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Highlights 

● This proof-of-concept study demonstrates the feasibility of privacy 

preserving distributed learning for anal cancer outcome modelling. 

● A Cox proportional hazards regression model was trained and validated 

using data from three international institutions, with clinical and treatment-

related risk factors, and exhibited robust performance. 

● The study data represent one of the largest available series of anal cancer 

patients treated with modern radiotherapy techniques. 

● Distributed learning may be an attractive approach for outcome modelling 

in rare cancers. 

 

  



Abstract 

 

Background and purpose: Predicting outcomes is challenging in rare cancers. Single-

institutional datasets are often small and multi-institutional data sharing is complex. 

Distributed learning allows machine learning models to use data from multiple 

institutions without exchanging individual patient-level data. We demonstrate this 

technique in a proof-of-concept study of anal cancer patients treated with 

chemoradiotherapy across multiple European countries. 

 

Materials and methods: atomCAT is a three-centre collaboration between Leeds Cancer 

Centre (UK), MAASTRO Clinic (The Netherlands) and Oslo University Hospital 

(Norway). We trained and validated a Cox proportional hazards regression model in a 

distributed fashion using data from 281 patients treated with radical, conformal 

chemoradiotherapy for anal cancer in three institutions. Our primary endpoint was 

overall survival. We selected disease stage, sex, age, primary tumour size, and planned 

radiotherapy dose (in EQD2) a priori as predictor variables.   

 

Results: The Cox regression model trained across all three centres found worse overall 

survival for high risk disease stage (HR=2.02), male sex (HR=3.06), older age (HR=1.33 

per 10 years), larger primary tumour volume (HR=1.05 per 10cm3) and lower 

radiotherapy dose (HR=1.20 per 5 Gy). A mean concordance index of 0.72 was 

achieved during validation, with limited variation between centres (Leeds=0.72, 

MAASTRO=0.74, Oslo=0.70). The global model performed well for risk stratification for 

two out of three centres. 

 

Conclusions: Using distributed learning, we accessed and analysed one of the largest 

available multi-institutional cohorts of anal cancer patients treated with modern 

radiotherapy techniques. This demonstrates the value of distributed learning in outcome 

modelling for rare cancers.  

  



Introduction 

 

Prediction models for cancer outcomes can support clinical decision making, and 

hold the promise for individualisation of cancer treatment and radiotherapy plan 

optimisation. Development of robust and validated models is often hampered by lack of 

access to data, however, especially across countries and institutions. This is particularly 

the case for rare cancers. 

“Distributed learning” facilitates the development and validation of statistical 

models using data across multiple institutions without transferring individual patient data 

outside the originating institution. This is one of several novel methodologies developed 

to preserve patient data privacy [1,2], such as differential privacy and encryption [3]. 

Our distributed learning approach is an open-source solution (Vantage6) which prevents 

insider attacks by blocking any direct connection between data hosts [4,5]. Only locally 

aggregated statistics (model coefficients and fit errors) are exchanged between the data 

centres and the central server. Model development in the distributed learning framework 

is an iterative mathematical optimization problem where the coefficients of a single 

globally-convergent model will be determined by minimizing the total error [6]. The 

general methodology has been shown to be scalable up to vast numbers of patients [7]. 

The distributed learning approach may be ideally suited to rare diseases, where 

single-institutional datasets are limited in size and sharing data between institutions is 

restricted by data protection regulations and related ethical considerations [8]. One such 

example is anal cancer; a rare disease with an incidence rate around 2.1 per 100,000 

person-years in Northern Europe and twice the incidence in women relative to men [9]. 

Currently, the standard treatment for localised disease involves concomitant 

radiotherapy and chemotherapy [10], which leads to a complete response in 

approximately 3 out of 4 patients. 5-year overall survival rates of 75% have previously 

been reported [11–13]. Further improvements in disease control and survival have 

proven challenging, and questions remain around optimal tumour dose [14–16].  

Additionally, patients that undergo standard treatment commonly suffer from various 

early and late side effects, such as gastrointestinal symptoms that range from mild to 

severe [17]. This highlights the need for a personalised approach to anal cancer 

chemoradiotherapy. Such individualisation will be dependent on the development of 

outcome prediction models [18], which again require sufficient data for model training 

and validation. A distributed learning approach may help obtaining sufficient patient data 

from different institutions in order to develop robust and generalisable models, while 

circumventing many of the barriers associated with individual-level patient data sharing. 

In this proof-of-concept study, we aimed to show the feasibility of our distributed 

learning approach for patients with anal cancer receiving radical chemoradiotherapy. A 

prediction model for overall survival (OS), employing established baseline clinical 

factors and radiotherapy dose as predictors, was applied on data across institutions in 

three European countries. OS was chosen as our outcome of interest as this is an 

important outcome measure in anal cancer research [19] and a robust endpoint across 

institutions. 



We hypothesise that a global Cox proportional hazards model developed without 

exchange of any individual-level patient data is highly reproducible in a multi-centre 

setting, when evaluated through an “internal-external” validation cycle [20], despite the 

small sample sizes within each participating centre. Furthermore, we hypothesize that 

we can define risk groups across institutions.  

 

 
Materials & Methods 

 

The study protocol was developed collaboratively by the three participating 

institutions prior to study initiation: Leeds Cancer Centre (UK), MAASTRO Clinic (The 

Netherlands), Oslo University Hospital (Norway). Patients were treated with 

chemoradiotherapy with radical intent for anal squamous cell carcinoma (ASCC), with 

conformal radiotherapy (forward-planned 3D conformal (3D-CRT) or intensity-

modulated radiation therapy/volumetric modulated arc therapy (IMRT/VMAT)). 

Baseline, treatment and outcome data were available. The main outcome of interest for 

this proof-of-concept study was overall survival (OS). Death from any cause was 

counted as an event, with patients censored at the time of local data collection. Survival 

interval was calculated from the date of the first fraction of radiotherapy, to either date 

of death or the last follow-up date if alive. 

For candidate outcome predictors, the literature on anal cancer 

chemoradiotherapy was reviewed, and expert input sought from three consultant clinical 

oncologists specialising in anal cancer. Importantly, we considered only predictors 

available at start of treatment (thus not radiotherapy compliance or treatment gaps). The 

following predictor variables were chosen, based on published data, clinical experience, 

and data availability in participating institutions: disease stage - low risk (Stage I-II, T1N0 

or T2N0 or T3N0) versus high risk (Stage III, T4N(any) or T(any)N+) according to TNM 

v8 [21]; sex; age; primary tumour size (gross tumour volume, GTV, on planning CT); 

and primary tumour prescribed dose (converted from physical dose to equivalent dose 

in 2 Gy per fraction, EQD2α/β=10Gy). For disease stage, there is ongoing debate as to 

whether T3N0 tumours should be regarded as low or high risk [16]. The model was thus 

also fitted with T3N0 tumours assigned to the high rather than the low risk group. 

Additionally, histology (basaloid SCC: yes/no) was identified as a potential predictor, but 

was not included in the final analysis due to a large proportion of missing SCC subtype 

data in one institution. A data code book was shared between all institutions, for 

standardised data collection and reporting. 

 

Patient data collection 

 

For Leeds Cancer Centre, a subset of patients treated for anal cancer between 

2015 and 2018 with baseline and outcome data available were included. All patients 

were treated with VMAT and simultaneous integrated boost (SIB). Patients were 

identified through existing research databases, and additional data was sourced as 



necessary from clinical databases. Tumour volumes were extracted manually from 

radiotherapy plans. Survival data were based on patient electronic records, which are 

automatically linked to the NHS England death registry. 

At MAASTRO Clinic, patients treated by radiotherapy for primary anal cancer with 

radical intent between 2008 and 2017 were retrieved from electronic treatment records. 

All radiotherapy was in the form of either 3D-CRT (n=26; prior to 2013) or VMAT (n=55; 

after 2013), with dose to the primary tumour escalated by either sequential boost or SIB. 

Tumour volumes were extracted manually from radiotherapy planning delineations. 

Dates of death were obtained from the electronic patient records, which were 

automatically updated from a Dutch citizens registry. 

For Oslo University Hospital, anal cancer patients enrolled in the prospective 

ANCARAD trial (ClinicalTrials registration NCT01937780) receiving treatment between 

2013 and 2017 were included. All patients received chemoradiotherapy using 3D-CRT 

(40 patients), IMRT (11 patients) or VMAT (69 patients), with boosts delivered either 

sequentially (109 patients) or as SIB (11 patients). Baseline and outcome data were 

prospectively collected as part of the ANCARAD trial. Additional baseline data were 

retrieved as necessary from clinical databases. Tumour volumes were extracted from 

radiotherapy structure sets in the treatment planning system using an in-house script. 

Details on the radiotherapy and concomitant chemotherapy schedules used at 

each centre are shown in Table 1. 

 

Table 1. Radiotherapy and concomitant chemotherapy treatment schedules used at each of the 

three centres. 

 Leeds MAASTRO Oslo 

Radiotherapy 
regimen 

Most patients were 
prescribed 50.4-53.2 Gy 
to the primary tumour, 
50.4Gy to involved nodes 
and 40 Gy to elective 
nodal volumes in 28 
fractions. 5 patients were 
treated with doses above 
53.2 Gy. 

All patients were 
prescribed 54-66 Gy to 
the primary tumour and 
39-49.5 Gy to elective 
lymph nodes in 30-33 
fractions. 

All patients were 
prescribed 54-58 Gy to 
the primary tumour and 
pathological lymph nodes 
and 46 Gy to elective 
nodal volumes in 27-29 
fractions. 

Chemotherapy 
regimen 

Mitomycin-C (12 mg/m2 
bolus day 1, capped at 20 
mg) and 5-FU (1000 
mg/m2 in 1 L normal 
saline over 24 hours, days 
1-4 and days 29-32, 
capped at 2 m2). 

Mitomycin-C (10 mg/m2 
bolus day 1) plus either 
capecitabine (2 x 825 
mg/m2 per radiotherapy 
treatment day) or 
continuous 5-FU (750 
mg/m2 days 1-5 and 29-
33); 11 patients who were 
elderly/frail or had 
T1N0M0 disease were 
treated with 66 Gy 
radiotherapy only. 

Mitomycin-C (10 mg/m2 
bolus day 1, capped at 20 
mg) and 5-FU (1000 
mg/m2 in 1 L normal 
saline over 24 hours, days 
1-4), according to national 
guidelines. Patients with 
T1-T2 and N0 tumours 
received a single cycle (5-
FU: days 1-4, MMC: day 
1); patients with T3-4 
tumours or N+ received 
two cycles (additional 
cycle in the fifth treatment 
week; 5-FU days 29-32, 
MMC day 29). 



Institutional data access & data protection approvals 

 

Each institution acquired separate local approvals for accessing and collecting 

patient data for research. As no individual patient data were exchanged between 

institutions, no data sharing agreements or additional patient consent were needed. 

Local information governance and data protection review of the distributed learning 

infrastructure were obtained wherever appropriate. In Leeds, the study was approved 

by LeedsCAT; a radiotherapy-specific institutional research governance board. In 

MAASTRO, IRB approval was obtained to extract patient data from electronic records. 

In Oslo, Regional Ethics Committee approval was obtained for re-use of data from the 

ANCARAD trial (via an amendment), and the local data protection officer reviewed and 

approved the distributed learning infrastructure. 

 

Distributed learning architecture 

 

We used the Vantage6 v0.2.4 software to set up three components; (1) “nodes” 

where patient-level data is accessed and where local model coefficients are computed, 

(2) a trusted coordinating “server” that performs aggregation of coefficients, and (3) a 

“researcher” that provides the model to be trained. The purpose was to fit a distributed 

Cox model for overall survival for anal cancer (see Figure 1). For additional security, all 

patient data were pseudonymized and stripped of protected health information (e.g. 

dates of treatments, dates of birth/death, generic medical record numbers, etc). 

Nodes were set up on common personal computers (either physical or virtual) 

running any one of well-supported operating systems (Windows/MacOS/Ubuntu) with 

an installation of Python (v3.6 or later), Docker Desktop community edition, and 

Vantage6 v0.2.4. The complete source code for the infrastructure implementation is 

available [https://github.com/IKNL/vantage6 - Version 0.2.4]. Network connectivity was 

fully compliant with local institutional policies, and only one secured network port 

through the institution firewall was enabled for Vantage6 traffic. 

The Leeds node was set up as a Windows 10 Pro virtual machine (Intel(R) 

Xeon(R) Gold 5118 CPU, 16GB RAM), and only accessible by NHS Trust users granted 

the appropriate permissions. Patient data were extracted from a clinical database, de-

identified, and forwarded to the virtual machine. The MAASTRO node was set up as a 

physical Surface Book 2 laptop (Intel(R) Core i7-8650 CPU, 16GB RAM) running 

Windows 10 Pro, and pseudonymized patient data accessed via a mapped folder 

directing to an internal storage server. The Oslo node was set up on a Lenovo ThinkPad 

laptop (Intel(R) i7-4600M CPU, 16GB RAM), running Ubuntu Linux 18.04 as a virtual 

machine, which can easily be cloned when setting up nodes for new projects. The Oslo 

node was physically decoupled from the hospital network, and pseudonymized data 

was transferred to the machine via an encrypted external hard disk drive. 



Figure 1. Distributed learning as a multinational collaboration to train a Distributed Cox model 

for overall survival in anal cancer across three data nodes with a trusted coordination server in 

the Microsoft Azure cloud. 

 

The central coordination server takes the role of trusted messaging “broker” for 

the collaboration network. Only key-authenticated messages were allowed to pass 

between researcher and server, and between node and server. The server administrator 

maintains a registry of collaborations, researchers, institutions and institution 

administrators, as well as unique encryption keys for each role. For this proof-of-concept 

run, the server was set up by MAASTRO as an Ubuntu Linux 18.04 virtual instance 

(30GB storage, 4 GB memory) on the Microsoft Azure cloud computing service based 

in Europe. 

 

Descriptive data analysis 

 

Summary statistics were exchanged between centres in order to explore cohort 

differences prior to modelling. Categorical variables were tested using a chi-squared 

test, and numerical variables were tested using a one-way ANOVA test. All tests were 

carried out using summary statistics (number of patients, mean and standard deviation 

values) rather than individual patient data. Estimated 3-year survival rates and potential 

follow-up times were calculated by each centre individually using the ‘survival’ package 



in R [22], employing the Kaplan-Meier estimator. Median follow-up time was based on 

the inverse Kaplan Meier estimator [23]. 

 

Distributed Cox algorithm 

 

The Distributed Cox algorithm developed by Lu et al. [2] was adapted to the 

Vantage6 v0.2.4 infrastructure as R scripts (v.3.6.2). The source code has been made 

openly accessible on GitHub (https://github.com/AnanyaCN/d_coxph). Scripts for 

computing model coefficients, median risk score, and leave-one-centre-out model 

validation were packaged as application “containers” (via Docker) that were locally 

executed in each node. 

 

Cox model development and validation 

 

The primary analysis involved the development and validation of a Cox 

proportional hazards model across all centres. The performance of the model was 

initially assessed using Harrell’s concordance index (c-index) [24] on a per-centre basis. 

The global model’s performance was assessed on all data from all three institutions, 

which has been recommended by Steyerberg and Altman and TRIPOD [20,25] since 

small datasets should not be split during the model training phase. A more robust 

estimate for out-of-sample performance was obtained using a closed-loop “leave-one-

centre-out” method [20], where new models were trained using data from two sites and 

then validated on the third site. This was repeated three times to cover the possible 

combinations, thus resulting in different c-indices which provide an estimate of the over-

optimism of the global model. Additionally, the Schoenfeld residuals for each model 

variable were examined on a per centre level for the global model, and were tested for 

association with time, in order to examine whether the proportional hazard assumptions 

were fulfilled [26]. 

 

Visualisation of model performance 

 

We evaluated the performance of the global model for risk stratification on a centre 

level. The individual patient risk score was defined as the overall risk for a patient 

relative to the baseline and was calculated as the exponent of the patient’s linear 

predictor (LP) value (risk=e[LP]). A global median risk score from the global Cox 

regression model was estimated in an iterative procedure, with the median of the 

medians as a starting value. The global median risk score was used as cut-off for 

defining risk categories (high vs low risk), based on individual patient risk scores. Each 

centre subsequently produced a Kaplan-Meier data object independently in R, with their 

local survival curves stratified by risk categories, and then shared these objects. These 

only contained the coordinate points required to plot events and censored patients in a 

figure. 

  



Results 

 

A total of 281 patients were included in the analysis - 80 patients from Leeds, 81 

patients from MAASTRO, and 120 patients from Oslo; see Table 2 for patient 

characteristics. 

 

Table 2. Overview of patient and treatment characteristics categorised by centre. P-values 

represent cohort comparisons using either chi-squared or one-way ANOVA tests. GTV: Gross 

tumour volume. EQD2: Equivalent dose in 2 Gy fractions (ɑ/β=10Gy). IQR: Interquartile range. 

CI: Confidence interval. 

 
Leeds MAASTRO Oslo p-value 

Disease stage     

 
Low risk (T1-3N0) 28 (35%) 33 (41%) 58 (48%) 0.16 

High risk (T4N(any) or T(any)N+) 52 (65%) 48 (59%) 62 (52%) 

Sex     

 
Female 53 (66%) 46 (57%) 88 (73%) 0.05 

Male 27 (34%) 35 (43%) 32 (27%) 

Age at the start of radiotherapy 

(years) 

    

 
Mean  

(sd, range) 

60  

(12, 29-86)  

61  

(11, 28-84) 

62  

(10, 40-89) 

0.44 

Primary tumour GTV (cm3)     

 
Mean  

(sd, range) 

64.8  

(58.7, 2.1-284.9) 

57.5  

(72.4, 0.8-433.0) 

78.1 

(69.4, 4.1-459.4) 

0.09 

Primary tumour dose (EQD2)     

 
Mean  

(sd, range) 

52.8  

(2.7, 49.1-62.6) 

60.2  

(2.7, 59.4-66.2) 

56.3  

(2.0, 54.0-58.1) 

<0.0001 

Potential follow-up time (months)     

 
Median  

(IQR) 

46  

(38-51) 

42  

(32-63) 

49  

(39-61) 

N/A 

Estimated 3-year survival     

 
Survival  

(std error, 95%CI) 

83%  

(4%, 76-92%) 

78%  

(5%, 70-88%) 

93%  

(2%, 89-98%) 

N/A 

Outcome     

 
Alive 66 (83%) 63 (78%) 107 (89%) N/A 

Dead 14 (17%) 18 (22%) 13 (11%) 

 



There were no significant differences in disease stage, age at the start of 

radiotherapy, or primary tumour GTV between the three cohorts. The Oslo cohort had 

a significantly higher proportion of female to male patients, as expected from the 

Norwegian anal cancer epidemiology [27]. EQD2 had the highest variance between 

cohorts, with a difference of 7.4Gy between the highest (MAASTRO) and lowest (Leeds) 

in mean dose. Moreover, all three cohorts had comparable outcomes and follow-up 

times. The 3-year survival estimates of Leeds were comparable to both other centres, 

while the 95% confidence intervals of MAASTRO and Oslo did not overlap. 

The results of the global Cox regression model, trained on all three nodes, are 

summarised in Table 3 in the form of hazard ratio (HR) estimates.  

 

Table 3. Results of the global distributed multivariate Cox regression analysis across all three 

centres. Age, primary tumour GTV and primary tumour dose were treated as continuous 

variables. The HRs represent a change of 10 years in age; 10cm3 in primary tumour GTV; and 

5 Gy in primary tumour dose (EQD2). GTV: Gross tumour volume. EQD2: Equivalent dose in 2 

Gy fractions (ɑ/β=10Gy). CI: Confidence interval 

 Hazard ratio 

(95% CI) 

High risk disease (compared to 

low risk disease) 

2.02 (0.90-4.54) 

Male sex (compared to female 

sex) 

3.06 (1.54-6.11) 

Age at the start of RT 1.33 (0.98-1.82) 

Primary tumour GTV 1.05 (1.02-1.09) 

Primary tumour dose (EQD2) 0.83 (0.48-1.43) 

 

The results of the global model suggest that higher risk disease, older age at the 

start of radiotherapy, male sex, lower radiotherapy dose, and a greater volume primary 

tumour (GTV) are associated with worse overall survival. The global model’s 

performance was assessed on each node, yielding a c-index of 0.72 for Leeds, 0.74 for 

MAASTRO, and 0.70 for Oslo. The c-indices from all three nodes are similar, suggesting 

that the model performs consistently well across centres.  

In addition, the c-indices from the leave-one-centre-out validation runs (Table 4) 

suggest that the model performance remains stable when model training is carried out 

using data from only two centres and validated on a third, completely independent 

dataset. Moreover, the effects of factors are similar across centres, as all three runs 

produced similar hazard ratios for all variables. The only exception is prescription dose, 

where one model showed somewhat discordant effects. Notably, the effect of the 

primary tumour GTV is most consistent across the three validation runs. The overall 

results of the global model as well as the leave-one-centre-out validation runs were not 

considerably impacted when including T3N0 tumours in the high risk group (Appendix 



A). The Schoenfeld test results convey that the proportional hazard assumptions were 

fulfilled for all variables in all three centres (Appendix B). 

 

Table 4. Results from the three leave-one-centre-out validation runs. Each column represents 

one run, consisting of model training (and associated hazard ratios, HR) on two nodes and 

validation on the third, independent node. Factor effects are presented in terms of hazard ratios 

with 95% confidence intervals; HR (95% CI). The HRs represent a change of 10 years in age; 

10cm3 in primary tumour GTV; and 5 Gy in primary tumour dose (EQD2). The resulting c-index 

from each validation run is also reported. GTV: Gross tumour volume. EQD2: Equivalent dose 

in 2 Gy fractions (ɑ/β=10Gy). 

Training nodes MAASTRO 

Oslo 

Leeds 

Oslo 

Leeds 

MAASTRO 

Validation node Leeds MAASTRO Oslo 

High risk disease (compared 

to low risk disease) 

2.52 (0.93-6.78) 1.96 (0.68-5.67) 1.85 (0.71-4.86) 

Male sex (compared to 

female sex) 

3.59 (1.55-8.33) 3.83 (1.57-9.37) 2.12 (0.92-4.90) 

Age at the start of RT 1.10 (0.74-1.64) 1.47 (0.99-2.17) 1.48 (1.05-2.10) 

Primary tumour GTV 1.04 (1.00-1.08) 1.08 (1.03-1.13) 1.07 (1.03-1.11) 

Primary tumour dose (EQD2) 0.97 (0.46-2.04) 0.35 (0.14-0.87) 0.97 (0.59-1.59) 

Validation c-index 0.70 0.73 0.68 

 

Risk scores were calculated using the global model. A global median risk score of 

0.98 was used as the cut-off to define risk categories. Patients with individual risk scores 

lower than 0.98 were assigned in the low risk category, whereas patients with risk scores 

greater than 0.98 were assigned in the high risk category. The low risk category 

consisted of 141 patients (Leeds: 41, MAASTRO: 40, Oslo: 60); the high risk category 

included 140 patients (Leeds: 39, MAASTRO: 41, Oslo: 60). The Kaplan-Meier curves 

(Figure 2) convey that there is a good separation in overall survival between the low 

and high risk categories for two of the centres. For the third centre, the separation is 

small compared to the other centres.  

 

 

 
 

 



Figure 2. Kaplan-Meier overall survival curves for each centre’s cohort, stratified into low and 

high risk categories. The curves were constructed using the global model, which was trained on 

data from all three centres. The HR of the high risk category relative to the low risk category is 

4.39 [95% CI = 1.22-15.73] for Leeds, 4.02 [1.32-12.23] for MAASTRO and 1.73 [0.56-5.31] for 

Oslo. 

 

 
Discussion 

 

This proof-of-concept study demonstrates the feasibility of privacy preserving 

distributed learning for anal cancer. We trained and validated a Cox proportional 

hazards regression model [28] in a distributed fashion, using patient data from three 

European institutions, with clinical and treatment-related factors, and demonstrated 

robust model performance. Our approach is unique compared to previously published 

studies employing distributed learning, since we developed and applied a Cox 

proportional hazards regression model with a time-to-event outcome for a rare cancer. 



In contrast, other studies have explored binary outcomes using support-vector 

machines [6] or logistic regression [7]. In addition, the distributed learning architecture 

employed in our study is public, open-source and uses Docker containers for enhanced 

security.  

Our analysis involved data for 281 patients treated with modern conformal 

radiotherapy techniques, including radiotherapy-specific data (GTV volume and 

prescription dose). This makes for one of the largest available cohorts of anal cancer 

patients treated with modern radiotherapy, and the only such study with robust multi-

centre validation of outcome predictors. Shakir et al [29] reported outcome data from 

385 patients treated with IMRT in five UK centres, with median follow-up of 24 months. 

de Meric de Bellefon et al [30] recently published long-term outcomes, including late 

toxicity data, for 193 patients treated with IMRT in a single French centre. No other 

studies have reported on cohorts of this size, and none with multi-national data. Our 

study could only be realised using the distributed learning methodology, which averted 

any need for data sharing agreements and data protection reviews.  

We found, as expected, worse outcomes for patients with more advanced disease. 

This, and worse survival for males, mirrors previous results in the literature, including 

long-term data from RTOG 98-11 [31] and data from a large, prospective Nordic 

database [32]. Uniquely, by utilising data from 3D planned radiotherapy, we were able 

to include a volumetric measure of primary tumour size (GTV volume); with an increased 

risk observed for larger tumours even in multivariate analysis taking staging into 

account. Tumour size appears to be the most stable factor across all model runs. The 

relatively weak predictive power of radiation dose was expected as overall survival, and 

not tumour control, was used as endpoint. Still, the observed effect size was equivalent 

to that reported for local control in the study by Johnsson et al [14].  

Our analysis was limited to data available in routine clinical records for two of the 

participating centres, and as such potential predictors for outcome were restricted. We 

selected up front the three clinical factors which we expected to have the largest impact 

on survival (stage, age, sex), in addition to two radiotherapy-related factors (GTV 

volume, dose). This process necessarily required some prioritisation, and other factors 

could equally well have been included such as HPV status, chemotherapy prescription, 

anatomical site (anal canal versus anal margin), and performance status. We did not 

examine non-linear effects of age, dose or GTV volume, nor interactions between 

factors; all of which might be of interest in a more definitive study. Other limitations 

include variation in staging and GTV definition between centres, as one would expect 

from a non-prospective multi-centre analysis. 

Importantly, the current study was designed to test the feasibility of distributed 

learning in a rare cancer, with the prospect of accessing combined patient cohorts 

rivalling the largest reported in the literature. It was not designed as a quality 

improvement exercise, and as such did not attempt to compare outcomes between 

centres for specific tumour stages or other patient subgroups. Neither did we set out to 

produce a definitive model to guide treatment or to test novel predictors for outcome. In 

its current state, this model is not ready to be used for individual patient predictions. In 

addition to the inherent limitations related to the medium-size data set, a global baseline 



survival curve cannot be provided, which prevents individual patient survival risk 

estimates. This is a deficiency in the current implementation of Vantage6, which will be 

addressed in future versions. We examined the use of our global model for risk 

stratification on an individual centre level, and found good results for two centres. The 

inability of the model to properly stratify patients in the third centre (Figure 2) may 

possibly be caused by the high overall survival in that data subset. This emphasises 

that more centres, with more diverse data, will be needed to develop definitive models. 

For optimisation and individualisation of anal cancer radiotherapy, models for 

locoregional tumour control and late toxicity are needed. For this, more complex 

radiotherapy data, such as dose volume histogram metrics for both tumour and normal 

tissue and detailed toxicity and recurrence data are required. Studies also suggest a 

role for imaging biomarkers for outcome prediction [33–35]. We plan to extend our 

distributed learning analysis to include both, in a larger network of centres. 

     We note further that distributed learning per se is not unique and is not perfect 

when the number of patients per centre is low. We used containerised applications, 

which provide an isolated execution space to the software and are easily shareable. 

Containerisation technologies also make it difficult for external parties to tamper with 

the software. This makes the model algorithms re-usable and agnostic to the specifics 

of each node installation. We have shown that this implementation works with a diverse 

collection of hardware and operating systems.   

In conclusion, we have demonstrated the utility of privacy preserving distributed 

learning for analysing multi-national cohorts of patients with rare cancers. We aim to 

expand the network with more institutions, and also the complexity of our outcome 

prediction models. 
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Appendices 

 

Appendix A 

 

When including T3N0 tumours in the high risk group, 2 patients changed category in the 

Leeds cohort, 3 in the MAASTRO cohort and 12 in the Oslo cohort. Table A1 presents 

the results of the global model with this alternative grouping for disease stage. The 

validation c-indices derived from the global model are 0.74 for Leeds, 0.73 for 

MAASTRO, and 0.71 for Oslo. The results from the leave-one-centre-out validation runs 

using the alternative grouping for disease stage are shown in Table A2. 

 

Table A1. Results of the global distributed multivariate Cox regression analysis across all three 

centres, carried out with the alternative grouping for disease stage, for which T3N0 tumours 

were assigned to the “high risk” group. Age, primary tumour GTV and primary tumour dose were 

treated as continuous variables. The HRs represent a change of 10 years in age; 10cm3 in 

primary tumour GTV; and 5 Gy in primary tumour dose (EQD2). GTV: Gross tumour volume. 

EQD2: Equivalent dose in 2 Gy fractions (ɑ/β=10Gy). CI: Confidence interval 

 Hazard ratio 

(95% CI) 

High risk disease (compared to 

low risk disease) 

1.46 (0.62-3.45) 

Male sex (compared to female 

sex) 

2.40 (1.26-4.59) 

Age at the start of RT 1.30 (0.95-1.78) 

Primary tumour GTV 1.06 (1.02-1.09) 

Primary tumour dose (EQD2) 0.87 (0.54-1.41) 

 

 

Table A2. Results from the three leave-one-centre-out validation runs, carried out with the 

alternative grouping for disease stage, for which T3N0 tumours were assigned to the “high risk” 

group. Each column represents one run, consisting of model training on two nodes and 

validation on the third, independent node. Factor effects are presented in terms of hazard ratios 

with 95% confidence intervals; HR (95% CI). The HRs represent a change of 10 years in age; 

10cm3 in primary tumour GTV; and 5 Gy in primary tumour dose (EQD2). The resulting c-index 

from each validation run is also reported. GTV: Gross tumour volume. EQD2: Equivalent dose 

in 2 Gy fractions (ɑ/β=10Gy). 

Training nodes MAASTRO 

Oslo 

Leeds 

Oslo 

Leeds 

MAASTRO 

Validation node Leeds MAASTRO Oslo 



High risk disease (compared 

to low risk disease) 

1.58 (0.53-4.70) 1.89 (0.62-5.70) 1.85 (0.71-4.86) 

Male sex (compared to 

female sex) 

3.02 (1.32-6.87) 2.70 (1.19-6.16) 2.12 (0.92-4.90) 

Age at the start of RT 1.06 (0.71-1.58) 1.46 (0.98-2.17) 1.48 (1.05-2.10) 

Primary tumour GTV 1.05 (1.00-1.09) 1.07 (1.02-1.12) 1.07 (1.03-1.11) 

Primary tumour dose (EQD2) 0.98 (0.47-2.06) 0.45 (0.22-0.94) 0.97 (0.59-1.59) 

Validation c-index 0.69 0.73 0.67 

 

 

 

Appendix B 

 

Table B1. Schoenfeld test results for all variables included in our model, categorised by centre. 

Variable 
Schoenfeld test p-value 

Leeds MAASTRO Oslo 

Disease stage 0.74 0.62 0.22 

Sex 0.10 0.38 0.14 

Age at the start of RT 0.11 0.98 0.99 

Primary tumour GTV 0.22 0.20 0.38 

Primary tumour dose (EQD2) 0.76 0.45 0.77 

 


