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ABSTRACT: This study aims to verify the skill of a radar-based surface precipitation type (SPT) product with observations

on the ground. Social and economic impacts can occur from SPT because it is not well forecast or observed. Observations

from the Met Office’s weather radar network are combined with postprocessed numerical weather prediction (NWP)

freezing-level heights in a Boolean logic algorithm to create a 1-km resolution Cartesian-gridded map of SPT. Here 5 years

of discrete nonprobabilistic outputs of rain, mixed-phase, and snow are compared against surface observations made by

trained observers, automatic weather stations, and laser disdrometers. The novel skill verificationmethod developed as part

of this study employs several tolerances of space and time from the SPT product, indicating the precision of the product for a

desired accuracy. In general the results indicate that the tolerance verification method works well and produces reasonable

statistical score ranges grounded in physical constraints. Using this method, we find that the mixed precipitation class is the

least well diagnosed, which is due to a negative bias in the input temperature height field, resulting in rain events frequently

being classified as mixed. Snow is captured well by the product, which is entirely reliant upon a postprocessed NWP

temperature field, although a single period of anomalously cold temperatures positively skewed snow scores with low-skill

events. Furthermore, we conclude that more verification consistency is needed among studies to help identify successful

approaches and thus improve SPT forecasts.

KEYWORDS: Snow; Precipitation; Mixed precipitation; In situ atmospheric observations; Radars/Radar observations;

Surface observations

1. Introduction

The type of hydrometeors reaching the surface, known as

the surface precipitation type (SPT), can severely impact hu-

man activities. In regions where solid precipitation types are

common and expected occurrences, long-term adaptations

are cost effective, but where solid precipitation types are in-

frequent and uncommon (midlatitudinal, certain mountain-

ous regions) these adaptations are not cost effective and (as in

the case of the United Kingdom) events can significantly

disrupt daily life (Kay 2016; Curtis et al. 2017). In the winter

of 2009/10, the cost to the U.K. National Health Service from

falls on snow and surface ice was £42 million (Beynon et al.

2011). Mitigative actions such as clearing roads, covering

exposed crops, and redirecting aircraft are cost associated

and require sufficient lead time and confidence (Cornford and

Thornes 1996; Rasmussen et al. 2001; Handa et al. 2006; Clark

et al. 2009).

Real-time observations are often used by forecasters di-

rectly or in nowcasting systems to issue precipitation type

guidance, valid for time scales of 0–6 h (Rasmussen et al. 2001;

Schmid andMathis 2004; Haiden et al. 2011). SPT is accurately

reported by trained observers but their observations are in-

frequent, whereas automated ground instruments record con-

tinuously but with less accuracy (Bloemink 2005; Landolt et al.

2019). TheMet Office operates a network of both station types

across the United Kingdom, but these do not provide complete

spatial coverage at a high enough temporal resolution suffi-

cient for animated, gridded map products that are essential for

SPT nowcasting and public understanding. An ideal mea-

surement system for SPT nowcasting is weather radar because

it possesses a high spatiotemporal resolution. Additionally, the

U.K. weather radar network has (at most) a 10-min turnaround

frommeasurement to dissemination (Harrison et al. 2000) so it

is useful for real-time decision-makers.

This study aims to assess the skill of a U.K. radar-derived

SPT product over a 5-yr period. Since the product is deter-

ministic and precipitation type is discrete nonprobabilistic

data, there are a limited number of statistical techniques

suitable for performing verification. Furthermore, snow and

mixed-phase precipitation are an order of magnitude less
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frequent than rain (Kay 2016; Brown 2019). This discrepancy

in the abundance of the classes can deceptively skew some

statistical scores (Wilks 2011), further reducing the number of

applicable verification techniques.

Added difficulty is introduced with the comparison of a

radar-derived spatial product with point surface instruments,

since the representative volumes differ. Weather radars mea-

sure distribution-weighted three-dimensional volumes of the

atmosphere. The verification ‘‘truth’’ on the ground (often

many hundreds of meters below the peak-weighting of the

radar voxel) is a pinpoint measurement, typically a fraction of a

cubic meter for automated instruments. Human reporters are

capable of broader visual assessment of the precipitation type,

but their observation volume is still an order of magnitude less

than weather radars.

In this study, a new approach is applied to determine the

skill range of radar-based surface precipitation type products

against several surface observation datasets, by varying the

temporal and spatial tolerance of the product. The verifica-

tion techniques developed here are further useful for as-

sessment of NWP forecasts of precipitation type (or any

discrete nonprobabilistic variable) and thus facilitate more

accurate diagnoses of precipitation type in atmospheric sci-

ence. The ability for the Met Office SPT product to diagnose

rain, mixed-phase, and snow precipitation types is examined

here. Weaknesses and opportunities for improvement of the

radar-based SPT product are also presented. Hail is the

fourth SPT class in this product, which uses a separate crite-

rion for diagnosis. However, hail cannot be rigorously veri-

fied due to the lack of a reference dataset, primarily due to the

rarity of hail in the United Kingdom (Punge and Kunz 2016;

Webb et al. 2009). For example, the European SevereWeather

Database (ESWD; Dotzek et al. 2009) contains only 32 hail

reports in the United Kingdom during the 5-yr study period

under examination. The hail class is therefore neglected in

this study.

The boundary between rain, mixed-phase, and snow (R–M–

S) is important because the presence of mixed-phase precipi-

tation typically indicates that the hydrometeors are melting

before they reach the ground and will therefore not accumu-

late. This is important for several industries—if wet precipi-

tationmeets a cold surface (or if it occurs with diurnal cooling),

then ice is the primary risk. If the surface is warm (or if it is

associated with diurnal heating) then the runoff water will

drain away into rivers and lakes, potentially contributing to

flood events.

The R–M–S boundaries in the United Kingdom (and similar

geographies) are difficult to diagnose and forecast. Cases are

often borderline since surface temperatures are nonextreme

and fluctuate diurnally between 258 and 1108C in winter

(Parker et al. 1992; Brabson and Palutikof 2002), and many

factors can influence the change of precipitation phase. The

influence of the Northern Hemisphere midlatitude jet stream

and the enclosure of the North Atlantic warmed by the Gulf

Stream create fluctuating synoptic patterns and coastal mi-

crometeorology. Small changes in the vertical temperature

structure of the atmosphere can also shift the R–M–S boundary

by hundreds of kilometers horizontally.

a. Met Office SPT product

To overcome the disparity between the radar-observed

voxel and the surface precipitation type diagnosis, the Met

Office created an SPT product which uses NWP output as

input to a parameterized translational process below the

lowest-usable radar beam. Since late 2013 the SPT product

has been operational with the same spatiotemporal resolu-

tion as the Met Office precipitation rate product (1 km2,

5-min frequency). Figure 1 shows an example of the product

at a single point in time. The product has four classes: hail

(not examined here due to lack of a suitable reference

dataset), snow, mixed-phase, and rain. Note that the term

‘‘mixed-phase’’ refers to the mixture of snow and rain and

does not include partially melted graupel or hail. These

types are determined with a Boolean logic decision tree

described in Table 1. The algorithm inputs are radar-derived

surface precipitation rate (Harrison et al. 2000), 08C wet-

bulb isotherm altitude (above local surface), and radar re-

flectivity. The isotherm height is derived from the U.K.

postprocessed (UKPP) dataset which uses the Met Office

Unified Model run in a Euro4 configuration.

Lumb’s critical rate is used for the mixed-phase diagnosis

and is defined as

R
c
5 0:2909 exp

�
0:004

FZL

f (y)

�
, (1)

where Rc is the critical rate (mm h21), FZL is the 08C wet-bulb

isotherm height above the local surface in meters, and f(y) is a

function of wind speed but is set equal to 1 in the Met Office

implementation and is therefore neglected. The notion is that

for a given 08C wet-bulb isotherm height, precipitation will be

observed at the ground as still containing a proportion of solid

hydrometeors if the critical rate is met, due to evaporative

cooling (Lumb 1963).

This process is applied initially to each pixel from all 18 ra-

dars (15 Met Office, 2 Met Éireann, and 1 Channel Islands

Meteorological Department). All data are then composited

onto a Cartesian 1-km2 grid using the modal value of all con-

tributing pixels since a single location in theUnited Kingdom is

typically observed by many radar sites simultaneously.

b. Verification data

Data which are used to verify the performance of the SPT

product are described here. The known capabilities and

limitations of the ground instruments are critical to aid the

discussion of the results. Table 2 summarizes each dataset

and Fig. 2 shows the locations of all surface stations as well

as the locations of all radar sites which contribute to the

SPT product.

1) AUTOMATIC SYNOP

The Met Office operates a network of surface weather

stations called SYNOP stations which report observations

for the 10-min period leading up to every hour. At the

automatic stations, precipitation type is reported using

the World Meteorological Organization (WMO) ‘‘present

weather’’ (PW) code from Table 4680 (WMO 1988, 2019).
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The PW code is determined using an arbiter which com-

bines multiple measurements: a Vaisala FD12P present

weather sensor, a precipitation detector, a visiometer, a

ceilometer, and an air temperature thermometer (Green

2010). Known limitations of the arbiter are insensitivities

to weak precipitation rates, poor detection of ‘‘sleet’’

(U.K. nomenclature for mixed precipitation), no quanti-

tative uncertainty, and difficulties calibrating or tracing

errors since the arbiter ‘‘has many assumptions’’ (Lyth

and Molyneux 2006; Lyth 2008). A total of 172 automatic

SYNOP station locations were available for inclusion

during this study.

FIG. 1. An example of theMet Office SPT product, during named winter stormDoris at 0930 UTC 23 Feb 2017. An

animated video of the whole day is supplied in the supplemental material.

JUNE 2021 P I CKER ING ET AL . 1489

Unauthenticated | Downloaded 08/13/21 10:23 AM UTC



2) MANUAL SYNOP

Met Office manual SYNOP stations are those where a

qualified employee has physically observed meteorological

conditions for the 10-min period leading up to every hour.

WMO Table 4677 is used to record PW observations (WMO

1988, 2019). Manual reports are considered to be the highest

quality standard of PW observation and observers are well

trained with handbooks to minimize inconsistencies between

sites. The range of PW codes available cover more obscure

weather conditions and many do not refer to precipitation at

all. The main limitation of the manual stations is that there are

few locations; 38 manual SYNOP station locations were

available for inclusion during this study.

3) DIVEN DISDROMETERS

With the support of the Met Office and the National Centre

for Atmospheric Science (NCAS), theDisdrometer Verification

Network (DiVeN) was installed in the United Kingdom in

early 2017 (Pickering et al. 2019). The Thies laser disdrometers

(Adolf Thies GmbH and Co. KG 2011) measure the diameter

and fall velocity of hydrometeors and use empirical relation-

ships (such as those developed by Gunn and Kinzer (1949) and

Locatelli and Hobbs (1974)) to estimateWMOTable 4680 PW

codes (WMO 1988, 2019). Prior studies have shown that the

Thies laser disdrometers have a good ability to distinguish

between solid and liquid precipitation types but less skill in the

mixed-phase or during light precipitation (Bloemink 2005;

Lyth 2008; Pickering et al. 2019, 2021). Hail detection from the

Thies laser disdrometer is possible but is less well studied, so

the instruments are not used here for verification of the SPT

hail class. Data are openly available (NERC et al. 2019) from

February 2017 (18–23 months depending on the site install

date) at a 5-min frequency and 14 locations exist.

2. Study period characteristics

In this study, the Met Office SPT product is verified over a

5-yr period of 2014–18 inclusive (60 months total). Before

verifying the product an overview of the data characteristics

throughout the study period is provided here.

a. Frequency maps

SPT-product classes from the 5-yr study period are summed

in time to create total radar-diagnosed frequencies of precipi-

tation, and then each precipitation type as a percentage of total

precipitation observed. High-resolution zoomable PDF maps

are provided in the online supplemental material. Figure 3

shows the percentage of the 5-yr period where a pixel pre-

scribed precipitation of any kind. The spatial distribution of

precipitation frequency in Fig. 3 shows higher precipitation

frequency in the north and western areas, and over higher

terrain. The radar network covers the whole of the United

Kingdom (except the Shetland Islands) but some artifacts are

visible. Note that the western and southern edges of the

product are constrained by the extent of the UKPP 08C wet-

bulb isotherm field. The furthest extent of the radar network

detects precipitation less frequently because the beam is less

sensitive with range and may overshoot precipitation.

In a similar fashion, azimuths that experience long-term

partial or total beam blockage (by terrain, buildings, or trees)

exhibit radial streaks of decreased percentages. The edges of

some radar maximum-range boundaries are visible, notably in

northern Scotland, and this is due to dual-polarization upgrade

downtime at individual sites (see supplemental material). The

patches of decreased precipitation frequency are likely due to

the removal of ground or sea clutter (reflective human or

TABLE 1. The Boolean logic algorithm steps used for the Met

Office surface precipitation type product. Note that the term

‘‘mixed-phase’’ refers to the mixture of snow and rain and does not

include partially melted graupel or hail.

Precipitation type Criterion

Hail If a radar reflectivity of $45 dBZ occurs

$1.4 km above the 08C isotherm height

(Waldvogel et al. 1979)

Snow If the NWP model freezing-level height (08C
wet-bulb isotherm) is negative (i.e., below

the surface)

Mixed-phase If the surface rain rate is higher than Lumb’s

critical rate (Lumb 1963)

Rain If none of the previous criteria are satisfied

TABLE 2. Summary of the three ground verification datasets used in this study. Includes the different measurement techniques, the

format of the data when received, the frequency of data available, the number of locations available, and the availability over the duration

of this study period.

Automatic Manual DiVeN

Measurement

technique

A Vaisala FD12P present weather

sensor, precipitation detector,

visiometer, ceilometer, and air

temperature thermometer

combined into an arbiter

Trained meteorological observer A laser disdrometer measures

particle diameter and fall velocity

and uses empirical relationships to

determine precipitation type

Format PW Code (WMO Table 4680), 83

codes reported

PW Code (WMO Table 4677), 91

codes reported

PW Code (WMO Table 4680), 21

codes reported

Frequency Hourly Hourly 5-min

Locations 172 38 14

Availability 2014–18 (5 years) 2014–18 (5 years) 2017–18 (18–23 months, depending

on the install date)
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natural structures) which also removed some weaker precipi-

tation events. Annual and monthly plots (see supplemental

material) show that the Channel Islands (most southern radar)

sea clutter has been almost entirely eradicated by the dual-

polarization upgrade—a well-documented ability of the tech-

nology (Hubbert et al. 2009; Dufton and Collier 2015).

For the precipitation classes, the total occurrences are nor-

malized against occurrences of any precipitation type, e.g., for

each pixel, the total number of snow reports as a percentage of

the total number of precipitation reports from Fig. 3. Since rain

is overwhelmingly common in the United Kingdom (greater

than 90% in most areas), the rain frequency map is dominated

by the signals shown in Fig. 3 and is therefore not shown here

(see supplemental material). Maps for mixed-phase and snow

are shown in Figs. 4 and 5 .

Orography is clearly resolved in the SPT product, which can

be attributed to the 08Cwet-bulb local height for themixed and

snow classes. The mixed-phase class is also influenced by the

FIG. 2. A map of the United Kingdom showing all surface station sites (automatic, manual,

andDiVeN) used in the verification in this study, as well as the locations of all radar sites used in

the Met Office SPT product. Some stations are a hybrid (denoted with adjacent yellow left-

pointing and green right-pointing triangles), where the observations are mostly automatic but

are sometimes overriddenwithmanual observations if an observer is present and disagreeswith

the automated diagnosis.
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enhancement of precipitation rate over orography applied by

the Met Office (Harrison et al. 2000) due to Lumb’s critical

rate. The highest snow frequency is over the Scottish moun-

tains where 45.2% of the precipitation detected receives a

snow classification. Between 2014 and 2018, every square-

kilometer pixel of U.K. land is diagnosed as experiencing snow

at least once. Lowland areas of England typically experience

;0.5%–1.0% of precipitation as mixed-phase and;3%–4%of

precipitation as snow. The mixed-phase class occurs more

frequently over the western-facing coasts of Scotland and the

Republic of Ireland, which experience heavier precipitation

more often due to exposure to westerly dominated synoptic

weather and thus meet Lumb’s critical rate more frequently.

In Figs. 4 and 5, offshore wind farms are visible east of

London and the Thames Estuary. Wind turbines are reflective

so the precipitation rate will be falsely higher and thus Lumb’s

critical rate will be met more often. Mixed-phase frequency

also decreases in both plots where a reflectivity correction is

FIG. 3. Percentage of time that precipitation of any class is detected by the Met Office radar network from the

start of 2014 to the end of 2018 (5 years). The Met Office, Met Éireann, and the Channel Islands Meteorological

Department radar locations are marked as white dots.
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made for known wind farms; for snow, this means the minimum

reflectivity for precipitation diagnosis is met less often. These

plots show that the correction is too strong and that the polygon

is not large enough since a halo effect is seen around these lo-

cations, even after the dual-polarization upgrade. A feathered-

edge polygon would give improved results.

The Ingham radar [Lincolnshire, see Fig. 1 in Harrison et al.

(2015)] has fewermixed-phase precipitation events at maximum

range from the radar, caused by lower reflectivity such that

Lumb’s critical rate is met less frequently. Borders between

preferred radars during the compositing process are visible

but mainly over the ocean (with the exception of East

Anglia). Banding occurs in the mixed and snow plots par-

ticularly around the edge of the network; the insensitivity to

weaker precipitation at long ranges (because the radar is

less sensitive generally and the beam is at a high altitude)

FIG. 4. Percentage of precipitation detected by the Met Office radar network that the SPT product diagnosed as

the precipitation type mixed-phase, between 2014 and 2018 inclusive. The Met Office, Met Éireann, and the

Channel Islands Meteorological Department radar locations are marked as white dots. The scale is set from 0%

to 10%.
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means that the percentage of events detected that are heavy

(and are therefore more likely to meet Lumb’s critical ratio)

is higher.

In general, long-term frequency plots are useful for exposing

artifacts, events, and trends within the radar and SPT product

data. The sensitivity of the SPT product to changes in reflec-

tivity and radar scan geometry are well highlighted here. A

limitation of using this method to find radar artifacts is that

many years of observations are needed if seasonal changes are

to be observed.

b. Verification data statistics

The SYNOP (automatic and manual) reports are hourly and

cover the full 5-yr study period. DiVeN began in February 2017

and therefore contributes 18–23 months of data (depending on

the site install date), but every 5min. The automatic stations

FIG. 5. Percentage of precipitation detected by the Met Office radar network diagnosed as snow by the SPT

product, between 2014 and 2018 inclusive. The Met Office, Met Éireann, and the Channel Islands Meteorological

Department radar locations are marked as white dots. The scale is set from 0% to 10% to highlight features. The

maximum percentage is 45.2%, which occurs over the Scottish Grampians.

1494 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Unauthenticated | Downloaded 08/13/21 10:23 AM UTC



contributed a total of 330 369 precipitating PW code reports, of

which 321 111 (97.20%) were rain, 2408 (0.73%) were mixed,

and 6850 (2.07%) were snow. Manual sites are less common

and contributed 75 647 precipitation reports, consisting of

73 609 (97.31%) rain, 716 (0.95%) mixed-phase, and 1322

(1.75%) snow. DiVeN disdrometer instruments contributed

148 441 precipitation reports, of which 135 083 (91.00%) were

rain, 2787 (1.88%) were mixed-phase, and 10 571 (7.12%) were

snow. DiVeN sites observe higher frequencies of mixed and

snow cases because several of the sites are at high elevation (5

sites . 250m MSL out of 14 total). The Met Office SYNOP

sites are more commonly at lower elevations on flat terrain

(;10% . 250m MSL).

3. Methodology

The aim of this study is to verify the skill of the Met Office

SPT product over a 5-yr period. To achieve this, several

ground-based datasets are used to increase the volume of data

available and to have multiple perspectives since all ground-based

data have their own artifacts and biases. The sections below outline

the steps taken to verify the skill of the SPT product.

a. Data handling and quality control

A limitation of the ground-based data is that all are coded

using the PW system; many codes contain multiple precipita-

tion types or are ambiguous (i.e., multiple conditions are

described). To facilitate comparison to the SPT product, the

WMOTable 4680 and 4677 codes are translated into theMet

Office SPT product classes (none, rain, mixed-phase, snow,

hail) or ‘‘ambiguous’’ as shown in Fig. 6. The number of

ambiguous (containing more than one SPT product class)

reports were as follows: manual 16 961 (1.8%), automatic

489 481 (7.7%), DiVeN 12 888 (0.5%).

In this study, an event constitutes one surface observation

paired with a collocated SPT product diagnosis. There are

9 894 007 events in total available to this study from combined

automatic, manual, DiVeN sites. The purpose of this study is to

examine the SPT-classification skill of the product, not whether

the radar correctly detects precipitation. Therefore, events that

contain no precipitation (from either or both data sources),

events that are erroneous (SPT data missing, codes outside of

the PW coding scheme) or are ambiguous, are removed

(562 590 events remain). The SPT product should also be

functioning nominally in the wider vicinity; if the SPT product

has any erroneous flags in the 5 km3 5 km6 15-min SPT pixel

region around the ground report location, then the event-pair

is discarded (555 993 events remain). Additionally, events

where either of the event-pair report hail are removed. After

filtering, 554 457 events remain from which the analysis is

performed.

Ground-based observations are paired with the next avail-

able SPT file because output files are labeled with the end time

of a 5-min period. Note that the Met Office operates a 10-min

radar scan strategy with three elevation descents containing

both high- and low-elevation angles.

b. Confusion matrices and contingency table metrics

Discrete nonprobabilistic datasets are typically verified by

confusion matrices where events are allocated a position in the

matrix based on the ground-truth dataset (the class-designated

column) and the dataset under examination (the class desig-

nated row). Table 3 shows the confusion matrix that will be

employed in this analysis. The top-left to bottom-right diagonal

entries are therefore instances where the dataset under ex-

amination is in agreement with the truth and a ‘‘hit’’ occurs.

The remaining entries reveal where the scrutinized dataset (the

SPT product) is misdiagnosing.

Furthermore, the confusion matrix (n 3 n) is reformulated

into dichotomous (yes/no) contingency tables (23 2, shown in

Table 4) for each of the SPT product precipitation classes

(Wilks 2011). Three metrics are then applied to each table:

frequency bias (B), probability of detection (POD), false alarm

ratio (FAR):

FIG. 6. Conversion lookup table (LuT) for converting ground

observations from WMO present weather code into the SPT

product classes for this study to verify. Also shown are the ranges of

PWcodes supported by each instrument and the specific table used,

since autonomous and human observations use different WMO

tables. Many of the codes available in the WMO tables are am-

biguous (contain multiple SPT product classes) and are shown in

the last row. All supported PW codes from each surface dataset are

assigned an ‘‘SPT class’’ in the table. Note that the term ‘‘mixed-

phase’’ refers to the mixture of snow and rain and does not include

partially melted graupel or hail.

TABLE 3. The structure of the 3 3 3 confusion matrix applied in

this study.

Surface

Rain Mixed Snow

Rain r s t y1
SPT Mixed u y w y2

Snow x y z y3
x1 x2 x1 Total, n
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B5
(a1b)

(a1 c)
, (2)

POD5
a

(a1 c)
, (3)

FAR5
b

(a1b)
, (4)

where a 5 hit, b 5 false alarm, and c 5 miss. Bias shows

whether the class is being under or overdiagnosed by the SPT

product, which can range from 0 (underdiagnosis) to ‘ (over-

diagnosis); 1 is the perfect score. POD is the chance of a correct

diagnosis when the precipitation type does occur and thus

ranges from 0 (the event is never detected) to 1 (the event is

always detected). FAR is the chance of a false diagnosis when

the event is diagnosed and ranges from 0 (no false alarms) to 1

(all diagnoses are false alarms).

c. Heidke skill score and bootstrapping

An overall score is sought for the SPT product, before nar-

rowing in to identify the strengths and weaknesses of the

product on a per-precipitation-class basis. Generally, a skill

score (SS) takes the form:

SS5
V2V

ref

V
perf

2V
ref

, (5)

whereV is the verification metric,Vref is the verification metric

for a reference diagnosis, and Vperf is the verification metric

for a perfect diagnosis. Several scores exist and each come with

strengths and limitations. Since the SPT data are discrete

nonprobabilistic (rain, mixed-phase, or snow) as opposed to

dichotomous (yes or no), two appropriate higher-dimension

generalized skill scores are considered: the Heidke skill score

(HSS) and the Peirce skill score (PSS). The n-dimensionHSS is

defined following the structure of Eq. (6) as

HSS5
�
I

i51

p(y
i
, x

i
)2�

I

i51

p(y
i
)p(x

i
)

12�
I

i51

p(y
i
)p(x

i
)

, (6)

where �I

i51p(yi, xi) is the proportion correct (the normalized

sum of all diagonal confusion matrix terms),�I

i51p(yi)p(xi) is

the random proportion correct (the product of diagnosed and

observed normalized probabilities summed over each class), 1

is the perfect score, I is the length of the confusion matrix, yi is

the ith row, and xi is the ith column (Doolittle 1888; Heidke

1926). The HSS indicates the fractional improvement in

diagnosis over the probability of a correct diagnosis by chance,

which would score zero. The highest score (Vperf) is 1, and the

lowest possible score is 2‘; negative values therefore indicate

that a random guess would have been more skillful. For a di-

chotomous 2 3 2 contingency table the HSS collapses to

HSS5
2(a3d2b3 c)

(a1 c)(c1d)1 (a1 b)(b1d)
, (7)

where d5 correct nulls. Applying the HSS to both the higher-

dimension classifier (all classes simultaneously) and the indi-

vidual classes allows the contributions from each precipitation

type to be quantified.

The PSS is a modification on the HSS where the denominator

Vref term is the unbiased random proportion �J

j51[p(xj)]
2
, de-

fined by the climatology of the observation dataset. If the cli-

matology of the verification region differs substantially, or if

seasonal changes occur during a verification period, the score

must be recalculated for each subset of the events (Wilks 2011).

This adds computational expense and obscures the analysis as

the subsets of events have no rigorous boundaries for clima-

tology or seasonality. Therefore, this study uses the HSS as an

overall SPT product metric, which is applied to each ground-

based dataset (automatic, manual, and DiVeN) separately.

To show the stability of the overall skill score, a boot-

strapping technique is employed (Efron and Tibshirani 1994;

Chernick 2011). A similar approach for SPT verification is

taken by Wandishin et al. (2005) and Elmore et al. (2015).

Events are extracted at random with replacement (an event

can be extracted multiple times) to form a new subset of data.

Bootstrapping is repeated 100 times to create many new sub-

sets of randomized events which give an indication of the

sensitivity of the HSS to rare events.

The spread of HSS for the subset of data produced by

bootstrapping is heavily dependent on the number of random

samples taken in each bootstrap andmust, therefore, be chosen

with physical justification. The more data that are ingested, the

less variability the HSS exhibits with a random subset. The full

5-yr dataset will have a narrow spread when bootstrapped,

whereas a single event could have anyHSS value and therefore

the maximum possible spread. This study aims to show the

realistic range of HSS values possible with a single month and a

single year of the SPT product. Two bootstrap sample sizes are

chosen to represent the number of events typically reported

(after the quality control procedures described in section 3a) in

one month (5506, 1261, 7069) and in one year (66 074, 15 129,

84 823), from each ground observation dataset, respectively

(automatic, manual, and DiVeN).

d. Tolerance

Due to the disparity of the lowest-usable radar beam height

and the surface, precipitation observed by radar is often not

vertically collocated with the surface. Sandford (2015) showed

that the uncertainty in radar drift estimates can vary from 1 km

below the melting layer to 10 km at the extreme distance of the

maximum range of a radar. The terminal fall velocity of dif-

ferent SPTs differs (Langleben 1954; Zikmunda 1972; Locatelli

and Hobbs 1974; Matson and Huggins 1980; Böhm 1989), so

TABLE 4. The layout of the 2 3 2 contingency table used in

this study.

Surface

Yes No

SPT Yes Hit, a False alarm, b y1
No Miss, c Correct null, d y2

x1 x2 Total, n
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the descent time varies between precipitation types. Furthermore,

the horizontal wind advects precipitation as it falls and, therefore,

the amount of horizontal displacement during descent will also

differ between precipitation types.

There are several factors determining the trajectory of hy-

drometeors as they fall to Earth’s surface, which makes verifi-

cation difficult. Here a general solution is applied which

increases the spatial and temporal tolerance for the SPT product

to inform how the product skill is impacted. This informs a user

of what spatiotemporal specificity corresponds with a desired

accuracy. Three tolerances of the SPT product are used; strict:

only the 1 km3 1 km area and 5-min period collocated with the

surface report; fair: a 3 km3 3 km area and6 10min around the

surface observation will be considered; lenient: a 5 km 3 5 km

area and 6 15min around the surface observation will be con-

sidered. Figure 7 shows the three tolerances diagrammatically.

If any of the SPT product pixels in the fair or lenient toler-

ances agrees with the surface, then it is considered a hit. Note

that new false alarms can be introduced when moving from a

strict to a more lenient tolerance, since the SPT class under

examination may appear in the larger tolerance window. For

example, if the SPT under examination is ‘‘snow,’’ the ground

instrument does not record snow and neither does the central

radar pixel (strict tolerance), then the outcome is a correct null

label of the event. However, if within the larger tolerance there

is a snow detection, this event becomes a false alarm. The lenient

tolerance is approximately the maximum reasonable displace-

ment (;2.5-km radius) and fall time (15min) a hydrometeor

could experience from the lowest usable beam height given the

Met Office radar network coverage. To apply this verification

technique to other products, the choice in tolerance may differ.

Theremust exist a physical meaning to theminimum (strict) and

maximum (lenient) possible extent of the gridded product under

examination, which is dependent upon the specific variable be-

ing examined and also the measurement technique.

4. Results

a. Heidke skill score and bootstrapping

First, the higher-dimension generalized HSS is examined to

give an overall value to the SPT product, before examining

each precipitation class. Note that only the SPT product pixel

which directly encapsulates the location and time of the

ground-based observation is used here (i.e., strict tolerance).

While the hit and correct null quadrants are simple, the higher-

dimension thresholds for false alarm or miss criterion from

multiple SPT pixels would be subjective.

Figure 8 shows the higher-dimension HSS for all classes of

the SPT product. Overall, the SPT product has absolute HSS

values (using the full dataset without bootstrapping, indicated

by black dots on Fig. 8) from 0.48 for automatic, 0.60 for

manual, and 0.73 for DiVeN. If all surface-based observations

are combined, the HSS of the SPT product is 0.61.

The spread of HSSs represents the possible scores if a ran-

dom month or random year of data were considered. HSS

distributions are markedly different between yearly and monthly

bootstrap representations, with amuch narrower spread for the

yearly than monthly. Between verification datasets there are

also differences. The manual station verification has the largest

spread with a standard deviation (2s) of 0.147 monthly and

0.038 yearly. Automatic stations give the second largest spread

but the lowest overall score, with a standard deviation (2s) of

0.058 monthly and 0.018 yearly (approximately half compared

to manual sites). The DiVeN dataset has the highest scores

and a standard deviation (2s) of 0.024 monthly and 0.008

FIG. 7. An example of a time series of the SPT product stacked to represent time (5-min

frequency). The green-outlined area is the sample used for verification in three tolerances.

The strict tolerance uses only the pixel collocated with the ground report. The fair tolerance

uses a 3 km3 3 km region around the ground report and610min product outputs for a total of

45 pixels. The lenient tolerance uses a 5 km 3 5 km region around the ground report and 6
15min product outputs for a total of 175 pixels. If any of the green-shaded pixels are in

agreement with the ground observation, then the SPT product is correct and a ‘‘hit’’ is recorded.
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yearly (approximately half compared to automatic sites).

Ultimately the differences inHSS spread tell usmore about the

ground-based dataset than the SPT product, but taking into

consideration all three ground-based datasets gives a broader

picture of the variability of the skill of the SPT product on

different time scales, from approximately 0.4 to 0.8.

TheHSS is recalculated with adjustments to some of the SPT

product classes. Including the hail class of the SPT product into

the calculation makes little difference because the HSS gives

proportional weighting to rare events, and the ground-based

datasets rarely report hail; automatic stations never report hail.

If the mixed precipitation class is removed, the score (for all

ground-based datasets) improves significantly from 0.61 to

0.77. This is unhelpful as the SPT product would in this scenario

have an ‘‘unknown’’ class for these events. If all mixed-phase

diagnoses are reclassified as rain the HSS increases to 0.73 and

if all mixed-phase diagnoses are reclassified as snow then the

HSS decreases slightly to 0.59. This indicates that mixed di-

agnoses are more likely to be rain than either mixed-phase

or snow.

b. Confusion matrices

Confusion matrices are useful for showing where each class is

beingmisdiagnosed. Figure 9 shows the results for the rain,mixed-

phase, and snow classes for each of the three ground observation

sets available. Note again that the tolerance approach cannot be

applied (see previous section), so the values shown are using only

the encapsulating SPT product pixel area and time.

First for the overall frequency of diagnoses, the rain type is

underdiagnosed by the SPT product for automatic stations

(21.94%) but is close to the observed occurrences by manual

(10.18%) and DiVeN (10.08%) sites. For mixed precipita-

tion, the SPT product diagnoses this class twice as often com-

pared with automatic sites, around the same compared with

manual sites, and half as often compared with DiVeN sites.

Finally, snow is diagnosed 50% more by the SPT product

compared with automatic stations, around the same formanual

stations, and 12% more for DiVeN sites.

Next, the rows of the confusion matrices are examined so

that for a given SPT product diagnosis, the true observed

precipitation type can be discussed. For example, given that the

rain class is diagnosed, it is correct most often, but there are

some miss events where the ground station observed mixed-

phase or snow and in all ground datasets the mixed-phase class

is the missed truth more often. The mixed class is poorly di-

agnosed, and rain is the observed ground event 23.8, 4.7, and

7.1 times more often (automatic, manual, and DiVeN). Finally,

the snow diagnosis is correct 52.5%, 78.4%, and 77.7% of the

time (automatic, manual, and DiVeN). The miss events differ

between ground datasets. For automatic, the majority of miss

events are rain (41.3% of all snow diagnoses), with 6.3% miss

events being mixed. For manual, miss events are more evenly

split over rain (10.3%) and mixed (11.4%). For DiVeN, rain is

the missed event for 14.1% of the snow diagnoses and mixed is

the missed event for 8.3% of the snow diagnoses.

c. Contingency table metrics with tolerance

Next, skill scores are examined for each precipitation class

where a contingency table has been produced from the confu-

sion matrices. Three realistic tolerances based on the maximum

horizontal displacement during descent from the lowest-usable

radar beamhave beenapplied to the SPTproduct as described in

section 3d. All of the results are composed into Fig. 10.

The hierarchy of the next section is as follows: each ver-

ification metric is discussed individually, going through the

precipitation types (as some scores have interdependencies

between the precipitation classes) and commenting on differ-

ences between the ground datasets and tolerances throughout.

1) BIAS

The frequency bias indicates the scale to which precipitation

classes are being under or overdiagnosed. Generally speaking,

the mixed-phase and snow classes are overdiagnosed at the

expense of rain. The high frequency of rain events makes

the bias close to 1 but a slight underdiagnosis is occurring.

Bias changes with increased tolerance are also small. The

mixed-phase has the largest positive biases of any class, with

the highest being 8.87 (automatic, lenient tolerance), whereas

FIG. 8. Higher-dimension HSS (rain, mixed-phase, and snow si-

multaneously) with probability distributions produced by a boot-

strapping technique. Note that each distribution is scaled to fit half

the width of the column for ease of viewing. Each ground dataset is

shown (automatic, manual, DiVeN) and each has monthly and

yearly representative distributions. The black dot indicates the

HSS for the full dataset.
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some are close to an ideal bias (0.87, manual, strict tolerance).

The strict DiVeN result shows an underdiagnosis of mixed-

phase (0.49) but increased tolerance shows an overdiagnosis

(1.67 and 2.40). For snow, biases are overall smaller than the

mixed-phase class but still show a positive tendency.With strict

tolerance, biases against the manual and DiVeN data are 0.96

and 1.12, whereas bias against automatic is 1.52.

2) PROBABILITY OF DETECTION

The POD tells us the probability of the SPT product being

correct given that the precipitation class is occurring. Again the

rain class is weighted by the frequency of occurrence (91%–

97% of precipitation) in the study period and has values close

to a perfect score of 1. The lowest rain class POD score is in the

automatic dataset (0.97, strict) due to underdiagnosis. For the

mixed-phase class, POD is low, ranging from 0.08, 0.15, and

from 0.05 to 0.24, 0.44, and 0.19 (automatic, manual, DiVeN).

The snow class has POD values similar to rain, with lenient/fair

tolerances consistently 0.91–0.94 for all ground datasets. The

strict tolerance varies: 0.79 (automatic), 0.76 (manual), and

0.87 (DiVeN). Given that an SPT is occurring, increasing tol-

erance makes a correct diagnosis more likely.

3) FALSE ALARM RATIO

The FAR indicates the probability of a false alarm when the

SPT product diagnoses a precipitation type. The rain FAR is

consistently low due to its high occurrence frequency. The

DiVeN dataset gives a slightly higher rain FAR of 0.04 (lenient

tolerance), which is indicative of the lower occurrence fre-

quency from DiVeN (91% versus 97% of precipitation for the

other datasets). The mixed-phase class has high FAR (from

0.83 to 0.97) for all verification datasets consistent with a pos-

itive bias. The snow class has different FAR depending on the

verification dataset: against manual and DiVeN, FAR values

are around 0.22–0.39 but against automatic, FAR values are

0.48–0.66. Increasing the SPT product tolerance increases the

chance of a false alarm.

4) HEIDKE SKILL SCORE

The HSS indicates the fractional improvement of the SPT

product diagnoses over random diagnoses, where a value of 0 is

no skill and a value of 1 is a perfect diagnosis every time. The

decimal value can be described as a percentage improvement

over random chance. TheHSS values for rain take into account

the high frequency of occurrence and range between 0.51 and

0.64 for automatic and strict, but are higher (0.70–0.77) for

DiVeN (lower rain occurrence frequency). The HSS values are

not correlated with increasing or decreasing tolerance as is the

case with the other verification metrics; this is explained in the

discussion (section 5d). The weaknesses in the mixed-phase

class are highlighted by the HSS, with low values across the

ground datasets and tolerances. Automatic observations give

the lowest scores (;0.04), DiVeN the middle scores (0.06–

0.09), and manual the highest scores (0.15–0.19), but all indi-

cate poor skill. Snow has skill on par or better than the rain

class, with values ranging between 0.73 and 0.81 formanual and

DiVeN datasets, while the automatic dataset gives scores

slightly lower with a wider range from 0.49 to 0.62.

FIG. 9. Confusion matrices of SPT product against ground

observations, for each ground observation type. (a) Automatic

SYNOP, (b) manual SYNOP, and (c) Disdrometer Verification

Network (DiVeN).
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5. Discussion

a. Rain

Since rain is the dominant class with.90% frequency, most

skill scores for this precipitation type are skewed. The bias

appears close to 1 but is underdiagnosed, POD is deceptively

high and, similarly, FAR is deceptively low. The HSS takes the

frequency into account and shows a 50%–65% improvement

over random chance diagnoses which are caused by the mixed-

phase class diagnosing rain events. A fairer verification should

not include low-skill rain cases; product users would not look

for snow during heatwaves, for example. Events could be

FIG. 10. Skill scores for each precipitation class and ground dataset. (a) Bias, (b) POD,

(c) FAR, and (d) HSS. Cyan horizontal lines indicate a perfect score, and red horizontal lines

indicate a ‘‘no skill’’ score. Solid cyan or red lines are fixed value limits, dashed are surpassable

(bias and HSS).
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limited to theMet Office snow warnings, or periods of 08Cwet-

bulb isotherm below 500m MSL, criteria that operational

forecasters use (S. Lee, MeteoGroup, 2019, personal commu-

nication). Alternatively, the occasions when the SPT product

is opened could be recorded to build up cases targeted to user

activity. The number of events would be reduced but SPT

frequencies would be more equitable and the verification

more applicable to certain product users, dependent on the

criteria used.

b. Mixed-phase

POD for the mixed-phase class ranges from 0.08 to 0.24.

Combined with a positive bias tendency up to 8.87, this indi-

cates that the mixed-phase class has very little skill. This is

reinforced by FAR values ranging from 0.83 to 0.97 and HSS

scores between 0.04 and 0.19. Typically overdiagnosis increases

the POD, but the mixed-phase class in the Met Office SPT

product is themost overdiagnosed and still has the lowest POD

of any class.

The HSS reclassification results (section 4a) and the con-

fusion matrices in Fig. 9 show that the mixed-phase class di-

agnoses are more often rain than mixed-phase or snow.

Combining all verification datasets, 87.2% of mixed-phase

class diagnoses are rain, 6.2% are correct, and 6.5% are snow.

The height of the mixed-phase to rain boundary being too low

would be consistent with these results. Assuming Lumb’s

critical rate to be correct, this bias would be attributable to

either a negative bias in the local 08C wet-bulb isotherm

height, a positive bias in precipitation rate diagnosed by the

radar, or both. Figures 4 and 5 showed the sensitivity of the

SPT product to precipitation rate, as ‘‘corrected’’ artifacts in

precipitation rate still show a signal in the mixed-phase

frequency map.

Lumb’s critical rate uses the work of Langleben (1954),

setting the boundary between rain and mixed-phase at 90% of

the precipitation as liquid, based on the behavior of the ve-

locity of the particle. Lumb (1963) also assumed spherical ag-

gregates and a saturated atmospheric column. Note that the

data used in the derivation of Lumb’s critical rate only covered

1–4mmh21 precipitation rates. These assumptions and limi-

tations of Lumb’s critical rate should be revisited and exam-

ined with modern measurement techniques to ensure that the

SPT product is valid under all atmospheric conditions.

Finally, the effect of topographic representativity must be

discussed. The method of calculating the local 08C wet-bulb

isotherm height results in a topographic resolution of 1 km2.

For the majority of the United Kingdom this is an acceptable

approach. Where deviations of surface altitude are large

such as in mountainous regions, if the station providing

verification data is situated in a valley or on a peak in the

terrain, then the verification will have systematic errors,

since the SPT product is calculating precipitation type for the

average topographic altitude within 1 km2. To combat this, a

higher-resolution topography could be used with the existing

framework, for higher-resolution product output. Topographic

representativity will also affect the snow diagnosis since the local

height of the 08C wet-bulb isotherm is the only criterion,

meaning a perfect diagnosis at 1-km2 resolution is not possible.

c. Snow

Overall the snow class has similar HSS to rain diagnoses, but

is overdiagnosed and, thus, has a higher FAR than rain. Since

the diagnosis is entirely dependent on the height of the UKPP

08C wet-bulb isotherm being below the ground (i.e., surface

temperatures below zero), the results suggest that the height is

negatively biased. This conclusion would also agree with the

results of the mixed-phase precipitation class.

For the snow class the skill of the Euro4 temperature field is

essentially being verified, which itself has many influencing

factors. The only other source for misclassification is the pre-

viously mentioned 1-km2 resolution of the local terrain input

data. The SPT product might be seen as an attractive candidate

for verifying NWP model SPT forecasts against. However, be

aware that this would be a closed-loop verification for the snow

class since its diagnosis is entirely reliant upon the model.

DiVeN data give higher verification metric values (73%–

81% improvement over random chance). The sites contain

more snow events (5 sites . 250m MSL) which are often ob-

served when the 08C wet-bulb isotherm height is several hun-

dred meters below the surface. Borderline cases are less

common in DiVeN compared with the other data. Similar to

rain cases being low skill in summer, low-skill winter events

make a difference to the snow verification results. In late

February and early March 2018, the exceptional snowfall as-

sociated with the ‘‘Beast from the East’’ (Galvin et al. 2019;

Greening and Hodgson 2019) brought many low-skill snow

cases into the verification dataset. If 2018 data are removed

then scores using all datasets are reduced dramatically. The

SPT product has diminished value in these scenarios since it is

clear to users that all precipitation will reach the surface

as snow.

d. Tolerance method

The tolerance method used in this study demonstrates the

sensitivity of the product’s skill when adjusting the spatio-

temporal inclusion, which a user typically considers when

viewing a graphical map. Given the spatiotemporal range

(from 1 pixel at one time, to 175 pixels over 30min) the range

of values provided by this method is often quite narrow, and is

therefore informative to users. A wide range of score results

would add negligible value to a single verification score result

with no indication of spread. The tolerancemethod is therefore

applicable to future verification of precipitation type diagnosis

from any spatial-coverage product using single-point reference

datasets.

When viewing a contingency table, the sum of all events

remains constant between strict, fair, and lenient tolerances

but events can only move vertically in a contingency table

between tolerances. If more events move from ‘‘miss’’ to ‘‘hit’’

compared with the number moving from ‘‘correct null’’ to

‘‘false alarm,’’ then the HSS improves, and vice versa. The

initial distribution of events differs significantly between pre-

cipitation class and ground dataset, hence the HSS values

sometimes increase and sometimes decrease (notably rain

against automatic observations) between SPT product toler-

ances in the results of this study.
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If a user desires a higher POD then a larger domain should

be considered from the SPT product. If a lower FAR is desir-

able then a smaller domain should be taken around a desired

location, which will depend on the specific user and their ap-

plication of the Met Office SPT product. The results are more

complex for the HSS values. If a user wants a higher skill score,

then the spatiotemporal sample should be different for each

precipitation class and always dependent on which ground

dataset is most trusted. For the mixed-phase class, the HSS

values reveal that a larger sample increases the skill of the

diagnosis (except when considering the automatic data

which has the lowest HSS of any ground dataset). Generally

for rain and snow, using the specific pixel encapsulating a

location area and time increases product skill. Note that this

does not take into account the skill of detecting or not

detecting precipitation accurately since all events that feed into

the verification have precipitation in both sources.

e. Comparison to other verifications

Comparing other SPT products in the literature is difficult

since there are many variables affecting the verification.

Table 5 shows a sample of literature verifying many SPT

products based on NWP and various observational inputs. In

addition to the different inputs to each algorithm, the location,

time period, method and verification scores also differ, influ-

encing the verification results of each study. Here it was noted

that even the inclusion of a fifth year onto four existing years

dramatically changed the true climatology and therefore the

overall results.

Different statistical approaches are applied in different

studies. Chen et al. (2016) and Gascón et al. (2018) use

critical success index (CSI) as a verification metric, but CSI

cannot be applied to the higher-dimension confusion ma-

trices. Wandishin et al. (2005) use Brier skill score (BSS) but

this is only applicable for probabilistic data. Elmore et al.

(2015) use the PSS for contingency and the Gerrity skill

score (GSS; Gerrity 1992) for higher-order which empha-

sizes weighted ranking to each class based on climatological

rarity. The PSS is as justifiable as the HSS as a skill metric and

both have higher-order applicability and give similar score

values (Wilks 2011). However, using the same score for contin-

gency tables and confusion matrices (as was done here) dem-

onstrates the contributions from each class to the overall score.

6. Summary and further work

Reliable observations of precipitation type are needed both

to verify and improve forecast microphysics, and also to op-

erationally force NWP models with more accurate initial

conditions through data assimilation. The Met Office surface

precipitation type (SPT) product was examined with three

datasets of ground-based observations over 5 years (2014–18).

The product uses Boolean logic to diagnose hail (not examined

here due to lack of a suitable reference dataset), snow, mixed-

phase, and rain using an empirical relationship based on radar

precipitation rate and the 08Cwet-bulb isotherm from anNWP

model. In this paper snow,mixed-phase, and rain were verified.

An overall product score was obtained using the higher-order

Heidke skill score (HSS) and a bootstrapping technique to

infer the monthly and yearly sensitivity to the overall product

score. Statistical metrics applied to individual precipitation

classes from contingency tables were bias (B), probability of

detection (POD), false alarm ratio (FAR), and the HSS. A

novel tolerance method was introduced which shows the re-

alistic spatiotemporal spread of scores taking into consider-

ation the fall time and the horizontal displacement precipitation

may experience between the lowest-usable radar beam from the

Met Office radar network and the ground.

The results show that the 08C wet-bulb isotherm from the

UKPP (interpolation from the Euro4 NWP model) is too low,

causing an overdiagnosis of snow (B . 1) leading to FAR

values of 0.22–0.48 (strict tolerance). The 08C wet-bulb iso-

therm height also controls the height at which mixed-phase

precipitation is fully melted into rain, and may contribute to

the significant overdiagnosis of mixed-phase (B� 1) with FAR

values of 0.83–0.97 and POD values of 0.05–0.44 (all verifica-

tion datasets and tolerances). Due to the overdiagnosis of snow

and mixed-phase, by elimination the rain class is underdiagnosed.

Rain has a bias of just under 1 which is skewed by the high fre-

quency of the rain class, 91%–97% between verification datasets.

The HSS takes into account high frequency of occurrence, and

this gives values of 0.51–0.77, which are similar to snow where

HSS values are 0.49–0.81 (all verification datasets and tolerances).

The mixed-phase has low HSS values of 0.04–0.19.

Overall the higher-dimension HSS value for all datasets

combined is 0.61, which improves to 0.73 if all mixed-phase

diagnoses are relabeled as rain. Between verification datasets,

the higher-dimension HSS are 0.486 0.058 (automatic), 0.606
0.147 (manual), and 0.73 6 0.024 (DiVeN), where the uncer-

tainty is representative of a 2s confidence interval produced

through bootstrapping.

Ground-based observations should capture the climatology

of the location or target audience of the users of the product.

Thus, the representativity of the data used to verify the product

at a certain location is important. The automatic and manned

SYNOP stations run by the Met Office may not capture the

most extreme climatologies of the United Kingdom due to

their siting requirements for optimal measurement standards.

Similarly, the Disdrometer Verification Network likely does

not capture the U.K. climatology since many instruments are

located at high elevations.

Improvements to the Met Office radar-based SPT product

are ongoing based on the results of this study. TheEuro4model

has been marked for deprecation at the end of 2021 and there

has been a freeze on scientific upgrades for several years. The

implementation of a newer, higher-resolution NWP model

temperature field, particularly a model with improved mi-

crophysics schemes, should improve the snow class diagnosis

in a future Met Office SPT product. Note that to verify the

improvement in future SPT products, the current SPT prod-

uct can be statistically implemented as a baseline. Currently,

Vref in Eq. (5) is set here as the random proportion correct but

this can be changed to be the proportion correct from this

‘‘baseline’’ SPT product instead. Thus the score can then be

used to show the percentage improvement over the current

SPT product. The methods employed here may be easily
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implemented for verifying a range of observation-based or

model-based classifiers; however, the most important aspect of

verification is consistency of score choice between studies to

enable comparisons and to identify successful SPT diagnosis

techniques.
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