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A B S T R A C T   

Selective logging is the primary driver of forest degradation in the tropics and reduces the capacity of forests to 
harbour biodiversity, maintain key ecosystem processes, sequester carbon, and support human livelihoods. While 
the preceding decade has seen a tremendous improvement in the ability to monitor forest disturbances from 
space, large-scale (spatial and temporal) forest monitoring systems have almost universally relied on optical 
satellite data from the Landsat program, whose effectiveness is limited in tropical regions with frequent cloud 
cover. Synthetic aperture radar (SAR) data can penetrate clouds and have been utilized in forest mapping ap-
plications since the early 1990s, but only recently has SAR data been widely available on a scale sufficient to 
facilitate pan-tropical selective logging detection systems. Here, a detailed selective logging dataset from three 
lowland tropical forest regions in the Brazilian Amazon was used to assess the effectiveness of SAR data from 
Sentinel-1, RADARSAT-2, and Advanced Land Observing Satellite-2 Phased Arrayed L-band Synthetic Aperture 
Radar-2 (ALOS-2 PALSAR-2) for monitoring tropical selective logging. We built Random Forests models aimed at 
classifying pixel-based differences between logged and unlogged areas. In addition, we used the Breaks For 
Additive Season and Trend (BFAST) algorithm to assess if a dense time series of Sentinel-1 imagery displayed 
recognizable shifts in pixel values after selective logging. In general, Random Forests classification with SAR data 
(Sentinel-1, RADARSAT-2, and ALOS-2 PALSAR-2) performed poorly, having high commission and omission 
errors for logged observations. This suggests little to no difference in pixel-based metrics between logged and 
unlogged areas for these sensors, particularly at lower logging intensities. In contrast, the Sentinel-1 time series 
analyses indicated that areas under higher intensity selective logging (> 20 m3 ha−1) show a distinct spike in the 
number of pixels that included a breakpoint during the logging season. BFAST detected breakpoints in 50% of 
logged pixels and exhibited a false alarm rate of approximately <5% in unlogged forest. Overall our results 
suggest that SAR data can be used in time series analyses to detect tropical selective logging at high intensity 
logging locations (> 20 m3 ha−1) within the Amazon.   

1. Introduction 

Selective logging is the primary driver of forest degradation in the 
tropics (Curtis et al., 2018; Hosonuma et al., 2012). Logging reduces the 
capacity of forests to harbour biodiversity, maintain key ecosystem 
processes, sequester carbon, and support human livelihoods (Baccini 
et al., 2017; Barlow et al., 2016; Lewis et al., 2015). However, large 
uncertainties remain in assessing the true impact of selective logging 

because the technological advances in detecting and monitoring logging 
at large scales are only just emerging (Hethcoat et al., 2019; Hethcoat 
et al., 2020; Langner et al., 2018; Lima et al., 2020; Shimabukuro et al., 
2019). The ability to reliably map forest degradation from selective 
logging is a key element in understanding the terrestrial portion of the 
carbon budget and the role of land-use in turning tropical forests into net 
carbon emitters (Baccini et al., 2017). In addition, reliable forest 
monitoring systems are urgently needed for tropical nations and 
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conservation groups seeking to report and/or mitigate carbon emissions 
through improved forest stewardship (GOFC-GOLD, 2017). 

While the preceding decade has seen a tremendous improvement in 
the ability to detect forest disturbances from space (Hansen et al., 2013; 
Hethcoat et al., 2019; Tyukavina et al., 2017), forest monitoring at large 
spatial and temporal scales has largely relied on optical satellite data 
from the Landsat program. Yet, the effectiveness of optical data is 
limited in tropical regions with frequent cloud cover like the northwest 
Amazon and central Africa. Synthetic aperture radar (SAR) data can 
penetrate clouds and have been widely utilized in forest mapping ap-
plications since the early 1990s (see review by Koch, 2010 and refer-
ences therein). However, the SAR data archives are spatially and 
temporally fragmented, and in many cases the data products require 
commercial licences for their use. Consequently, uptake by users has 
been more limited than optical data and the full potential of SAR has 
likely been under-utilized (Reiche et al., 2016). 

SAR backscatter, particularly at L- and P-band, is sensitive to changes 
in carbon stocks in forests with biomass <300 Mg ha−1 (Koch, 2010; 
Mitchard et al., 2009; Saatchi et al., 2011). This enables accurate dif-
ferentiation between forested and non-forested areas and has been well 
studied (e.g. Shimada et al., 2014). More recently, polarimetric and 
interferometric methods have been developed that utilize information in 
the SAR signal to detect forest changes (Deutscher et al., 2013; Flores- 
Anderson et al., 2019; Lei et al., 2018; Mathieu et al., 2013). Yet, the 
limited temporal and spatial coverage of SAR data have hampered 
widespread application and use of these techniques to monitor forest 
disturbances (e.g. single-pass interferometric SAR is only available with 
TanDEM-X data). 

The launch of Sentinel-1A in mid-2014 represented the first 

continuous global acquisition strategy for open SAR data. Since 2015 a 
growing number of studies have used Sentinel-1 to map deforestation 
(Antropov et al., 2016; Delgado-Aguilar et al., 2017; Doblas et al., 2020; 
Hoekman et al., 2020), with others utilizing a fusion of optical and 
Sentinel-1 data (Reiche et al., 2018a, 2018b; Bouvet et al., 2018; 
Hirschmugl et al., 2020). Combining optical and SAR data has generally 
improved forest/non-forest mapping efforts over using either individu-
ally (Joshi et al., 2016; Reiche et al., 2015b; Zhang, 2010; Hirschmugl 
et al., 2020) and represents an important area of active development in 
forest remote sensing (Reiche et al., 2021). In contrast, no study has used 
Sentinel-1 to map selective logging and advancements in monitoring 
logging with SAR data are generally lacking, despite widespread 
recognition of both the need and the role it could play (Mitchell et al., 
2017; Reiche et al., 2016). With the successful launch of SAOCOM 1A 
and 1B in late 2018 and early 2020, the planned continuation of the 
Sentinel-1 missions (with C and D), and the anticipated launch of NISAR 
in 2022, free C- and L-band SAR data will be available on a scale like 
never before. Accordingly, methods are needed that utilize open SAR 
data to make similar advancements in the detection of large-scale se-
lective logging operations. 

Pixel-based methods for detecting changes in remotely sensed im-
agery often utilize differences between pixel values or other mathe-
matically derived metrics in time or space, for example before and after 
some disturbance or in areas known to be disturbed and undisturbed 
within the same image (reviewed in Hussain et al., 2013). These dif-
ferences can be used for classification, employed in machine learning, or 
analyzed temporally to map change. Recently, the detection of selec-
tively logged regions in single images has been demonstrated success-
fully with optical data from Landsat (Hethcoat et al., 2019). 

Fig. 1. Location of the Jamari (triangle), Jacunda (circle), and Saraca (square) study regions in the Brazilian Amazon of Rondônia and Pará (A). The unlogged data 
came from the yellow region in each map. The Jamari map (B) is centered at −9.33 S, −62.94 W. The Jacunda region (C) is centered at −8.58 S, −62.94 W. The 
Saraca region (D) is centered at −1.67 S, −56.35 W. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Simultaneously, time series methods have increasingly been used for 
monitoring changes in pixel values, in part because of the availability of 
vast archives of imagery on cloud computing platforms like Google 
Earth Engine (Gorelick et al., 2017), but also because of the recognition 
that seasonal or longer term trends in pixel values can be less susceptible 
to erroneously characterizing change (Bullock et al., 2018; Verbesselt 
et al., 2012; Zhu, 2017). 

The primary objective of this paper was to assess the ability of 
Sentinel-1 to detect tropical selective logging. Detailed spatial and 
temporal logging records from three regions in Brazil were used to 
develop and test the effectiveness of two different detection techniques: 
(1) exploiting pixel-based differences between logged and unlogged 
locations in single images and (2) detecting change in a time series of 
pixels known to be logged. Selective logging records were used to build 
supervised machine learning models to classify selective logged pixels. 
Machine learning methods have many applications in remote sensing 
and have been used with increasing frequency and success (Lary et al., 
2016). We performed equivalent classification analyses with SAR data 
from the C-band RADARSAT-2 and L-band PALSAR-2 sensors to 
compare the performance of longer wavelength (i.e. L-band PALSAR-2) 
and higher resolution data (both RADARSAT-2 and PALSAR-2 have 
higher spatial resolution than Sentinel-1). Finally, we used all the 
available Sentinel-1 archives in a time series analysis to monitor pixel 
values for breakpoints in their time series at locations known to have 
been selectively logged. Given that forest disturbances from selective 
logging are often subtle and short-lived, detecting changes with SAR 
data over large regions will present technological and algorithmic 
challenges. However, a critical assessment of detection capabilities and 
a careful understanding of the performance of these data types is 
essential for advancing forest monitoring techniques in the tropics. 

2. Study area and data 

2.1. Study area and selective logging data 

Selective logging data from three lowland tropical forest regions in 
the Brazilian Amazon were used in this study (Fig. 1). The Jacunda and 
Jamari regions are inside the Jacundá and Jamari National Forests, 
Rondônia, while the Saraca region is inside the Saracá-Taquera National 
Forest, Pará. Forest inventory data from 14 forest management units 

(FMUs) selectively logged between 2012 and 2017 were used, 
comprising over 32,000 individual tree locations. Unlogged data from 
three additional locations, one inside each study region, comprised over 
11,500 randomly selected point locations known to have remained 
unlogged during the study period (Table 1). Forest inventory measure-
ments were recorded by trained foresters and included the spatial 
location of each marketable tree species within the concession, its 
height, diameter, estimated volume, and if it was logged (only trees >50 
cm in diameter are harvested). A field survey in 2016 relocated a subset 
of trees (n = 214) to estimate the geolocation precision of the logging 
inventory records (mean = 6.2 m; standard deviation = 6.6 m). 

2.2. Satellite data and processing 

All available C-band Sentinel-1A Ground Range Detected scenes in 
descending orbit and Interferometric Wide (IW) mode (VV and VH) were 
utilized in Google Earth Engine (GEE) over the study regions up through 
the date of logging. These had incidence angles of 38.7◦, 38.7◦, and 
31.4◦ for Jacunda, Jamari and Saraca, respectively. GEE is a cloud 
computing platform hosting calibrated, ortho-corrected Sentinel-1 
scenes that have been processed in the following steps using the 
Sentinel-1 Toolbox: (1) thermal noise removal; (2) radiometric cali-
bration; and (3) geometric terrain correction (i.e. geocoding) using the 
Shuttle Radar Topography Mission (SRTM) 30 m digital elevation model 
(DEM). Furthermore, we (1) applied a radiometric slope correction in 
GEE detailed in Vollrath et al. (2020); (2) performed multi-temporal 
speckle filtering (using a median, 7 × 7 pixel window) detailed in 
Quegan and Jiong Jiong (2001); and (3) reduced pixel resolution to 20 
m. The final equivalent number of looks was approximately 80 after 
speckle filtering and spatial averaging. 

Single Look Complex C-band RADARSAT-2 scenes in Fine mode (HH 
and HV) were obtained from the Canadian Space Agency. Twelve 
ascending scenes from the same orbit path and frame number, with an 
incidence angle of 30.7◦, coincided with selective logging records and 
were acquired between 2011 and 2012. Pre-processing of images was 
done with the Sentinel-1 Toolbox and included: (1) radiometric cali-
bration; (2) multi-looking (by a factor of 2 in azimuth) to produce square 
pixels; (3) Radiometric Terrain Flattening; (4) multi-temporal speckle 
filtering (using a median, 7 × 7 pixel window) detailed in Quegan and 
Jiong Jiong (2001); (5) Geometric Terrain Correction using the SRTM 
30 m DEM; and (6) reduce pixel resolution to 20 m. The final equivalent 
number of looks was approximately 105 after speckle filtering and 
spatial averaging. 

Single Look Complex L-band PALSAR-2 scenes (HH and HV) were 
obtained from the Japan Aerospace Exploration Agency (JAXA). Ten 
ascending scenes from the same orbit path and frame number, with an 
incidence angle of 36.2◦, coincided with selective logging records and 
were acquired between 2016 and 2018. Pre-processing of PALSAR-2 
data followed the same steps as RADARSAT-2. The final equivalent 
number of looks was approximately 90 after speckle filtering and spatial 
averaging. 

3. Methods 

3.1. Supervised classification with random forests 

3.1.1. Data inputs for classifying selective logging 
For each satellite data type (Sentinel-1, RADARSAT-2, and PALSAR- 

2) data were extracted at each pixel where logging occurred and 
randomly selected pixels in nearby regions that remained unlogged. 
Thus, the data inputs for logged and unlogged observations came from a 
single scene for each study region (i.e. a space-for-time study design in 
contrast to images before and after logging from the same location). 
Selective logging at the study areas only occurred during the dry season, 
approximately June–October in a given year, and data were extracted 
from images acquired as late into the logging period as possible 

Table 1 
Data used in the classification of selective logging from three study regions in the 
Brazilian Amazon. The forest management units (FMU), logging intensities, 
sample sizes (pixels), and overlap with satellite data coverage are shown for 
Sentinel-1 (S), RADARSAT-2 (R), and PALSAR-2 (P).  

FMU Logging Intensity Sample Size Satellite Coverage  
(m3 ha−1) (pixels)  

Jacunda_I_2016 6 2290 S 
Jacunda_I_2017 9 2822 S 
Jacunda_II_2015 15 2613 S 
Jacunda_II_2016 10 1815 S 
Jacunda_II_2017 7 1310 S, Ra 

Jacunda_Reserve 0 3000 Sa, Ra 

Jamari_I_2015 22 1094 S, Ra 

Jamari_I_2016 10 653 S, Ra, P 
Jamari_I_2017 12 911 S, Ra, P 
Jamari_III_2012 10 3071 R 
Jamari_III_2015 11 3042 S, Ra 

Jamari_III_2016 9 2058 S, Ra, P 
Jamari_III_2017 11 2597 S, Ra, P 
Jamari_Reserve 0 5912 Sa, Ra, Pa 

Saraca_Ia_2017 12 3769 S 
Saraca_II_2016 25 3223 S 
Saraca_II_2017 21 4729 S 
Saraca_Reserve 0 3000 Sa  

a FMU was unlogged at time of acquisition and data represent unlogged 
observations. 
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(Table S1) to ensure the majority of pixels had been subjected to logging, 
but also before the onset of the rainy season (Hethcoat et al., 2019). In 
addition, logging activities tend to be accompanied by surrounding 
disturbances (canopy gaps, skid trails, patios, and logging roads) 
resulting in forest disturbances beyond just the pixels where a tree was 
removed. Accordingly seven texture measures were calculated for each 
polarization (sum average, sum variance, homogeneity, contrast, 
dissimilarity, entropy, and second moment) to provide a local context 
for each pixel (Haralick et al., 1973). These were calculated within a 7 ×
7 pixel window, chosen as a trade-off between minimizing window size 
while still capturing the variability in selectively logged forests 
compared to unlogged forests. Finally, a composite band was calculated 
as the ratio of the co- polarized channel to the cross-polarized channel (i. 
e. HH/HV or VV/VH). Each dataset thus comprised a 17-element vector 
(2 polarization bands, their ratio composite band, and 7 texture mea-
sures for each polarization) for each pixel where logging occurred and 
randomly selected pixels that remained unlogged. 

3.1.2. Random forests for classification of selective logging 
We built Random Forests (RF) models using the randomForest pack-

age in program R version 4.0.2 (Liaw and Wiener, 2002). The RF algo-
rithm (Breiman, 2001a) is an ensemble learning method for 
classification. Each dataset was split into 90% for training and 10% was 
withheld for validation. In order to further ensure the independence of 
training and validation datasets, the validation data were spatially 
filtered such that no observations in the training dataset were within 90 
m of an observation in the validation dataset. RF models have two 
tuning parameters: the number of classification trees grown (k), and the 
number of predictor variables used to split a node into two sub-nodes 
(m). We used a cross-validation technique to identify the number of 
trees and the number of variables to use at each node that minimized the 
out-of-bag error rate on each training dataset (Table S2). The impor-
tance of each predictor variable was assessed during model training, 
using Mean Decrease in Accuracy, defined as the decrease in classifi-
cation accuracy associated with not utilizing that particular input vari-
able for classification (Breiman, 2001b). 

3.1.3. Model validation: Assessing accuracy 
The RF models were validated using a random subset of the full 

dataset for each sensor (described in Section 3.1.2). By default, RF 
models assign an observation to the class indicated by the majority of 

decision trees (Breiman, 2001a). However, the proportion of trees that 
voted for a particular class from the total set of trees can be obtained for 
each observation and a classification threshold can be applied to this 
proportion (Hethcoat et al., 2019; Liaw and Wiener, 2002). We adopted 
such an approach, wherein the proportion of trees that predicted each 
observation to be logged, informally termed the likelihood a pixel was 
logged, was used to select the classification threshold. A threshold, T, 
was defined such that if likelihood > T the pixel was classified as logged 
(Fig. 2). 

The confusion matrix then has the form: 
where L and UL refer to logged and unlogged classes, NL and NU are 

the numbers of logged and unlogged observations in the reference 
dataset, and DL and DU are the numbers of logged and unlogged pixels 
detected as logged, respectively. We defined the detection rate DR = DL / 
NL and false alarm rate FAR = DU / NU as the frequency that a logged or 
unlogged pixel was classified as logged, respectively. Thus, the DR is 
equivalent to 1 minus the omission error of the logged class and the FAR 
is the omission error of the unlogged class. In addition, we defined the 
false discovery rate (FDR): 

The FDR is the proportion of all observations that were detected as 
logged that were actually unlogged, and is equivalent to the commission 
error of the logged class. The FDR is an assessment of the rate of pre-
diction error (i.e. type I) when labelling pixels as logged and can be used 
in detection problems with rare events or unbalanced datasets, such as 
selectively logged pixels within the Amazon Basin (Benjamini and 
Hochberg, 1995; Hethcoat et al., 2019; Neuvial and Roquain, 2012). A 
high DR and low FDR is clearly desirable, but these cannot be fixed 
independently in two-class detection problems and both depend on the 
threshold value (Fig. 2). For example, if achieving a 95% detection rate 
led to a FDR of 50%, then half of all predictions of logging would be 
incorrect. This level of performance would make estimates of selective 
logging extremely uncertain. The value of the classification threshold 
(T) therefore represents a trade-off between true and false detections. In 
practice, a viable detection method would expect to achieve a DR > 50% 
while limiting the FDR to 10–20% to have any value for widespread 
forest monitoring. The performance of each sensor was assessed by 
plotting the DR, FAR and FDR values as T varied from 0 to 1 to facilitate 
discussion of model performance. 

3.1.4. Sentinel-1 classification of high intensity logging 
Most of the selective logging in this study was low-intensity (<15 m3 

ha−1) and we anticipated the logging signal to be weak and difficult to 
detect. Consequently, we also considered a reduced Sentinel-1 dataset 
that included only those FMUs with logging intensities above 20 m3 ha−1 

(n = 3 sites) and the unlogged data (n = 3 sites) to assess if Sentinel-1 
could be used for detecting selective logging activities near the legal 
limit within the Brazilian Legal Amazon. Unfortunately RADARSAT-2 
and PALSAR-2 imagery did not cover the highest intensity logging 
sites, so we could not perform equivalent analyses with these datasets. 
RF classification and validation was performed on this subset of the 
Sentinel-1 data in the manner detailed above for the full dataset. 

3.2. Time series analyses 

We tested whether a time series of Sentinel-1 data displayed 
discernible changes in pixel values after selective logging using the 
BFAST algorithm Verbesselt et al. (2010) in program R (R Core Team, 
2020). BFAST estimates the timing of abrupt changes within a time se-
ries (breakpoint hereafter) and has been successfully utilized with a 
range of data types (e.g. Landsat, MODIS, SAR, etc.). The metrics used in 
searching for breakpoints in the full Sentinel-1 time series (approxi-
mately 55 scenes from October 2016 – August 2018) were the two most 
important predictor variables identified from RF models. The limited 
temporal coverage of RADARSAT-2 and PALSAR-2 at our study sites 
precluded time series analyses with these datasets. BFAST was used to 
assess if a suitable model with one or no breakpoints was appropriate 

Fig. 2. Diagram representing the trade-off between the detection rate (DR) and 
the false alarm rate (FAR) associated with using a threshold T (vertical black 
line) to label pixels as logged and unlogged based upon the proportion of votes 
that each observation was predicted to be logged. The purple and yellow colors 
correspond to density plots for hypothetical logged and unlogged observations, 
respectively. Thus, the areas A and B are the portions of the observations from 
unlogged and logged pixels, respectively, that will be labelled as unlogged. 
Similarly, C and D represent the portions of the observations from logged and 
unlogged pixels, respectively, that will be labelled as logged. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

M.G. Hethcoat et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 259 (2021) 112411

5

and included tests for coefficient and residual-based changes in the ex-
pected value (i.e. the conditional mean). Where breakpoints were 
identified, we determined if they coincided with the timing of selective 
logging activities (June – October) and regarded these as true detections. 
Breakpoints in unlogged areas and breakpoints outside the timing of 
logging activities were considered false detections. In addition, the 
relationship between the frequency of breakpoints within an FMU and 
its logging intensity was examined to understand potential thresholds in 
logging intensity above which variables could be used to monitor se-
lective logging activities through time series analyses. 

Finally, we examined if the relationship between logging intensity 
and the rate of detections and false alarms was consistent between 
logging locations (i.e. a scattered subset of pixels in an area) and an 
entire region (i.e. all pixels within a bounding box). The timing of 
breakpoints was mapped for two 400 m × 400 m test regions within the 
Saraca study area (one logged and one unlogged). A limited number of 
small test regions were chosen because of the computationally expensive 
nature of the pull request in Earth Engine (e.g. two 1 km regions query 
>1 million records for export). Only breakpoints during the time period 
associated with logging were mapped (June – October). 

4. Results 

4.1. Random forests classification of selective logging 

The single image detection results for all sensors revealed that in 
order to obtain a sufficiently low false discovery rate (e.g. < 10%), the 
corresponding detection rates (DR) of selective logging were of almost 
no value (< 5–10%) for reliable forest monitoring. In general, the 
following results suggest that regions that have experienced selective 
logging do not show consistent differences from unlogged areas in the 
metrics we used for classification. The second analysis (section 4.2) 
therefore deals with detection of selective logging with time series data. 

4.1.1. Sentinel-1 
Random Forests detection performance for Sentinel-1 is shown in 

Fig. 3 (top). Both the detection and false alarm rates were close to 1 until 
the threshold exceeds ~0.4, meaning almost every pixel in an image 
would be detected as logged. This indicates little capability to distin-
guish logged and unlogged observations, with many unlogged obser-
vations misclassified as logged (Fig. S1). In general, the detection, false 
alarm, and false discovery rates (across the range of threshold values) 
were insufficient for reliable classification of selective logging with 
Sentinel-1 data at the intensities within our study areas (6–25 m3 ha−1). 
For example, setting a threshold to achieve a FDR < 10% would yield a 
detection rate ~ 5%, which would be of little practical value. Thus, 
attempts to strongly limit the false discovery rate (commission error of 
logged observations) would require a high threshold value and result in 
very few detections. Overall, this suggests that using single images from 
Sentinel-1 on their own to detect and map selective logging activities 
would be fraught with error with the classification approach used here. 

4.1.2. RADARSAT-2 
Random Forests performance for RADARSAT-2 is shown in Fig. 3 

(middle). Both the false alarm rate and the detection rate rapidly 
declined as the threshold value was initially increased, again suggesting 
difficulty in distinguishing logged and unlogged observations. In 
contrast to Sentinel-1, RADARSAT-2 was less likely to label an obser-
vation as logged and very few observations had likelihood values above 
0.5 (Fig. S2). It should be noted that the logging records that coincided 
with RADARSAT-2 data were from a single FMU that was relatively low 
intensity (10 m3 ha−1). Consequently, the performance displayed here 
may not be a full appraisal of RADARSAT-2 capabilities at higher in-
tensities. Overall, our results suggest that RADARSAT-2 data cannot be 
used to effectively monitor low-intensity selective logging activities 
using pixel-based differences between logged and unlogged areas. 
However, additional tests with data at higher logging intensities should 
be pursued. 

4.1.3. PALSAR-2 
Random Forest classification performance for PALSAR-2 is shown in 

Fig. 3 (bottom). In general, the performance of PALSAR-2 was margin-
ally better at distinguishing logged and unlogged observations than 
RADARSAT-2 and Sentinel-1 (Table S5 and Fig. S3). However, the DRs 
and FDRs associated with higher threshold values would result in very 
high uncertainty and preclude reliable mapping of logging. Similar to 
RADARSAT-2, the selective logging data that coincided with PALSAR-2 
imagery was from four relatively low-intensity FMUs (9–12 m3 ha−1). It 
remains unclear if more data at higher logging intensities would 
improve classification performance with this sensor. For example, when 
the data from Sentinel-1 was restricted to just the low intensity sites used 
in the PALSAR-2 analyses, there was effectively no change in the rates of 
detection and false discovery compared to the results from all logging 
intensities with Sentinel-1 (Figs. S4 and Table S7). However, in contrast 
to C-band, L-Band SAR is known to penetrate forest canopies and 
interact with forest structure (i.e. branches and stems). The marginal 
increase in performance compared to the C-band data hints that higher 

Fig. 3. Random Forests model performance across the range of threshold 
values (T) for classification with SAR data. The Detection Rate (DR) and False 
Alarm Rate (FAR) are the solid and dashed black lines, respectively. Also shown 
are the corresponding values of the False Discovery Rate (FDR) and Cohen’s 
kappa (k) as solid and dotted grey lines, respectively. 
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performance might be possible with sufficient data at higher intensities, 
but this needs further testing. 

4.1.4. Sentinel-1 classification of high intensity logging 
Detection performance of Sentinel-1 data for the highest intensity 

FMUs is shown in Fig. 4. Despite limiting the detection task to the most 
intensively logged FMUs (as well as unlogged observations), the detec-
tion rate and false discovery rate values were comparable to the results 
that used the full range of logging intensities. Instead, improvement in 
model performance was associated with better discrimination of 
unlogged observations (i.e. compare the commission and omission er-
rors for the unlogged class between Tables S3 and S6). Essentially, the 
model was able to better identify unlogged forest, presumably because 

the more “confusing” observations (i.e. the low intensity FMUs) were 
absent and could not muddle the distinction between logged and 
unlogged observations (Fig. S5 and Table S6). Overall, our results sug-
gest Sentinel-1 data cannot exploit classification of single image pixel- 
based differences to monitor selective logging activities with reason-
able precision, even in the most intensively logged regions within the 
Amazon. 

4.2. Sentinel-1 time series analyses 

The two most important predictor variables from the Sentinel-1 RF 
model were the Sum Average metric (Haralick et al., 1973) on the VV 
and VH bands (Fig. S6, Eq. S1). A plot of VV sum average values through 
time at four randomly selected tree harvest locations at the Saraca site is 
shown in Fig. 5 and suggests selective logging decreased the value of this 
metric. In addition, histograms of the timings associated with all 
breakpoints at three FMUs, shown in Fig. 6, indicate that the time frame 
of the breakpoints mainly occurred within the logging season for those 
FMUs logged above 20 m3 ha−1. In contrast, the time periods associated 
with breakpoints at lower logging intensities were shifted toward the 
onset of the rainy season in late 2017 to early 2018; however, all FMUs 
showed an uptick in breakpoints associated with the rainy season 
(Fig. 6). This suggests that Sentinel-1 time series data could be used to 
detect and monitor selective logging activities from areas that have 
experienced logging close to the legal limit in Brazil (30 m3 ha−1), 
particularly if the detection time-frame is narrowed to within the known 
logging season. 

When the value of the VV sum average metric was monitored 
through time in pixels known to be logged and unlogged, the proportion 
of pixels with a significant breakpoint in their time series increased as 
the logging intensity of the FMU increased (Fig. 7A). Approximately 
75% of logged pixels in high logging intensity FMUs had a breakpoint; 
however, roughly 10% of unlogged pixels showed a breakpoint in their 

Fig. 4. Random Forests model performance across the range of threshold 
values (T) for classification of Sentinel-1 data with a subset of the most inten-
sively logged sites. The Detection Rate (DR) and False Alarm Rate (FAR) are the 
solid and dashed black lines, respectively. Also shown are the corresponding 
values of the False Discovery Rate (FDR) and Cohen’s kappa (k) as solid and 
dashed grey lines, respectively. 

Fig. 5. Breakpoint dates identified by the BFAST algorithm from four randomly selected points within the Saraca study region. The time series of the VV sum average 
texture measure is plotted in black, the selective logging period is shaded in grey, and the identified breakpoint date is labelled with a vertical dashed line. 
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time series (i.e. 10% false alarm rate). This false alarm rate was generally 
consistent through logging intensities approaching 15 m3 ha−1 and 
suggests no signal in pixels logged at low to moderate intensities 
(Fig. 7A). When the breakpoints were assessed only over the time period 
associated with logging (to remove the false peak associated with the 
rainy season), the relationship showed a similar pattern whereby the 
FMUs logged at the highest intensities showed a large rise in breakpoints 
above a background false alarm rate that was relatively constant up 
through moderate logging intensities (Fig. 7B). At the highest in-
tensities, the detection rate was >50% and the false alarm rate was 

almost zero. These results further support the idea that FMUs logged at 
low to moderate intensities do not show a distinct time series signal 
whereas FMUs logged at higher intensities do. Overall, this suggests that 
FMUs logged at intensities close to the legal limit within the Brazilian 
Legal Amazon (30 m3 ha−1) should show a noticeable spike in the 
number of breakpoints within their time series above a background false 
alarm rate and this could be used to detect logging activities in the dry 
season. 

Approximately 51% and 10% of pixels in the logged and unlogged 
test regions had a breakpoint during the logging season (Fig. 8). These 

Fig. 6. Histograms of breakpoint dates associated with time series analyses of the Sentinel-1 sum average texture measure for three study regions in the Brazilian 
Amazon for the VV (top row) and VH (bottom row) bands. The proportion of all observations with breakpoints and the proportion of breakpoints that fall within the 
logging season (grey shaded region) are in the upper right of each panel. 
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values are generally in agreement with our prior results from the subset 
of pixels where trees were removed (see Fig. 7B). While 51% of the 
pixels in the logged test region did not have a tree removed, selective 
logging is associated with forest disturbances that go beyond the indi-
vidually logged pixels (e.g. canopy gaps, skid trails, logging roads, etc.) 
and additional detections are expected. Only about 5% of the pixels in 
the logged test region were actually logged, however, it is clear from the 
Planet imagery (Fig. 8C and D; Planet Team, 2017) that more than 5% of 
the forest patch was disturbed by logging activities. Given the false 
alarm rate was, at most, around 10%, the difference between detections 
and false alarms might represent a value comparable with the amount of 
forest disturbance expected at this intensity (i.e. about 40%). 

5. Discussion 

We present the first multi-sensor comparison of SAR data for moni-
toring a range of selective logging intensities in the tropics. We 
demonstrated that L-band PALSAR-2, C-band RADARSAT-2, and C-band 
Sentinel-1 data performed inadequately at detecting tropical selective 
logging when using single image pixel-based attributes for classification. 
However, when analyzing a time series of Sentinel-1 texture measures, 
logged pixels displayed a strong tendency for a breakpoint in their time 
series as the logging intensity of the FMU increased. Moreover, the 
timing associated with the identified breakpoint generally coincided 
with active logging at the highest logging intensities. Overall, our results 
suggest that Sentinel-1 data could be used to monitor the most intensive 
selective logging, but a time series approach would be required to detect 
change. A number of studies have used Sentinel-1 time series data to 
monitor deforestation Reiche et al. (2018b), often in combination with 
optical data, but our study is the first to show it has some potential to be 
used to monitor selective logging. 

5.1. Variable importance 

In a number of cases the most important predictor variables from RF 
models involved the co-polarized channel (Fig. S1), despite the generally 
accepted view that the cross polarized channel is best for detecting 
changes in forest cover (Joshi et al., 2016; Reiche et al., 2018a; Ryan 

et al., 2012; Shimada et al., 2014). The HH polarization of PALSAR-2 
data has previously been shown to be sensitive to the early stages of 
deforestation, resulting from single-bounce scattering from felled trees 
(Watanabe et al., 2018). Our results support the idea that the co- 
polarized channel (for L- and C-band SAR) is useful and should not be 
ignored in forest disturbance detection analyses (e.g. Reiche et al., 
2018a). While shorter wavelength SAR data, like C- and X-band, are 
known to be less sensitive to forest structure, because the radar signal 
mainly interacts with the forest canopy (Woodhouse, 2005; Flores- 
Anderson et al., 2019), the higher backscatter values in the co-polarized 
channel for all three sensors suggests predominantly rough surface 
backscattering from the forest canopy (as volume scattering generally 
results in roughly equal backscatter between co- and cross-polarized 
channels). This suggests that forest tracts subjected to more intensive 
selective logging than we studied (conventional logging permits with 
larger canopy gaps, large road networks, and many log landing areas) 
should possess a signal in the co-polarized channel that could be used to 
detect changes in canopy cover and should not be discarded (e.g. Reiche 
et al., 2018a). 

Random Forests models offer an objective approach to selecting 
important variables for use in time series analyses. The Mean Decrease 
in Accuracy (MDA) variable rankings were used to select the sum 
average texture measures in the time series analyses. The detection rate 
was highest with the best variable (i.e. the one with the highest MDA), 
lower with the second best, and lower still with the third best metric, 
corroborate their rankings (see Figs. 7 and S6). SAR data often has fewer 
bands than optical data, for example, so the choice of which metric to 
use in time series analyses may be more straightforward. However, 
many studies do not compare the results among metrics to select the 
optimal one, relying instead on speculation (e.g. Reiche et al., 2018a). 
Our findings suggest Mean Decrease in Accuracy is useful for variable 
selection, even if the Random Forests models themselves are of little 
practical use (e.g. Fig. 3). 

5.2. Texture measures and detecting selective logging 

In all cases the texture measures had the highest variable importance 
rankings (Fig. S6). This is consistent with previous results with optical 

Fig. 7. The relationship between the proportion of observation within a Forest Management Unit (FMU) that had a breakpoint identified within its Sentinel-1 VV sum 
average texture measure time series and the logging intensity of the FMU. The proportion of all observations (A) and the proportion that had a breakpoint that 
coincided with the logging season (B) are shown separately. The circle size corresponds to number of observations at each FMU and yellow, green, and purple colors 
represent the Saraca, Jamari, and Jacunda sites, respectively. See the supplementary material for the same analyses with the second and third best metric from 
Random Forests (Fig. S7). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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data, where detection of selective logging relied on the contextual in-
formation embodied within their calculation (Hethcoat et al., 2019). 
Similar to their results, the predictions of logging in our test areas were 
spatially correlated, presumably a consequence of the spatial window 
used in the calculation. Again, however, extra detections are expected 
from the accompanying forest disturbances associated with logging. Yet, 
in the context of accuracy assessment, an issue that has not received 
much attention within the remote sensing literature is how to report 
selective logging detections in the absence of robust field data on canopy 
gaps, roads networks, skid trails, log landing decks, etc. Others have 
shown that selective logging can be associated with 30–70% forest 
disturbance, despite the proportion of pixels where a tree was removed 
being closer to 10% (Asner et al., 2002, 2004; Putz et al., 2019), 
depending on the intensity and logging practices (reduced impact versus 
conventional). Clearly Fig. 8A shows false detections associated with the 
breakpoint detections, but some of the detections that do not occur at a 
tree location correspond with canopy gaps seen in the Planet imagery. 

While the texture information clearly helped with detection of se-
lective logging, a coherent understanding of what the sum average 
metric means, in terms of characterizing forest disturbances from se-
lective logging or understanding the structural changes to forests asso-
ciated with increasing and decreasing values, remains unknown. 
Attempts to generalize and interpret the meaning of textures have 
proven difficult over the years. However, some have suggested that high 
values in measures like variance, dissimilarity, entropy, and contrast 
were associated with visual edges whereas average, homogeneity, cor-
relation, and angular second moment were associated with subtle 
irregular variations from continuous regions like forests or water (Hall- 
Beyer, 2017). More work is needed to understand the interpretation of 
textures measures that are so often employed in remote sensing 
classifications. 

Fig. 8. Map of predicted breakpoint dates for two 400 m × 400 m test regions, one logged (A) and one unlogged (B), in the Saraca National Forest, Para, Brazil. 
Logged tree locations are black crosses and the date of the breakpoint for each pixel is colour coded by week, with white representing no breakpoint. Planet imagery 
(3 m) from 28 August, 2017 overlaid with and without breakpoint locations (C and D) for the logged area (trees in white). Approximately 51% and 10% of the pixels 
in the logged and unlogged regions had breakpoints, respectively. 
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5.3. Combining sensors for classification 

We chose not to combine any of the data types used here, partly 
because the inconsistent spatial and temporal coverage precluded such 
an analysis, but also because we wanted to assess the detection capa-
bilities of each sensor on its own. Methods that combine data from 
multiple sensors (both other SAR platforms and/or optical data from 
Landsat or Sentinel-2) would likely perform better, corresponding with 
results for monitoring deforestation Reiche et al. (2015a). Indeed, prior 
work with Landsat data has shown strong detection of selective logging 
at similar intensities (Hethcoat et al., 2019), yet this work sought to 
establish a baseline with the available SAR sensors. The general direc-
tion and momentum for the advancement of detecting subtle forest 
disturbances from spaceborne SAR will likely require time series, 
polarimetric, and data fusion approaches, particularly in light of our 
findings that pixel-based differences between logged and unlogged areas 
using SAR backscatter alone cannot do the job effectively. 

5.4. Longer time series in the tropics 

Sentinel-1A began acquiring imagery regularly (approximately every 
12 days) in late 2016 for most of Brazil, with Sentinel-1B following in 
late 2018. Consequently, a time series assessment was only possible for a 
single calendar year (roughly 2017) with the logging data sets we had 
access to. The BFAST algorithm is flexible and can be tuned with a 
baseline period if sufficient data are available, enabling assessments of 
longer and more variable time series (Verbesselt et al., 2010). The 
limited time series available is likely the reason many breakpoints for 
the less intensively logged sites occurred in December, presumably with 
the onset of the rainy season in earnest and an increase in backscatter 
associated with moisture (Hoekman et al., 2020). Our analysis, however, 
was limited to a simpler test of one or no breakpoints. Future work 
should explore how longer time series might improve detection of lower 
intensity logging, where seasonal patterns in backscatter can be estab-
lished as a baseline to help reduce false alarms. 

6. Conclusion 

Tropical selective logging is fundamentally connected to global 
climate, biodiversity conservation, and human well being (Lewis et al., 
2015). Selective logging is often the first disturbance to affect primary 
forest (Asner et al., 2009), with road networks and ease of access facil-
itating further disturbances (e.g. increased fires, hunting or illegal log-
ging). Efforts to detect and map selective logging with Sentinel-1, 
because of its global coverage and anticipated continuation missions (i. 
e. Sentinel-1C and D), are urgently needed to understand the capabilities 
this data stream might offer at advancing detection of tropical selective 
logging activities. With the successful launch of SAOCOM 1A and 1B in 
late 2018 and early 2020, the planned continuation of Sentinel-1 (with C 
and D), the opening of the ALOS PALSAR-1 archives, and the anticipated 
launch of NISAR in 2022, an immense volume of freely available C- and 
L-band SAR data will, hopefully, usher in a new era of forest monitoring 
from space with SAR data. Our findings suggest that time series methods 
should be effective at detecting the most intensive selective logging in 
the Amazon with these data sets. Moreover, if a distinct dry season is 
characteristic of the study region, focusing on detection during this time 
frame can bolster detection accuracy by removing false positive de-
tections associated with seasonal rainfall. 
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