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Monocular Teach-and-Repeat Navigation using a Deep Steering

Network with Scale Estimation

Cheng Zhao1, Li Sun2, Tomáš Krajnı́k3, Tom Duckett4 and Zhi Yan5∗

Abstract— This paper proposes a novel monocular teach-and-
repeat navigation system with the capability of scale awareness,
i.e. the absolute distance between observation and goal images.
It decomposes the navigation task into a sequence of visual
servoing sub-tasks to approach consecutive goal/node images
in a topological map. To be specific, a novel hybrid model,
named deep steering network is proposed to infer the navigation
primitives according to the learned local feature and scale
for each visual servoing sub-task. A novel architecture, Scale-
Transformer, is developed to estimate the absolute scale between
the observation and goal image pair from a set of matched deep
representations to assist repeating navigation. The experiments
demonstrate that our scale-aware teach-and-repeat method
achieves satisfying navigation accuracy, and converges faster
than the monocular methods without scale correction given an
inaccurate initial pose. The proposed network is integrated into
an onboard system deployed on a real robot to achieve real-time
navigation in a real environment.

We release this research as an open-source project
to contribute to the robot visual navigation research
community: https://github.com/dachengxiaocheng/
TRN-Transformer.git A demonstration video can be
found online: https://youtu.be/fKUptTPOGEU

I. INTRODUCTION

Vision-based robot navigation has excellent potential for

a wide range of applications. Monocular-based navigation

benefits from low-cost, light-weight hardware, which can be

mass produced and quickly deployed. One of the challenges

in achieving long-distance monocular navigation in large-

scale areas is caused by the effect known as the scale drift,

which makes monocular mapping of large areas complicated.

This effect originates from the fact that cameras do not

provide any direct information on the metric scale of the

perceived scene or to determine the real-world distance

between two images captured from different positions.

Recent progress in Simultaneous Localisation and Map-

ping (SLAM) focuses on improving visual odometry and

building accurate metric maps. The state-of-the-art (SOTA)

monocular SLAM methods [1], [2] use scale propagation

to estimate the scale and attempt to mitigate the scale drift

through loop closure. Some research employs stereo cameras

or range sensors for mapping and monocular cameras for

localisation. Moreover, in VINS-Mono [3], an inertial sensor

is leveraged to estimate the metric scale using IMU pre-

integration. To achieve mapping of large areas, these methods
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Fig. 1: Overview of monocular teach-and-repeat navigation

using a topological map. Please note that the 2D grid map

is only used to show the navigation environment and is not

required during teach-and-repeat navigation.

require expensive sensors, such as lidar-scanners, delicately

calibrated stereo cameras, or precise camera-IMU sensors.

Emerging approaches for learning-based visual odome-

try (VO) can estimate the ego-motion with absolute scale

using data-driven methods [4], [5], [6], or use monocular

depth estimation to recover the scale [7], [8], [9], making

monocular SLAM scalable. Data-driven monocular VO ap-

proaches can be grouped into supervised [4], [5], [6] and

self-supervised [7], [10] approaches. The former formulate

VO as a regression problem using the powerful non-linearity

of deep neural networks. The latter usually learn the ego-

motion and depth simultaneously, by integrating geometric

constraints into the loss function to achieve self-supervised

learning.

However, navigation does not require geometrically con-

sistent maps, and several vision-based methods do not rely

on SLAM-built 3D maps of the entire environment or

metric-based localisation in a global coordination frame. In

particular, visual teach-and-repeat (VT&R) is a paradigm

where the robot is first driven via teleoperation and can then

repeat the trajectory by applying corrections from visual or



location residuals. In [11], [12], only localisation in local

maps is required for large-scale VT&R. Topological map-

based navigation is proposed in [13], [14], [15], where the

local map is further simplified as consecutive images (key-

frames). It is worth noting that the same navigation principle

has recently been deployed on unmanned aerial vehicles [16].

There are multiple ways to navigate using a topological

map. The navigation task can be formulated as a sequence

of visual servoing problems [13], where the learned robot

motion can be repeated through approximating consecutive

goal images tied to a topological map. In the research of

[13], [14], [17], [18], the visual path (topological map) is

represented as a set of images captured in the teach phase. In

the repeat phase, visual servoing is used to traverse through

all image nodes in the map. The research in [15], [19] uses

a visual offset obtained by histogram voting rather than es-

timating the relative pose to control the heading of the robot

in the repeat phase. A proof of the convergence between

teaching and repeating trajectories is provided in [15], [18],

showing that the robot trajectory eventually converges to the

taught path even if localisation is not performed explicitly

and the scale is unknown.

Recent research [20], [21], [22] achieve path following

style navigation using deep neural network. A visual memory

mechanism in [20] is presented to perform path following

and homing. There are two joint networks inside: one is for

path abstraction generation, and another one is for acting

to retrace the path. A zero-shot visual imitation mechanism

in [21] is proposed to alleviate the strong supervision of

expert actions to learn to imitate navigation. A deep visual

model predictive control-policy learning method is proposed

in [22] to perform visual navigation while avoiding colli-

sions with unseen objects on the navigation path using a

sequence of omnidirectional images. These methods achieve

impressive performance in the simulation environment or

small office environment. However, they don’t demonstrate

the ability to achieve a relatively long distance path following

navigation in the real environment.

Thus monocular SLAM is not strictly necessary for robot

navigation. On the other hand, bio-inspired topological rep-

resentations are naturally scalable for large-scale naviga-

tion problems [23]. Our intuition is to combine scalable

topological map-based localisation with deep-learned local

features and scale, in order to decompose the navigation

task into a series of visual servoing subtasks within each

topological node, as shown in Fig. 1. The direct scale

estimation obtained by the proposed deep network improves

the robustness, scalability, accuracy and convergence rate of

monocular teach-and-repeat navigation compared to methods

that are scale-unaware. In summary, our method includes the

following new features:

• A novel hybrid model, namely a deep steering network,

is proposed to infer the navigation primitives, i.e. a

sequence of linear and angular velocities to approach the

nodes in a topological map. The robot angular velocity

is inferred from matching of learned local features

followed by histogram voting. The robot linear velocity

Fig. 2: Overview of the two processes: teaching (mapping)

and repeating (navigation).

is adjusted by applying absolute scale estimation on the

odometry monitor to select the correct topological node

map.

• A novel architecture, named Scale-Transformer, is de-

vised to learn absolute scale between the observation

and goal image pair from the matched deep represen-

tations. It can extract co-contextual information from a

set of individual representations using a self-attention

mechanism to enhance the feature distinctiveness.

• The deep steering model is integrated into a monocular

teach-and-repeat navigation system, achieving scalable

navigation using a topological map in real-time. Bene-

fiting from the learned geometric priors, our approach

can effectively eliminate the offsets derived from an

inaccurate initial pose.

II. MONOCULAR TEACH AND REPEAT NAVIGATION

A. Problem Formulation and Challenges

Monocular teach-and-repeat navigation includes separate

phases for teaching and repeating, as shown in Fig. 2. The

robot is first driven manually using a joystick while some

representation of its experience is created from the on-

board sensory data. The goal is to repeat the same path

autonomously using this taught experience.

Most other approaches for teach-and-repeat navigation are

based on localisation [11], while we use the visual servoing

formulation. Given a goal image (i.e. a topological node in

the map), a motion primitive should be inferred to minimise

the error between the goal and on-board camera images.

Instead of calculating the Jacobians, as widely used in visual

servoing, we simply need to estimate the visual offset with

respect to the horizontal direction of the camera (i.e., y

axis) because the robot navigation mission can be simplified

as a 3DoF problem. Consequently, the robot can adjust its

heading according to the goal image. Once a goal image has

been approached, the navigator retrieves a new goal image



Fig. 3: Deep Steering Network Architecture

(i.e., next keyframe image) and this process is executed

repeatedly until the destination image is approached.

However, monocular-based navigation faces several chal-

lenges. Firstly, the translational error cannot be estimated

from two paired images due to the unknown absolute scale

factor. In turn, the motion primitive on the linear direction

is hard to estimate. To estimate the linear velocity, we first

retrieve recorded velocities from the teaching experience

(also known as the ‘path profile’ [18]) as a prior to initialise

the motion. Then, we adjust it using our scale estimator in

the deep steering network. As a result, the robot is able

to estimate precise primitives (including both linear and

angular velocities) to converge to the goal image. Therefore,

unlike [15] and [18], our framework can efficiently correct

tangential errors to the taught path. We demonstrate in the

experiments that this results in faster convergence to the

taught path, thereby improving the robustness and accuracy

of the system.

B. Teach Phase (Mapping)

In this paper, the learned experience is represented in the

form of a topological map. The topological map consists of

keyframe images and the ‘path profile’. To be more specific,

we save the keyframe images at fixed distance intervals1

according to the integrated translational distance provided

by the wheel-encoder odometry of the robot. We further

use keyframe images as submaps to simplify the mapping

process and eliminate the risk of corrupted mapping for long-

distance teach-and-repeat. Another benefit of topological

1
0.2m in our experiments.

mapping is the efficiency of running on devices of low-

computational capacity. The other essential component of

the map is the ‘path profile’ which records the joystick

commands, e.g. accelerating at 2m, turn right at 21.2m, and

stop at 52.3m, etc. The joystick commands can be translated

to continuous linear and angular velocities to represent the

dynamics of the robot. The aim of using a ‘path profile’ is

to provide the robot with a prior on movement during the

repeat phase, and the traversal distance can also be used to

associate corresponding map images during navigation.

C. Repeat Phase (Navigation)

The key component of our navigation method is a deep

‘steering’ model which can infer the robot actions to ap-

proach goal images. The input to the steering network

comprises two images, i.e. goal/map image and observation/-

camera image, and they will go through the computational

graph to obtain the rotational and translational errors. The

rotational error is used to infer the angular velocity and

the translational error is applied to the current odometry for

correct goal image selection. In practice, the goal images

can always be precisely located and the primitives can be

assembled by the linear velocity from the ‘path profile’

and the angular velocity can be converted linearly from the

rotational error. As a result, in each topological node, the goal

image will be approximated and approached, and this process

will be executed until the robot reaches the destination node.

More details of the steering network can be found in the next

section.



III. DEEP STEERING MODEL

The key component inside our monocular teach-and-repeat

navigation system is a hybrid model, namely a deep steering

network. As shown in Fig. 3, the deep steering network

consists of three main components: 1) learning local fea-

ture extraction and matching, 2) Scale-Transformer, and 3)

inference of navigation primitives.

A. Learning Local Feature Extraction and Matching

Given the map image IM and camera image IC data-

pair, we feed them into a SuperPoint [24] network to extract

the interest points p and descriptors d. SuperPoint is a

self-supervised network consisting of a VGG-style feature

encoder followed by a detector branch and a descriptor

branch. We rewrite the nearest neighbor matching (NN-

Matching) algorithm as a new differentiable NN-Matching

layer following SuperPoint in order to achieve end-to-end

trainable manner. According to the descriptor distance cal-

culation, differentiable NN-Matching provides the matched

interest point pair (pM , pC) with the corresponding matched

descriptor distance dMC .

In this paper, we choose SuperPoint with differentiable

NN-Matching for the local feature extraction and matching

due to its run time performance. Other more powerful

methods such as SuperGlue [25] are not fast enough to be

deployed in our system because of the real-time performance

requirement for robot navigation in real environments.

B. Scale-Transformer for Scale Estimation

We propose a novel architecture, named Scale-

Transformer, to learn scale from a set of irregular matched

correspondence representations. As shown in Fig.3, the

network includes 3 Transformer encoder stacks in series, 2

shared linear stacks at the head and bottom with a shortcut

skip connection, and a Multi-Layer Perceptron (MLP) at the

end.

Given a set of correspondences (pM , pC , dMC), we firstly

utilise a linear stack f to obtain the high-dimensional feature

representation F ,

F = f(pM ⊕ (pM − pC)⊕ dMC), (1)

where ⊕ refers to the concatenation. However, this feature

representation F suffers from ambiguities due to a lack of

contextual cues. There are no interactions between these in-

dividual representations learning from an irregular regulated

data structure. Inspired by the success of Transformer [26]

in natural language processing, we treat the set of individual

representations F as a “long sentence” of feature represen-

tations. Thus, we employ a residual transformer encoder to

aggregate the contextual cues for one representation from all

the other representations to enhance feature distinctiveness.

The Transformer encoder consists of a series of sub-

architectures including multi-head self-attention (MHSA),

feed-forward network (FFN) and layer normalization (LN),

which can be stacked on top of each other multiple times.

The Transformer encoder extracts a co-contextual message

Attn captured by the MHSA mechanism,

Attn([Qi,Ki, Vi]) = concat([softmax(
Qi ·KT

i√
dk

)Vi]), (2)

where dk denotes the dimension of queries and Qi,Ki, Vi

stand for the ith head of queries, keys, and values of each

feature representation F , respectively. We adopt four-head

attention, i ∈ [1, 2, 3, 4] in our implementation. The MHSA

mechanism automatically builds connections between a cur-

rent feature representation and the other salient interesting

feature representations.

The attentional representation A can be obtained as,

A′ = LN(F +Attn), (3)

A = LN(FFN(A′) +A′). (4)

After going through the 3 Transformer encoder stacks in se-

ries, the individual representation F of each correspondence

is upgraded to attentional representation A.

Finally, a MLP regression is used to predict the scale S
between the map image IM and camera image IC ,

S = MLP (f
′

(F ⊕A)), (5)

where ⊕ refers to the concatenation and f
′

is another linear

stack. Here, the scale S = (Sx,Sy,Sz) refers to a three-

dimensional translation between the map image IM and

camera image IC . The coordinate system in this paper is

defined as, x : right (horizontal), y : down (vertical), z :

forward (horizontal). The ℓ2 loss function is employed during

the network training,

L(IM , IC) =‖ S − SMCL ‖2 +λ · ‖W‖2, (6)

where W are the trainable weights and λ is a scale factor.

SMCL is the “ground truth” scale obtained by the 2D laser-

based Monte-Carlo Localization (MCL) with a previously

built 2D grip map. Please note, the 2D laser and 2D grid

map are only used to provide ground truth for neural network

training and they are not required during the test/repeat

navigation. These ground truth can also be obtained by the

laser/lidar, Wicon system indoors or GPS-RTK outdoors.

C. Navigation Primitives Inference

As formulated in Section II, we decompose the navigation

task into visual servoing problems within each topological

node. To drive the robot to approach each goal image, a

primitive consisting of a sequence of linear and angular

velocities needs to be estimated. As our Scale-Transformer

model can estimate the translation (Sx,Sy,Sz) between

observation/camera image and goal/map image with absolute

scale, a natural idea is to use the translation in the navigation

direction and its perpendicular (i.e. Sz , Sx) to correct the

motion priors, i.e. recorded teaching actions. However, in

practice, this does not generate a robust policy since the

unreliable predictions may drive the robot to an unknown

state.

To improve the robustness of autonomous navigation, a



histogram voting layer is applied to the pixel visual offset

to infer the angular velocity. Specifically, we calculate the

visual offset ∆x,∆y in x and y directions separately for all

deep feature matches. Then ∆y is capped at a maximum of

10 to filter incorrect matches, and ∆x of the filtered matches

will be used to build the histogram. The robust statistical

estimate of ∆x can be obtained by calculating the average

of the largest bin (inliers) in the histogram. The final angular

velocity can be obtained by adding a compensation velgain
to the recorded action, where velgain is inferred from the

mean value of inliers of ∆x with multiplication by a constant

factor2.

Instead of adjusting the linear velocities using the esti-

mated scale directly, we use the recorded action, but apply

S on the odometry monitor to select the correct goal/map

image. We add a momentum term to S over time ∆t to

smooth this correction,

St = (1− λ)St +
λ

n∆t

∫
Stdt, (7)

where n∆t is number of estimates within ∆t, with the

assumption that observation and actions within ∆t are non-

i.i.d. We set the coefficient λ = 0.9 and ∆t = 2s in

our paper. By this means, the robot will be driven in

a proper linear velocity with minimisation of the hazard

of anomalous acceleration/deceleration, and importantly the

robot can always localise correctly in the topological map.

IV. EXPERIMENT

A. Robot Platform and Data Collection

In this paper, we employ a Toyota Human Support

Robot (HSR) [27] equipped with an ASUS Xtion PRO LIVE

camera and a Hokuyo UST-20LX laser scanner for data

collection and system deployment. The network is deployed

on a laptop (carried by the robot on its back) with a NVIDIA

Geoforce GTX 1060 GPU. The whole navigation system is

fully implemented into the ROS [28] framework using C++

and Python mixed coding. The runtime performance of the

deep steering network varies within 20-30Hz using 480×320
images, depending on the type of power supply used.

We recorded two long ROS bags in large hall of around

2500m2 at the UTBM building following different routes.

The RGB images were captured by the Xtion camera, and

the corresponding global poses were recorded by the laser

scanner via MCL localization on the pre-built 2D grid map.

After data calibration and reprocessing, we obtain a long

sequence consisting of 20940 synchronized image-pose data

for network training, and a long sequence consisting of

19247 synchronized image-pose data for network testing.

B. Network Hyper-Parameters and Training

Regarding the network hyper-parameters, the two shared

linear stacks consist of linear layers with hidden variables

256 and 1024, respectively, followed by a Batch Normalisa-

tion layer and ReLU activation layer. The three transformer

2In this paper, a factor of 0.02 is used to re-scale the visual offset in
pixels to the angular velocity (yaw) in radian/s.

encoders are set with the same hyper-parameters: the di-

mensions of the input and output are 256, the dimension

of the feed-forward layer is 512, the number of heads of

self-attention layer is 4, and the dropout is 0.1. There are

two linear layers with hidden variables 512, 128 followed

by a Batch Normalisation layer and ReLU activation layer,

one linear layer with hidden variables 3 in the MLP.

The network is trained on the training sequence consisting

of 20940 synchronized image-pose data. During training, we

feed a batch of image pairs (Ii, Ij), where j is randomly

selected from [i − 50, i + 50], extracted from the training

sequence to the network. The corresponding relative global

poses are used as ground truth. The network is trained for 30

epochs with a batch size of 32. The input images are cropped

to 480 × 320. A step learning policy is employed, and the

learning rate decay is fixed to 0.1 applied on every 5 epochs.

The initial learning rate is 1e-3 and the momentum is fixed to

0.9. The pre-trained SuperPoint model is used to initialize the

weights of the local feature sub-network. In order to increase

the robustness of training, gradient clipping is utilised during

training. The network is implemented via Pytorch and is

trained on an NVIDIA Titan X GPU accelerated by CUDA

and cuDNN.

C. Scale Evaluation

We evaluate the scale prediction on the test sequence

consisting of 19247 synchronized image-pose data. We feed

an image pair (Ii, Ij), where j is randomly selected from

[i − 50, i + 50], into the network to obtain the predicted

translation. The mean and median of the ℓ2 norm distance

offset between the predicted translation and the ground truth

translation are used as evaluation metrics.

We provide the results of four baseline methods as a

comparison. The first and second baselines are classic su-

pervised deep learning-based VO [4][29] and self-supervised

deep learning-based VO [10][30], which focus on solving the

scale ambiguity between two monocular images. For the third

baseline, we replace the Scale-Transformer with a Point-

Net [31] to regress the scale from a set of individual matched

correspondence representations. For the fourth baseline, we

add a RANSAC model after SuperPoint and differentiable

NN-Matching. The feature-matching-based RANSAC can

only predict a norm vector to describe the directions of the

translation. We modify the last linear layer in the Scale-

Transformer to predict a one-dimensional scale factor from

a set of matched correspondence representations. This scale

factor is further multiplied with the norm vector to obtain

the predicted translation.

The evaluation results are shown in Table I. The proposed

method achieves 0.054m for mean translation error and

0.037m for median translation error. We can see that the per-

formance of Scale-Transformer outperforms both supervised

deep learning-based VO [4][29] and self-supervised deep

learning-based VO [10][30]. Most importantly, most existing

learning VO methods, especially one of which [10][30]

including depth perdition using a decoder style network

architecture, cannot satisfy the real-time performance re-



Fig. 4: Teaching and repeating trajectories of DS-TRN.

quirement (at least 20Hz) of navigation deployed on the

mainstream robot-mounted hardware. In addition, the pro-

posed method is more customized for the deep steering

network using the learned local feature matches rather than

the original RGB image.

It can also be seen that the performance of the proposed

network is superior to the PointNet-based regression. The

reason is that PointNet [31] ignores all the contextual cues

within the deep feature matched correspondences, while the

Scale-Transformer can learn the co-contextual information

from these individual representations using a self-attention

mechanism. Including the RANSAC model provides a slight

performance improvement due to its ability to remove out-

liers. However, including RANSAC-based outlier removal

makes the system cannot be deployed in real time, especially

when the field of view between the map and camera images

varies significantly during robot navigation.

Method Mean Error Median Error

DeepVO[4][29] 0.113 m 0.089 m

UnDeepVO[10][30] 0.172 m 0.138 m

SuperPoint+NN+PN[31] 0.104 m 0.081 m

SuperPoint+NN+ST 0.054 m 0.037 m

SuperPoint+NN+RS+ST 0.041 m 0.032 m

TABLE I: Comparison of scale estimation performance

for the proposed method and baseline methods. NN: Dif-

ferentiable NN-Matching, PN: PointNet [31], ST: Scale-

Transformer, RS: RANSAC.

D. Navigation Evaluation

We also test the teach-and-repeat navigation integrated

with the deep steering network on the Toyota HSR robot. The

pure learning-based navigation approaches such as [20], [21],

[22] mainly focus on the success rate of indoor navigation,

while the proposed hybrid model is extremely difficult to

be navigation failed. So the repeating navigation (path fol-

lowing) accuracy is more suitable to evaluate the proposed

method. Similar to the localization-style navigation meth-

ods [15], [18], we also choose the localization error of path

following as the evaluation criterion. The absolute trajectory

error, i.e. mean ℓ2 norm distance of positional offset, and

relative rotation error, i.e. mean absolute orientation offset,

Fig. 5: Teaching and repeating trajectories of DS-TRN in a

large open space indoor environment.

Fig. 6: Teaching and repeating trajectories of DS-TRN in an

out-of-plane outdoor environment.

Fig. 7: Comparison of navigation trajectories for the pro-

posed method and baseline method [18] at a start position

with offset.

between the corresponding poses in the teach and repeat

trajectories are employed as evaluation metrics. The robot

poses in the teach and repeat trajectories are associated by

searching for the mutual nearest distance according to the

odometry distance.

During the first experiment, we test the Deep Steering

Teach-and-Repeat Navigation (DS-TRN) starting at the exact

same position as the start point of the teaching trajectory. As

shown in Table II, DS-TRN achieves 0.15m for absolute

trajectory error and 1.0◦ for relative rotation error. From

Fig. 4, it can be seen that the navigation trajectory of DS-



TRN follows the teaching trajectory very closely. We also

test the DS-TRN in a large open space indoor environment

as shown in Fig. 5. Despite some increase, the absolute

trajectory error 0.17m and the relative rotation error 1.9◦

are still acceptable for navigation in large open spaces indoor

environment. We finally test the DS-TRN in an out-of-plane

outdoor environment as shown in Fig. 6. A DrRobot Jaguar

4x4 robot equipped with ZED2 camera, 3D Ouster OS1-

64 lidar, Xsens MTi-G710-GNSS is used for the outdoor

navigation test, and the ground through is obtained by

lidar-inertial-GPS SLAM and ICP registration. We achieve

absolute trajectory error 0.18m and the relative rotation error

2.6◦ for out-of-plane outdoor navigation.

Method Abs. Traj. Error Rel. Rot. Error

DS-TRN 0.15 m 1.0◦

DS-TRN@L 0.17 m 1.9◦

DS-TRN@O 0.18 m 2.6◦

TABLE II: Navigation performance of DS-TRN at an exact

start point. @L refers to the test in a large, open space indoor

environment. @O refers to the test in an out-of-plane outdoor

environment.

Method Abs. Traj. Error Rel. Rot. Error

NWL[18] 0.57 m 9.3◦

DS-TRN 0.28 m 3.0◦

TABLE III: Comparison of navigation performance for the

proposed method and baseline method [18] at a start point

with offset.
In order to increase the challenge of the navigation task,

during the second experiment, we test the repeat navigation

starting at a position 0.5m left and 0.5m backward from

the start point of the teaching trajectory. A classic monocu-

lar teach-and-repeat navigation method, Navigation Without

Localization (NWL) [18], is employed as a baseline for the

performance comparison. NWL [18] uses SIFT feature as

visual frontend and there is no scale estimation inside. From

Table III, we can see that the navigation performance of DS-

TRN is superior to that of NWL with 0.29m improvement for

absolute trajectory error and 6.3◦ improvement for relative

rotation error. The improvement mainly comes from the

velocity adjustment according to selecting the correct topo-

logical node map through applying scale estimation on the

odometry monitor. This helps the repeating navigation “catch

up” with the teaching navigation as quickly as possible by

reducing the difference caused by the starting point offsets.

As shown in Fig. 7, the trajectory of DS-TRN converges

faster than NWL to the taught trajectory. After the first

turn (bottom right corner in Fig. 7), the trajectory of DS-TRN

becomes closer to the taught trajectory than NWL. Another

important reason is that SuperPoint-features provides richer

position and descriptor information than SIFT features to

adjust the robot’s angular velocity.

We also try to deploy the more complex deep learn-

ing based navigation methods, such as [20], [21], [22] on

our robot as comparison. However, we find that they do

not achieve successful real-time navigation on real robot

for relatively long distance navigation test at 2500m2 hall

building or outdoor environment perhaps due to our limited

onboard computing resources or different configuration of

robot hardware.

More information can be found on our project website:

https://github.com/dachengxiaocheng/

TRN-Transformer.git

V. CONCLUSION

In this paper, we propose a novel monocular teach-and-

repeat navigation method with scale estimation between

observation and goal images in the topological map. The

proposed deep steering network is a hybrid computational

graph that encapsulates the robot heading estimation from

matching the learned local features and precise topological

positioning using the learned absolute scale. With the help of

the learned geometric priors, our monocular navigation not

only achieves satisfying navigation accuracy, but can also

deal with coarse start pose initialization during autonomous

navigation. For the future work, we will deploy the proposed

navigation method in a large-scale outdoor environment.
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