
This is a repository copy of High-order Differentiable Autoencoder for Nonlinear Model
Reduction.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/172996/

Version: Accepted Version

Article:

Shen, S, Yang, Y, Shao, T et al. (4 more authors) (2021) High-order Differentiable
Autoencoder for Nonlinear Model Reduction. ACM Transactions on Graphics, 40 (4). 68.
ISSN 0730-0301

https://doi.org/10.1145/3450626.3459754

© 2021 ACM. This is the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in ACM
Transactions on Graphics, http://doi.org/10.1145/3450626.3459754

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

High-order Differentiable Autoencoder for Nonlinear Model Reduction

SIYUAN SHEN, State Key Lab of CAD&CG, Zhejiang University, China

YANG YIN, Clemson University, USA

TIANJIA SHAO, State Key Lab of CAD&CG, Zhejiang University, China

HE WANG, University of Leeds, United Kingdom

CHENFANFU JIANG, University of Pennsylvania, USA

LEI LAN, Clemson University, USA

KUN ZHOU, State Key Lab of CAD&CG, Zhejiang University, China

Fig. 1. In this paper, we exploit deep autoencoder (DAE) networks to accelerate physics-based simulation. In order to model nonlinear subspace dynamics

accurately, second- and high-order derivatives of the deep decoder net must be efficiently evaluated to match the subspace simulation frame rate. We address

this technical challenge by collectively applying complex-step network perturbations to the deep net. This is the first time a high-order differentiable neural

net is employed in physical simulation problems. Our method can be further strengthened with the domain decomposition method as a nonlinear DAE better

captures local deformation effects. In this example, the puffer ball has 320 elastic strings, and we assign a 𝑛𝑝 = 10 linear subspace and a 𝑛𝑞 = 5 nonlinear

subspace at each string. With the help of substructured deformation, DAE-based nonlinear reduction produces interesting animation effects. We believe this is

a representative example showing case the advantage of data-driven animation using DAE. As the geometries of all the strings are the same, generating local

training poses is more effective.

This paper provides a new avenue for exploiting deep neural networks to

improve physics-based simulation. Specifically, we integrate the classic La-

grangian mechanics with a deep autoencoder to accelerate elastic simulation

of deformable solids. Due to the inertia effect, the dynamic equilibrium

cannot be established without evaluating the second-order derivatives of

the deep autoencoder network. This is beyond the capability of off-the-shelf

automatic differentiation packages and algorithms, which mainly focus on

the gradient evaluation. Solving the nonlinear force equilibrium is even

more challenging if the standard Newton’s method is to be used. This is

because we need to compute a third-order derivative of the network to

obtain the variational Hessian. We attack those difficulties by exploiting

complex-step finite difference, coupled with reverse automatic differenti-

ation. This strategy allows us to enjoy the convenience and accuracy of

complex-step finite difference and in the meantime, to deploy complex-value

perturbations as collectively as possible to save excessive network passes.

Authors’ addresses: Siyuan Shen, State Key Lab of CAD&CG, Zhejiang University, 866
Yuhangtang Rd, Hangzhou, 310058, China, shensiyuan@zju.edu.cn; Yang Yin, Clemson
University, USA, yin5@clemson.edu; Tianjia Shao, State Key Lab of CAD&CG, Zhejiang
University, China, tianjiashao@gmail.com; He Wang, University of Leeds, United
Kingdom, H.E.Wang@leeds.ac.uk; Chenfanfu Jiang, University of Pennsylvania, USA,
cffjiang@seas.upenn.edu; Lei Lan, Clemson University, USA, lanlei.virhum@gmail.com;
Kun Zhou, State Key Lab of CAD&CG, Zhejiang University, China, kunzhou@acm.org.

With a GPU-based implementation, we are able to wield deep autoencoders

(e.g., 10+ layers) with a relatively high-dimension latent space in real-time.

Along this pipeline, we also design a sampling network and a weighting net-

work to enable weight-varying Cubature integration in order to incorporate

nonlinearity in the model reduction. We believe this work will inspire and

benefit future research efforts in nonlinearly reduced physical simulation

problems.

CCS Concepts: · Computing methodologies → Physical simula-

tion; Dimensionality reduction and manifold learning.

Additional Key Words and Phrases:Model reduction, Autoencoder, Dif-

ferentiation, GPU, Deformable model

Reference Format:

Siyuan Shen, Yang Yin, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei Lan,

and Kun Zhou. 2021. High-order Differentiable Autoencoder for Nonlinear

Model Reduction. arXiv (February 2021), 15 pages.

1 INTRODUCTION

Model reduction is a widely-used and highly-effective technique

for accelerating physically-based simulation. It is also sometimes

known as reduced-order simulation or subspace simulation. While

named differently, the core idea is to build a linear subspace with re-

duced degrees-of-freedom (DOFs) so that the physical equations can

be solved with a system of a smaller size. This approach is sensible

ar
X

iv
:2

10
2.

11
02

6v
1

 [
cs

.L
G

]
 1

9
Fe

b
20

21

2 • Shen, S. et al

because many parts of the real physical world evolve smoothly and

continuously along the time and space. Sharp and high-frequency

physical changes are less common and should be treated with dedi-

cated numerical methods. Existing model reduction methods have

been dominantly linear reduction with a constant tangent space.

The expressivity of linear reduction is a known limitation. As many

physical phenomena are intrinsically nonlinear, a linearly reduced

model only covers a small fraction of the dynamics space ś all the

information outside of the subspace is filtered. Thus, one has to

(substantially) increase the dimensionality of the subspace to incor-

porate a desired nonlinear effect even this effect itself may be of low

rank (thinking of a bead travelling on the circle).

One question rises naturally: can we build a nonlinear reduction

framework with a time-varying (as opposed to constant) tangent

space that best fits łlocalž dynamics? The challenges are twofold.

First, the underlying manifold representing the nonlinear dynamics

is often too complex to be expressed in a closed form. Developing

a nonlinear subspace-fullspace transformation, as a counterpart of

modal analysis in linear reduction, is theoretically difficult. Sec-

ond, a nonlinear reduction brings extra computation burdens to

the simulation, largely originating from the need for evaluating the

derivatives of the subspace-fullspace transformation function. The

computational cost goes up quickly with respect to the subspace

size, which in turn neutralizes the original motivation of applying

model reduction.

In this paper, we propose a new nonlinear model reduction frame-

work that is tightly coupled with the classic Lagrangian mechanics.

Although we demonstrate the effectiveness of our method in the

context of elastic simulation, we believe our method could also be

useful in other physics-based simulation problems like fluid [Kim

and Delaney 2013] or cloth animations [Hahn et al. 2014]. Our reduc-

tion mechanism is data-driven with a deep autoencoder (DAE) in the

loop, which obviates the need for a closed-form subspace-fullspace

transformation function. DAE is an unsupervised learning architec-

ture skilled in data compression [Hinton and Salakhutdinov 2006]

and has been proven effective in deformable simulation recently [Ful-

ton et al. 2019]. Along this direction, we augment the DAE network

with the complex-step finite difference (CSFD) method [Martins et al.

2003], enabling its high-order differentiability, so that the neural

net can be computationally integrated with Lagrangian formula-

tion. To achieve this goal, we make several mentionable technical

contributions:

• Efficient high-order differentiable deep autoencoder.

A physically accurate coupling between DAE and elastic dynamics

requires the information of the first- and second-order derivatives

(for Newtonian equations of motion). Existing differentiation tech-

niques such as backpropagation (BP) [Hecht-Nielsen 1992] for neu-

ral networks or automatic differentiation (AD) [Bücker et al. 2006]

for more general computations are optimized for gradient estima-

tion only, and become cumbersome in high-order cases. We leverage

CSFD to facilitate the differentiation of the encoder network. Con-

ceptually straightforward, this however is not łas easy as piež as

it appears. Albeit the excellent numerical robustness and accuracy,

CSFD needs to apply a complex-value perturbation for each input

variable, leading to excessive forward passes of the deep neural net.

We resolve this challenge by applying the function perturbation

collectively and deploying CSFD inside other differentiation pro-

cedures such as BP and directional derivative. With a GPU-based

implementation, we simulate complex nonlinear models in real time

with a deep decoder net in the loop.

• Coupling PCA with deep encoding net.

The tangent space of a DAE may vary drastically to incorporate

nonlinearity seen in the training poses yielding a bumpy and uneven

deformation manifold. This is analogous to over-fitting. A possible

cure is to use contractive autoencoder or CAE [Rifai et al. 2011b].

CAE adds a regularizer in the objective function that forces the net-

work to learn a function that is robust under slight input variations.

While it could be a viable solution, we propose a more convenient

and effective option. In our framework, DAE is constructed within

the residual space of a standard PCA. In other words, DAE is de-

signed to be complementary to an underlying linear subspace, and

the latter guarantees the existence of a smooth tangent variation.

With this design, we can deepen the DAE architecture to capture

nonlinear and salient deformation poses.

• Weight-varying subspace integration using deep neural networks.

Reduced simulation is often coupled with sparse force and Hes-

sian integration, which down samples element-wise volumetric

integration to a small collection of key elements, called Cubature

elements [An et al. 2008]. After Cubature elements are selected,

one also needs to compute its integration weight by solving a non-

negative least-square problem. The weight coefficient of a Cubature

element is typically fixed given the training set. This is reasonable

for linear reduction and works well in practice. However, in the

context of nonlinear reduction, as the tangent space varies along the

simulation, fixed weighting Cubature is problematic. To this end,

we propose a deep neural network (DNN) based sampling method,

that fully replaces Cubature training. Our DNN has two modules.

The first module is a graph convolution network (GCN) that outputs

the possibility of an element being a Cubature element. On the top

of it, the second module is a DNN, which predicts the weight of

selected Cubature elements. The last layer of this DNN carries out a

per-neuron square operation to ensure the final network output is

non-negative. The training alternates between those two modules.

Unlike conventional Cubature sampling strategy, our network-based

approach is able to select multiple Cubature elements each iteration,

thus greatly shortens the training time.

We have evaluated our framework on various simulation sce-

narios, and our method produces visually-plausible results in real

time or at an interactive rate. We also notice that our nonlinear

model reduction framework synergizes with domain decomposition

method [Barbič and Zhao 2011; Wu et al. 2015; Yang et al. 2013] ś a

small-size nonlinear subspace captures deformation effects much

better at a local domain than over the entire deformable body. To

this end, we also demonstrate examples combining DAE and do-

main decomposition. As a natural follow up of our method, we do

not intend to over claim this extension as our contribution. Model

reduction, regardless nonlinear or linear, seeks for smart trade-offs

among simulation effects, accuracy, and performance. Arguing con-

clusively that the nonlinear model reduction is always better than

linear model reduction techniques is too bold and over-confident to

High-order Differentiable Autoencoder for Nonlinear Model Reduction • 3

us. Indeed, one should scrutinize various aspects in practice, such as

the problem size, expected results, time budget, hardware resources

etc. before choosing a specific simulation algorithm. Regardless, we

do believe the techniques purposed in the paper are worthy and

non-trivially advance state-of-the-art model reduction methods.

2 RELATED WORK

Model reduction has been successfully employed inmany simulation-

related problems in computer graphics including fluid dynamics [Kim

and Delaney 2013; Treuille et al. 2006], cloth animation [Hahn et al.

2014], shape deformation [Von-Tycowicz et al. 2015; Wang et al.

2015], material design [Musialski et al. 2016; Xu et al. 2015], anima-

tion control [Barbič et al. 2009, 2012] etc. In this paper, we narrow

our focus on using data-driven nonlinear model reduction to im-

prove elastic simulation of solid objects.

There are several well-established numerical solutions for de-

formable models such as finite element method (FEM) [Zienkiewicz

et al. 1977], finite difference method [Zhu et al. 2010], meshless

method [Martin et al. 2010; Müller et al. 2005], or mass-spring sys-

tem [Liu et al. 2013]. Most of them end up with solving a large-scale

nonlinear system if an implicit time integration scheme is used. For

high-resolution models, computing their time-varying nonlinear

dynamics is expensive. Speeding up the deformable simulation can

be achieved using carefully designed numerical treatments like the

multigrid method [Tamstorf et al. 2015; Zhu et al. 2010], delayed

matrix update [Hecht et al. 2012], or parallelizable solvers [Fratar-

cangeli et al. 2016; Wang and Yang 2016]. These methods focus on

improving the performance for the fullspace nonlinear optimization

without condensing the simulation scale.

Acceleration can also be achieved using model reduction, which

removes less important DOFs and creates a subspace representa-

tion of fullspace DOFs. Modal analysis [Choi and Ko 2005; Hauser

et al. 2003; Pentland and Williams 1989] and its first-order deriva-

tives [Barbič and James 2005; Yang et al. 2015] are often considered

as the most effective way for the subspace construction. Displace-

ment vectors from recent fullspace simulations can also be utilized

as subspace bases [Kim and James 2009]. Alternatively, it is also

viable to coarsen geometric representation to prescribe the dynam-

ics of a fine model like skin rigging, a technique widely used in

animation systems [James and Twigg 2005]. Analogously, Capell

and colleagues [2002] deformed an elastic body using an embedded

skeleton; Gilles and colleagues [2011] used rigid frames to drive

the deformable simulation; Faure and colleagues [2011] used scat-

tered handles for reduced models; Lei and colleagues [2020] com-

bined model reduction with collision processing using medial axis

transform; Martin and colleagues [2010] used sparsely-distributed

integrators named elastons to model the nonlinear dynamics of rod,

shell, and solid uniformly.

Those prior arts demonstrate impressive results, oftenwith orders-

of-magnitude performance speedups with model reduction. In most

cases, the generalized coordinate linearly depends on the fullspace

displacement in the form of u = Uq with U being constant. This is

why we refer to them as linear subspace methods. On the contrary,

nonlinear reduction holds a more complicated relation between gen-

eralized and fullspace coordinates. For instance, nonlinear modal

analysis [Pesheck et al. 2001] aims to extend its linear version, and

it has been used in structural analysis [Setio et al. 1992]. However, it

is hardly useful for simulation acceleration ś extracting the modal

space for a given configuration is normally dealt with by solving an

eigenproblem (i.e., as in linear modal analysis), and it is clearly in-

feasible to exhaustively sample all the system configurations even in

the pre-computation stage. Only when the animation follows some

pre-known patterns, we may re-use the solution of rest-shape eigen-

problem [Mukherjee et al. 2016] or interpolate multiple sparsely

chosen linear subspaces [Xu and Barbič 2016]. Due to this challenge,

the nonlinear subspace method is less explored.

In this paper, we do not aim to derive a closed-form mathematical

formulation connecting the generalized coordinate and the fullspace

coordinate. Instead, we leave this challenge to a deep neural network

that learns the map directly from many seen simulation poses. This

is a straightforward data-driven approach and has been exploited in

graphics for years [Ladickỳ et al. 2015; Wang et al. 2011]. Our nov-

elty however is to enable its efficient and high-order differentiability

so that the DNN can be embedded into the classic physical simulation

frameworks such as Lagrangian mechanics [Brizard 2014] etc. The

DNN used in our framework is a deep autoencoder or DAE [Hin-

ton and Salakhutdinov 2006] originally designed for dimension

reduction. Its superior performance in data compression and mul-

tidimensional scaling has quickly drawn many attentions. DAE is

successfully deployed in NLP [Socher et al. 2011], image/video com-

pression [Ballé et al. 2016; Habibian et al. 2019], GAN [Makhzani

et al. 2015], facial recognition [Zeng et al. 2018], 3D shape anal-

ysis [Nair and Hinton 2009], just to name a few. The volume of

DAE-related studies is too vast to be contained here.

The most relevant study of our work is the contribution from

Fulton and colleagues [2019]. Indeed, we are strongly motivated

and inspired by those recent efforts [Fulton et al. 2019; Wiewel et al.

2019] that also seek for DAE-based nonlinear reduction. To this

end, we re-examine each step along the pipeline of reduced sim-

ulation and devise a comprehensive solution to couple DAE with

nonlinear elastic simulation seamlessly. One core ingredient is the

high-order differentiability that should be evaluated efficiently to

match the frame rate of model reduction. We deliver this impor-

tant technical asset by leveraging complex-step finite difference

or CSFD [Martins et al. 2003]. Similar to standard finite difference,

CSFD applies a perturbation to the function input and evaluates

how the perturbation alters the function output. This perturbation

however, is a complex-value quantity in CSFD, which avoids the

numerical issue of subtractive cancellation. While CSFD seems to

be a possible approach to the differentiability of DAE, its efficient

deployment for high-order differentiation remains challenging in

practice. An naïve implementation of CSFD requires one forward

pass of the net for each input variable. This scheme leads to O(𝑛3)
passes for a DAE-enabled Newton iteration. As discussed in ğ 4,

we attack this difficulty by applying the complex stepping in CSFD

collectively whenever possible to remove redundant network passes.

This method allows us to efficiently run the DAE differentiation

on GPU and obtain its high-order derivatives in milliseconds. In

order to ensure the smoothness of the simulation tangent space, our

framework consists of two layers: the first layer is a standard PCA-

based linear subspace and within the orthogonal space of which,

4 • Shen, S. et al

DAE is deployed to capture nonlinear deformations more effectively.

Lastly, we also design a DNN-based Cubature training procedure

to generate pose-dependent weight coefficients for a more accurate

subspace integration.

3 LINEAR AND NONLINEAR MODEL REDUCTION

To make the paper more self-contained, we start with a brief review

of the linear model reduction framework, and show its nonlinear

generalization with DAE afterwards. Here, we assume that a DAE

is differentiable and defer the discussion about how to compute its

first- and high-order derivatives to the next section.

3.1 Linear Model Reduction

Under the FEMdiscretization, themotion of an elastically deformable

solid can be described with the Euler-Lagrange equation:

M¥u + f𝑑𝑎𝑚𝑝 (u, ¤u) + f𝑖𝑛𝑡 (u) = f𝑒𝑥𝑡 , (1)

where M ∈ R𝑁×𝑁 is the fullspace mass matrix; f𝑖𝑛𝑡 and f𝑒𝑥𝑡 are

the nonlinear internal force and external force. Here, we lump M

to be a diagonal matrix. f𝑑𝑎𝑚𝑝 is the damping force, and it is often

modeled, under the assumption of Rayleigh damping, as:

f𝑑𝑎𝑚𝑝 =

(
𝛼M + 𝛽 𝜕f𝑖𝑛𝑡 (u)

𝜕u

)
¤u. (2)

Eq. (1) describes the force equilibrium at all 𝑁 DOFs of the un-

known displacement vector u. Computing u in Eq. (1) using non-

linear methods like Newton’s method needs to solve an 𝑁 -by-𝑁

linearized system repeatedly, which is slow and expensive for large-

scale models. Linear model reduction prescribes the kinematic of

this 𝑁 -dimension system with a set of generalized coordinate p such

that u = Up. U ∈ R𝑁×𝑛 is sometimes called subspace matrix, which

is constant in linear reduction. An important convenience brought

by the linearity is the time derivatives of ¤u = U¤p and ¥u = U¥p fol-

low the same relation. Therefore, Eq. (1) can be projected into the

column space of U as:

M𝑝 ¥p + U⊤f𝑑𝑎𝑚𝑝 (Up,U¤p) + U⊤f𝑖𝑛𝑡 (Up) = U⊤f𝑒𝑥𝑡 , (3)

whereM𝑝 = U⊤MU is the reduced mass matrix. Eq. (3) has the same

structure of Eq. (1) despite under a more compact representation of

p.

3.2 Nonlinear Model Reduction

Nonlinear reduction also uses a set of generalized coordinates q.

However, the relation between u and q is in a more generic form

of u = 𝐷 (q). Intuitively, 𝐷 prescribes an 𝑛-dimension deformation

manifold embedded in R𝑁 . Applying time differentiation at both

side yields:

¤u =
d𝐷 (q)
d𝑡

=
𝜕𝐷 (q)
𝜕q

¤q = J¤q, (4)

and

¥u =
d

d𝑡

(
𝜕𝐷 (q)
𝜕q

¤q
)
= (H · ¤q) ¤q + J¥q, (5)

where J = 𝜕𝐷 (q)/𝜕q ∈ R𝑁×𝑛 is the Jacobian of𝐷 (q), which depends
on q and spans the tangent space at a given reduced coordinate.

H ∈ R𝑁×𝑛×𝑛 is a third tensor of the second-order derivative (i.e.,

Hessian) of 𝐷 . Substituting Eqs. (4) and (5) into Eq. (1) followed by

a tangent space projection gives the nonlinearly reduced equation

of motion:

J⊤M
(
(H · ¤q) ¤q + J¥q

)
+ J⊤f𝑖𝑛𝑡 (𝐷 (q)) = J⊤f𝑒𝑥𝑡 . (6)

Here, the damping force term is ignored for a more concise notation.

We note that if 𝐷 (q) is linear, H vanishes and J = U. Eq. (6) echoes

Eq. (3) completely.

Given a time integration algorithm on q e.g., the implicit Euler

method, we have: q = q̄+ℎ ¤q and ¤q = ¤̄q+ℎ¥q, where ℎ is the time step

size, and ¯(·) indicates the kinematic variable is from the previous

time step. The final system that needs to be solved becomes:

J⊤MJ(q − q̄ − ℎ ¤̄q) + J⊤f𝑓 𝑖𝑐𝑡 (q) + ℎ2J⊤f𝑖𝑛𝑡 (q) = ℎ2J⊤f𝑒𝑥𝑡 , (7)

with

f𝑓 𝑖𝑐𝑡 = M ([H · (q − q̄)] (q − q̄)) . (8)

f𝑓 𝑖𝑐𝑡 is the fictitious force that responds for inertia effects associated

with the varying Jacobian J. We also consider M𝑞 = J⊤MJ is the

reduced mass matrix of the nonlinear reduction, which is no longer

constant as J also depends on q.

3.3 AQuick Discussion

Clearly, f𝑓 𝑖𝑐𝑡 is the most tricky part in Eq. (7).H is the Hessian of

the coordinate transformation 𝐷 . Not only a third tensor, but H(q)
is also a function of q. Therefore, if we want to solve Eq. (7) using,

for instance, Newton’s method in the implicit integration, we need

to compute 𝜕H/𝜕q to assemble the corresponding system matrix,

which is a forth tensor and the resultant of third-order differenti-

ation over 𝐷 . This nasty computation stands as a major obstacle

for nonlinear model reduction. In [Fulton et al. 2019], the fictitious

force term is discarded in the time integration of the generalized co-

ordinate. This heuristic can somewhat be understood as performing

an explicit subspace projection at the current time step ignoring the

fact that a generalized velocity ¤q also brings inertia effects when 𝐷

is nonlinear.

On the one hand, we consider ignoring f𝑓 𝑖𝑐𝑡 reasonable and an

understandable compromise in the setting of [Fulton et al. 2019].

First of all, f𝑓 𝑖𝑐𝑡 vanishes under quasi-static deformations as ¤q is

close to zero. Secondly, in [Fulton et al. 2019] the encoding-decoding

network is shallow, and 𝐷 represents a net of only two layers. In

addition, a preliminary PCA is performed to łregularizež raw train-

ing poses. Those treatments effectively suppress the nonlinearity

in J (soH is small) and lessen the inertia deformation induced by

f𝑓 𝑖𝑐𝑡 . On the other hand, as f𝑓 𝑖𝑐𝑡 is missed in [Fulton et al. 2019], the

underlying dynamic equation is inaccurate anyway. Visible artifacts

are inevitable under higher-velocity deformations or a deeper DAE

is employed (i.e., in our case).

3.4 PCA-orthogonal DAE Reduction

An autoencoder is an unsupervised learning algorithm that con-

denses the input high-dimension data into a low-dimension latent

space (i.e., encoding), which is then expanded to the original dimen-

sionality to monitor the compression loss (i.e., decoding). If this

network only has one hidden layer, or it does not involve nonlin-

ear activations, the autoencoder is similar to PCA [Bourlard and

Kamp 1988]. In this case 𝐷 is linear, and the resulting network after

training spans the same linear subspace as PCA does (under L2 loss).

High-order Differentiable Autoencoder for Nonlinear Model Reduction • 5

This however is, not what we seek for in nonlinear model reduc-

tion since 𝐷 is expected to capture as much nonlinearity as possible

to enrich the subspace expressivity. To this end, we ought to keep

the autoencoder deep and nonlinear. Unfortunately, too much non-

linearity seems to be harmful to the simulation as well. As illustrated

in Fig. 2, with increased nonlinearity, the network (i.e., the curve

in the figure) can be stretched to reach some irregular and distant

poses in the training set. In the meantime, the geometry of the de-

formation manifold also becomes more wiggling ś same as what

we experience in high-order polynomial fitting. As we know, the

simulation under nonlinear reduction corresponds to travelling on

the deformation manifold of 𝐷 , driven by the generalized forces in

the tangent space. A wiggling manifold could stiffen the simulation

and induce artifacts.

Nonlinear

Smooth

Fig. 2. Increased nonlinearity

better fits training poses but

also makes the network more

wiggling.

There are several possible reme-

dies of this issue. As in [Fulton et al.

2019], one could regularize the train-

ing data before the network training.

This strategy is commonly used in

training deep neural nets on a very

large-scale data set that could poten-

tially be noisy e.g., ImageNet [Rus-

sakovsky et al. 2015]. However, the

training data in our case are synthe-

sized by running physical simulations,

and they are noise-free. While PCA

regularization certainly prevents overfitting, it also negatively im-

pacts the richness of the nonlinear subspace. Alternatively, CAE is

also a promising method [Rifai et al. 2011a]. It injects a penalty term

related to ∥J∥𝐹 to enhance the smoothness of 𝐷 so that a highly

curved manifold is unlikely. Unfortunately, neither method looks

attractive to us: the very reason of using DAE is to enhance the

nonlinearity of the subspace, while both PCA regularization and

Jacobian penalty aim to prune the subspace nonlinearity, contradict-

ing our original motivation. The remaining option is to expand the

dimension of the latent space, which is also problematic knowing

that the computational cost for nonlinear model reduction is much

higher than linear reduction (i.e., due to the evaluation of high-order

differentiation). If the majority information encoded in the DAE is

close to linear, why bother using nonlinear reduction and a deep

network at the very beginning?

Our answer to this dilemma is to split the total simulation space

into two orthogonal spectra: a PCA-based linear subspace (or it

could be constructed by any linear model reduction methods) S𝑝
and a DAE-based nonlinear manifold S𝑞 such that S𝑝 ⊥ S𝑞 . The

orthogonality allows the dynamics from both subspaces to be sim-

ply super-positioned. The advantages of this subspace design are

multifaceted. First of all, we can now increase the dimension of

the linear subspace with a moderate cost to the overall simula-

tion performance. Secondly, under this design, PCA basis matrix

is part of the Jacobian of the overall subspace S𝑝 ∪ S𝑞 . Therefore,

the simulation does not experience the locking artifact. Explicitly

building the linear subspace also allows us to push the depth of the

DAE as needed to capture nonlinear deformations and keep latent

space highly compact at the same time. Lastly, we note that such

multi-layer subspace construction has been successfully employed

in simulation [Harmon and Zorin 2013; Zhang et al. 2020], but first

time in conjunction with a deep network.

… … … …

Encoding Decoding

1

, , ,

0

pn

i j i k j k

k

U Uδ
−

=

−∑

Fig. 3. The network structure of our DAE. At both sides of the DAE, we ap-

pend a fully connected filtering layer (in green) to remove any displacements

from PCA space S𝑝 .

3.5 Network Architecture

The network architecture of our DAE is visualized in Fig. 3. It has a

symmetric structure at encoding and decoding parts. Before training

the DAE, we perform PCA over the training set to obtain basis

vectors of S𝑝 . They are packed into the matrix U. U is 𝑁 ×𝑛𝑝 , where
𝑛𝑝 represents the dimensionality of S𝑝 . Columns in U are all unit

vectors, and they are orthogonal to each other. To ensure S𝑝 ⊥ S𝑞 ,

we append a filtering layer at both ends of the encoder and and the

decoder. This filtering layer is fully connected (FC) and has fixed

weights: the weight coefficient of the edge connecting 𝑖-th and 𝑗-th

neurons before and after this FC layer is 𝛿𝑖, 𝑗 −
∑𝑛𝑝−1
𝑘=0

𝑈𝑖,𝑘𝑈 𝑗,𝑘 , where

𝛿𝑖, 𝑗 = 1 for 𝑖 = 𝑗 and 0 otherwise. In fact, this FC layer carries out a

matrix-vector product of (I − UU⊤)x for an input vector x, which

removes any components in x that generate non-zero projections in

S𝑝 so that the input of the encoder and the output from the decoder

are all orthogonal to S𝑝 .

After filtering, the DAE moves to an intermediate activation part,

which consists of multiple (e.g., 6 to 8) FC layers of the same width.

The width is normally set at the order of log𝑁 . Each layer is nonlin-

early activated. Our activation function is quite different from other

deep nets. ReLU (rectified linear unit) is a widely chosen activation,

and works well in many deep learning tasks by default [Nair and

Hinton 2010]. However, as ReLU is a linear activation, it fails to

nonlinearly compress the training data. More importantly, ReLU

is 𝐶0 continuous, and a DAE only activated by ReLU may degen-

erate to PCA. The exponential linear unit or ELU enhances the

smoothness of ReLU, but it could remain a linear activator for cer-

tain input signals. To this end, we use the trigonometric function

sin𝑥 as our activation. sin𝑥 has a derivative of an arbitrary order,

and it does not have a saturated gradient at both directions. This

pleasing property frees us from worrying about the vanishing gra-

dient problem [Hochreiter et al. 2001] even the network is deep

(over 10 layers). Finally, the feature vector is compressed to the

latent space. We use 𝑛𝑞 to denote the dimension of S𝑞 . 𝑛𝑞 is a small

number, typically below a couple of dozens in our experiments.

6 • Shen, S. et al

3.6 The Simulation System

Now, we have everything to give the formulation of the final sys-

tem we need to solve. With S𝑝 and S𝑞 constructed, the fullspace

displacement is written as:

u = Up + 𝐷 (q), s.t. U⊤𝐷 (q) = 0. (9)

Thanks to the orthogonality between S𝑝 and S𝑞 , we stack Eqs. (3) and (6)

jointly to obtain:

J̃⊤M̃J
(
r − r̄ − ℎ ¤̄r

)
+ J̃⊤f𝑓 𝑖𝑐𝑡 + ℎ2̃J⊤ (f𝑖𝑛𝑡 − f𝑒𝑥𝑡) = 0, (10)

where r = [p⊤, q⊤]⊤ is the generalized coordinate concatenating

both p and q, and J̃ = [U, J] ∈ R𝑁×(𝑛𝑝+𝑛𝑞) . Here, f𝑓 𝑖𝑐𝑡 is in the

same form of Eq. (8) because it vanishes in S𝑝 . Eq. (10) can then be

concisely written as 𝜙 (r) = 0. Its Jacobian is a (𝑛𝑝 +𝑛𝑞) × (𝑛𝑝 +𝑛𝑞)
matrix:

𝜕𝜙

𝜕r
= H̃

⊤M̃J
(
r − r̄ − ℎ ¤̄r

)
+ H̃

⊤f𝑓 𝑖𝑐𝑡 + J̃⊤M [U,ΔJ + J]

− ℎ2H̃⊤ (f𝑖𝑛𝑡 − f𝑒𝑥𝑡) + ℎ2
(̃
J⊤
𝜕f𝑖𝑛𝑡

𝜕u
J̃

)
, (11)

which needs to be updated and solved at each Newton iteration.

Here, H̃ = 𝜕2u/𝜕r2 = diag(0,H). The most involving term is ΔJ,

which is defined as:

ΔJ ≜ (S · (q − q̄)) · (q − q̄) +H · (3q − 3q̄ − ℎ ¤̄q) . (12)

In order to compute ΔJ, we need to calculate S, an 𝑁 ×𝑛𝑞 ×𝑛𝑞 ×𝑛𝑞
forth tensor, and it is the third-order derivative of DAE: 𝜕3𝐷 (q)/𝜕q3.
If we choose to use first-order or quasi-Newton solvers [Liu et al.

2017], the computation of S could be avoided, but we still need to

compute the HessianH. Nevertheless, for subspace simulation with

a small-size system matrix, Newton’s method with a direct linear

solver like Cholesky is always preferred.

Evaluating high-order differentiation of a deep net is not intu-

itive. Currently, gradient-based optimization is the mainstream so-

lution for the network training, where the network gradient can

be computed via BP. Second- and high-order derivatives are not

well supported and are not efficient enough for subspace simulation

tasks. Next, we discuss how we solve this technical challenge by

exploiting the complex-step finite difference scheme.

4 HIGH-ORDER DIFFERENTIABILITY VIA CSFD

Computing the derivative of a function is omnipresent in physics-

based simulation. It is typically done by inferring analytic form

of the derivative function by hand or with assistance from some

symbolic differentiation software like Mathematica [Wolfram et al.

1999]. Alternatively, it is also possible to approximate the deriva-

tive numerically. The finite difference is the most commonly-used

method, which applies a small perturbation ℎ to the function in-

put and the first-order function derivative can be estimated as:

𝑓 ′(𝑥) ≈ (𝑓 (𝑥 + ℎ) − 𝑓 (𝑥))/ℎ. However, it is also known finite

difference suffers with the numerical stability issue named subtrac-

tive cancellation [Luo et al. 2019]. This limitation could be avoided

by complex-step finite difference or CSFD [Luo et al. 2019; Martins

et al. 2003].

4.1 First- and High-order CSFD

Let (·)∗ denote a complex variable, and suppose 𝑓 ∗ : C → C is

differentiable around 𝑥∗0 = 𝑥0 + 0𝑖 . With an imaginary perturbation

ℎ𝑖 , 𝑓 ∗ can be expanded as:

𝑓 ∗ (𝑥0 + ℎ𝑖) = 𝑓 ∗ (𝑥0) + 𝑓 ∗
′ (𝑥0) · ℎ𝑖 + O(ℎ2). (13)

We can łpromotež a real-value function 𝑓 to be a complex-value

one 𝑓 ∗ by allowing complex inputs while retaining its original com-

putation procedure. Under this circumstance, we have 𝑓 ∗ (𝑥0) =

𝑓 (𝑥0), 𝑓 ∗
′ (𝑥0) = 𝑓 ′(𝑥0) ∈ R. Extracting imaginary parts of both

sides in Eq. (13) yields:

Im
(
𝑓 ∗ (𝑥0 + ℎ𝑖)

)
= Im

(
𝑓 ∗ (𝑥0) + 𝑓 ∗

′ (𝑥0) · ℎ𝑖
)
+ O(ℎ3) . (14)

Note that the error term (O(ℎ3)) in Eq. (14) is cubic because the

quadratic term of ℎ in Eq. (13) is a real quantity and is excluded by

Im operator. We then have the first-order CSFD approximation:

𝑓 ′(𝑥0) =
Im

(
𝑓 ∗ (𝑥0 + ℎ𝑖)

)
ℎ

+ O(ℎ2) ≈
Im

(
𝑓 ∗ (𝑥0 + ℎ𝑖)

)
ℎ

. (15)

It is clear that Eq. (15) does not have a subtractive numerator, mean-

ing it only has the round-off error regardless of the size of the

perturbation ℎ. If ℎ ∼
√
𝜖 i.e., around 1×10−16, CSFD approximation

error is at the order of the machine epsilon 𝜖 . Hence, CSFD can be

as accurate as analytic derivative because the analytic derivative

also has a round-off error of 𝜖 .

The generalization of CSFD to second- or even higher-order dif-

ferentiation is straightforward by making the perturbation a multi-

complex quantity [Lantoine et al. 2012; Nasir 2013]. The multicom-

plex number is defined recursively: its base cases are the real set

C
0
= R, and the regular complex set C1 = C. C1 extends the real

set (C0) by adding an imaginary unit 𝑖 as: C1 = {𝑥 + 𝑦𝑖 |𝑥,𝑦 ∈ C0}.
The multicomplex number up to an order of 𝑛 is defined as: C𝑛 =

{𝑧1 + 𝑧2𝑖𝑛 |𝑧1, 𝑧2 ∈ C𝑛−1}. Under this generalization, the multicom-

plex Taylor expansion becomes:

𝑓 ★(𝑥0 + ℎ𝑖1 + · · · + ℎ𝑖𝑛) = 𝑓 ★(𝑥0) + 𝑓 ★
′ (𝑥0)ℎ

𝑛∑︁
𝑗=1

𝑖 𝑗

+ 𝑓 ★
′′ (𝑥0)
2

ℎ2
(𝑛∑︁
𝑗=1

𝑖 𝑗
)2 + · · · 𝑓

★(𝑘)

𝑘!
ℎ𝑘

(𝑛∑︁
𝑗=1

𝑖 𝑗
)𝑘 · · · (16)

Here,
(∑
𝑖 𝑗
)𝑘

can be computed following the multinomial theorem,

and it contains products of mixed 𝑘 imaginary directions for 𝑘-th-

order terms. For instance, the second-order CSFD formulation can

then be derived as follows:

𝜕2 𝑓 (𝑥,𝑦)
𝜕𝑥2

≈
Im(2)

(
𝑓 (𝑥 + ℎ𝑖1 + ℎ𝑖2, 𝑦)

)
ℎ2

𝜕2 𝑓 (𝑥,𝑦)
𝜕𝑦2

≈
Im(2)

(
𝑓 (𝑥,𝑦 + ℎ𝑖1 + ℎ𝑖2)

)
ℎ2

𝜕2 𝑓 (𝑥,𝑦)
𝜕𝑥𝜕𝑦

≈
Im(2)

(
𝑓 (𝑥 + ℎ𝑖1, 𝑦 + ℎ𝑖2)

)
ℎ2

,

(17)

where Im(2) picks the mixed imaginary direction of 𝑖1𝑖2. One can

easily tell from Eq. (17) that second-order CSFD is also subtraction-

free making them as robust/accurate as the first-order case. With

CSFD, we augment the DAE to allow each neuron to house a complex

High-order Differentiable Autoencoder for Nonlinear Model Reduction • 7

or a multicomplex quantity. Therefore, the input perturbation can

be passed through the network for computing its derivative values.

4.2 Differentiation under Tensor Contraction

A limitation of CSFD lies in its dependency on the perturbation. If

the function takes𝑚 input variables e.g., an𝑚-dimension vector,

CSFD needs to evaluate the function for𝑚 times in order to com-

pute its first-order derivative. In our case, the function is shaped

as a DAE. More precisely, 𝐷 (q) corresponds to the decoding part

of the network (Fig. 3). We need to take a forward pass of the de-

coding network as one function evaluation. The total number of

network forwards goes up exponentially with respect to the order

of differentiation. Therefore, computing S in Eq. (12) requires 𝑛3𝑞
network forwards per Newton iteration, which is further scaled by

the complexity 𝐷 . This is too expensive for real-time simulation

even on GPU.

An important contribution of this work is to efficiently enable

high-order differentiability of DAE (or other deep networks) while

eliminating excessive network perturbations. Our method is based

on two following key observations:

• In CSFD, the imaginary parts can be somehow understood as the

differential change induced by the perturbation. Under a straight

usage, CSFD is analogous to forward automatic differentiation

(AD) [Guenter 2007], but with much better generalization to

higher orders. The potential of CSFD is maximized if the function

has a high-dimension output so that one function evaluation

gives you more information of the differentiation. Conversely,

the BP procedure of a neural net is essentially a reverse AD [Bay-

din et al. 2017] ś its efficiency is optimal when the input of a

network is in high dimension. This is exactly the case in neural

net training, where we have a large number of network param-

eters as the function input. It is clear that CSFD and BP nicely

complement each other so that we can choose the direction of

network propagation accordingly.

• While high-order differentiation produces high-order tensors,

those tensors are rarely needed in its original form. In most cases,

they are to be łreducedž by tensor contractions with other tensors

left and right to them. Those reduction operations allow us to

apply the perturbation collectively, not at an individual variable

but in the form of vector or tensor.

4.3 Right Contraction via Directional Derivative

We now elaborate our method first with a toy example. Consider

𝑓 : R𝑚 → R. Computing its Hessian (H = ∇2 𝑓) will need 𝑚2

perturbations with second CSFD (Eq. (17)). However, if ∇2 𝑓 is also

contracted with a right vector a, Ha can actually be evaluated much

more efficiently as:

[H(x)a]𝑘 =

𝑚−1∑︁
𝑙=0

lim
ℎ→0

[∇𝑓 (x + ℎe𝑙) − ∇𝑓 (x)]𝑘
ℎ

· [a]𝑙 ,

⇒ [H(x)a]𝑘 =

𝑚−1∑︁
𝑙=0

lim
ℎ→0

[∇𝑓 (x + [a]𝑙ℎe𝑙) − ∇𝑓 (x)]𝑘
ℎ

,

⇒ Ha = lim
ℎ→0

∇𝑓 (w + ℎa) − ∇𝑓 (x)
ℎ

≈ Im(∇𝑓 (x + ℎ𝑖 · x))
ℎ

.

Here, [·]𝑘 gives 𝑘-th element of vector, and e is the canonical bases.

In the second line of the derivation, we substitute ℎ with [a]𝑙ℎ to

cancel the multiplication of [a]𝑙 . One may now recognize that Ha

is essentially the directional derivative of ∇a 𝑓 .

1 2 3j k lx hi ha i h ib+ ++

()f x

…

3

3

f∂
∂x

a

bka

lb

Fig. 4. Right contraction

can be dealt with by apply-

ing CSFD perturbation col-

lectively.

This finding is not new and has been

used in Jacobian-free solvers [Knoll and

Keyes 2004]. However, we note that this

strategy can also be generalized for high-

order cases. As shown in Fig. 4, one differ-

entiation operation lifts the order of the

resulting tensor by one. A right contrac-

tion of the tensor undoes this expansion

so that the perturbation can be applied

together. Now let us advert to the forth

tensor S in Eq. (12). Its exact form is of

less interest to us. Instead, we would like

to compute the matrix after two contrac-

tions with q − q̄. To this end, we apply a

collective third-order multicomplex perturbations to the decoding

DAE for 𝑛𝑞 times. The 𝑗-th perturbation computes the 𝑗-th column

of the resulting matrix. This perturbation is applied along the first

imaginary direction 𝑖1 at the 𝑗-th element of the DAE input q. The

perturbations in 𝑖2 and 𝑖3 are scaled by the corresponding elements

in q − q̄. Putting together, the 𝑗-th element, which is a third-order

multicomplex quantity, of the CSFD input is:

[q★] 𝑗 = [q] 𝑗 + ℎ𝑖1 + ℎ[q − q̄] 𝑗 𝑖2 + ℎ[q − q̄] 𝑗 𝑖3 . (18)

After the forward pass, we extract the component at 𝑖1𝑖2𝑖3 direction,

and divide it by ℎ3.

4.4 Left Contraction via Complex-step Backpropagation

In the simulation, there are several computations involving contrac-

tion between a left vector and a differentiation tensor such as all

theH⊤ terms in Eq. (11). In those cases, the contraction occurs at

the dimension which is not expanded by the differentiation. Hence,

the strategy outlined in ğ 4.3 does not apply. Consider evaluating

a ·H (i.e.,H⊤a). We carry out our computation with an auxiliary

function 𝑔(q) = a · 𝐷 (q) ∈ R. As 𝐷 is embodied as a neural net-

work, this auxiliary function can also be viewed as appending an

FC layer at the end of the net reducing its 𝑁 -dimension output to a

single scalar (like the loss function). Because a is independent on 𝐷 ,

𝜕𝑘𝑔/𝜕q𝑘 = a ·𝜕𝑘𝐷/𝜕q𝑘 . Hence, a ·H can be computed as the Hessian

of 𝑔(q). Here, the reader may be reminded thatH is a function of q,

and it is the second derivative of 𝑑 . A standard second CSFD will

need 𝑛𝑝 (𝑛𝑝 + 1)/2 perturbations knowing 𝜕2𝑔/𝜕q2 is symmetric.

We show that is computation can be further reduced to O(𝑛𝑞).
As mentioned, CSFD is most suited for differentiating functions

with a high-dimension output ś 𝑔(q) is not such a function, which

outputs a single scalar. Its derivative could be more efficiently com-

puted by reverse AD or BP. As a first-order routine however, BP

only computes the gradient function 𝜕𝑔/𝜕q. To this end, we inject
CSFD into the BP procedure treating BP as a generic function and

enabling complex arithmetic along the BP computation to perturb

the gradient of 𝑔. It starts with a complex-perturbed forward pass

of the network 𝑔 by adding the perturbation at one element (say the

8 • Shen, S. et al

𝑗-th element) of the network input as: [q∗] 𝑗 = [q] 𝑗 +ℎ𝑖 . The feedfor-
ward of the net delivers this complex perturbation to all the neurons

[q] 𝑗 influences. BP then ensues. During BP, all the computations

are complex-based. If a neuron receives an imaginary component in

the forward pass, this imaginary component participates in BP and

passes complex-value feedback signals to its previous layer. After

BP, all the signals at the input layer are divided by ℎ yielding one

column of a ·H.

Fig. 5 illustrates this process with a simple net: two neurons (𝑥 and

𝑦) multiply first, and the result (𝑧) is squared to generate the output

(𝑤). Suppose 𝑥 = 2 and 𝑦 = 3, and we want to compute the second

derivative of the network output with respect to 𝑥 . The perturbation

ℎ is applied to 𝑥 so that 𝑥 = 2+ℎ𝑖 , and all sequential neurons become

complex-value. After the forward pass, BP invokes. Everything

remains the same as the regular BP except the computation is in

complex. For instance, 𝜕𝑤/𝜕𝑧 = 2𝑧; as 𝑧 holds a complex value,

𝜕𝑤/𝜕𝑧 = 12 + 6ℎ𝑖 is also complex. Finally, after BP completes. The

real part of 𝑥 gives the value of the first-order derivative ś the same

as the original BP algorithm, and the imaginary part of 𝑥 after being

divided by the input perturbation ℎ is the second derivative. Along

this procedure, we follow the strategy in [Luo et al. 2019] to avoid

unneeded complex computations. For instance in Fig. 5, high-order

terms of ℎ is discarded in𝑤 .

x

y
w

×
z

2[]⋅
x

y
wz

3y =
2x hi= +

36z x hiy +×= =
2 2 3

3

6

6

6

3

3 3 6

6

w

i

h hi

h

z= =
+

−
≈

+

Forward pass

6 3z hi= +

2x hi= +

3y =
36 36w hi= +

× 2[]⋅

2 12 6
w

z hi
z

∂
= = +

∂

3(12 6) 36 18
w w z

hi hi
x z x

∂ ∂ ∂
= = + = +

∂ ∂ ∂

3
z

x

∂
=

∂

2

2
/ 18Im

w w
h

x x

∂ ∂ = = ∂ ∂
Backward pass

Fig. 5. By augmenting BP with CSFD, we can efficiently evaluate high-order

differentiation of a deep net, followed by a left-side tensor contraction.

Thanks to CSFD, all the tensor-related computations can now

be completed with 𝑛𝑞 network passes, either forward passes with

CSFD or backward passes with CSFD-enabled BP. Those 𝑛𝑞 network

passes can be executed in parallel on GPU as one single mini-batch.

The remaining performance bottleneck is the subspace integration

of reduced force and elastic Hessian. This computation is usually

handled with the Cubature method [An et al. 2008]. In the next

section, we discuss how we replace the classic Cubature sampling

with a neural network based one to allow a pose-dependant subspace

integration.

5 NEURAL CUBATURE SAMPLING AND WEIGHTING

In model reduction, it is expected that all the computations are

carried out in the polynomial time of the reduced order 𝑛𝑝 + 𝑛𝑞 .
For Saint Venant-Kirchhoff (StVK) material model under linear re-

duction, it is possible to pre-compute the polynomial coefficients

for reduced force and Hessian [Barbič and James 2005] at the cost

of O(𝑛4𝑝). Unfortunately, other material models do not share this

1

2

3

s

s

s

1

2

3

w

w

w

sin
()

sin
()

so
ftm

ax

sin
(⋅) sin
(⋅) sin
(⋅) ()2

Update

Cubature set

1

2

3

w

w

w

1

2

3

M

M

M

network

network

Decoding

.

Fig. 6. Neural Cubature alternates between two neural networks: 𝑆 and𝑊 .

𝑆 net is a GCN and selects Cubature elements with highest scores.𝑊 net

predicts the weight of each Cubature element. We add a square activation

to ensure the non-negativeness of the output weight value. This information

is then passed back to 𝑆 for next-round selection.

convenience. A practical solution is the so-called Cubature sam-

pling [An et al. 2008]. Cubature selects a subset of key elements

(i.e., Cubature elements) such that the reduced force and reduced

Hessian can be integrated only at Cubature elements with a desig-

nated non-negative weight. Cubature has been proven effective for

linear model reduction. However, its naïve deployment for nonlinear

reduction is questionable: as the tangent space varies in nonlinear

cases, why should we stick with invariant Cubature weights?

Our neural Cubature consists of two networks as shown in Fig. 6.

The first net is in charge of selecting newCubature elements, and the

second net is responsible for predicting Cubature weights. Specifi-

cally, the first neural network outputs a łscorež for each element,

and we can add multiple elements to the Cubature set based on

element’s score. After updating the Cubature set C, the second net-

work outputs the weights of all the Cubature elements based on

the input r. Neural Cubature training alternates between those two

networks. After the training, only weight prediction net participates

in the simulation i.e., given a generalized coordinate r, the neural net

outputs its weights coefficients at the simulation run time, which

are then used for the subspace integration.

5.1 Cubature Selection with a GCN

We use 𝑆 to denote the first neural network for Cubature element

selection. 𝑆 is a graph convolutional network (GCN) [Wu et al.

2020], which naturally inherits the topology of the input 3D model.

The input of 𝑆 is the fullspace displacement u followed by two

graph convolution layers. Each convolution layer produces eight

channels. After that, another two FC layers are applied. 𝑆 outputs the

probability 𝑠𝑒 for each element 𝑒 on the mesh, which is concatenated

into a global probability or score vector s. The graph convolution

operation can be written as:

ℎ
(𝑙+1)
𝑖 = sin

©«
∑︁
𝑗 ∈N𝑖

1

𝑐𝑖 𝑗
ℎ
(𝑙)
𝑗 𝛾1(𝑙)ª®¬

, (19)

where ℎ
(𝑙)
𝑖 represents the 𝑖-th vertex in the 𝑙-th neural network

layer. 𝛾 (𝑙) is the trainable parameter, and N denotes the one-ring

High-order Differentiable Autoencoder for Nonlinear Model Reduction • 9

neighborhood of 𝑖 on the mesh. Similar to DAE, we use sin(·) for
intermediate nonlinear activations. 𝑐𝑖 𝑗 =

√︁
𝑑𝑖 · 𝑑 𝑗 is the normaliza-

tion constant of edge ⟨𝑖, 𝑗⟩, where 𝑑𝑖 is the degree of vertex 𝑖 . At the
last hidden layer, we use the softmax activation [Goodfellow et al.

2016], which assigns each element a probability score.

𝑆 is trained in the residual space. This scheme is inspired by the

original Cubature algorithm. At the beginning, the set of Cubature

elements is empty: C = ∅, and the original training set consists of

pose-force pairs. With some elements being selected, C ≠ ∅, we
compute the remaining reduced force for each training data with

current Cubature integration:

f (r) = f̃𝑖𝑛𝑡 (r) −
∑︁

𝑀𝑒 (C,w)̃f𝑒 (r) . (20)

Here, f̃𝑖𝑛𝑡 (r) is the reduced internal force projected in the column

space of J̃(r). The summation iterates all the elements on the mesh.

𝑀𝑒 (C,w) is a mask function that removes non-Cubature weights

from an input weight vector w. In other words, 𝑀𝑒 (C,w) = [w]𝑒
if element 𝑒 ∈ C or 0 otherwise. Note that the dimensionality of w

corresponds to the total number of elements on the model, and it is

the output from the current weight prediction net. f̃𝑒 is the reduced

force at the element 𝑒 . Instead of adding one Cubature element each

time, neural Cubature allows us to select multiple elements. After 𝑆

outputs scores s, we can pick𝐾 non-Cubature elements with highest

scores, and update C accordingly. We have tested 𝐾 = 5, 𝐾 = 10,

and 𝐾 = 20 and did not find much difference between them.

5.2 Weight Prediction

The weight prediction network𝑊 takes a generalized coordinate r

as well as the current Cubature set C as input, and outputs weight

coefficients for all the elements w. Specifically, r is first spanned to

u with our decoder net. Network parameters at this part are fixed

and do not participate in the training. Four additional FC layers

with sin(·) activations are followed.𝑊 is not a graph network, as

we believe the geometry and topology information of the model is

already captured in 𝑆 . Training the weight should be pure algebraic,

and several nonlinearly activated FC layers work for this purpose

well. Because𝑊 is the part of the simulation (we need to obtain w

at each time step), we also want to make sure it is light-weight and

runs feedforward efficiently. Therefore, the structure of𝑊 is plain

and straightforward. Finally, the weight coefficients of Cubature

elements should be non-negative in order to prevent extrapolation

and overfitting. To this end, we put a square operation at the last

layer to enforce the non-negative constraint.

The loss functions of both 𝑆 and𝑊 resemble each other a lot:

𝐿𝑆 =

f (r) −∑︁
𝑀𝑒 (C,w)̃f𝑒 (r)

 ,
𝐿𝑊 =

̃f (r) −∑︁
𝑀𝑒 (C,w)̃f𝑒 (r)

 .
(21)

In practice, neural Cubature kicks off by initializing C as few Voronoi

samples of the input model, which are passed to𝑊 to start the

alternating. After w is predicted, we feed this information to 𝑆

(i.e., updating the Cubature residual), which in turn, updates the

Cubature set C. Our neural Cubature is more efficient and accurate

than conventional Cubature methods. Because neural Cubature

picks multiple elements each time, we can also quickly build a

bigger Cubature set C.

6 EXPERIMENTAL RESULTS

We have implemented our framework on a desktop computer with

an intel i7 9700 CPU and an nVidia 2080 GPU. The simulation

part is mostly on CPU but we move all the matrix-matrix and matrix-

vector computations to GPU with cuBLAS [Nvidia 2008]. The simula-

tion is implemented with C++, and some linear algebra computations

are based on Eigen library [Guennebaud et al. 2010]. Network train-

ing is initially carried out using PyTorch [Paszke et al. 2019]. After

we have all the network parameters, we port the resulting neural

network to CUDA. Network BP for computing tensor contraction is

also implemented with cuBLAS.

6.1 Training Poses Generation

We generate training poses by running a scripted simulation. At

the training stage, given a random surface vertex on the model, we

select its nearby vertices within a given radius, and apply a random

force to them (Fig. 7). All the simulation poses along this dynamic

procedure are recorded as training data.

Fig. 7. We generate training data by applying

scripted random forces to the model.

In linear model re-

duction, it is com-

mon to directly sam-

ple training datawithin

the modal space e.g.,

see [Von-Tycowicz

et al. 2015].We found

that this strategy is

not valid for nonlin-

ear model reduction.

Here, we would like

to clarify two confus-

ing concepts: pose and basis. In linear model reduction, we care more

about the basis, whose most important attribute is the direction,

and its magnitude matters little. This is not the case for nonlinear

reduction, where we essentially learn the underlying deformation

manifold. An effective training will need samples on this manifold

i.e., poses, without unnecessary scaling. Therefore, training data

should be generated via real simulation.

Training poses ought not be weighted equally. In general, we

prefer to better fit poses closer to the rest shape. A slightly higher

fitting error may be acceptable for poses under large deformations.

This is also the motivation in the linear model reduction of scaling

basis vectors by their vibration frequencies [Barbič and James 2005;

Von-Tycowicz et al. 2015]. However, nonlinear eigenvalues of de-

formable poses are difficult to be estimated. We found a good metric

is the elastic energy of a given pose, which nonlinearly measures

how far a deformation is away from the rest configuration. As a

result, we weight the loss value of each pose by the inverse of its

elastic energy. As discussed, our method also builds a linear sub-

space (i.e., S𝑝) via PCA out of the training poses. If the training data

set is too big, computing a full PCA is time-consuming. We find that

a good walk-around is to randomly pick poses with smallest elastic

10 • Shen, S. et al

energy to form a more compact training set for PCA, and leave DAE

to extract nonlinear information out of the residual pose space.

0

0.005

0.01

0.015

0.02

0.025

0.03

0 15 30 45 60 75 90 105 120

T
ra

in
in

g
 l

o
ss

Epoch

Weight Prediction Network
Cubature Selection Network

0.5

1

2

4

8

16

32

0 200 400 600 800 1000 1200 1400 1600 1800

T
ra

in
in

g
 l

o
ss

Epoch

PCA
6 layers
10 layers
14 layers
18 layers

...
Training poses

Fig. 8. Network curves for training the bunny model. Neural Cubature is

trained by alternating 𝑆 and𝑊 nets, and we use the parameters from the

previous alternation. Adding more layer helps reduce the training error

effectively.

6.2 Network Training

We use PyTorch and Adam for all our network training. For training

DAE, we start with an initial learning rate of 0.001. After 300 epochs,

we shrink the learning rate by 20%, and another 20% after 3, 000

epochs. Normally, a training set includes 20, 000 poses for a model.

When training the neural Cubature networks 𝑆 and𝑊 , we stick with

the learning rate of 0.001. In each alternation, we run 15 epochs for

both 𝑆 and𝑊 . Depending on howmany Cubature elements we want

to pick, the neural Cubature training could take several thousand

epochs. The total network training time is less than expected, which

takes ten to twenty minutes. Generating the training poses is the

most expensive part. It often needs a couple of hours. A typical

training curve is reported in Fig. 8, which is for the bunny model.

We note that the expressivity of the DAE improves with increased

depth. This can be observed from Fig. 8: if the DAE is shallow e.g.,

fours layers, its performance is only marginally better than PCA;

but with a deeper DAE, the error decreases sharply.

6.3 Comparison I: Our Method vs. Linear Model Reduction

Fig. 9. The ground truth poses of łbend-

ingž (left) and łopening armž (right) of the

dinosaur model.

First, we report a compre-

hensive comparative exper-

iment between our DAE-

based nonlinear reduction

and other commonly seen

linear reduction methods

including: PCA, physical

modal derivative (PMD) [Bar-

bič and James 2005], and

geometric modal derivative

(GMD) [Von-Tycowicz et al.

2015]. Both physical and

geometric modal derivatives are based on linear modal analysis

(LMA) [Pentland and Williams 1989]. PMD is computed via solving

a set of static equilibria around the rest shape, while GMD constructs

the subspace matrix by spanning each LMA basis to nine tangent

directions corresponding to its local linear transformation. In this

experiment, we first compute 50 LMA basis vectors. Based on them,

we compute 50 × (50 + 1)/2 = 1, 275 PMD bases and 50 × 9 = 450

GMD bases. Finally, we apply mass-PCA as described in [Barbič and

James 2005] to extract the subspace matrix for the linear reduction.

We report the results with a dinosaur model because of its concave

and non-trivial geometry.

In the first set of comparison, as shown in Fig. 10 (left), we fix the

feet of the model and bend the dinosaur backwards. We compare the

final poses of different reduction methods under different subspace

sizes: 10, 15, and 20. Our method adopts a mixed linear and nonlinear

subspaces superposition, the dimensionality of each subspace is set

as 𝑛𝑝 = 5, 𝑛𝑞 = 5; 𝑛𝑝 = 10, 𝑛𝑞 = 5; and 𝑛𝑝 = 10, 𝑛𝑞 = 10. The

ground truth shape is given in Fig. 9 (left).

In this experiment, we can see a clear advantage of our method

over PCA-based linear reduction. We think the reason is straight-

forward, DAE is known to be more expressive than conventional

PCA especially for nonlinear data sets. In addition, we find that

PMD also gives very good results while GMD does not perform

well. We assume this is because you need to fully incorporate all 450

geometric derivative modes in GMD to first-order approximate the

derivative of LMA modes reasonably well. PMD is optimal for low-

frequency deformations like this dinosaur bending. Indeed, PMD is

exactly designed to capture such deformations, while our method is

based on a data set generated randomly. From this perspective, it is

actually encouraging to see our method yields comparable results

in PMD’s łhome fieldž. Another common trend for all the reduction

methods is that the deformation improves with increased subspace

dimensions.

To further verify our hypothesis, we generate another set of

training poses (500 poses), where we only add random forces at the

hands of the dinosaur. This type of deformation is local and high-

frequency, which are less friendly for PMD as the bending pose. In

the test, we ask the dinosaur to open its arm by applying forces

to its hands outwards. All the other settings remain unchanged.

As shown in Fig. 10 (right), the difference between our method

and PMD becomes more obvious in this experiment. The ground

truth result is the right snapshot of Fig. 9. Interestingly, when we

narrow our training sampling at the hands, the performance of

PCA also gets much better. We can see from the figure that PCA is

very close to our method. This is because local deformation does

not necessarily suggest higher nonlinearity. In the łopening armž

test, we only generate 500 training poses, which can be fairly well

captured by PCA. The advantage of nonlinear reduction is more

observable when the subspace size is further condensed (e.g., when

𝑛 = 10).

6.4 Comparison II: Our Method vs. Latent Space Dynamics

We are not the first to leverage DAE to perform nonlinear reduction.

Latent space dynamics (LSD) [Fulton et al. 2019] is closely relevant

to our method. Both our method and LSD share the same high-level

High-order Differentiable Autoencoder for Nonlinear Model Reduction • 11

PCA GMD PMD Ours

Su
bs

pa
ce

 s
iz

e
10

Su
bs

pa
ce

 s
iz

e
15

Su
bs

pa
ce

 s
iz

e
20

PCA GMD PMD Ours

Fig. 10. We compare simulation results of the dinosaur model using various model reduction methods: PCA, physical modal derivative (PMD), geometric

modal derivative (GMD), and our method. The ground truth shapes are given in Fig. 9. On the left, we globally bend the dinosaur, and on the right, we try to

apply local forces at its hands.

Ground truth Ours Latent space dynamics

Frame 10Frame 5 Frame 10 Frame 10

Fig. 11. Latent space dynamics [Fulton et al. 2019] uses a trimmed for-

mulation to avoid the evaluation of high-order derivative of DAE. This

simplification leads to serious artifacts when the model moves under a high

velocity.

motivation of nonlinear subspace simulation, and both choose to use

autoencoder as the machinery of the reduction in elastic simulation.

Therefore, we consider LSD our major competitor. There are several

key differences between our method and LSD. The most important

one lies in the fact that the lack of differentiability in LSD needs a

simplified formulation that ignores the fictitious force f𝑓 𝑖𝑐𝑡 (Eq. (8)).

This could lead to significant error during the simulation when the

model undergoes a high-velocity motion.

Fig. 11 reports snapshots of this issue. In this test, we drag the head

of the dinosaur to left with an abrupt force. The artifact does not

appear serious at first few frames. However, once the accumulated

error reaches a certain level, the simulation diverges and cannot

be recovered even we slow down the animation later. In order to

have a fair comparison, we run our simulation fully in S𝑞 without

building the PCA space S𝑝 , and we do not use Cubature sampling

for subspace force integration to avoid other potential error sources.

Asmost dynamic simulation problems are prescribed byNewton’s

law of motion, being able to evaluate high-order derivatives of

nonlinear model reduction is a must for a successful deployment of

this technique. This turns out be the key contribution of our method.

In LSD, there are many smart strategies used to remedy the risk

induced by the missed f𝑓 𝑖𝑐𝑡 such as pre PCA filtering in the DAE

network etc. They are all compatible with our method, but the f𝑓 𝑖𝑐𝑡
issue does not even exist in our framework.

10 20 50 100 200

Neural Cubature [10] 91.1% 62.9% 39.1% 23.8% 16.3%

Neural Cubature [5] 87.1% 60.3% 37.1% 22.3% 15.7%

Greedy Cubature 88.4% 66.6% 47.1% 31.2% 19.2%

Table 1. Cubature sampling error using neural Cubature and classic Cuba-

ture method. This experiment is performed on an Armadillo model with 38K

elements. Neural Cubature [10] means we add 10 elements to the Cubature

set C based on each 𝑆 network prediction. Neural Cubature [5] adds 5 ele-

ments each time. Neural Cubature outperforms classic Cubature method

by a substantial margin: in general neural Cubature yields 30 − 40% less

error than classic greedy Cubature method.

6.5 Comparison III: Neural Cubature vs. Classic Cubature

In the next experiment, we would like to investigate the difference

between our neural Cubature and the classic Cubature method. We

12 • Shen, S. et al

first compare the fitting error of 10, 20, 50, 100, and 200 Cubature

elements. The results are reported in Tab. 1.

We can see from listed error percentages that neural Cubature

outperforms classic Cubature method [An et al. 2008] in the context

of nonlinear reduction. The selection network 𝑆 of neural Cubature

uses a GCN, which captures the geometry and topology information

of the input model, while classic Cubature method is solely alge-

braic. Another advantage of neural Cubature is its efficiency. Neural

Cubature allows us to choose multiple Cubature elements each time

when 𝑆 net predicts a score vector. We find that the Cubature train-

ing error is not sensitive to how many new Cubature elements we

add to C every time, as long as this is a reasonable number i.e., in

dozens ś picking five elements has a higher accuracy than picking

ten elements, but both are better than greedy Cubature (Tab. 1).

Fig. 12. We drag the left leg of the Ar-

madillo. Neural Cubature with 140 ele-

ments runs the simulation robustly. We

also visualize the weight value at each

Cubature element. Higher weighted ele-

ments are brighter. Greedy Cubature fails

in this simulation.

In addition, we can re-

use the network parame-

ters from the previous al-

ternation to warm start the

training for a faster con-

vergence (e.g., see Fig. 8).

With neural Cubature, we

can conveniently build a

bigger C set. Under CUDA-

assisted subspace integra-

tion, the neural Cubature

sampling error can be ef-

fectively suppressed. This

is hardly possible with clas-

sic Cubature method as

we need to solve a non-

negative least square prob-

lem with increasing size.

Building C of few hundred

elements would be very ex-

pensive. Fig. 12 shows a con-

crete experiment of simu-

lating an Armadillo using

greedy and neural Cubature

strategies with 140 Cubature elements. We fix Armadillo’s hand

and drag its leg downwards. Our neural Cubature with varying

weights simulates this animation robustly while greedy Cubature

fails (𝑛𝑝 = 10 and 𝑛𝑞 = 10). In this experiment, one needs to in-

crease greedy Cubature samples to over 250 to reduce the error in

the integration, which takes a few more training hours.

6.6 Comparison IV: CSFD vs. Finite Difference

We have briefly discussed in ğ 4 that finite difference is not numeri-

cally robust even for first-order cases. Its applicability in nonlinear

reduction is unlikely possible. To verify this, we implement second-

and third-order differentiation by recursively applying center finite

difference. The simulation does not converge no matter how we

tweak the perturbation size ℎ: ℎ = 1𝐸 − 3, ℎ = 1𝐸 − 5, ℎ = 1𝐸 − 7,

ℎ = 1𝐸 − 9. In fact, the simulation crashes almost immediately

when finite difference is used. We believe the increased depth of

the neural net imposes more challenges for finite difference to work

probably. However, CSFD is robust and accurate even for high-order

differentiations.

6.7 Implementation Details

We first use PyTorch to test and train our neural networks (DAE, 𝑆

and𝑊). After the training is complete, we re-implement the net with

CUDA, which is directly implanted in our simulation framework. Our

CUDA port is CSFD-capable, i.e., the forward and backward pass of

the network also takes multi-/complex values. This could be done by

overloading the real operators with their complex or multicomplex

counterparts.

Alternatively, we choose to use the Cauchy-Riemann (CR) for-

mulation [Ahlfors 1973; Luo et al. 2019] to achieve (multi-)complex

perturbations without overloading the complex arithmetic. CR equa-

tion represents a multicomplex number in the form of a real matrix.

Suppose 𝑧1 = 𝑧00 + 𝑧
0
1𝑖 , its CR form is a 2 × 2 matrix:

𝑧1 = 𝑧00 + 𝑧
0
1𝑖 =

[
𝑧00 −𝑧01
𝑧01 𝑧00

]
, where 𝑧1 ∈ C1 and 𝑧00, 𝑧

0
1 ∈ C0 = R.

Here, we use the superscript (·)𝑛 to denote the order of a multicom-

plex number. The CR matrix of 𝑧𝑛 can be constructed recursively

using the CR matrices of 𝑧𝑛−10 and 𝑧𝑛−11 as:

𝑧𝑛 = 𝑧𝑛−10 + 𝑧𝑛−11 𝑖𝑛 ∈ C𝑛 =

[
𝑧𝑛−10 −𝑧𝑛−11
𝑧𝑛−11 𝑧𝑛−10

]
. (22)

Each of the 2 × 2 blocks in Eq. (22) is a (𝑛 − 1)-order multicomplex

number, which can be further expanded with (𝑛 − 2)-order multi-

complex numbers and so on. Eventually, the CR form of 𝑧𝑛 becomes

a 2𝑛 × 2𝑛 real matrix.

With CR formula, we organize each network layer into a real

layer and an imaginary layer (or multiple multicomplex layers)

other than generalizing each neuron to be a complex or multiple

quantity. All the computations are now in real, and we implement

the forward pass of the net for FC layers with cuBLAS. The CRmatrix

multiplication is carried out block-wisely, so that we do not generate

redundant multiplications corresponding to the off diagonal blocks.

The activation is on the other hand, directly implemented by

launching CUDA threads. Fortunately, we do not have many different

types of activations. Only the periodic activation function sin(·) is
used. To this end, we just implement its naiv̈e expression up to the

third order to maximize the performance on CUDA without recursive

variable initialization. While the expression looks verbose (e.g., in

Appendix A and the supplementary document), computing the high-

order derivative of activation function only takes a small fraction of

the network forwards. The major computing efforts remain at FC

forward and backward passes.

6.8 Extensions and More Results

Our DAE-based nonlinearly reduced simulation algorithm can be

extended and integrated into other simulation frameworks at ease.

For instance, we can use the generalized Newton-Euler equation to

couple local deformation and rigid body dynamics [Kim and Delaney

2013; Shabana 2003]. The training poses need to be generated with

rigid body motion removed as well in this case. Fig. 13 reports a

real-time simulation of a falling bunny on wooden stairs. We use

implicit penalty force to resolve the collision and self-collision.

High-order Differentiable Autoencoder for Nonlinear Model Reduction • 13

Fig. 13. Falling bunny. We use generalized Newton-Euler equation to couple DAE-based model reduction with large rigid body motion to simulate free-floating

objects. The subspace configuration of the bunny is 𝑛𝑝 = 30 and 𝑛𝑞 = 10.

Ele. # Tri. 𝑛𝑝 + 𝑛𝑞 |C| # D. FPS

Dinosaur 18K 9K 30 + 10 100 ś 44 (31×)
Armadillo 40K 20K 30 + 10 140 ś 30 (35×)
Bunny 16K 8K 30 + 10 100 ś 45 (30×)
Cactus 233K 139K 10 + 6 6, 600 165 2.5 (56×)
Puffer ball 625K 120K 10 + 5 11, 400 321 1.4 (36×)

Table 2. Time performance of our nonlinear subspace simulator. # Ele. and

Tri. are the total numbers of elements and surface triangles on the model;

𝑛𝑝 +𝑏𝑞 reports the composition of our subspace configuration (per domain);

|C | is the number of Cubature elements used; # D. is the total number

of domains on the model; FPS is the simulation frame per second (and

speedups compared with single-core full simulation).

Fig. 14. Dropping an Armadillo into cactus. We use deformation substruc-

turing [Barbič and Zhao 2011] method to build multi-level subspaces at the

cactus. Each local domain has a compact subspace of 𝑛𝑝 = 10 and 𝑛𝑞 = 6.

For geometric-complex models, the advantage of nonlinear re-

duction could be further amplified with the domain decomposition

method [Barbič and Zhao 2011; Wu et al. 2015; Yang et al. 2013] in-

stead of naiv̈ely increasing the global subspace size. To this end, we

also couple our DAE-based nonlinear reduction with deformation

substructuring [Barbič and Zhao 2011], which delivers more inter-

esting animations with DAE-enriched local details. Two examples

are reported in Figs. 1 and 14. The puffer ball is an ideal vehicle to

deliver the advantage of this generalization. It has 320 elastic strings

with the same geometry. Therefore, the network training (for both

DAE and neural Cubature) of one string can be re-used for all other

strings. Thanks to its simple and symmetric geometry, depth of DAE

can also be cut to 8. The cactus example shown in Fig. 14 is another

representative case: the tree-like structure of the cactus allows an

effective hierarchical deployment of nonlinear subspaces. Here, we

have 165 domains on the cactus, and each domain has a subspace

of 𝑛𝑝 = 10 and 𝑛𝑞 = 6. Lastly, the simulation time performance is

summarized in Tab. 2.

7 CONCLUSION AND LIMITATION

In this paper, we present a framework combining classic reduced

deformable simulation with deep learning empowered data-driven

approaches. We advance state-of-the-art reduction methods by plug-

ging a deep autoencoder into the simulation pipeline. While some

existing work has attempted this idea before, we are the first to ad-

dress the high-order differentiability of the deep neural net in order

to accurately project nonlinear dynamics of deformable solids into

the tangent space of the deformation manifold. This is made possible

by carefully re-engineering complex-step finite difference in the

context of deep learning and complementing CSFD with reverse AD.

With a CSFD-augmented BP and CSFD directional derivatives, we

can evaluate the high-order derivatives of a deep net only withO(𝑛)
network passes. Based on this, we also propose a neural Cubature

scheme that allows a more efficient Cubature sampling and more

accurate weighting. Without ignoring inertia forces induced by the

time-varying tangent projection, we are able to simulate deformable

objects with nonlinear model reduction in real time robustly. We

believe CSFD-enabled differentiability paves the way to an in-depth

integration of deep neural network and physics-based simulation,

which could inspire many follow-up research efforts.

There are also several limitations of our framework. First, the

visual improvement of our nonlinear reductionmethod over existing

linear reduction method is not łwowž. After all, we are manipulating

a reduced simulation with only dozens of DOFs. We believe combing

neural network and other data-driven approaches used in graphics

could potentially improve this issue. For instance, if the further

deformation types are somehow known, we could use DAE to build

14 • Shen, S. et al

a more specific nonlinear subspace as in [Harmon and Zorin 2013].

Building hierarchical DAE is also a promising solution. It may be

possible to train a neural network to select multiple pre-trained

DAEs to locally expand the tangent space. Model reduction is a

powerful tool not only for deformable object simulation. To this

end, we will further investigate how to use nonlinear reduction

to improve other simulation problems like fluid, cloth, and sound

synthesis.

REFERENCES
Lars V Ahlfors. 1973. Complex Analysis. 1979.
Steven S An, Theodore Kim, and Doug L James. 2008. Optimizing cubature for efficient

integration of subspace deformations. ACM transactions on graphics (TOG) 27, 5
(2008), 1ś10.

Johannes Ballé, Valero Laparra, and Eero P Simoncelli. 2016. End-to-end optimized
image compression. arXiv preprint arXiv:1611.01704 (2016).

Jernej Barbič, Marco da Silva, and Jovan Popović. 2009. Deformable object animation
using reduced optimal control. In ACM SIGGRAPH 2009 papers. 1ś9.

Jernej Barbič, Funshing Sin, and Eitan Grinspun. 2012. Interactive editing of deformable
simulations. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1ś8.

Jernej Barbič and Yili Zhao. 2011. Real-time large-deformation substructuring. ACM
transactions on graphics (TOG) 30, 4 (2011), 1ś8.

Jernej Barbič and Doug L James. 2005. Real-time subspace integration for St. Venant-
Kirchhoff deformable models. In ACM Trans. Graph. (TOG), Vol. 24. ACM, 982ś990.

Atılım Günes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and JeffreyMark
Siskind. 2017. Automatic differentiation in machine learning: a survey. The Journal
of Machine Learning Research 18, 1 (2017), 5595ś5637.

Hervé Bourlard and Yves Kamp. 1988. Auto-association by multilayer perceptrons and
singular value decomposition. Biological cybernetics 59, 4-5 (1988), 291ś294.

Alain J Brizard. 2014. Introduction To Lagrangian Mechanics, An. World Scientific
Publishing Company.

H Martin Bücker, George Corliss, Paul Hovland, Uwe Naumann, and Boyana Norris.
2006. Automatic differentiation: applications, theory, and implementations. Vol. 50.
Springer Science & Business Media.

Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002.
Interactive skeleton-driven dynamic deformations. In ACM Trans. Graph. (TOG),
Vol. 21. ACM, 586ś593.

Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal warping: Real-time simulation of
large rotational deformation and manipulation. IEEE Trans. on Visualization and
Computer Graphics 11, 1 (2005), 91ś101.

François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K Pai. 2011. Sparse
meshless models of complex deformable solids. In ACM Trans. Graph. (TOG), Vol. 30.
ACM, 73.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A practical
gauss-seidel method for stable soft body dynamics. ACM Transactions on Graphics
(TOG) 35, 6 (2016), 1ś9.

Lawson Fulton, Vismay Modi, David Duvenaud, David IW Levin, and Alec Jacobson.
2019. Latent-space Dynamics for Reduced Deformable Simulation. In Computer
graphics forum, Vol. 38. Wiley Online Library, 379ś391.

Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Dinesh K Pai. 2011. Frame-
based elastic models. ACM Trans. Graph. (TOG) 30, 2 (2011), 15.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. 6.2. 2.3 softmax units for
multinoulli output distributions. Deep learning (2016), 180ś184.

Gaël Guennebaud, Benoit Jacob, et al. 2010. Eigen. URl: http://eigen. tuxfamily. org
(2010).

Brian Guenter. 2007. Efficient symbolic differentiation for graphics applications. In
ACM SIGGRAPH 2007 papers. 108śes.

Amirhossein Habibian, Ties van Rozendaal, Jakub M Tomczak, and Taco S Cohen. 2019.
Video compression with rate-distortion autoencoders. In Proceedings of the IEEE
International Conference on Computer Vision. 7033ś7042.

Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W Sumner, Forrester Cole,
Mark Meyer, Tony DeRose, and Markus Gross. 2014. Subspace clothing simulation
using adaptive bases. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1ś9.

David Harmon and Denis Zorin. 2013. Subspace integration with local deformations.
ACM Transactions on Graphics (TOG) 32, 4 (2013), 1ś10.

Kris K Hauser, Chen Shen, and James F O’Brien. 2003. Interactive Deformation Using
Modal Analysis with Constraints.. In Graphics Interface, Vol. 3. 16ś17.

Florian Hecht, Yeon Jin Lee, Jonathan R Shewchuk, and James F O’Brien. 2012. Updated
sparse cholesky factors for corotational elastodynamics. ACM Trans. Graph. (TOG)
31, 5 (2012), 123.

Robert Hecht-Nielsen. 1992. Theory of the backpropagation neural network. In Neural
networks for perception. Elsevier, 65ś93.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensionality of
data with neural networks. science 313, 5786 (2006), 504ś507.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. 2001.
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.

Doug L James and Christopher D Twigg. 2005. Skinning mesh animations. ACM
Transactions on Graphics (TOG) 24, 3 (2005), 399ś407.

Theodore Kim and John Delaney. 2013. Subspace fluid re-simulation. ACM Transactions
on Graphics (TOG) 32, 4 (2013), 1ś9.

Theodore Kim and Doug L James. 2009. Skipping steps in deformable simulation with
online model reduction. In ACM Trans. Graph. (TOG), Vol. 28. ACM, 123.

Dana A Knoll and David E Keyes. 2004. Jacobian-free NewtonśKrylov methods: a
survey of approaches and applications. J. Comput. Phys. 193, 2 (2004), 357ś397.

L’ubor Ladickỳ, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross.
2015. Data-driven fluid simulations using regression forests. ACM Transactions on
Graphics (TOG) 34, 6 (2015), 1ś9.

Lei Lan, Ran Luo, Marco Fratarcangeli, Weiwei Xu, HuaminWang, Xiaohu Guo, Junfeng
Yao, and Yin Yang. 2020. Medial Elastics: Efficient and Collision-Ready Deformation
via Medial Axis Transform. ACM Transactions on Graphics (TOG) 39, 3 (2020), 1ś17.

Gregory Lantoine, Ryan P Russell, and Thierry Dargent. 2012. Using multicomplex
variables for automatic computation of high-order derivatives. ACM Transactions
on Mathematical Software (TOMS) 38, 3 (2012), 1ś21.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast
Simulation of Mass-spring Systems. ACM Trans. Graph. (TOG) 32, 6 (2013), 214:1ś
214:7.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for
real-time simulation of hyperelastic materials. ACM Transactions on Graphics (TOG)
36, 3 (2017), 1ś16.

Ran Luo,Weiwei Xu, Tianjia Shao, Hongyi Xu, and Yin Yang. 2019. Accelerated complex-
step finite difference for expedient deformable simulation. ACM Transactions on
Graphics (TOG) 38, 6 (2019), 1ś16.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
2015. Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015).

Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross.
2010. Unified simulation of elastic rods, shells, and solids. In ACM Trans. Graph.
(TOG), Vol. 29. ACM, 39.

Joaquim RRA Martins, Peter Sturdza, and Juan J Alonso. 2003. The complex-step
derivative approximation. ACM Transactions on Mathematical Software (TOMS) 29,
3 (2003), 245ś262.

Rajaditya Mukherjee, Xiaofeng Wu, and Huamin Wang. 2016. Incremental deformation
subspace reconstruction. In Computer Graphics Forum, Vol. 35. Wiley Online Library,
169ś178.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.
Meshless deformations based on shape matching. In ACM Trans. Graph. (TOG),
Vol. 24. ACM, 471ś478.

Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wim-
mer, and Leif Kobbelt. 2016. Non-linear shape optimization using local subspace
projections. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1ś13.

Vinod Nair and Geoffrey E Hinton. 2009. 3D object recognition with deep belief nets.
Advances in neural information processing systems 22 (2009), 1339ś1347.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In ICML.

HM Nasir. 2013. A new class of multicomplex algebra with applications. Mathematical
Sciences International Research Journal 2, 2 (2013), 163ś168.

CUDA Nvidia. 2008. Cublas library. NVIDIA Corporation, Santa Clara, California 15, 27
(2008), 31.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703 (2019).

Alex Pentland and John Williams. 1989. Good vibrations: Modal dynamics for graphics
and animation. In Proceedings of the 16th annual conference on Computer graphics
and interactive techniques. 215ś222.

Eric Pesheck, Nicolas Boivin, Christophe Pierre, and Steven W Shaw. 2001. Nonlin-
ear modal analysis of structural systems using multi-mode invariant manifolds.
Nonlinear Dynamics 25, 1-3 (2001), 183ś205.

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann
Dauphin, and Xavier Glorot. 2011a. Higher order contractive auto-encoder. In
Joint European conference on machine learning and knowledge discovery in databases.
Springer, 645ś660.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. 2011b.
Contractive auto-encoders: Explicit invariance during feature extraction. In Icml.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. 2015.
Imagenet large scale visual recognition challenge. International journal of computer
vision 115, 3 (2015), 211ś252.

High-order Differentiable Autoencoder for Nonlinear Model Reduction • 15

Sangriyadi Setio, Herlien D Setio, and Louis Jezequel. 1992. Modal analysis of nonlinear
multi-degree-of-freedom structures. IJAEM 7, 2 (1992), 75ś93.

Ahmed A Shabana. 2003. Dynamics of multibody systems. Cambridge university press.
Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christopher D

Manning. 2011. Semi-supervised recursive autoencoders for predicting sentiment
distributions. In Proceedings of the 2011 conference on empirical methods in natural
language processing. 151ś161.

Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. 2015. Smoothed aggregation
multigrid for cloth simulation. ACM Trans. Graph. (TOG) 34, 6 (2015), 245.

Adrien Treuille, Andrew Lewis, and Zoran Popović. 2006. Model reduction for real-time
fluids. ACM Transactions on Graphics (TOG) 25, 3 (2006), 826ś834.

Christoph Von-Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt.
2015. Real-time nonlinear shape interpolation. ACM Transactions on Graphics (TOG)
34, 3 (2015), 1ś10.

Huamin Wang, James F O’Brien, and Ravi Ramamoorthi. 2011. Data-driven elastic
models for cloth: modeling and measurement. ACM transactions on graphics (TOG)
30, 4 (2011), 1ś12.

Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the
GPU. ACM Trans. Graph. (TOG) 35, 6 (2016), 212.

Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear subspace
design for real-time shape deformation. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1ś11.

Steffen Wiewel, Moritz Becher, and Nils Thuerey. 2019. Latent space physics: Towards
learning the temporal evolution of fluid flow. In Computer Graphics Forum, Vol. 38.
Wiley Online Library, 71ś82.

Stephen Wolfram et al. 1999. The MATHEMATICA® book, version 4. Cambridge univer-
sity press.

Xiaofeng Wu, Rajaditya Mukherjee, and Huamin Wang. 2015. A unified approach for
subspace simulation of deformable bodies in multiple domains. ACM Transactions
on Graphics (TOG) 34, 6 (2015), 1ś9.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. 2020. A comprehensive survey on graph neural networks. IEEE Transactions
on Neural Networks and Learning Systems (2020).

Hongyi Xu and Jernej Barbič. 2016. Pose-space subspace dynamics. ACM Transactions
on Graphics (TOG) 35, 4 (2016), 1ś14.

Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbič. 2015. Interactive material design
using model reduction. ACM Transactions on Graphics (TOG) 34, 2 (2015), 1ś14.

Yin Yang, Dingzeyu Li, Weiwei Xu, Yuan Tian, and Changxi Zheng. 2015. Expediting
precomputation for reduced deformable simulation. ACM Trans. Graph. (TOG) 34, 6
(2015).

Yin Yang, Weiwei Xu, Xiaohu Guo, Kun Zhou, and Baining Guo. 2013. Boundary-aware
multidomain subspace deformation. IEEE transactions on visualization and computer
graphics 19, 10 (2013), 1633ś1645.

Nianyin Zeng, Hong Zhang, Baoye Song, Weibo Liu, Yurong Li, and Abdullah M
Dobaie. 2018. Facial expression recognition via learning deep sparse autoencoders.
Neurocomputing 273 (2018), 643ś649.

Jiayi Eris Zhang, Seungbae Bang, David I.W. Levin, and Alec Jacobson. 2020. Comple-
mentary Dynamics. ACM Transactions on Graphics (2020).

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient
multigrid method for the simulation of high-resolution elastic solids. ACM Trans.
Graph. (TOG) 29, 2 (2010), 16.

Olgierd Cecil Zienkiewicz, Robert Leroy Taylor, Olgierd Cecil Zienkiewicz, and
Robert Lee Taylor. 1977. The finite element method. Vol. 36. McGraw-hill Lon-
don.

A FIRST-, SECOND-, AND THIRD-ORDER DERIVATIVE
OF NONLINEAR ACTIVATION

In this appendix, we give the analytic formula for first- and second-

order derivative of the activation function sin(·) used in our net-

work. We give partial formulation for the third-order derivative too,

which is quite verbose. For the completeness, we move the entire

formulation into the supplementary document.

The first derivative of sin(·) under (first-order) CSFD is:

sin(𝑎 + 𝑏𝑖1) = sinh(𝑎) cos(𝑏) + cosh(𝑎) sinh(𝑏)𝑖1 .

The second-order CSFD perturbation of sin(·) can be written as:

sin(𝑎 + 𝑏𝑖1 + 𝑐𝑖2 + 𝑑𝑖1𝑖2) = 𝑎′ + 𝑏 ′𝑖1 + 𝑐 ′𝑖2 + 𝑑 ′𝑖1𝑖2, where
𝑎′ = sin(𝑎) cosh(𝑏) cosh(𝑐) cos(𝑑) − cos(𝑎) sinh(𝑏) sinh(𝑐) sin(𝑑),
𝑏 ′ = sin(𝑎) cosh(𝑏) sinh(𝑐) sin(𝑑) + cos(𝑎) sinh(𝑏) cosh(𝑐) cos(𝑑),
𝑐 ′ = cos(𝑎) cosh(𝑏) sinh(𝑐) cos(𝑑) + sin(𝑎) sinh(𝑏) cosh(𝑐) sin(𝑑),
𝑑 ′ = cos(𝑎) cosh(𝑏) cosh(𝑐) sin(𝑑) − sin(𝑎) sinh(𝑏) sinh(𝑐) cos(𝑑).
Similarly, we write the third-order multicomplex perturbation of

sin(·) as:

sin(𝑎 + 𝑏𝑖1 + 𝑐𝑖2 + 𝑑𝑖1𝑖2 + 𝑒𝑖3 + 𝑓 𝑖1𝑖3 + 𝑔𝑖2𝑖3 + ℎ𝑖1𝑖2𝑖3) =
𝑎′ + 𝑏 ′𝑖1 + 𝑐 ′𝑖2 + 𝑑 ′𝑖1𝑖2 + 𝑒 ′𝑖3 + 𝑓 ′𝑖1𝑖3 + 𝑔′𝑖2𝑖3 + ℎ′𝑖1𝑖2𝑖3 .

The coefficient 𝑎′ of the real part is:

𝑎′ = − sin(𝑎) cosh(𝑏) cosh(𝑐) cos(𝑑) cosh(𝑒) cos(𝑓) cos(𝑔) cosh(ℎ)
+ sin(𝑎) cosh(𝑏) cosh(𝑐) cos(𝑑) sinh(𝑒) sin(𝑓) sin(𝑔) sinh(ℎ)
+ sin(𝑎) cosh(𝑏) sinh(𝑐) sin(𝑑) cosh(𝑒) cos(𝑓) sin(𝑔) sinh(ℎ)
+ sin(𝑎) cosh(𝑏) sinh(𝑐) sin(𝑑) sinh(𝑒) sin(𝑓) cos(𝑔) cosh(ℎ)
− cos(𝑎) sinh(𝑏) cosh(𝑐) cos(𝑑) cosh(𝑒) cos(𝑓) sin(𝑔) sinh(ℎ)
− cos(𝑎) sinh(𝑏) cosh(𝑐) cos(𝑑) sinh(𝑒) sin(𝑓) cos(𝑔) cosh(ℎ)
− cos(𝑎) sinh(𝑏) sinh(𝑐) sin(𝑑) cosh(𝑒) cos(𝑓) cos(𝑔) cosh(ℎ)
+ cos(𝑎) sinh(𝑏) sinh(𝑐) sin(𝑑) sinh(𝑒) sin(𝑓) sin(𝑔) sinh(ℎ)
+ cos(𝑎) cosh(𝑏) sinh(𝑐) cos(𝑑) sinh(𝑒) cos(𝑓) sin(𝑔) cosh(ℎ)
− cos(𝑎) cosh(𝑏) sinh(𝑐) cos(𝑑) cosh(𝑒) sin(𝑓) cos(𝑔) sinh(ℎ)
− cos(𝑎) cosh(𝑏) cosh(𝑐) sin(𝑑) sinh(𝑒) cos(𝑓) cos(𝑔) sinh(ℎ)
− cos(𝑎) cosh(𝑏) cosh(𝑐) sin(𝑑) cosh(𝑒) sin(𝑓) sin(𝑔) cosh(ℎ)
+ sin(𝑎) sinh(𝑏) sinh(𝑐) cos(𝑑) sinh(𝑒) cos(𝑓) cos(𝑔) sinh(ℎ)
+ sin(𝑎) sinh(𝑏) sinh(𝑐) cos(𝑑) cosh(𝑒) sin(𝑓) sin(𝑔) cosh(ℎ)
+ sin(𝑎) sinh(𝑏) cosh(𝑐) sin(𝑑) sinh(𝑒) cos(𝑓) sin(𝑔) cosh(ℎ)
− sin(𝑎) sinh(𝑏) cosh(𝑐) sin(𝑑) cosh(𝑒) sin(𝑓) cos(𝑔) sinh(ℎ).

(23)

The exact formulation of 𝑏 ′, 𝑐 ′, 𝑑 ′, 𝑒 ′, 𝑓 ′, 𝑔′, and ℎ′ can be found in

the supplementary document.

	Abstract
	1 Introduction
	2 Related Work
	3 Linear and Nonlinear Model Reduction
	3.1 Linear Model Reduction
	3.2 Nonlinear Model Reduction
	3.3 A Quick Discussion
	3.4 PCA-orthogonal DAE Reduction
	3.5 Network Architecture
	3.6 The Simulation System

	4 High-order Differentiability via CSFD
	4.1 First- and High-order CSFD
	4.2 Differentiation under Tensor Contraction
	4.3 Right Contraction via Directional Derivative
	4.4 Left Contraction via Complex-step Backpropagation

	5 Neural Cubature Sampling and Weighting
	5.1 Cubature Selection with a GCN
	5.2 Weight Prediction

	6 Experimental Results
	6.1 Training Poses Generation
	6.2 Network Training
	6.3 Comparison I: Our Method vs. Linear Model Reduction
	6.4 Comparison II: Our Method vs. Latent Space Dynamics
	6.5 Comparison III: Neural Cubature vs. Classic Cubature
	6.6 Comparison IV: CSFD vs. Finite Difference
	6.7 Implementation Details
	6.8 Extensions and More Results

	7 Conclusion and Limitation
	References
	A First-, Second-, and Third-order Derivative of Nonlinear Activation

