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Abstract

Air pollution is an increasing concern to urban residents. In response, res-
idents are beginning to adapt their travel behaviour and to consider local
air quality when choosing a home. We study implications of such behaviour
for the morphology of cities and population exposure to traffic-induced air
pollution. To do so, we propose a spatially explicit and integrated residen-
tial location and transport mode choice model for a city with traffic-induced
air pollution. Intra-urban spatial patterns of population densities, transport
mode choices, and resulting population exposure are analysed for urban set-
tings of varying levels of health concern and air pollution information avail-
able to residents. Numerical analysis of the feedback between residential
location choice and transport mode choice, and between residents’ choices
and the subsequent potential impact on their own health, suggests that in-
creased availability of information on spatially variable traffic-induced health
concerns shifts population towards suburban areas with availability of public
transport. Thus, health benefits result from reduced population densities
close to urban centres in this context. To mitigate population exposure, our
work highlights the need for spatially explicit information on peoples’ air
pollution concerns and, on this basis, spatially differentiated integrated land
use and transport measures.

Keywords: localised air pollution; urban structure; transport mode choice;
residential location choice; traffic-induced air pollution
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1. Introduction

1.1. Urbanisation, air quality and health

The phenomenon of urbanisation is observed around the world in both de-
veloping and developed countries. The motivation of migration or relocation
of residence is to seek a better life, whether from rural areas to the city
for a better income, or from the city central areas to suburbs for a better
lifestyle. In most cases, it might bring wealth and/or improvement of quality
of life. Nonetheless, changing residential location might incur costs that are
initially less obvious. Over recent decades, it has become increasingly clear
that urbanisation has a negative impact on the environment, which can have
detrimental effects on population health. In particular, traffic congestion in
many cities has become a major source of air pollution. The deterioration of
air quality and its localised effect, affects not only residents of that vicinity
but also those passing through on their journeys to work. The long term
effects include premature mortality. Tackling the health impact of this phe-
nomenon and managing its negative impact has become one of the biggest
challenges we are facing in this century.
Extensive research effort has been devoted to improve and promote health
and wellbeing of cities in recent years. In order to address the pertinent
issues, one must look into the cause of the problems. Suboptimal urban and
transport planning has been viewed as a plausible cause of the undesirable
impact on public health (Nieuwenhuijsen, 2020). To a certain extent, this
is not only the consequence of decisions made by the government through
urban and transport planning, but also the choices made by all the city
inhabitants. Their choices of where to live and work is a blueprint for the
urban form of a city, and their residential location choices have most likely
been made together with their transport choices. If we wish to promote
healthier cities, urban and transport planning decisions must be made in
view of such feedback mechanism. Miller (2018) highlights the importance of
modelling this “feedback” effect of transport infrastructure investments on
urban form, which must be considered in the evaluation and decision making
process of policy decisions.
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1.2. Integrated Land-use Transport Modelling

In recognition of the complexity of urban systems, an integrated approach
has been adopted in urban and transport planning, known as Integrated Ur-
ban Models (IUMs), where transport and land-use models are integrated.
This is a classical approach that has been applied and put into practice
for over 50 years, developed based on robust utility/discrete choice theory
(Miller, 2018). As Miller reiterates in his latest review, ‘If the world is to
have any hope of achieving some form of economic, social and environmental
sustainability then we must do a better job of integrating land use and trans-
portation system design in holistic and comprehensive ways.’ Miller (2018)
also identifies some additional key policy questions that could benefit from
an IUM approach, including: (1) air pollution impact; and (2) health impacts
of land-use patterns and travel behaviour.

1.3. Land-use, transport choices, air quality and health impact assessment

Naturally, this integrated approach has extended beyond land-use and trans-
port planning to model the policy impact on air quality and population
health. To model such complex interactions, a fully integrated analysis might
broadly involve four major modelling components:

1. Land-use planning: Location choice; urban form

2. Transport planning: Transport choice; traffic modelling

3. Air quality analysis: Vehicle emissions; pollutant dispersion & concen-
trations

4. Health impact analysis: Pollutant exposure; health impact assessment

Depending on the purpose of a study, different combinations of selected com-
ponents might be deployed. The integration between different components
can be very complex in order to represent the complex interactive relation-
ships between different systems. There are generally two kinds of models,
namely, decision science and physical science models. Decision science mod-
els include: (1) Location choices made by businesses and residents modelled
in land-use planning; and (2) Transport choices made by residents modelled
in transport planning. As a result of their choices, the physical science of
how vehicle emissions disperse into the atmosphere and impact on popula-
tion health are modelled in air quality and health impact analyses. Pollutant
exposure is a common theme in both air quality and health impact analy-
ses, with air quality analysis focussing more on the environmental impact in
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terms of concentrations while health impact analysis focusses more on the
spatial effect of the environment on population health.
Our objective in the present paper is to integrate all of these four major
components, including both decision and physical science models, to support
policy analysis specifically related to air quality and the potential health
impacts of both land-use and transport planning. Our goal is to be able to
model such effects spatially as well as at an individual decision level. While
the physical science components have been well developed, their integration
with the decision science components has either been missing or needing
improvements. What we would like to achieve is to integrate decision and
physical sciences with our proposed model to represent the complexity of
urban systems more realistically. Before we introduce our model, we first
look at how different combinations of components have been integrated in
the literature and identify the knowledge gaps that need to be addressed.

1.4. Linking transport planning & air quality models

The linkage of transport planning models to air quality analysis has the
longest history in the literature and has been well developed both in the-
ory and in practice. Numerous models have been motivated by clear evi-
dence of air pollution caused by traffic congestion resulting from transport
choices; and the need to assess policy analysis of road network scenarios
or schemes such as congestion pricing, speed limits, freight corridors, road
capacity changes, etc. on the environment (e.g. Baldasano et al., 2010;
Boogaard et al., 2012; Briggs et al., 2008; Coria et al., 2015; Mitchell et al.,
2005; Namdeo & Mitchell, 2008; Lee et al., 2009; Tennoy et al., 2019; You
et al., 2010). The linkages between the model components are mainly based
on physical sciences. The transport planning model provides traffic informa-
tion on flow, speed and vehicle types on each roadway, to the vehicle emission
model; pollutant concentrations can then be calculated based on the disper-
sion of vehicle emissions; hence population exposure to the pollutants can be
estimated (Affum et al., 2003; Hatzopoulou & Miller, 2010).

1.5. Linking transport planning, air quality models & health impact assess-

ment

As the awareness of poor air quality is growing, its subsequent effect on health
has raised even stronger concern in society (HEI, 2010; Boogaard et al., 2019).
Empirical evidence from the last two decades has shown that the character-
istics of city, land-use and transport planning are directly linked with air
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quality, pollutant exposure, level of physical activity and their possible com-
bined health impact (e.g. de Nazelle et al., 2011, 2012; Dons et al., 2018,
2019; Oja et al., 2011; Shekarrizfard et al., 2015, 2020; Sider et al., 2013).
Health impact assessment models are vital to facilitate policy analysis that
can support healthier development of cities and our transportation systems.
Promoting active modes of transport, including walking and cycling, and
modal shifts from private vehicles to public transport, have been seen as the
natural strategies to combat both the lack of physical activity and poor air
quality (Nieuwenhuijsen, 2020; Sallis et al., 2016).
To support policy analysis, health impact assessment methods have been de-
veloped to find out what health benefit might be achievable under different
scenarios. For instance, Woodcock et al. (2013) applied an Integrated Trans-
port and Health Impact Modelling Tool (ITHIM), developed from the work
in Woodcock et al. (2009), to quantify the health impacts from transport-
related physical activity as well as changes to air pollution. Scenarios repre-
senting different visions of behavioural change are formulated and the health
impacts are assessed with ITHIM (Woodcock et al., 2013). Models such as
ITHIM focusses on the physical science of translating a given vision such as
certain desirable level of reduction in traffic to its potential impact on health.
Transport choices are not modelled but treated as visions. As pointed out in
Wang & Connors (2018), a key assumption in ITHIM is that the reduction
in road transport trips, as a result of increases in walking and cycling instead
of car use, led to equal proportional reduction in pollutants attributed to
transport. This assumption might not be realistic; it oversimplifies the rela-
tionship between traffic congestion and the resulting air pollution. In another
study, Schepers et al. (2015) assess the potential health impact of investment
in cycling infrastructure in a hypothetical city considering both the influence
of changes in physical activity and pollutant dose. In this case, changes to
mean concentrations are exogenously imposed for the health impact assess-
ment. The effect of travel behavioural change in terms of modal shift from
driving to cycling is not modelled. In general, health impact assessment
models are not linked to travel behavioural models. Wang & Connors (2018)
also emphasised the importance of modelling the localised effect of traffic on
air quality and its subsequent effect on the vicinity for the residents as well
as the pollutant dose during their journeys to work, depending on their mode
choice. Wang & Connors (2018) are the first to model pollutant dose in this
context.
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1.6. Linking urban form, transport planning & air quality models

The impact of urban form on air quality has been well recognised in the
literature (e.g. Borrego et al., 2006; De Ridder et al., 2008a; Marshall et al.,
2005; Martins, 2012; Schindler & Caruso, 2014). The subject of many studies
is to look at what might be a better urban development strategy for a better
environment; urban sprawl and compact development are often the two ma-
jor strategies considered (e.g. Borrego et al., 2006; De Ridder et al., 2008b;
Martins, 2012). For example, De Ridder et al. (2008a,b) considered different
levels of urban sprawl formulated as scenarios of development strategies. The
classical transport planning model known as the four-stage model (Ortuzar &
Willumsen, 2001) is embedded in the model to provide traffic information on
speed, flow and density for the simulations. Residential location choices are
not modelled but treated as a given level of sprawl in different scenarios. In
other words, this assumes structures which are not derived from underlying
urban processes. Only Schindler & Caruso (2014) have modelled the impact
of urban form on air pollution and exposure, where urban form is based on
residential location choices.
Empirical studies have shown that residents are concerned about air pollu-
tion exposure (Gatersleben & Uzzell, 2000) and indeed air quality and traffic
conditions are two influential factors affecting residential location choices
(Guo & Bhat, 2004). This might impact on urban form formation due to
altered residential location choices. Thus, there is a feedback effect between
urban form and pollution. Schindler et al. (2017) are the first to model how
air quality might impact residential location choice in a linear city; Schindler
& Caruso (2018) increased the spatial complexity of urban form to two di-
mensions. However, transport choices are not modelled as commute by car
is assumed to be the only mode of transport (Schindler & Caruso, 2014;
Schindler et al., 2017; Schindler & Caruso, 2018).

1.7. Modelling the co-evolution of residential and transport choices with con-

sideration of air quality and health impact

As Nieuwenhuijsen (2020) illustrated in the health impact assessment frame-
work, we will need both urban design and behavioural change to create path-
ways to healthier cities. To ensure the design of policies will give us pathways
to success, one must understand the co-evolution of land-use and transport as
a result of behavioural change over time. Behavioural change is, to a certain
extent, the pathway to success. With growing concern of poor air quality
and its impact on health, there is a need to investigate how such concern
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might impact on residential location choice and subsequently on urban form,
traffic, air quality and health. Our research questions are:

1. If residents are concerned about the health impact of air quality, how
would this impact on their residential location choice?

2. How would their residential and transport choices impact on their own
health and the health of others?

3. How would the urban form co-evolve with transport choices?

4. How would the air quality and health impacts co-evolve with the urban
form and transport choices?

Question 1 has been addressed by Schindler et al. (2017), while Question
2 has been partially addressed by Wang & Connors (2018). In this paper,
we are addressing Questions 1 and 2 together, and making the first step
for Questions 3 and 4. The key contribution of this paper is, therefore, on
modelling the feedback between choices as well as the interaction of residents’
choices with the environment and their own health.
To model behavioural change, we will need explicit linkages between decision
and physical sciences to model all of the following:

1. the trade-offs faced by residents who have a portfolio of desires and
concerns;

2. the feedback between residential location, transport choices and con-
gestion; and

3. the feedback between the residents’ choices and the subsequent impact
on their own health.

We propose a joint urban-transport equilibrium model to help understand
what the urban form and transport choices might be at one point in time as
a result of the interactions. This is the first step to help understand how the
urban form might co-evolve with transport choices in the future.

2. The model

2.1. An overview of the two-stage game theoretical model

Our model must capture the feedback in the decision making process between
the longer-term residential location choice and day-to-day transport choices.
In order to do so, we propose a two-stage game theoretical approach to model
this process in a bi-modal linear monocentric city (LMC) as in Wang & Con-
nors (2018) depicted in Figure 1, where residents are distributed continuously
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along the city. Two modes of transport, rail and private vehicles, are avail-
able from any point along the city to a common destination, the Central
Business District (CBD), represented by one end of the city. Residents will
walk or cycle to the nearest station if they choose to take the train. Residents
living close to the station, typically within 1km, will walk, while those living
a bit further away (say within 5km) will cycle. There is also the alternative
to walk/cycle directly to the CBD, without using train or car. If they choose
to drive, they will join the highway at the location of their residence.
The first stage of the game represents the longer-term residential location
choice, which can be at any point along the city, while the second stage
represents the day-to-day transport choices, which is the mode choice be-
tween rail and driving. This two-stage game theory based decision process is
depicted in Figure 2.

Figure 1: A schematic design of a linear monocentric city as considered in this work, taken
from Wang & Connors (2018).

Stage-1 Residential location choice. At any time, residents might consider
to move or stay where they are. Their objective is always to maximise the
aggregate utility associated with living at the selected location. In other
words, they will move only if they can find another location with a higher
aggregate utility of living there. The factors affecting this aggregate utility
include: consumption of housing space and composite (non-housing) good,
generalised transport cost for commute, health impact at residence and dur-
ing commute. An urban equilibrium is reached when no one can improve the
utility of their residential location choice by unilaterally moving to another
location given the choices of all other residents.
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Stage-2 Transport mode choice. Wang & Connors (2018) propose a multi-
objective approach to model the transport equilibrium, i.e. a bi-modal three-
objective user equilibrium (TUE) model, based on the simultaneous consid-
eration of three objectives: (1) minimise travel time; (2) maximise travel
time reliability; and (3) minimise monetary cost. When faced with the two
alternatives, car or train, a user will consider the monetary cost alongside
the departure time at which they will need to leave in order to achieve their
desired arrival time reliability. The equilibrium principle behind TUE is that
no user can improve any one of the three objectives without sacrificing the
other two objectives, given the choices of all other users. At each location,
the equilibrium modal split can be all different and it will follow this equi-
librium condition. There are three possible outcomes: (1) all residents from
this location will use rail; (2) all residents from this location will use car;
and (3) some residents will use rail and some will use car. For details of
the mathematical formulation of this TUE model, please refer to Wang &
Connors (2018).

Residential location & transport mode choices and pollutant dose analysis. In
order to perform transport mode choice and air quality analysis, we need to
start with the distribution of origins and destinations. In this case, we have
only one destination (i.e. work in the CBD) and the distribution of origins
depends on residential location choices. Given the distribution of residents’
locations, Wang & Connors (2018)’s TUE model is effectively a spatial model
of all transport choices made by each resident along the corridor. It enables
not only the analysis of localised effect of their transport choices at each loca-
tion, but also the effect on each resident’s pollutant dose during their journey
to work. Once the transport choices of each resident at different locations
are determined, vehicle emissions along the city can be predicted. Followed
by applying a pollutant dispersion model, pollutant concentration level at
each residential location can be calculated. Based on the concentration dis-
tribution, each resident’s mode choice, the travel time on each leg of their
journey to work, and the pollutant dose during commute can be calculated.
The estimates of the pollutant dose at the residence and the pollutant dose
during commute can now become the proxy variables measuring the poten-
tial health impact of each resident’s location choice as well as their transport
choices. Together with the residential location choices made throughout the
city, we can then determine the spatial distribution of both doses as a result
of each resident’s choices. This pollutant dose analysis process is illustrated
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in Figure 2.

Joint urban-transport equilibrium. When both the urban equilibrium and
transport equilibrium conditions are met, there will be no incentive for any
resident to move to a different location or change their mode choice. In other
words, a joint urban-transport equilibrium is achieved when the two following
conditions are met:

1. Urban equilibrium – No one can improve the utility of their residen-
tial location choice by unilaterally moving to another location given
the location choices of all other residents; and

2. Transport equilibrium – No one can improve any one of the three
criteria: (1) travel time; (2) travel time reliability; or (3) monetary cost
without sacrificing any of the other two criteria by unilaterally changing
their mode choice given the transport choices of all other residents.

2.2. The modelling components

From our literature review, it appears that air quality is one of the influen-
tial factors affecting residential location choice while transport policies such
as congestion pricing, speed limits, etc are policy instruments to induce be-
havioural change that affects air quality and its subsequent impact on health.
Therefore, we postulate that pollutant doses at residence and during com-
mute are factors affecting residential location choice. The assumption is that
doses at residence and during commute are proxy variables representing the
perceived impact on health of the combined lifestyle choice of where to live
and how to travel; how they travel is determined based on the three most
important objectives identified in the transport planning literature, namely,
travel time, travel time reliability and monetary cost. Pollutant doses are
determined based on the combined residential location and transport choices
throughout the city. Details of the model components, the input and output
of each component, and the linkages between them are explained as follows
and visualised in Figure 3.

2.2.1. Residential location choice model

Population distribution is endogenous and modelled based on residential lo-
cation choices of identical households. Households derive utility from con-
suming housing space and a composite good, but disutility from exposure at
their residential location and during the commuting journey:

U = κZ(r)1−αH(r)αER(r)
−βEC(r)

−γ (1)
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H(r) is the consumption of housing space as a function of the distance to
the centre r, with population density at r normalised to 1/H(r). Z(r) is
the consumption of the composite good (non-housing). Every household is
exposed to a level ER(r) at the residential location and to a pollutant dose
level EC(r) during the commuting journey. Households value housing space
by α but dislike being exposed to localised pollution at the residential local
by β and during the commuting journey by γ. κ ≡ (1− α)α−1α−α is a sim-
plification constant used for convenience. Hence, Equation (1) expresses the
trade-off households make in their location choice, between housing space,
goods consumption and potential health impacts from traffic-induced air pol-
lution.
Households have income Y available to spend on location-dependent housing
rent R(r), the composite good Z(r) and mode-choice dependent commuting
costs T (r) to the CBD.

Y ≥ H(r)R(r) + Z(r) + T (r) (2)

The average exposure during the commuting journey EC for a household
residing at location r is a function of the local mode share and mode-specific
pollutant doses

EC(r) = (pC(r)DC(r) + pT (r)DT (r)) /(pC(r) + pT (r)) (3)

where pC(r) and pT (r) are the shares of households commuting by car and by
train (plus walking or biking) respectively at location r, with pC(r)+pT (r) =
1 as given by the travel mode choice model.
DC(r) or DT (r) is the dose of pollution concentration taken up depending
on the transport mode. The dose along a journey to work is expressed by
the pollution concentration being breathed in during the journey.

The pollutant dose [in µg] is a function of pollutant concentration c at a
location r, duration d of exposure, and breathing rate b depending on the
type of activity i. Activities are commuting by car, by train, by bike/walking,
and being at home.

Di(r) = c(r) di bi (4)
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The pollutant dose taken up at the residential location can be expressed as

ER(r) = DR(r) = c(r) dR bR (5)

where DR(r) is the pollutant dose at the residential location given by (4) for
residential activity, that is the local pollution concentration c at the residen-
tial location, breathing rate while being at home bR and time spent at the
residential location dR (considering mode-choice dependent travel time).

2.2.2. Transport mode choice model

Transport mode choice is based on the bi-modal TUE model proposed in
Wang & Connors (2018); the key concepts are briefly presented here. Trav-
ellers trade-off three objectives: (1) minimise travel time; (2) maximise travel
time reliability; and (3) minimise monetary cost. For walking, cycling and
train, the travel time is distance-based and has (fixed) reliability of 95%. Car
travel suffers from congestion, having a travel time distribution whose mean
and variance increase with the volume of car traffic.
Each user has their own desired level of reliability (i.e. the probability of
arriving at the destination on time), which is uniformly distributed between
50% and 95% at every location throughout the LMC. Desired arrival time
reliability infers a necessary departure time, and hence the associated travel
time budget (TTB) can be computed (Lo et al., 2006). Individuals trade-off
TTB and monetary cost according to the travel time budget surplus (TBS)
concept (Wang & Ehrgott, 2018). For any given price (monetary cost), an
individual will have a maximum TTB that they would be willing to spend;
this is captured by the indifference curve for this individual, along which the
alternatives are equally attractive.
TBS is the maximum TTB minus the required TTB for the desired level of
reliability. Individuals choose the option with the highest TBS, so that equi-
librium is reached when no individual can improve their TBS by switching
mode. This is called the travel time budget surplus maximisation three-
objective user equilibrium (TBSmaxTUE) condition.
The equilibrium modal split is specific to each location. Figure 4 shows
rail with fixed 95% reliability and positive TBS. The necessary TTB for car
depends on the individual’s desired reliability, with i% giving the same TBS
as rail. Individuals with desired reliability < i will choose car, and the rest
will choose rail.
Given the demand distribution throughout the city, TBSmaxTUE provides
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the transport equilibrium solution for the system, i.e. the modal split between
rail and car at each location.

Car

Rail

Car
modal
share

(P_car)

Rail
modal
share
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Equalised TBS at equilibrium
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Distribution of desired reliability
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n
e

ta
ry
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Travel Time Budget

Indifference curve
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Figure 4: Both car and rail have positive modal shares (taken from Wang & Connors
(2018)).

2.2.3. Pollutant dose analysis

Based on the spatial distribution of the residents and modal split at each
location from transport equilibrium analysis, we can derive the link flow,
average speed and travel time on all modes (including not only car and rail,
but also the access modes, walking and cycling). We can then proceed to a
three-stage analysis as illustrated in Figure 2 adopted from Wang & Connors
(2018):

1. Vehicle Emission Prediction – modelling emission rates for the road
based on traffic flow and average vehicle speed (Rilett & Benedek,
1994).

2. Pollutant Dispersion – modelling air pollutant concentrations from
road emission rates and surface meteorology (Dirks et al., 2002, 2003).
This determines the local pollutant concentration at each residential
location.

3. Pollutant Dose Prediction – modelling pollutant dose from air pollution
concentrations and the travel time along each link on the commute
including the active (walking/cycling) component, following Dirks et al.
(2012) as explained in Equation (3) and (5).
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Thus, we will be able to estimate the individual pollutant dose, by aggre-
gating the pollutant dose on different modes (including access/active modes,
i.e. walking and cycling) during the journey to work.

2.3. Joint urban-transport equilibrium solution algorithm

As explained and visualised in Figure 2, there is a feedback loop between
the residential location choice model, the transport mode choice model and
the pollutant dose analysis. Given the transport equilibrium as explained
in Section 2.2.2, the joint urban-transport equilibrium can be obtained as
follows.
In urban equilibrium all households get the same utility u assuming migra-
tion is free and households are identical. The boundary of the city rf and the
total population N are assumed to be fixed in the closed city. Households
choose a residential location where they can maximise their utility expressed
in Equation (1), subject to the average pollutant dose during the commuting
journey of all transport modes according to the local modal split, the pol-
lutant dose at the residential location, the rent and housing profile, and the
budget constraint.
We assume that the dose, physical activity and transport monetary cost for a
residential location is an aggregate function of these performance parameters
by mode, weighted by the current modal split. This means that an individual
considers the possible performances of the two modes and would assess the
aggregate performance according to the current modal split at this location.
This reflects the possibility of individuals to change their mode choice on a
low temporal scale, while a general mode split at a location can be observed
on a larger temporal scale.
The urban equilibrium is defined by the functions Z(r), H(r), R(r), pol-
lutant dose levels ER(r) and EC(r) given by the transport model, and the
land allocation condition R(r) = max{Ψ(r), RA}. RA is the constant agricul-
tural rent beyond the city boundary rf and Ψ(r) is the land bid rent given by

Ψ(r) = max
Y − T (r)− Z(r)

H(r)
s.t.N =

∫ rf

0

n(r)dr (6)

In the following, we drop r for conciseness where it causes no confusion.

Consumption. Households’ demand functions for housing H and the com-
posite good Z at each residential location are derived from the maximisation
problem (6)
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Z = (1− α)(Y − T ) (7)

H = αu∗1/αE
β/α
R E

γ/α
C (Y − T )1−1/α (8)

where u∗ = u (Z,H,ER, EC) is the endogenous utility reached by all house-
holds at all locations in equilibrium. Equation (8) shows that households
compensate higher pollutant doses and higher transport costs with increased
housing consumption or lower rent payments. A stronger aversion to expo-
sure, ceteris paribus, also increases housing consumption, highlighting the
trade-off households make when deciding where to live.

Population density. Since we assume that all residential space at a location
is occupied and normalised to 1, we have n = 1/H, and thus the population
density n can be expressed as

n = α−1u∗−1/αE
−β/α
R E

−γ/α
C (Y − T )1/α−1 (9)

Population density is thus a function of residential preferences (α, β, γ), pol-
lutant doses (ER,EC), income (Y ), transport costs (T ), and the endogenous
utility level (u∗). Given the closed city framework, the population constraint
N =

∫ rf
0

n(r)dr must hold.

Land rent. Under Cobb-Douglas preferences housing expenses are equal to
the share of income spent on housing minus commuting costs: RH = α (Y −
T ). With Equation (8) we can derive the land rent as a function of income,
transport costs, pollutant doses at the residential location and during the
commuting journey, residential preferences, and the endogenous utility level:

R = u∗
−1/α

(Y − T )1/α E
−β/α
R E

−γ/α
C (10)

Land rent at the city boundary R(rf ) is then

R(rf ) = RA = u∗
−1/α

(Y − T (rf ))
1/α ER(rf )

−β/αEC(rf )
−γ/α (11)

Equilibrium utility. Since the fringe distance rf is assumed to be fixed and
the rent at the urban boundary equals the agricultural rent such that R(rf ) =
RA, we can use Equation (11) to derive the endogenous utility level u∗ which
all households have to obtain no matter their location or mode choice
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u∗ = (Y − T (rf )) R
−α
A ER(rf )

−βEC(rf )
−γ (12)

This property shows as expected that utility is positively related to income,
but negatively to transport costs, agricultural rent, and pollutant doses at
home and during the commute. With the pollution concentration from traffic
at the city boundary being the lowest within the city (only background con-
centration or non-traffic related pollution), ER(rf ) can be assumed constant.
Thus, we can show that traffic-induced residential exposure does not change
the population at the city boundary. T (rf ) and EC(rf ), however, depend on
the distribution of households and modal splits in the city. Thus, these two
model components alter the population density at the city boundary.

3. Numerical Analysis

3.1. Process, scenarios and parameters

We analyse the described continuous model numerically, by splitting the
interval r ∈ [0, L] representing the city space into X discrete elements so
that dr = L/X.
The numerical analysis is initialised with a uniform population distribution
of n(r) = N/X. For each location, the transport mode choice is calculated as
explained in Section 2.2.2, returning the modal split by location. Based on
the modal split, vehicle emissions are calculated and their dispersion obtained
as pollutant concentrations per location. Depending on the average modal
split per location, the average dose per commute to the CBD is calculated
for each location. Also, doses at residential locations are estimated. Given
this information about the potential dose per residential location - during the
commute and/or at the residency - bid rents and utilities per location are
obtained as explained in Section 2.3. A household residing at a location with
the lowest utility in the current iteration moves to a location with the highest
utility. In case several locations meet these criteria, households and locations
are drawn randomly from this subset. Based on the updated population
distribution, mode choices are updated and the entire process is repeated
until convergence, i.e. differences in utilities across locations are smaller than
a given threshold value. For further details on the mathematical formulation
of the mode choice model, the reader is referred to Wang & Connors (2018).
The model allows to consider any primary traffic-induced pollutant. We
model carbon monoxide (CO), a major non-reactive primary pollutant that
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Parameter Description Default value
N Number of households 9000
si Locations of railway stations 0;5;10;20
rf Location of the city boundary; 1
L city length (km) 25
X Number of discrete elements between [0,L] 50
RA Agricultural rent (£/month) 1
Y Household income (£/month) 2000
DW , DB Maximum walking, cycling distance (km) 0.5;10
fC ,
fT ,fW ,fB

Speed (km/min) by car (free flow), train, walk, bike 0.75;1.2;15;6

WT Waiting time for train (min) 15
ET Egress time (min) from station 5
mT , mC Cost (£/km by train (ticket), by car (fuel) 0.15;0.12
τ Willing to pay (£/km) to get free flow speed 1
cC Road capacity (veh/hr)
TCP , TBP Parking time (min) for car, bicycle 3;4.5
PC Cost to park car(£) 3
c, k Burr Distribution shape parameters 10;0.7
bR,bW ,bB Breathing rate (cu.m/min) resting, walking, cycling 0.012;0.024;0.036

Table 1: Model parameters

results from incomplete oxidation of carbon in combustion and impacts hu-
man health.
We numerically analyse four scenarios with fixed populationN : (i) the bench-
mark case, where residents do not express any concern related to air pollution
(neither exposure at the residential location nor during the commute); (ii)
residents are concerned about residential exposure; (iii) residents consider
both residential and commuting exposure in their decision-making process;
and (iv) travellers only consider their exposure during the commute to work.
The numerical results of these scenarios are depicted in Figures 5 to 11.
Table 1 lists the model parameters and Table 2 shows the parameter values
that change across scenarios. Default model parameters were chosen based
on those used for the model with car travel only in Schindler et al. (2017)
and the transport choice model in Wang & Connors (2018), which themselves
selected model parameters based on literature where applicable and to suit
the chosen set of comparative scenarios.

Description B R RC C
α Preference for housing space 0.2 [B] 0.2 0.2 0.2
β Aversion to exposure at the residential loca-

tion
0 0.02;0.10

[R1]
0.10 [RC1] 0 [C1]

γ Aversion to exposure during the commute 0 0 [R2] 0.02;0.10
[RC2]

0.02;0.10
[C2]

Table 2: Households’ residential preferences per scenario; ’B’: benchmark, no exposure
concerns, ’R’: only concerns about exposure at the residential location, ’RC’: concerns
about both residential and commuting exposure, ’C’: only concerns about commuting
exposure.
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B R1 R2 RC1 RC2 C1 C2
Travel patterns
Car commuters 4182.555 4214.123 4351.749 4393.877 4507.987 4223.091 4392.645
Train commuters 4817.445 4785.877 4648.251 4606.123 4492.013 4776.909 4607.355
Commuters ≥ 10min active 471.953 472.047 501.549 517.637 524.562 484.795 531.516
Commuters active travel only 2950.733 2777.199 2264.758 2192.501 1916.217 2864.233 2540.266
Average speed car [km/min] 1.228 1.219 1.174 1.168 1.149 1.223 1.199
Ratio average time train/car 2.253 2.231 2.129 2.109 2.049 2.236 2.154
CO doses [µg]
CO concentration 18.067 19.303 24.255 24.643 25.926 18.397 20.141
Max. CO dose (residential) 0.052 0.053 0.056 0.057 0.060 0.053 0.057
Max. CO dose (commute) 0.001 0.001 0.002 0.002 0.002 0.001 0.002
Max. CO concentration 0.005 0.005 0.005 0.005 0.005 0.005 0.005
CO dose active travel only 50.184 48.072 42.218 41.713 38.585 49.746 48.186
Population exposure [µg]
residential 0.890 0.950 1.189 1.208 1.269 0.906 0.991
commute 0.025 0.027 0.034 0.036 0.040 0.026 0.032
Utility 2.226 2.403 3.219 3.717 6.546 2.586 4.634

Table 3: Aggregate results for the seven scenarios; the scenario with the maximum value
per row is marked in bold.

3.2. Results

In the following, we present the results of our numerical analysis, including
aggregate results across scenarios (Table 3) and spatial patterns of the sce-
narios. Note that these results are valid for the specified parameter space, in
particular where households’ preferences for housing space are always higher
than their aversion to localised pollution.1

1This is a reasonable assumption; Schindler et al. (2017) have discussed analytically
boundary conditions for their residential location choice model to yield qualitatively dif-
ferent results. Due to analytical intractability in our integrated location and mode choice
model this is beyond the scope of this paper.
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3.2.1. Population distribution

Figure 5: Population distribution as a function of distance to the CBD depending on
households’ residential preferences (β and γ); train stations are located at distances 0;5;10
and 20 (circled).

Figure 5 shows the population distribution as a function of distance to the
CBD (located at r = 0) for the different scenarios. Without any pollution-
related concerns (benchmark, red dashed line), population density is highest
in locations close to the CBD and the train station located at r = 0, followed
by locations close to other train stations located at r = 5; 10; 20). In general,
population density decreases with distance to the centre. Locations close to
train stations are attractive locations due to travel time, reliability, and travel
costs (see also Wang & Connors (2018)); thus, we find population clusters
around these transport stations.
As households are concerned about being exposed to traffic-induced air pol-
lution at the residential location (β > 0, increased line width), central lo-
cations become less attractive residential locations while locations near the
city boundary attract more households. Households compensate the higher
CO doses in central locations by demanding more housing space in order to
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receive the same utility as elsewhere in the city; thus, compared to the bench-
mark scenario we find lower population densities near the centre since CO
doses are lower near the city boundary than near the centre, and households
therefore accept higher population densities (i.e. each household consumes
less housing space) in suburban locations than in the benchmark case. Thus,
local pollution externalities increase population densities in suburban loca-
tions, and reduce densities close to the CBD.
Factoring a concern about exposure during the commuting trip (γ > 0, darker
lines) into residential choices results in more households living in locations
between the CBD and the train station at r = 5. In the most central lo-
cations, however, population densities are still lower than in the benchmark
scenario since households compensate the commute exposure with increased
housing space. Therefore, we observe that households with both types of
air pollution related concern choose larger housing spaces, albeit in different
locations away from the centre: residential concerns disperse population no-
tably to suburban locations with public transport access; while commuting
concerns concentrate population notably close to, but not in, the CBD.

3.2.2. Travel patterns

The change in population distribution due to air pollution related concerns
(all scenarios but the benchmark) results in more households travelling by
car than train and/or active travel mode (Table 3). In particular fewer
households bike or walk directly to work and more households commute
longer distances. Yet more households travel actively (i.e. walk/bike) for
more than 10 min (see Figures 7;A.6). The average car travel speed decreases
and the ratio between travel time by train compared to car increases relative
to the benchmark scenario.
In terms of transport mode choice, we see that all households living close
to train stations (r = 0; 5; 10; 20) choose to commute by train (and walk-
ing/biking), while households near the city boundary and further away from
train stations commute mostly by car (Figure 6). Most households near the
CBD walk or bike directly to work. This pattern is quite constant across
scenarios, with most changes observed around train stations and the CBD as
the highway becomes more congested. Since fewer households live in central
locations relative to the benchmark scenario in case of high β, we observe
more car travellers commuting from more distant locations relative to the
benchmark. An increase in γ, in contrast, increases the amount of car trav-
ellers mainly in locations some distance away from the CBD (r = 4; 6; 9).
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Figure 6: Car mode share as a function of distance to the CBD depending on households’
residential preferences (β and γ) - changes for all scenarios relative to the benchmark
scenario. Train stations are located at distances 0;5;10 and 20 (circled).

Figure 7 shows the flow of walkers and bikers as a function of distance to
the CBD. Active modes of transport are chosen by households who live close
enough to the CBD to directly walk or bike to work, and by households to
get to the nearest train station. Thus, we see a cluster of active commuters
around train stations and the CBD. It is interesting to note that across
scenarios, we observe a drop in active modes (hence an increase in car use)
in central locations as households are more concerned about exposure to air
pollution, especially about exposure during the commute. In contrast, such
concerns result in increased flows of active commuters around suburban train
stations. This spatial tension between car and active commuters needs to be
considered in policy design to avoid unintentional consequences, as further
discussed in Section 4.
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Figure 7: The flow of biking and walking (active transport modes) as a function of distance
to the CBD depending on households’ residential preferences (β and γ) - changes for all
scenarios relative to the benchmark scenario. Train stations are located at distances 0;5;10
and 20 (circled)

3.2.3. CO doses

Residents are exposed to different CO doses depending on the variations in
CO concentrations across the city, where they live, and the different breathing
rates and journey times dependent on the different transport modes.
Interestingly, on aggregate, the CO concentration increases relative to the
benchmark in all scenarios, with a maximum for RC2 (Table 3). A stronger
aversion lets households compensate CO doses with the consumption of more
housing space and, therefore, shifts more households further away from the
CBD (see Figure 5 and the trade-off in the utility function2 in Equation
(1)), resulting in longer commuting distances and hence increased emissions.
The more congested highway also amplifies CO concentrations in the city.

2Note that the preference for housing space consumption is always higher than the
aversion to pollution in this numerical example (Table 2).
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Since fewer households are biking/walking directly to the CBD (where CO
concentrations are highest), total CO dose for this group is lower.
Figure 8 shows the average dose households are exposed to at residential
locations, as a function of distance to the CBD. Doses decrease with distance
to the CBD, with steeper reductions in locations which are far away from
train stations. This is due to varying commuting times across locations,
depending on commuting mode and distance to the CBD. Since households
move further away from the centre as they are more concerned about being
exposed at their residential locations, travel distances are increased and, in
turn, pollution concentrations and CO doses are increased in locations around
the CBD.
This generally follows the pattern of CO concentrations, which decrease with
distance to the centre. All households are commuting to the CBD, thus emis-
sion concentrations are highest close to the centre. However, since households
who live close to the centre walk or bike to work, CO concentrations almost
stagnate in central locations. Similarly, many households living close to
train stations bike or walk to the stations, and, therefore, do not contribute
to emissions. Hence, there is few variation around the locations of train
stations. When households factor health concerns due to traffic-induced air
pollution into their location choice, we see slightly increased CO concentra-
tions in particular in central locations due to increased travel distances as
more households live in suburban locations.
The total (aggregate) CO concentration varies across scenarios. The bench-
mark scenario yields the lowest total CO concentration (18 µg), while the
scenario with the strongest concern about both exposure during the commute
and at the residential location yields the highest total concentration in the
city (25.9 µg).
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Figure 8: CO doses at residential locations as a function of distance to the CBD depending
on households’ residential preferences (β and γ); train stations are located at distances
0;5;10 and 20 (circled).

Looking at the spatial pattern of CO doses during the commuting trip (Fig-
ure 9), we see that maximum doses are experienced by households living
some distance away from the CBD, and not by households living closest to
the CBD. This is because central households directly walk or bike into the
CBD and, therefore, spend less time commuting; at the same time, however,
they are exposed to highest emission concentrations while having increased
breathing rates due to their active mode of transport. A short commute off-
sets these high concentrations, a longer commute, however, leads to increased
doses; hence the peak at distance r=2.
Lowest doses are found at locations somewhat close to the CBD, but where
households commute by car. These households have a relatively short com-
mute and a low breathing rate, and therefore experience only low doses. Fig-
ure 10 illustrates well the trade-off between active commuting mode (hence
higher breathing rate), commuting time, and emission concentrations as a
function of distance to the CBD. These results highlight how CO doses vary
per residential location and per transport mode, and across scenarios.
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Figure 9: CO doses during the commute as a function of distance to the CBD depending
on households’ residential preferences (β and γ). Train stations are located at distances
0;5;10 and 20 (circled).
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Figure 10: CO doses during the commute, experienced by households living at locations
r km away from the CBD depending on their mode of transport and their residential
preferences β and γ; the grey line depicts CO concentrations for the benchmark scenario
(β = γ = 0) as a function of distance to the CBD. Train stations are located at distances
0;5;10 and 20 (circled).

The benchmark scenario yields the lowest CO doses at a residential location,
with the most pronounced differences found in central locations (Figures 9
and 10) and among active commuters.

3.2.4. Population exposure

Looking at population exposure gives another interesting perspective. Res-
idential population exposure is obtained by multiplying CO doses at a resi-
dential location by the number of households living there (Figure 11a). Com-
muting population exposure is obtained similarly by multiplying the average
CO dose during the commuting journeys of households living at a location
by the number of households (Figure 11b).
On aggregate, total population exposure (both residential and commute) is
highest in RC2, followed by RC1, and lowest in the benchmark scenario.
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We see that households’ health concern in location choice has the most promi-
nent effect in central locations (Figure 11). The benchmark scenario (no
concern) results in highest population exposure in central locations due to
highest population and CO concentrations there. Residential exposure con-
cern leads households to shift towards locations further away from the CBD,
and therefore to avoid locations with highest emission concentrations. In
case of concerns about exposure during the commute, more people choose
locations somewhat close to the CBD, and hence accept higher doses at res-
idential locations while reducing commuting time and, therefore, the time
being exposed. A concern about exposure at home leads more households
to choose suburban locations, resulting in increased travel distances by car,
hence higher emissions and hence higher CO doses in central locations. Fig-
ure 11 illustrates the tension between exposure and emissions, as increased
total CO concentrations can result in reduced population exposure in some
locations due to households avoiding to live in locations with maximum con-
centrations.
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Figure 11: Average CO dose experienced by all residents living at a location r km away
from the CBD depending on households’ residential preferences (β and γ) - relative to the
benchmark scenario; a) dose at a residential location r km from the CBD, b) average dose
during the commute of all households living at location r. Train stations are located at
distances 0;5;10 and 20 (circled).
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4. Discussion

Contributions of an integrated transport and residential location choice model

and a call for integrated policy responses

Developing an integrated transport and residential location choice model
provides a more realistic intra-urban density pattern than a model which
assumes all households commute by car as for instance proposed by Schindler
et al. (2017). We still observe a clear distance effect in that densities generally
drop with distance to the centre (in line with urban economic theory). In
addition, population clusters emerge around train stations and near the city
centre. In comparison to a uniform population distribution (e.g. Wang &
Connors, 2018), such an integrated model can show that the pollutant dose
due to the commuting journey can actually be lowest for households that live
close to the CBD and choose to make the short commuting trip by car.

City-wide emission benefits of active transport at the cost of individuals’

health in central locations

Households which live close enough to the CBD to walk or bike are actu-
ally prone to higher doses due to higher breathing rates in active modes of
transport while being exposed to the highest pollution concentrations in the
city. Thus, although encouraging active transport modes within the city has
great potential to reduce emission concentrations in particular in central city
areas, and thus benefits the wider city population, these households are ac-
tually the subpopulation which experiences highest pollutant doses. Given
that population densities are highest in central locations, this is of great con-
cern and our work shows that if residents are aware of this tension, central
locations will be less populated.
Literature discusses how different commuting modes contribute to and ex-
pose households to different pollution concentrations (e.g. Briggs et al., 2008).
Although in this paper we do not account for differences in pollutant doses
inside or outside vehicles, the model considers the differing breathing rates
depending on the commuting mode. More active modes of transport (biking,
walking) increase doses due to higher breathing rates (e.g. Wang et al., 2018).
In central locations where pollution concentrations are high, this results in el-
evated doses for active travellers. In areas with low pollution concentrations,
however, such as around train stations in suburban locations, an active mode
of transport contributes to lower levels of population exposure. As visible in
Figure 11, there is a steep change in population exposure at the location 3 km
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from the CBD. Encouraging active modes of transport in suburban locations
(more than central locations) can promote population health outcomes.
Households choosing to live near the city boundary in contrast, experience
relatively low doses despite their longer commute. This subpopulation is re-
sponsible for highest contributions to emission concentrations as they pass all
other locations on their commute to work, exclusively travel by car, and cover
the longest distance. Although they experience elevated pollution concentra-
tions themselves while working in the CBD during the day, and therefore,
might consider it in their location choice, fringe locations are still the most at-
tractive locations for them. Discouraging car travel from the city edge would
be beneficial for all urban dwellers. This could be incentivised by offering
public transport at the city boundary (i.e. a train station in this model). In
reality, however, a train station is unlikely to mark a city boundary; instead,
it will encourage further residential development beyond the train station,
with many households deciding to travel all the way to the CBD by car.

The spatiality of air pollution concern matters

Further, we find that concern of exposure to air pollution at the residential
location tends to increase population dispersion to suburban locations, espe-
cially with access to public transport; whereas concern of exposure during the
commute tends to concentrate populations closer to the CBD. The tension
between those spatially differentiated concerns impacts residents’ decisions,
and therefore urban form and transport mode share.
Despite the mentioned differences resulting from the place of exposure con-
cern (i.e. at home versus during the commute), we also find synergies. A
trend is visible towards lower population densities in central locations but
higher densities in locations in fair proximity to the CBD and public trans-
port, independent of the place of origin of health concerns. Thus, urban
policies can be designed with mutual benefits.

Policy responses need to consider spatially varying responsibility of behaviour

changes

With increased information available to city dwellers on (real time) emis-
sion concentrations, often differentiating between areas across the city, it is
important for urban planners and other decision makers to consider the ef-
fect of such information availability on people’s decisions. As visible from
our results, increased awareness about spatially varying pollution concen-
trations can actually increase inequality among subpopulations within an
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urban area. Although in our model all households express the same degree
of concern about traffic-induced air pollution, the households which move
to suburban locations are less prone to negative health outcomes than inner
city dwellers. Yet, suburban households are for a large part responsible for
increased pollution concentrations. This knowledge can be used by decision
makers to design measures which lead households to internalise such spatial
heterogeneity.

Decision-makers beware of unintended consequences

Finally, our results highlight the need for decision-makers to consider unin-
tended consequences of potential remedies: First, increased concern to expo-
sure during the commute ironically tends to increase car use since exposure
to pollution is lowest for car travellers even though they contribute most
to emissions. Second, our analysis shows that air pollution-aware residents
(both at the residential location and during the commute) who attempt to
best manage their residential location and transport mode choices as individ-
uals might actually deteriorate air quality at the city level. Hence, decision
makers are advised to pay close attention to how to communicate with resi-
dents when aiming to raise their awareness regarding air pollution concerns.

5. Conclusion

This paper has presented an integrated residential location and transport
mode choice model in a city with traffic-induced air pollution. We explored
how behavioural changes might impact population exposure to air pollution.
With increasing availability of (real time) information about air pollution
concentrations and often also their spatial variability within urban areas, it
becomes important for urban and transport planners and decision makers
to consider the effect of such information on household behaviour. Adaptive
policy design depending on the level of concern about health outcomes due to
traffic-induced air pollution and underlying spatial heterogeneity of pollution
sources and population exposure is key to respond to this contemporary
urban issue.
With the spatially explicit and integrated urban model, we show that in-
tegrated urban and transport policies are needed to mitigate exposure to
traffic-induced air pollution. Such policies need to consider residents’ choices
towards less populated central areas but increasingly attractive fringe areas.
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We also show that policy responses might need to target different locations
of a city or a combination of locations depending on whether residents are
concerned about exposure at home and/or during the commute. Availability
of such spatially relevant information would be key for designing appropriate
policy responses for a given local context.
Our analysis further reveals the tension between impacts of behaviour changes
on exposure versus emissions (pollution concentration), individual versus city
outcomes, and exposure at home versus during the commute. While a house-
hold who is concerned about exposure during the commute, for instance, de-
cides to commute by car to reduce their own commuting exposure, this might
increase the total pollution concentration in the city, and thus downgrade the
situation for the city as a whole, and potentially even that household at their
residential location. Policy responses therefore require careful understanding
of these tensions to address this trade-off, which likely varies across cities and
local contexts. Low emission zones or electric vehicles might possibly help to
turn this vicious cycle into a virtuous one, with less pollution making active
travel more attractive.
This modelling framework offers the potential to further explore effects of
transport and land use policy on residential and transport mode choice in a
city with traffic-induced air pollution. It also sets the foundation for studying
alternative modes of transport, such as e-bikes, and their effects on both
urban structure and transport mode choice. Recent studies (e.g. Klingen &
Ommeren, 2020) provide indications that increased ambient ozone levels (to
which CO and NOx are precursors) reduce biking speeds. This would be an
interesting extension to the presented model. Further, it would be interesting
to alter the city layout (e.g. train stations, city length) and explore how this
might impact household behaviour and spatial patterns of exposure. An
implementation of the model in a 2D modelling environment would allow for
further discussion on the effect of local (neighbourhood) characteristics of
urban form beyond distance effects.
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Figure A.1: Emission concentration of CO as a function of distance to the CBD; train
stations are located at distances 0;5;10 and 20 (circled)
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Appendix A. Appendix

Figure A.2: Average CO dose experienced by all residents living at a location r km away
from the CBD depending on households’ residential preferences (β and γ); a) dose at
a residential location r km from the CBD, b) average dose during the commute of all
households living at location r.
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Figure A.3: Car mode share as a function of distance to the CBD depending on households’
residential preferences (β and γ).
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Figure A.4: Change in the amount of car travellers relative to the benchmark scenario and
as a function of distance to the CBD depending on households’ residential preferences (β
and γ).
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Figure A.5: Change in the amount of train (incl. active) travellers relative to the bench-
mark scenario and as a function of distance to the CBD depending on households’ resi-
dential preferences (β and γ).

45



Figure A.6: The flow of biking and walking (active transport modes) as a function of
distance to the CBD depending on households’ residential preferences (β and γ).
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