank-k matrix of best fit, D̃, as the one that minimizes the

weighted χ2 value:

χ2 =
m

∑

i=1

n
∑

j =1

(

Fij − D̃ij

�Fij

)2

, (C1)

where the weights �Fij are the uncertainties in the mea-

sured frequencies, which are calculated assuming Poisso-

nian error in the counts (in cases where we did not collect

data for the preparation-measurement pair corresponding

to entry Fij , we set �Fij = ∞). Since D̃ represents an

estimate of the true probabilities underlying the noisy fre-

quency data, we need to ensure that D̃ contains only entries

between 0 and 1. Hence the matrix of best fit is the one

which solves the following minimization problem:

minimize
D̃∈Mmn

χ2,

subject to rank(D̃) ≤ k

0 ≤ D̃ij ≤ 1 ∀ i, j ,

(C2)

where Mmn is the space of all m × n real matrices. The

entries in the column of 1s (representing the unit measure-

ment effect) that we include in F are exact, meaning that

they have an uncertainty of 0. As D̃ is defined as the matrix

that minimizes χ2, this enforces that the entries in the same
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column of D̃ will also remain exactly 1. Otherwise, χ2

would be undefined.

To enforce the rank constraint, we use the parameteriza-

tion D̃ = S̃Ẽ, where S̃ has size m × k and Ẽ is k × n. This

minimization problem as stated is NP hard [63], and cannot

be solved analytically. However, if either S̃ or Ẽ remains

fixed, optimizing the other variable is a convex prob-

lem, which can be solved with quadratic programming.

We minimize χ2 by performing a series of alternating

optimizations over S̃ and Ẽ [64].

Each iteration begins with an estimate for Ẽ, and we

then consider a variation over the m × k matrix S̃ such that

the m × n matrix D̃ = S̃Ẽ minimizes the χ2. Next, we fix

S̃ to be the one that achieved the minimum in this vari-

ation and we consider a variation over the k × n matrix

Ẽ such that D̃ = S̃Ẽ minimizes the χ2. This is the end

of one iteration, and the matrix Ẽ that achieved the mini-

mum becomes the Ẽ for the beginning of the next iteration.

The algorithm runs until a specific convergence threshold

is met (i.e., if �χ2 < 10−6 between successive iterations),

or until a maximum number of iterations (we choose 5000)

is reached.

We now show that optimization over S̃ or Ẽ is convex

(given that the other variable is fixed). For what follows,

we make use of the vec(·) operator, which takes a matrix

and reorganizes its entries into a column vector with the

same number of entries as the original matrix. For exam-

ple, given an m × n matrix A, vec(A) is a vector of length

mn, and the first m entries of vec(A) are equal to the first

column of A, entries m + 1 through 2m are equal to the

second column of A, and so on. We also define a diagonal

mn × mn matrix of weights, W, to encode the uncertainties

(1/�Fij )
2. These values appear along the diagonal of W,

and they are appropriately ordered such that we can rewrite

χ2 in the more convenient form:

χ2 = vec(F − S̃Ẽ)TW vec(F − S̃Ẽ), (C3)

= vec(S̃Ẽ)TW vec(S̃Ẽ) − 2 vec(S̃Ẽ)TW vec(F)

+ vec(F)TW vec(F), (C4)

where we also make the substitution D̃ = S̃Ẽ.

Defining Im as the m × m identity matrix, we can use the

identity vec(S̃Ẽ) = (ẼT ⊗ Im) vec(S̃) to write

χ2 = vec (S̃)
T
(Ẽ ⊗ Im)W(ẼT ⊗ Im) vec (S̃)

− 2 vec (S̃)
T
(Ẽ ⊗ Im)W vec(F)

+ vec(F)TW vec(F), (C5)

and we now see that the minimization over P can be

written as

minimize
S̃∈Mmk

vec (S̃)
T
(Ẽ ⊗ Im)W(ẼT ⊗ Im) vec (S̃)

− 2 vec (S̃)
T
(Ẽ ⊗ Im)W vec(F),

subject to 0 ≤ (S̃Ẽ)ij ≤ 1 ∀ i, j .

(C6)

We ignore the third term of Eq. (C4) as it is a constant, and

depends neither on S̃ nor Ẽ. Since W is a diagonal matrix

consisting of only positive elements, (Ẽ ⊗ Im)W(ẼT ⊗ Im)

is positive definite. This means that Eq. (C6) is a con-

vex quadratic program [105], which can be solved in

polynomial time.

The optimization over Ẽ takes a similar form, which

can be found by applying the identity vec(S̃Ẽ) = (In ⊗
S̃) vec(Ẽ) to Eq. (C4):

minimize
Ẽ∈Mkn

vec(Ẽ)T(In ⊗ S)TW(In ⊗ S̃) vec(Ẽ)

− 2 vec(Ẽ)T(In ⊗ S̃)TW vec(F),

subject to 0 ≤ (S̃Ẽ)ij ≤ 1 ∀ i, j .

(C7)

APPENDIX D: DECOMPOSITION OF THE

FITTED MATRIX OF PROBABILITIES

As discussed in Sec. III E in the main paper, we find a

decomposition D̃realized = S̃realizedẼrealized in order to char-

acterize the estimates of the spaces realized by the exper-

iment, S̃realized and Ẽrealized. Here, D̃realized has size m × n,

S̃realized is m × k and Ẽrealized is k × n. In this appendix

we describe the method we use to perform the above

decomposition.

We choose the decomposition to ensure that the first

column of S̃realized is a column of 1s, which allows us to

represent S̃realized in k − 1 dimensions. (In our experiment

we find k = 4, but we use the symbol k in this appendix for

generality.) We achieve this by ensuring that the leftmost

column in D̃realized is a column of 1s representing the unit

measurement, such that D̃realized takes the form:

D̃realized =

⎛

⎜

⎝

1 p(0|P1, M2) · · · p(0|P1, Mn)
...

...
. . .

...

1 p(0|Pm, M2) · · · p(0|Pm, Mn)

⎞

⎟

⎠
.

(D1)

We then proceed to perform the QR decomposition [106]

D̃realized = QR, where R is an m × n upper-right triangular

matrix and Q an m × m unitary matrix. Because D̃realized

has the form of Eq. (D1), each entry in the first column of Q

is equal to some constant c. We define Q′ = Q/c and R′ =
cR, which ensures that the first column of Q′ is a column

of 1s.
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Next, we partition Q′ and R′ as Q′ = (Q0 Q1) and R′ =
(

R0
R1

)

, where Q0 is the first column of Q′, Q1 is all remain-

ing columns of Q′, R0 is the first row of R′, and R1 is all

remaining rows of R′. We take the singular value decompo-

sition Q1R1 = U�VT. Q1R1 is rank-(k − 1), and thus only

has (k − 1) nonzero singular values. Hence we can parti-

tion U, �, and V as U = (Uk−1 U(k−1)⊥), � =
(

�k−1 0

0 0

)

,

and V = (Vk−1 V(k−1)⊥). Here �k−1 is the upper-left (k −
1) × (k − 1) corner of �, and Uk−1 and Vk−1 are the left-

most (k − 1) columns of U and V, respectively. Finally, we

define S̃realized and Ẽrealized as S̃realized = (Q0 Uk−1

√
�k−1)

and Ẽrealized =
(

R0√
�k−1VT

k−1

)

.

The procedure described above ensures that S̃realized and

Ẽrealized take the forms:

S̃realized =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 s
(1)

1 · · · s
(1)

k−1

1 s
(2)

1 · · · s
(2)

k−1

...
...

. . .
...

1 s
(m)

1 · · · s
(m)

k−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (D2)

and

Ẽrealized =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 e
(2,0)

0 · · · e
(n,0)

0

0 e
(2,0)

1 · · · e
(n,0)

1

...
...

. . .
...

0 e
(2,0)

k−1 · · · e
(n,0)

k−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (D3)

where s
(u)
t is the tth element of the GPT state vector repre-

senting the uth preparation, and e
(v,0)
t is the tth element of

the GPT effect vector representing the 0th outcome of the

vth measurement.

1. Convex closure under convex mixtures and classical

postprocessing of Ẽ
realized

As discussed in Sec. III E, Ẽrealized is obtained by con-

sidering the convex closure under convex mixtures and

classical postprocessing of Ẽrealized. We perform only two-

outcome measurements in our experiment, and thus the full

set of effects in Ẽrealized is the convex hull of the outcome-

0 effects of all measurement procedures implemented in

the experiment (i.e., the matrix Ẽrealized) and of all the

outcome-1 effects of all the implemented measurements

(i.e., the matrix 1-Ẽrealized).

If we chose to, we could simply take the Ẽrealized returned

by the decomposition of D̃realized that we described above,

and define the larger matrix (Ẽrealized 1 − Ẽrealized), and

the convex hull of the vectors in this larger matrix would

define our estimate, Ẽrealized, of the space of GPT effects

realized in the experiment.

However, in an attempt to treat the outcome-0 and

outcome-1 effect vectors on equal footing, we instead

define the larger matrix D̃R = (D̃realized 1 − D̃realized). We

then find a decomposition D̃R = S̃realizedẼR using the

method described above. This ensures that ẼR has the

form:

ẼR =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 e
(2,0)

0 · · · e
(n,0)

0 0 e
(2,1)

0 · · · e
(n,1)

0

0 e
(2,0)

1 · · · e
(n,0)

1 0 e
(2,1)

1 · · · e
(n,1)

1

...
...

. . .
...

...
...

. . . · · ·
0 e

(2,0)

k−1 · · · e
(n,0)

k−1 0 e
(2,1)

k−1 · · · e
(n,1)

k−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(D4)

APPENDIX E: CALCULATION OF DUAL SPACES

The spaces S̃consistent and Ẽconsistent are the duals of the

realized spaces Ẽrealized and S̃realized, respectively. Here we

discuss how we calculate the consistent spaces from the

realized ones.

We start with the calculation of S̃consistent. By definition,

S̃consistent is the intersection of the geometric dual of Ẽ and

the set of all normalized GPT states; specifically, the set of

s ∈ Rk such that ∀e ∈ Ẽrealized : 0 ≤ s · e ≤ 1 and such that

s · u = 1. This definition (called an inequality represen-

tation) completely specifies S̃consistent. However, in order

to perform transformations on the space or calculate its

volume, it can be useful to have its vertex description as

well, which is a list of vertices that completely specify the

space’s convex hull. Finding a convex polytope’s vertex

representation given its inequality representation is called

the vertex enumeration problem [107].

To find the vertex representation of S̃consistent, we first

simplify its inequality representation. Since Ẽrealized is a

convex polytope, we do not need to consider every e in

Ẽrealized, but only the vertices of Ẽrealized. If we denote the

set of vertices of Ẽrealized by vertices
(

Ẽrealized

)

, then we can

replace the ∀e ∈ Ẽrealized in the definition of S̃consistent with

∀e ∈ vertices
(

Ẽrealized

)

. Calculation of vertices
(

Ẽrealized

)

is performed with the pyparma [108] package in Python

2.7.6. The calculation of the vertex description of S̃consistent

is performed with an algorithm provided by Avis and

Fukuda [107]. We use functions in pyparma [108], which

call the cdd library [109] to find the vertex description of

S̃consistent.

Finding the vertex description of Ẽconsistent from S̃realized

is done in an analogous way. Ẽconsistent is defined as the

geometric dual of the space that is the subnormalization

of S̃realized, {ws : s ∈ S̃realized, w ∈ [0, 1]}. The subnormal-

ization of S̃realized is also the convex hull of the union of the

GPT state vectors that make up the rows of S̃realized and the
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GPT state vector with s0 = · · · = sk−1 = 0 that represents

the state with normalization zero.

APPENDIX F: MAXIMAL CHSH INEQUALITY

VIOLATIONS WITH QUBITLIKE STATE SPACES

We here provide a proof of the fact that the optimal value

of the CHSH inequality when Bob’s system is described by

a qubitlike state and effect space is the same as the value

of the POM noncontextuality inequality for the same case,

provided that the latter is at least 3
4
, that is,

B
(Sw

qubit
,Ew′

qubit
)
= max

{

3

4
, C

(Sw
qubit

,Ew′
qubit

)

}

. (F1)

We begin with a geometric charachterization of Sw
qubit and

Ew′
qubit. Recalling the Bloch representation of Squbit and Equbit

from Sec. II B, and noting that the maximally mixed state

is represented by (1, 0, 0, 0), applying Dw from Eq. (19)

gives Sw
qubit as a ball of radius w, i.e., (1, s1, s2, s3) with

√

s2
1 + s2

2 + s2
3 ≤ w. Similarly Ew′

qubit is a “Bloch diamond”

with radius w′, i.e., (e0, e1, e2, e3) with 0 ≤ e0 ≤ 1 and
√

e2
1 + e2

2 + e2
3 ≤ w′ min{e0, 1 − e0}.

In particular, Ew′
qubit is the convex hull of (0, 0, 0, 0),

(1, 0, 0, 0) and effects of the form
(

1
2
, e1, e2, e3

)

with
√

e2
1 + e2

2 + e2
3 = 1

2
w′. Thus this GPT shares with a qubit

the feature that all binary-outcome measurements are con-

vex combinations of (the analog of) projective measure-

ments. Specifically, the extremal binary-outcome measure-

ments consist of the trivial binary-outcome measurement

with effects (0, 0, 0, 0) and (1, 0, 0, 0), and the nontrivial

binary-outcome measurements with effects
(

1
2
, e1, e2, e3

)

and
(

1
2
, −e1, −e2, −e3

)

with

√

e2
1 + e2

2 + e2
3 = 1

2
w′.

Recall from Eq. (33) that we are interested in

maximizing

1

4

∑

a,b,x,y

δa⊕b,xypa|xsPB
a|x

· eb|MB
y

, (F2)

over {pa|x}, {sPB
a|x

} that satisfy the no-signaling constraint,

Eq. (32), and over {eb|MB
y
}.

For each b, Eq. (F2) is convex-linear in Bob’s effects

eb|MB
y

. Hence it suffice to maximize Eq. (F2) over the

convexly extremal binary-outcome measurements. In par-

ticular, Bob’s optimal strategy is one of two possibilities:

at least one of his measurements is trivial, or both of his

measurements are nontrivial.

First, consider the case where the optimum is achieved

when one of Bob’s measurements is trivial, i.e., has effects

(0, 0, 0, 0) and (1, 0, 0, 0). Clearly this measurement can be

implemented jointly with any other measurement, regard-

less of whether this other measurement is trivial or not. But

violating a bipartite Bell inequality such as CHSH requires

that both parties use incompatible measurements [110].

Hence the maximum value of Eq. (F2) for this case cannot

exceed Bloc = 3
4
. Indeed this value can be achieved with

both of Bob’s measurements being trivial, for example by

having Alice and Bob always output a = b = 0. Therefore,

in this case

B
(Sw

qubit
,Ew′

qubit
)
= 3

4
. (F3)

Now consider the case where the optimum is achieved

when both of Bob’s measurements are nontrivial, i.e., for

each (b, y), eb|MB
y

=
(

1
2
, e1, e2, e3

)

with

√

e2
1 + e2

2 + e2
3 =

1
2
w′. If we define ẽb|MB

y
:= (1/w′)(e1, e2, e3), then ẽb|MB

y
is a

vector of length 1
2
, which—according to the convention we

are using in this paper [55]—is what one has quantumly.

Similarly, because for each (a, x), sPB
a|x

= (1, s1, s2, s3) with
√

s2
1 + s2

2 + s2
3 ≤ w, if we define s̃PB

a|x
:= 1

w
(s1, s2, s3), then

s̃PB
a|x

has length at most 1, which is what one has quantumly.

Noting that
∑

a,b,x,y δa⊕b,xypa|x = ∑

a,x,y pa|x = ∑

x,y 1 = 4,

we have that Eq. (F2) becomes

1

2
+ ww′ 1

4

∑

a,b,x,y

δa⊕b,xypa|x s̃PB
a|x

· ẽb|MB
y

. (F4)

Furthermore, the no-signaling constraint Eq. (32) can be

written as

p0|0s̃PB
0|0

+ p1|0s̃PB
1|0

= p0|1s̃PB
0|1

+ p1|1s̃PB
1|1

. (F5)

In the case ww′ = 1, we recover the usual problem of

maximizing the CHSH value where Bob does projective

measurements on a qubit, for which the maximum value

BQ is given in Eq. (28). (The fact that we can optimize

over the ensembles of states to which Alice steers rather

than optimizing over the bipartite state and Alice’s mea-

surements follows from the Schrödinger-HJW theorem

[111,112].) Since the only place that w and w′ appear in the

problem is before the sum in Eq. (F4), and since ww′ > 0,

it is clear that an optimal strategy for our problem will

use the same pa|x, s̃PB
a|x

and ẽb|MB
y

as in the ww′ = 1 case.

Hence, if the optimal strategy uses a pair of nontrivial

measurements, then

(

B
(Sw

qubit
,Ew′

qubit
)
− 1

2

)

= ww′
(

BQ − 1

2

)

, (F6)

giving

B
(Sw

qubit
,Ew′

qubit
)
= 1

2
+ ww′ 1

2
√

2
(F7)

= C
(Sw

qubit
,Ew′

qubit
)
, (F8)

where we use Eq. (21).
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It follows that the optimal strategy achieves the maxi-

mum of Eq. (F3) and Eq. (F8), which establishes Eq. (F1).
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