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Treatment effects vary across different patients, and estimation of this variability

is essential for clinical decision-making. We aimed to develop a model estimat-

ing the benefit of alternative treatment options for individual patients, extending

a risk modeling approach in a network meta-analysis framework. We propose

a two-stage prediction model for heterogeneous treatment effects by combin-

ing prognosis research and network meta-analysis methods where individual

patient data are available. In the first stage, a prognostic model to predict the

baseline risk of the outcome. In the second stage, we use the baseline risk score

from the first stage as a single prognostic factor and effect modifier in a network

meta-regression model. We apply the approach to a network meta-analysis of

three randomized clinical trials comparing the relapses in Natalizumab, Glati-

ramer Acetate, and Dimethyl Fumarate, including 3590 patients diagnosed with

relapsing-remitting multiple sclerosis. We find that the baseline risk score mod-

ifies the relative and absolute treatment effects. Several patient characteristics,

such as age and disability status, impact the baseline risk of relapse, which in

turn moderates the benefit expected for each of the treatments. For high-risk

patients, the treatment that minimizes the risk of relapse in 2 years is Natal-

izumab, whereas Dimethyl Fumarate might be a better option for low-risk

patients. Our approach can be easily extended to all outcomes of interest and

has the potential to inform a personalized treatment approach.

KEYWORD S

heterogeneous treatment effects, multiple sclerosis, network meta-analysis, prognostic model, risk

model

1 INTRODUCTION

Personalized predictions are important for clinical decision-making. The question “Which treatment is best?” can have

two very different meanings: “Which treatment is best on average?” or “Which treatment is best for a specific patient?”

Patients often experience different outcomes under the same treatment. One patient may benefit more from a treatment

from which another patient may benefit less. Thus, it is essential to identify the patient characteristics that influence

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited.
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treatment effects to choose a given patient’s best option. Prediction models aim to identify and estimate the impact of

patient, intervention and setting characteristics on future health outcomes.

Effect modification and risk modeling approaches estimating heterogeneous treatment effects (HTE) are gaining

ground in meta-analysis.1-3 Effect modification predicts individualized treatment effects via a model that incorporates a

term for treatment assignment and treatment by covariate interaction terms.1,2,4 However, selecting effect modifiers in

a meta-analysis context is challenging for many reasons. These include low power and overfitting, misleading estimates

because of unreliable, exaggerated, and highly influential interaction terms and the risk of discovering false subgroup

effects because of weak prior knowledge.1,5-7 In addition, guidance is missing about the model selection techniques and

shrinkage methods in meta-regression models optimal to examine effect modification. Alternatively, modelers can take

advantage of the fact that patients’ baseline risk is often a determinant of HTE.1,7-9 A risk modeling approach predicts the

risk for patients based on their baseline characteristics. It then uses this risk to predict HTE at the absolute scale, typically

within a randomized clinical trial (RCT).1,2,7,10-13 In this sense, risk modeling deals better with dimensionality, low power

and limited prior knowledge than an effect modification approach. However, its use constrains the model’s flexibility, as

all prognostic factors also act as effect modifiers via a single coefficient.2

The baseline risk expresses the probability of experiencing the outcome of interest in the study. Models that link the

baseline risk to patient characteristics have been referred to as prognostic or risk models. These models can be integrated

with the riskmodeling approach. The first step is to develop amultivariable prognosticmodel that predicts the probability

of the studied outcome blinded to the treatment - this can be done using observational or RCT data. We will term this

baseline risk from now on, and a transformation of this risk will be termed baseline risk score. Several establishedmethods

exist for developing a prognostic model.14-17 In the second step, relative treatment effects within RCTs can be estimated

as a function of the baseline risk score using a prediction model.18 This methodology allows for heterogeneity in baseline

risk, in the relative treatment effects and consequently in the absolute treatment effects. The risk modeling approach has

recently gained ground for personalized predictions for a given treatment.1,11

Multiple sclerosis is an autoimmune disease of the central nervous system with several subtypes. The most com-

mon subtype is relapsing-remitting multiple sclerosis (RRMS).19 Patients with RRMS present with intense symptoms

(relapses) followed by periods without symptoms (remission).20 Several treatments are available, but patient responses

are heterogeneous, and each treatment has a different safety profile.21

The evidence on drugs for RRMS has been summarized using network meta-analysis.22,23 These networks typically

synthesize published aggregated data, and their ability to explore how patient characteristics influence treatment effects

(relative or absolute) across different patients is limited.24 More efficient analyses use individual patient data (IPD),

considered the gold standard in evidence synthesis.24 IPD are necessary for estimating HTE and making personalized

predictions of expected outcomes.24,25

This article aims to define a methodological framework that allows personalized predictions for the most likely

outcome under several treatment options. To achieve this, we adapt the risk modeling approach for the context of

meta-analysis, extending it to a network meta-analysis framework. We combine prognostic modeling ideas to estimate

the baseline risk score and include this score in an IPD network meta-regression (NMR). We apply this method to a set

of placebo-controlled trials of three drugs in patients with RRMS. We also examine how different prognostic models to

estimate the baseline risk score influence the predictive model’s results and the estimated absolute and relative treat-

ment effects.15,26 We present results primarily for the absolute treatment effects. These will vary across patient groups,

even if heterogeneity is present only in the baseline risk but not in the relative treatment effects. We describe the general

framework applicable to any type of data and network, along with the detailed methods for our application to drugs for

RRMS.

2 METHODS

In this section, we present a general description of the two-stage model, where we first obtain the baseline risk score and

then estimate outcomes’ probabilities as a function of the score. The baseline risk score is determined using established

methods for the predictors’ selection (eg, prespecified, stepwise, and penalizedmethods), for the estimation and shrinkage

of the coefficients (eg, uniform, elastic net, and penalizedmaximum likelihood estimationmethod), and for its validation

and presentation.15,26,27 In the second stage, we used an IPD NMRmodel with the baseline risk score, developed in stage

1, as prognostic factor and effectmodifier of the outcome. Our approach assumes that the set of selected variables captures
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both prognosis and effect modification adequately. We describe the approach for a dichotomous outcome of interest,

although continuous outcomes can also be modeled with minor modifications.

Along with the general description of the framework, we describe an application of our methodology, which predicts

relapses in 2 years for individuals diagnosed with RRMS. In section 2.1, we describe the data we used, and in section 2.2,

we present the notation used in our statistical models. In sections 2.3 and 2.4, we present the first and second stages and

the methods implemented in the example. Finally, we present in section 2.5 the software and the functions used. In our

application, we chose to implement the first stage in a frequentist framework to take advantage of the shrinkage options

readily available in software and the second stage in a Bayesian framework.

2.1 Data description

We analyzed IPD from three phase III RCTs: AFFIRM,28 DEFINE,29 and CONFIRM30 on patients diagnosed with

RRMS. Altogether, the trials included 3590 patients randomized to placebo, Natalizumab, Dimethyl Fumarate, and Glati-

ramer Acetate. The outcome of interest was relapse or not relapse in 2 years. Table 1 presents the aggregated-level

data of the trial arms as well as some baseline characteristics. We also had access to IPD from 1083 patients with

RRMS, randomized to placebo arms included in nine other clinical trials. The latter data were provided by the

Clinical Path Institute (https://c-path.org/) and are also described in Table 1. We excluded variables with more

than 50% missing values. We used complete case analysis for the remaining variables, assuming that any missing-

ness does not depend on the risk of relapse. We think this is reasonable as all variables are measured at base-

line, and the outcome is observed in a 2-year’s time window. Between correlated variables (correlation coefficient

larger than 70%), we retained those that were biologically plausibly associated with the outcome based on the

literature, their distribution and the amount of missing values. Finally, we transformed some of the continuous

variables to approximate the normal distribution and merged categories with very low frequencies in categorical

variables.

2.2 Notation

Let Y ij denote the dichotomous outcome for individual i where i= 1, 2, … , nj in the j study out of ns trials. PFijk is the

k prognostic factor and np is the total number of prognostic factors. An individual can develop the outcome (Y ij = 1) or

TABLE 1 Baseline characteristics of relapsing-remitting multiple sclerosis patients enrolled in the trials

Study Treatment

Number of

randomized

patients

Number of

patients with

relapse in 2 years Age Sex

Baseline

EDSS

Number of

relapses in

previous year

Mean

(SD)

Female

N (%)

Male

N (%)

Mean

(SD)

Median

(min, max)

AFFIRM 939 359 (38.2%) 36.0 (8.3) 657 (70.0) 282 (30.0) 2.3 (1.2) 1 (0, 12)

Natalizumab 627 183 (29.2%)

Placebo 312 176 (56.4%)

CONFIRM 1417 451 (31.8%) 37.3 (9.3) 993 (70.1) 424 (29.9) 2.6 (1.2) 1 (0, 8)

Dimethyl Fumarate 703 185 (26.3%)

Glatiramer Acetate 351 117 (33.3%)

Placebo 363 149 (41.0%)

DEFINE 1234 394 (31.9%) 38.5 (9.0) 908 (73.6) 326 (26.4) 2.4 (1.2) 1 (0, 6)

Dimethyl Fumarate 826 212 (25.7%)

Placebo 408 182 (44.6%)

Placebo arms

dataset

Placebo 1083 801 (74.0%) 41.19 (10.3) 752 (69.4) 331 (30.6) NA NA

Abbreviations: EDSS, expanded disability status scale; NA, not available.
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not (Y ij = 0) according to their risk at baseline, which is a function of the prognostic factors, and we denote it with Rij.

Assume we have a set of treatments each denoted by t ∈  where t = 1, 2, … , T. The probability pijt is the probability

of the outcome for the i individual in j study under treatment t and depends on the treatment, baseline risk score and the

interaction between the risk score and the treatment.

2.3 Stage 1: Developing a baseline risk score model

We developed risk models for dichotomous outcomes using two different methods. The first model was selected

via the LASSO (least absolute shrinkage and selection operator) method. The second used a prespecified risk

model.26 Observational or RCT data may be used for this purpose. For the application, only placebo-controlled

RCTs were available. Following the PATH recommendation,31 when developing a baseline risk score using

RCTs, not only the placebo arms but the entire trial population blinded to the treatment should be used.7,31,32

Using only placebo arms only decreases the effective sample size. It may also lead to differential model

fit on trial arms, biasing treatment effect estimates across risk strata, and exaggerating HTE.1,7,31,33 It can

make completely ineffective treatments appear to be beneficial in high-risk patients and harmful in low-risk

patients.2

The logistic regression model is

Yij ∼ Bernoulli(Rij)

logit(Rij) = b0j +

np∑
j=1

bkj × PFijk. (1)

The regression coefficients and intercept can be independent (each b0j is given a prior distribution), exchangeable

(b0j ∼ N(𝛽0, 𝜎
2
B0
), bkj ∼ N(𝛽k, 𝜎

2
Bk
)) or common (b0j = 𝛽0, bkj = 𝛽k) across studies. Formodel selection, methods that include

some form of penalization are preferred to stepwise selection.14,15,26 The latter include LASSO. However, including a

set of predictors informed by prior knowledge (either in the form of expert opinion or previously identified variables in

prognostic studies) has conceptual and computational advantages.26,27,34 The estimated effects of the selected covariates

also need some form of penalization to avoid extreme predictions.14,15 In the illustration of our empirical example, we

discuss several possibilities.

In our empirical example, we developed a baseline risk model for relapse in 2 years. We first examined if the avail-

able sample size was enough for the development of a prognostic model.35 We calculated the events per variable (EPV),

accounting for categorical variables and nonlinear continuous variables.35 We also used Riley et al’s method to calculate

the required minimum sample size for a logistic model.36 We set Nagelkerke’s R2 = 0.15 (Cox-Snell’s adjusted R2 = 0.11)

and the desired shrinkage equal to 0.9.

We then fitted two main prognostic models. In the first, we included predictors with nonzero coefficients

in the LASSO.37 We used the LASSO method both for the variable selection and for estimating the coeffi-

cients. We used 10-fold cross-validation to find the optimal penalty parameter that maximizes the area under

the curve. The penalty parameter we chose is the one within one SE of the minimum parameter, as previously

recommended.15

The second prognostic model included previously identified prognostic factors. Pellegrini et al analyzed the annu-

alized relapse rate in the DEFINE (training dataset) and CONFIRM (validation dataset) trials,38 both of them included

in our dataset as described in section 2.1. They used different modeling approaches, including a fully additive

model, ridge regression, LASSO, and elastic net regression. They selected the additive model, including 14 prog-

nostic factors based on its discriminative ability. We estimated the coefficients in each of these prognostic factors

in our dataset (section 2.1), using penalized maximum likelihood estimation shrinkage method.15,39 The penalty’s

optimal value was chosen as the one that maximizes a modified Akaike’s information criterion.15 Both models

use common effects for the intercept and the regression coefficients (b0j = 𝛽0, bkj = 𝛽k). This decision was taken

because all three trials were designed by the same company using a similar protocol, as described in section 2.1,

and any differences in the included populations shall be captured by including the baseline risk in the NMR

model.
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Finally, validation is essential for evaluating the performance of a prognostic model.16 As external

data were not available, we performed internal validation only. We estimated the c-statistic and the cal-

ibration slope of the developed risk models to assess the discriminative performance and calibration.

To account for optimism, which is particularly important when comparing various models, we used the

bootstrap method.15 We produced 500 bootstraps samples and reran the model selection process and esti-

mation in each sample. Then, we assessed the performance of each bootstrap-based model in the original

sample.40,41

2.4 Stage 2: IPD NMRmodel

We used the baseline risk logit as a covariate in an IPD NMRmodel in the second stage.42 Each study j has an arbitrarily

chosen baseline treatment hj ∈  and then each individual i is randomised to any treatment t ∈  included in study j.

The meta-regression equation in study j with a baseline treatment hj will be:

Yij ∼ Bernoulli(pijt)

logit(pijt) =

⎧
⎪⎨⎪⎩

uj + g0j × (logit(Rij) − logit(Rij)
j
) if t = hj

uj + djhjt + g0j × (logit(Rij) − logit(Rij)
j
) + gjhjt × (logit(Rij) − logit(Rij)

j
), if t ≠ hj

, (2)

where logit(Rij)
j
is the average of logit-risk in all individuals in study j anduj is the log-odds for the reference treatment arm

when the logit-risk is equal to logit(Rij)
j
. The nuisance parameters uj are then considered to be independent. The relative

treatments effects are the log-odds ratios (ORs) djhjtand can be random (djhjt ∼ N(Dhjt, 𝜎
2
D
)) or common (djhjt = Dhjt) across

studies. Then, assuming consistency, we set the constraint Dhjt = 𝛿t − 𝛿hj and 𝛿ref = 0 where 𝛿t is the summary estimate

for log-ORs for treatment t vs the overall reference treatment (denoted as ref). Parameter g0j is the coefficient of the risk

score (as a prognostic factor) and should be independent across studies (so that each g0j is given a prior distribution) to

avoid compromising randomization. In case of model nonconvergence or studies following the same protocol (as in our

example), exchangeable (g0j ∼ N(𝛾0, 𝜎
2
𝛾0
), or common (g0j = 𝛾0) coefficients can be used.43,44 Similarly, gjhjt refers to the

treatment effect modification of the risk score, for treatment t vs study’s baseline treatment hj, and can be random (gjhjt ∼

N(Ghjt, 𝜎
2
G
)) or common (gjhjt = Ghjt). Similarly to the relative treatment effects, the regression coefficients Ghjt between

two active treatments are parametrized using basic parameters 𝛾 t (of each active treatment vs control), where Ghjt =

𝛾t − 𝛾hj and 𝛾 ref = 0. Finally, exp(𝛾 t) is the ratio of two ORs of treatment t vs the reference: the OR of a group of people

with baseline score x over the OR in a group of people with baseline risk score x− 1.

Assume an overall reference treatment (like placebo or the current standard treatment) for which predictions are less

important. Then, consider a patient at the mean (logit) baseline population risk, Rwho is under the reference treatment.

This logit-probability of the outcome is denoted with, say 𝛼. To make predictions for a new patient with predicted risk
̃logit(Ri) and in treatment t, we use the equation:

logit(pi) = a + 𝛿t + 𝛾0 × ( ̃logit(Ri) − logit(R)) + 𝛾t × ( ̃logit(Ri) − logit(R)), (3)

Estimation of a and logit(R) depends on the context within which we plan to make predictions: one can use registry

data, observational studies or RCT data. For example, logit(R) can be estimated as the mean of logit(Rij) across all indi-

viduals in the (randomized or observational) studies. Similarly, a can be estimated from the synthesis of all untreated or

placebo arms.

In our empirical example, we used an IPD NMR model for comparing three active treatments and placebo in RRMS

patients, using the predicted risk obtained from the first stage (LASSO and prespecified model), logit(Ri). We assume

that study-specific relative treatment effects do not have any residual heterogeneity beyond what is already captured by

differences in baseline risk. Consequently, we employ a common effect IPD NMR model, both in the relative treatment

effects djbjt and for the treatment effect modification of the risk score. Note that the between studies variance could not be

estimated with only three studies (djhjt = Dhjt = 𝛿t − 𝛿hj , 𝛿ref = 0, gjhjt = Ghjt = 𝛾t − 𝛾hj , 𝛾 ref = 0). We also assumed common

coefficients for the risk score (g0j = 𝛾0), as all three studies are very similar in terms of design characteristics.
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To estimate the logit-probability (𝛼) of the outcome of a patient in placebo who has a baseline risk score equal to the

average risk logit(R) we synthesised external IPD placebo-arm data.

2.5 Implementation and software

All our analyses were done in R,45 using R 3.6.2 version and in JAGS46 (called through R). We make

the code available in a GitHub library: https://github.com/htx-r/Reproduce-results-from-papers/tree/master/

ATwoStagePredictionModelMultipleSclerosis.

To develop the baseline risk model (2.3), we used the pmsampsize command to estimate if the available sample size

was enough for the developedmodel. The LASSOmodel was developed usingcv.glmnet.We first fitted the prespecified

model using the lrm command and used the pentrace command for the penalized maximum likelihood estimation.

For the bootstrap internal validation, we used self-programmed R-routines.

The IPD NMR model (2.4) was fitted in a Bayesian framework, and we used programming routines in the R2Jags

package.47 We set a normal distribution (N(0, 1000)) as prior distributions for all of the model parameters. We simu-

lated two chains of 10 000 samples, discarded the first 1000 samples and thinned for every 10 samples. This was deemed

appropriate based on autocorrelation plots and the visualization of the chain convergence.

3 RESULTS

3.1 Stage 1: Developing the baseline risk score

A total of 57 candidate prognostic factors were available. After exclusion of variables with missing data and highly

correlated data, we ended up with 31 candidate prognostic factors (Figures A1 and A2).

For the LASSO model, we used 2000 RRMS patients with complete data, 742 of whom relapsed in 2 years. The full

model had 45 degrees of freedom, and the EPV was 16.5. The recommended sample size for a newly developed model

is 3456 patients, which is more than the available sample size. For the prespecified model, which does not involve the

selection of variables, the small number of degrees of freedom (14) led to a large EPV of 53 and a recommendedminimum

sample size of 1076, which is well below the available sample size.

Table 2 shows the two models, their coefficients and their performance with internal validation. Both models have

almost the same discriminative ability, but the prespecified model has a much better calibration slope.

Bothmodels predict almost the samemean risk for patients in our data (about 37%), as shown inFigure 1. The variation

in the estimated baseline risk score is much higher in the prespecified model, using the predictors of Pellegrini et al38

Figure 1 also indicates that the baseline risk could be a prognostic factor for relapse, as the baseline risk score is higher

for patients who relapsed than for patients who did not, using both models. However, the overlap is considerable, as also

shown by the c-statistics in Table 2.

3.2 Stage 2: Estimating HTE in an IPD NMRmodel

Table 3 shows the estimated parameters from the NMRmodel using the two different scored developed from the LASSO

model and prespecified model. Both models indicate the baseline risk as an important prognostic factor for relapsing at

2 years, as shown by the large values for 𝛾0. The estimates of log ORs for each treatment vs placebo (𝛿t) are very similar

with both models. However, they provide slightly different summary estimates for the coefficients of effect modification,

that is, 𝛾DF, 𝛾GA, 𝛾N . Overall, none of the coefficients 𝛾DF, 𝛾GA, 𝛾N is large.

Figure 2 shows the estimated predicted probabilities to relapse within 2 years depending on the estimated base-

line risk, via LASSO and prespecified risk models, under the four available treatment options. Figure A3 presents

the same results on the OR scale. Both models give almost the same results for the treatment-effects estimation:

Glatiramer Acetate seems to have the same performance as Dimethyl Fumarate in the observed range of baseline

risk; placebo results in the highest risk to relapse. Natalizumab is a drug initially considered less safe than the

other two active options and associated with increased mortality.48,49 Table 4 shows the estimated predicted prob-

abilities and the ORs of relapsing under all three available active treatments, using both models separately, for
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TABLE 2 Estimated LASSO (least absolute shrinkage and selection operator) shrunk coefficients and coefficients from the

prespecified model together with penalized maximum likelihood estimation

Variables LASSOmodel coefficients Prespecified model coefficients (SE)

C-score 0.60 0.62

Calibration slope 1.54 1.05

Intercept −0.4424 −0.8656 (0.866)

Age −0.0013 −0.0181 (0.005)

Sex (male vs female) – −0.1379 (0.092)

Baseline weight −0.0002 –

Baseline EDSS 0.0963 0.1683 (0.047)

Years since onset of symptoms – 0.0587 (0.063)

Ethnicity (white vs other) – −0.0142 (0.117)

No. of relapses 1 year prior to study 0.2971 0.5963 (0.170)

Months since prestudy relapse – −0.0126 (0.009)

Prior MS treatment group (yes vs no) 0.0241 0.1901 (0.085)

Region (India vs Eastern Europe) 0.0000 –

Region (North America vs Eastern Europe) 0.0000 –

Region (Rest of world vs Eastern Europe) 0.0000 –

Region (Western Europe vs Eastern Europe) 0.2374 –

Timed 25-Foot Walk – −0.1718 (0.158)

9-Hole Peg Test – 0.3011 (0.208)

PASAT-3 – 0.0029 (0.004)

VFT 2.5% – −0.0010 (0.004)

Baseline Gadolinium volume 0.0001 –

Baseline SF-36 PCS −0.0120 −0.0195 (0.005)

Baseline SF-36 MCS – 0.036 (0.004)

Baseline actual distance walked (>500 vs ≤500) −0.0746 –

Note: The discrimination (C-score) and the calibration slopes are also shown.

Abbreviations: EDSS, expanded disability status scale; MS, multiple sclerosis; PASAT, paced auditory serial addition test; SE, standard error; SF-36 MCS,

short form-36 mental component summary; SF-36 PCS, short form-36 physical component summary; VFT, visual function test.

F IGURE 1 The distribution of

the baseline risk for LASSO model, A

and prespecified model, B for patients

that did not relapse in 2 years and for

patients that did relapse in 2 years. The

dotted lines indicate group means and

the solid line the overall mean risk.

LASSO, least absolute shrinkage and

selection operator [Colour figure can

be viewed at wileyonlinelibrary.com]
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Estimated parameters from IPD LASSOmodel Prespecified model

NMRmodel Mean (95% Cr. interval) Mean (95% Cr. interval)

γ0 2.30 (1.78, 2.8) 1.26 (0.95, 1.58)

𝛿DF −0.92 (−1.20, −0.64) −0.89 (−1.18, −0.60)

𝛿GA −0.72 (−1.15, −0.28) −0.71 (−1.15, −0.26)

𝛿N −1.24 (−1.55, −0.93) −1.22 (−1.53, −0.93)

𝛾DF 0.90 (−0.20, 1.98) 0.25 (−0.35, 0.87)

𝛾GA 0.64 (−1.02, 2.39) 0.23 (−0.71, 1.3)

𝛾N −0.02 (−1.16, 1.07) −0.26 (−1.01, 0.43)

Note: eγ0, OR of relapse in 2 years for one unit increase in logit-risk in untreated patients (placebo); e𝛿DF ,

OR of relapse under Dimethyl Fumarate vs placebo at the study mean risk; e𝛿GA , OR of relapse under

Glatiramer Acetate vs placebo at the study mean risk; e𝛿N , OR of relapse under Natalizumab vs placebo at

the study mean risk; e𝛾DF ∶ OR of relapse under Dimethyl Fumarate vs placebo for one unit of increase in

the logit risk; e𝛾GA , OR of relapse under Glatiramer Acetate vs placebo for one unit of increase in the logit

risk; e𝛾N , OR of relapse under Natalizumab vs placebo for one unit of increase in the logit risk.

Abbreviations: DF, Dimethyl Fumarate; GA, Glatiramer Acetate; IPD, individual patient data;

N, Natalizumab; LASSO, least absolute shrinkage and selection operator; NMR, network meta-regression.

TABLE 3 Estimated parameters from

the network meta-regression model using

the two different scores developed from

the LASSO model and prespecified model

F IGURE 2 Predicted probability to relapse in 2 years as a function of the baseline risk estimated with LASSO, A or prespecified model,

B. The x-axis shows the baseline risk score of relapsing in 2 years. Between the two dashed vertical lines are the baseline risk values observed

in our data. LASSO, least absolute shrinkage and selection operator [Colour figure can be viewed at wileyonlinelibrary.com]

all patients, for low-risk patients (baseline risk <30%) and for high-risk patients (baseline risk >50%). The bene-

fit of all three treatments depends on the risk group. For high-risk patients, the absolute benefit of Natalizumab

compared with Dimethyl Fumarate is 15% using the prespecified model and 10% for the LASSO model. These cor-

respond into 7 and 10 patients, respectively that need to be treated with Natalizumab to prevent one relapse. For

low-risk patients, the absolute benefit of Dimethyl Fumarate compared with Natalizumab is 3% for the prespecified

model and 2% for the LASSO model. The absolute differences between the treatments for all risk-groups are smaller

using LASSO compared with the (penalized) prespecified model. The predictions for the three drugs and placebo for

RRMS have been implemented in an interactive R-Shiny application available at https://cinema.ispm.unibe.ch/shinies/

koms/.
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TABLE 4 Predicted % probabilities and odds ratios (ORs, relative benefits) of relapse in 2 years, using baseline risk

scores developed with the LASSO (least absolute shrinkage and selection operator) and prespecified models

Benefits Model Treatment All patients

Baseline risk

<30%

Low-risk patients

Baseline risk

>50%

High-risk patients

Absolute

benefits

(%)

LASSO Dimethyl Fumarate 62% 18% 93%

Glatiramer Acetate 64% 23% 93%

Natalizumab 54% 20% 82%

Prespecified Dimethyl Fumarate 53% 20% 84%

Glatiramer Aceta 56% 23% 86%

te Natalizumab 46% 23% 69%

Relative

benefits

(OR)

LASSO Dimethyl Fumarate vs placebo 0.52 0.25 0.81

Glatiramer Acetate vs placebo 0.57 0.35 0.81

Natalizumab vs placebo 0.29 0.29 0.28

Prespecified Dimethyl Fumarate vs placebo 0.42 0.31 0.53

Glatiramer Acetate vs placebo 0.50 0.38 0.63

Natalizumab vs placebo 0.31 0.40 0.23

Note: Results are shown for all patients, for low-risk patients (baseline risk <30%) and for high-risk patients (baseline risk >50%) in the

observed range of baseline risk. The cut-offs have been chosen arbitrarily for illustrative purposes.

4 DISCUSSION

We developed a prediction model for HTE that combines risk modeling and network meta-analytical methods to make

personalized predictions for an outcome of interest. As the treatment options for each condition are numerous and patient

characteristics often play an important role inmodifying treatment effects, this approach could contribute to personalized

treatment decisions.We illustrated ourmethod by comparing three active treatments and placebo in patients with RRMS.

Only a few characteristics are required, and doctors and patients can enter these into our online tool (https://cinema.

ispm.unibe.ch/shinies/koms/) to estimate the risk of relapse in 2 years under four treatment options.

The application to RRMS shows the approach’s potential but is not ready for use in clinical practice. Decision-making

tools need external validation with new patients. They need to provide evidence about all available treatment options for

patient-relevant outcomes (eg, long-term disability status50) and also consider safety and costs. Unfortunately, long-term

results are not available from RCTs, and observational data would need to be integrated for this purpose. We did not

have access to such data, which would have also allowed us to validate the model externally. Because of the limited data

availability (only three RCTs), we used common-effects IPD-NMR to facilitate model convergence. The common-effects

assumption can be relaxed if more studies are available. Making personalized predictions using a random-effects model

will increase the uncertainty, and the interpretation of results in the presence of large heterogeneity will be challenging.

Another extension of ourmodel could accommodate aggregate-level data to increase the relevant information and ensure

that the findings are representative. This is particularly importantwhen the analyst is interested in comparing all available

treatments and making corresponding predictions.42

We aimed to examine whether and by how much the risk modeling results are influenced by the method used to

develop the baseline risk model (ie, stage 1). A prespecified model used variables previously identified as important prog-

nostic factors.38 In addition, we used a variable selection approach via LASSO. The two models in stage 1 differ in terms

of included variables, however the choice of the model had only a small impact on the results of stage 2. Whether this is

a general feature of the approach or this happen to be true in this particular dataset should be subject of further research.

More applications and a simulation study would be needed to pinpoint the sensitivity of the final results to the choice of

the model in the first stage. The models’ discrimination was small but sufficient for our aim. Indeed, risk models with a

low predictive ability (0.6-0.65) are often adequate to detect risk-based HTE.11 The available sample size was sufficient for
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the prespecified model (as it did not involve variable selection), whereas it was not for the LASSO model. The prespeci-

fied model’s discriminative ability was slightly better, and the calibration slope much better than the LASSO model. This

finding corroborates previous guidance in the literature that suggests that use of prior evidence in model development is

advantageous.2,26

The approach has several limitations. Our framework requires at least one IPD dataset for each included interven-

tion to estimate all model parameters. IPD data are not readily available: several papers have documented the difficulties

encountered in the process.51-53When condensing all patient information into the risk score, we assume that the selected

variables adequately capture both prognosis and effect modification. This assumption is difficult to evaluate unless the

outcome is well studied, and many prognostic studies exist on the topic, which is rarely the case. Besides, it is possible

that other study-level characteristics, such as the risk of bias and the year of randomization, may also impact the treat-

ment effects. If the number of studies permits, such variables can be added to the meta-regression model. In addition to

these limitations, the common challenges encountered in prognostic modeling apply. Some prognostic factors may not

be available for some individuals or even in whole studies. In this case, multiple imputation methods may be used to

improve precision.54 Finally, numerous candidate prognostic factors might render the available sample size insufficient

and model selection challenging.15

Further work is needed to extending themodel and enhance its flexibility.We developed the baseline risk (stage 1) in a

frequentist framework to take advantage of the software’s shrinkage options. However, this might render the results from

stage two to be overprecise because the approach does not account for the uncertainty in the baseline risk prediction. An

alternative approach would be to carry out a simultaneous estimation of both stages within a Bayesian paradigm. This

would allow uncertainty in the estimation during the first stage to be propagated through the model and reflected in the

second stage results. Finally, more work is needed to validate both stages of the model. We validated the risk score (stage

1) only internally, using the bootstrap validation method, but an internal-external validation could also be an option. The

predictive accuracy of our two-step framework has not been validated at all. In future work, its performance needs to be

validated not only by discrimination and calibration but also metrics related to the absolute benefit.55

The proposed approach offers many methodological advantages and opportunities for further development. Model

selection approaches and methods to shrink coefficients to avoid extreme predictions are not well established in the

meta-analysis context.1,2 Our proposal shifts the variable selection problem in the logistic regression model for which

penalization methods both in Bayesian and frequentist framework are well established. NMR models can also include

aggregated data from published studies, so our approach can be extended accordingly.42 Observational data can also be

integrated to develop the risk score, calibrate or update the risk score model, and externally validate the model. Such

data may also inform the baseline effects, or the relative treatment effects and their interactions with the score using

appropriate bias-adjusted modelling.56,57 Methods to include single-arm trials and expert opinion are also available and

could be incorporated to extend the model further.58-61

Overall, our framework is flexible enough and combines useful features of predictivemodeling and evidence synthesis.

It can be applied to as many treatments as required and can be easily extended to include various outcomes. It can inform

patients and their doctors, manufacturers, and HTA agencies about the most appropriate treatment for each patient or

patients’ subgroup and hence contribute to personalized medicine.
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APPENDIX A

F IGURE A1 Flow-chart for the

number of candidate prognostic factors

F IGURE A2 Venn diagram for candidate characteristics to include in the prognostic model (stage 1). Light blue indicates all 31

characteristics after deleting the correlated variables and those with a big amount of missing values (>50%). Light green indicates the

variables selected by LASSO and purple indicates the variables included in prespecified model. EDSS, expanded disability status scale; FSS,

functional system score; LASSO, least absolute shrinkage and selection operator; SF-36 MCS, short form-36 mental component summary;

SF-36 PCS, short form-36 physical component summary; VAS, visual analog scale; VFT, visual function test [Colour figure can be viewed at

wileyonlinelibrary.com]
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F IGURE A3 ORs of relapse in 2 years as a function of the baseline risk estimated with LASSO, A or prespecified model, B. The x-axis

shows the baseline risk score of relapsing in 2 years. Between the two dashed vertical lines are the baseline risk values observed in our data.

LASSO, least absolute shrinkage and selection operator; ORs, odds ratios [Colour figure can be viewed at wileyonlinelibrary.com]


