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Exact solutions in quantum field theory under

rotation

Victor E. Ambrus, and Elizabeth Winstanley

Abstract We discuss the construction and properties of rigidly-rotating states for

free scalar and fermion fields in quantum field theory. On unbounded Minkowski

space-time, we explain why such states do not exist for scalars. For the Dirac field,

we are able to construct rotating vacuum and thermal states, for which expectation

values can be computed exactly in the massless case. We compare these quantum

expectation values with the corresponding quantities derived in relativistic kinetic

theory.

1 Introduction

Rigidly-rotating systems are useful toy models for studying the underlying physics

of more complex rotating systems in either flat or curved space-times. Consider

a rigidly-rotating system of classical particles in flat space-time, rotating about a

common axis, which we take to be the z-axis in the usual Cartesian coordinates.

Assuming that the particles undergo circular motion with constant angular speed Ω

about the rotation axis, the linear speed of each particle is then ρΩ, where ρ is the

distance of the particle from the axis of rotation. The speed of the particle therefore

increases as the distance from the axis increases, and will become relativistic suffi-

ciently far from the axis. Furthermore, if ρ is sufficiently large, the particle will have

a speed greater than the speed of light. Therefore a simple rigidly-rotating system
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cannot be realized in nature (at least in flat space-time), and the system must either

be bounded in some way to prevent superluminal speeds, or else the system cannot

be rigidly-rotating.

Although unbounded rigidly-rotating systems cannot be realized in flat space-

time, nonetheless the study of rigidly-rotating systems in both relativistic kinetic

theory (RKT) and quantum field theory (QFT) has a long history. The simplicity of

the system allows many quantities of physical interest (such as quantum expectation

values) to be computed exactly, which enables the extraction of the underlying

physics. Many deep physical properties of rotating systems have been revealed by

this approach, and in this chapter we outline some of the most important.

Our motivation for studying rigidly-rotating systems in QFT comes from both

astrophysics and heavy ion collisions. In astrophysics, rigid rotation can be induced

near rapidly-rotating magnetars or in accretion disks around black holes, where the

field close to the surface of the star is sufficiently strong to lock charged particles

into magnetically dominated accretion flow. The superluminal motion of the plasma

constituents can be prohibited by the bending of the magnetic field lines far from

the axis of rotation [1]. Particle geodesics on rotating black hole space-times also

exhibit rigid rotation close to the event horizon due to the frame-dragging effect

[2]. Quantum effects are important for black holes, which emit thermal quantum

radiation [3]. Whether or not it is possible to define a quantum state representing a

quantum field in thermal equilibrium with a rotating black hole depends on whether

one considers a scalar field (in which case such a state does not exist [4, 5]) or a

fermion field (where a state can be constructed, but is divergent far from the black

hole [6]).

In the context of strongly interacting systems, rigid rotation can occur in the

quark-gluon plasma (QGP) formed in the early stages following the collision of

(ultra-)relativistic heavy ions [7]. Just as a magnetic field can induce a charge current

along the magnetic field direction in fermionic matter through the chiral magnetic

effect, rigid rotation can induce an axial current through an analogous chiral vortical

effect (CVE) [8]. Due to the latter, the rotating fluid becomes polarised along the

rotation axis. This polarisation was recently demonstrated through measurements of

the properties of the decay products of Λ-hyperons [9, 10]. Interest in studying the

properties of rigidly-rotating quantum systems has surged in the past few years, with

recent studies addressing the hydrodynamic description of fluids with spin [11], the

role of the spin tensor in nonequilibrium thermodynamics [12] and the properties

of thermodynamic equilibrium for the free Dirac field with axial chemical potential

[13].

Our focus on this chapter is rigidly-rotating systems in flat-space QFT. We con-

sider the simplest types of quantum field, namely a free scalar or Dirac fermion field.

By ignoring the self-interactions of the quantum field, and the curvature of space-

time, we are able to study in detail the effect of rotation alone. The construction

of rotating vacuum and thermal states for these fields is compared with the corre-

sponding construction of nonrotating vacuum and thermal states. Here the difference

between bosonic and fermionic quantum fields play a major role. Having constructed

the rotating states, we then elucidate their physical properties by studying, for the



Exact solutions in quantum field theory under rotation 3

fermion field, the expectation values of the fermion condensate (FC), charge current

(CC), axial current (AC), and stress-energy tensor (SET). We compare these with

the analogous quantities computed within the framework of RKT, to elucidate the

effects of quantum corrections.

This chapter is structured as follows. The problem of rigid rotation at finite

temperature is addressed from an RKT perspective in section 2. Section 3 considers

the construction of rigidly-rotating states in QFT, showing in particular that these

states do not exist for a free quantum scalar field on unbounded flat space-time. The

rest of the chapter is therefore devoted to the free Dirac field only. Mode solutions

of the Dirac equation are derived with respect to a cylindrical coordinate system

in section 4. We briefly consider nonrotating thermal expectation values (t.e.v.s) in

section 5, and demonstrate that there are no quantum corrections for these states. On

the other hand, for rotating states, the t.e.v.s constructed in section 6 are modified

in QFT compared to the RKT results. We examine the physical properties of these

quantum corrections for the SET in particular in section 7. The above discussion has

focussed on unbounded flat space-time, and we briefly review some more general

scenarios in section 8 before presenting our conclusions in section 9.

2 Relativistic kinetic theory

Before we address the properties of rigidly-rotating systems in QFT, we first consider

the RKT perspective. We briefly describe the main features of a distribution of Bose-

Einstein or Fermi-Dirac particles in global thermal equilibrium (GTE) undergoing

rigid rotation.

2.1 Rigidly-rotating thermal distribution

Consider particles of mass M and four-momentum pµ in GTE in the absence of ex-

ternal forces. The configuration of particles is described by the distribution function

f , which satisfies the relativistic Boltzmann equation [14]

pµ∂µ f = C[ f ], (1)

using Cartesian coordinates on Minkowski space-time, so that xµ = (t, x, y, z)T .

In (1), C[ f ] is the collision operator, which drives the fluid towards local thermal

equilibrium and whose properties give the form of the equilibrium distribution

function. For neutral scalar particles, the equilibrium is described by the Bose-

Einstein distribution function

fS =
gS

(2π)3
[
exp

(
pλβ

λ
)
− 1

]−1

, (2)
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where gS is the number of bosonic degrees of freedom and βµ = uµ/T is the four-

temperature, with T the local temperature and uµ the four-velocity. For simplicity, we

do not include a chemical potential in the scalar case. The Fermi-Dirac distribution

function, including a local chemical potential µ is

fF =
gF

(2π)3
[
exp

(
pλβ

λ − µ/T
)
+ 1

]−1

, (3)

where gF is a degeneracy factor taking into account internal degrees of freedom,

such as spin and colour charge.

GTE is achieved when the distribution function (2, 3) satisfies the Boltzmann

equation (1). The fluid can be in GTE only when

∂λ(µ/T) = 0, ∂λβκ + ∂κ βλ = 0. (4)

The first equality implies that, in the fermion case, the chemical potential is propor-

tional to the temperature. The second equation requires that the four-temperature βµ

is a Killing vector. For Minkowski space-time, the general solution of the Killing

equation allows βµ to be written in the form:

βµ = bµ +̟µν xν, (5)

where the four-vector bµ and the thermal vorticity tensor ̟µν = − 1
2
(∂µβν − ∂νβµ)

are constants in GTE.

In order to describe a state of rigid rotation with angular velocity Ω = Ωk about

the z-axis, the constants appearing in (5) can be taken to be:

bµ = T−1
0 δµ0, ̟µν = ΩT−1

0

(
ηµxηνy − ηµyηνx

)
, (6)

where ηµν = diag(1,−1,−1,−1) is the usual Minkowski metric. These values cor-

respond to the four-temperature βµ = T−1
0

(1,−Ωy,Ωx, 0), where the physical in-

terpretation of the constant T0 is discussed below. Since the rigidly-rotating state

is invariant under rotations about the z-axis, it is convenient to employ cylindrical

coordinates xµ = (t, ρ, ϕ, z) to refer to various vector or tensor components. Using

the standard transformation formulae for vector components yields:

βt = T−1
0 , βρ = 0, βϕ = ΩT−1

0 , βz = 0. (7)

In our later discussion, it will prove useful to express vector and tensor compo-

nents of physical quantities relative to an orthonormal (non-holonomic) tetrad {eα̂}
consisting of four mutually orthogonal vectors of unit norm, eα̂ = e

µ

α̂
∂µ, defined as:

et̂ = ∂t, eρ̂ = ∂ρ, eϕ̂ = ρ
−1∂ϕ, eẑ = ∂z, (8)

which satisfy the orthogonality relation:

gµνe
µ

α̂
eνσ̂ = ηα̂σ̂, (9)
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where gµν = diag(1,−1,−ρ2,−1) is the metric tensor of Minkowski space-time with

respect to the cylindrical coordinates.

Writing the four-temperature (7) with respect to the tetrad (8) yields the tetrad

components:

βα̂ = ηα̂σ̂e
µ

σ̂
βµ = T−1

0 (1, 0, ρΩ, 0). (10)

The squared norm of the above expression can be obtained using either the coordinate

components βµ or the tetrad components βα̂, as follows:

β2
= gµνβ

µβν = ηα̂σ̂β
α̂βσ̂ = T−2

0 (1 − ρ2Ω2). (11)

Since βα̂ = uα̂/T and the four-velocity uα̂ has unit norm by definition, it can be

seen that the quantity
√
β2 is the local inverse temperature T−1. For a rigidly rotating

system, the four-velocity has the tetrad components:

uα̂ = Γ(1, 0, vϕ̂, 0), (12)

where we find the following relations:

T = T0Γ, v
ϕ̂
= ρΩ, Γ = (1 − ρ2Ω2)−1/2, (13)

where T is the local temperature. Equation (13) shows that T0 is the temperature on

the rotation axis and away from the axis the local temperature increases linearly with

the Lorentz factor Γ characterising the rigid rotation. Furthermore, we can readily

identify the speed-of-light surface (SLS), which is the surface where the fluid rotates

at the speed of light:

ρSLS = Ω
−1. (14)

As expected, the Lorentz factor Γ diverges on the SLS, and so does the local tempera-

ture T . Starting from the velocity field in (12), it is possible to compute the kinematic

vorticity1, ωα̂
=

1
2
εα̂β̂γ̂σ̂uβ̂∇γ̂uσ̂ , acceleration, aα̂

= uβ̂∇β̂uα̂ and circular vector

τα̂ = −εα̂β̂γ̂σ̂ωβ̂aγ̂uσ̂ [15, 16, 17, 18]:

ωα̂
= Γ2Ω(0, 0, 0, 1), aα̂

= −ρΓ2Ω2(0, 1, 0, 0), τα̂ = −ρΩ3Γ5(ρΩ, 0, 1, 0). (15)

2.2 Macroscopic quantities

At sufficiently high temperatures, pair production processes can occur. It is thus

necessary to account for the presence of both particle and anti-particle species. We

consider only the simplest model. For the neutral scalar field in thermal equilibrium,

particles and anti-particles have the same distribution function fS (2). Fermions and

anti-fermions are distributed according to the Fermi-Dirac distribution (3) at the

same temperature T and macroscopic velocity uα̂, while the chemical potential is

1 We use the convention that ε0̂1̂2̂3̂
= ε t̂ ρ̂ϕ̂ ẑ

= 1.



6 Victor E. Ambrus, , Elizabeth Winstanley

taken with the opposite sign for anti-particles:

fq/q =
gF

(2π)3
[
exp(pλβλ ∓ µ/T) + 1

]−1
, (16)

where fq is the distribution for fermions and fq that for anti-fermions. For the

rigidly-rotating system, the contraction of the four-temperature βµ with the particle

four-momentum is:

pλβ
λ
= T−1

0

[
pt −Ω · (x × p)

]
= T−1

0 (pt −ΩMz) = T−1
0 p̃t (17)

where Mz denotes the z component of the angular momentum, and we have defined

the co-rotating energy p̃t by

p̃t = pt −ΩMz . (18)

We first consider the zero temperature limit. From (2), it is clear that the scalar dis-

tribution function fS → 0 as T0 → 0, as expected. The situation is more complicated

for the fermion distribution function (16), and depends on the sign of pλβ
λ ± µ/T .

Noting that µ/T = µ0/T0 (where µ0 is the chemical potential on the axis of rotation)

is a constant from (4), the zero temperature limit of (16) is:

lim
T0→0

fq/q =
gF

(2π)3
Θ(±EF − p̃t ), (19)

where EF = µ0 is the Fermi level and Θ is the Heaviside step function, equal

to one when its argument is positive and zero otherwise. Thus, the particle/anti-

particle distributions have non-vanishing values only when p̃t < µ0 for particles and

p̃t < −µ0 for anti-particles.

Starting from the distribution functions, we can define the SET T α̂σ̂
S/F for either a

scalar or fermion field as follows:

T α̂σ̂
S =

∫
d3p

pt̂
pα̂pσ̂ fS, T α̂σ̂

F =

∫
d3p

pt̂
pα̂pσ̂

[
fq + fq

]
. (20)

For the fermion field, we can also define the macroscopic CC Jα̂:

Jα̂ =

∫
d3p

pt̂
pα̂[ fq − fq]. (21)

By construction, Jα̂ and T α̂σ̂
S/F are space-time tensors. Due to the structure of the scalar

and Fermi-Dirac distributions, the free indices of these quantities can be carried only

by the Minkowski metric tensor ηα̂β̂ or the macroscopic velocity uα̂. These simple

considerations immediately imply the perfect fluid form for the CC and SET:

Jα̂ = QFuα̂, T α̂σ̂
S/F = (ES/F + PS/F)uα̂uσ̂ − PS/Fη

α̂σ̂, (22)

where QF is the fermion charge density, ES/F is the energy density and PS/F is the

pressure. An expression can be obtained for QF by contracting Jα̂
F

with uα̂. Similarly,
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ES/F is obtained by contracting T α̂σ̂
S/F with uα̂uσ̂ , while a contraction of (22) with ηα̂σ̂

yields the combination ES/F − 3PS/F on the right hand side. The above procedure

applied to QF yields:

QF =
gF

(2π)3

∫
d3p

pt̂

(
uλpλ

) (
1

e(uλpλ−µ)/T
+ 1

− 1

e(uλpλ+µ)/T
+ 1

)
. (23)

Taking advantage of the Lorentz invariance of the integration measure d3p/pt̂ , a

Lorentz transformation can be performed on pλ such that pλuλ = pt̂ . Switching to

spherical coordinates in momentum space, the integral over the angular coordinates

is straightforward and gives

QF =
gF

2π2

∫ ∞

0

dp p2

(
1

e(p t̂−µ)/T
+ 1

− 1

e(p t̂
+µ)/T

+ 1

)
, (24)

where p = |p | is the magnitude of the three-momentum. Similarly, we find, for the

scalar field, (
ES

ES − 3PS

)
=

gS

2π2

∫ ∞

0

p2dp

pt̂

(
(pt̂ )2
M2

)
1

ep
t̂ /T − 1

, (25)

while for the fermion field we have(
EF

EF − 3PF

)
=

gF

2π2

∫ ∞

0

p2dp

pt̂

(
(pt̂ )2
M2

) (
1

e(p t̂−µ)/T
+ 1
+

1

e(p t̂
+µ)/T

+ 1

)
. (26)

Since the integrands above exhibit exponential decay at large values of p, they are

amenable to numerical integration. The expressions (24, 25, 26) remain valid if the

system is stationary rather than rotating, in which case T = T0 and µ = µ0 are

constants.

In the massless limit, pt̂ = p, ES/F = 3PS/F and the integrals in (24, 25, 26) can

be performed analytically [19], giving the charge density QF and pressures PS and

PF as:

QF =
gFµ

6

(
T2
+

µ2

π2

)
, PS =

π2
gST4

90
, PF =

7π2
gFT4

360
+

gFT2µ2

12
+

gFµ
4

24π2
, (27)

where µ = µ0Γ and T = T0Γ. We also compute the massless limit of the ratio

Tµ
µ/M2

= (E − 3P)/M2:

lim
M→0

ES − 3PS

M2
=

gST2

12
, lim

M→0

EF − 3PF

M2
=

gFT2

12
+

gFµ
2

4π2
. (28)

The Lorentz factor Γ (13) and thus µ and T diverge as ρ → Ω−1 and the SLS is

approached. Therefore, for massless particles, all macroscopic quantities are diver-

gent on the SLS. Including the chemical potential does not alter the rate at which the

quantities diverge, but does increase their values on the axis of rotation.
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To understand the effect of the particle mass, the integrals in (24, 25, 26) are

performed numerically. The resulting quantities depend on the angular speed Ω, the

temperature on the axis T0, the chemical potential on the axis µ0, the particle mass

M , the distance from the axis ρ and the numbers of degrees of freedom (dof) gS,

gF. Here we consider values of these parameters which are pertinent for the QGP

formed in heavy ion collisions. An analysis of the QGP fluid produced in accelerators

indicates that it has the greatest vorticity of any fluid produced in a laboratory [9, 20],

with ~Ω ≃ 6.6 MeV, where ~ is the reduced Planck’s constant. For this value of Ω,

the SLS is located at c/Ω ≃ 30 fm, roughly twice the size of a gold nucleus. For the

temperature, we consider a typical value for heavy ion collisions of kBT0 ≃ 0.2 GeV

[9], where kB is the Boltzmann constant. In the relativistic collision of gold nuclei,

a typical value of the chemical potential is µ0 ≃ 0.1 GeV [21]. For the particle

mass Mc2, we consider the pion mass (0.140 GeV), the ρ meson mass (0.775 GeV),

the Λ0-hyperon mass (1.116 GeV) and the Λ+c -charmed hyperon mass (2.286 GeV)

[22].2
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Fig. 1 (a) Numerical results for the energy density EF (26), in GeV/fm3 at µ0 = 0.1 GeV and

kBT0 = 0.2 GeV, for Mc2
= 0, 0.14 GeV, 0.775 GeV and 1.116 GeV. (b) Log-log plot of EF , at

two temperatures (kBT0 = 0.2 GeV and 0.6 GeV), for various masses. The number of degrees of

freedom was set to gF = 6.

In figure 1 we plot the radial profile of the energy density EF (26) as a function

of ρ (left-hand-plot, linear scale) and as a function of the Lorentz factor Γ (13)

(right-hand-plot, logarithmic scale). As expected, the energy diverges on the SLS for

all values of the particle mass. The results for pions and massless particles are very

nearly identical; for larger values of the mass the energy EF is lower everywhere.

However, close to the SLS the results for massive particles are indistinguishable

from those for massless particles. Similar behaviour is observed for the pressure PF

and charge density QF [17, 18]. This is in agreement with the analytic work in the

zero chemical potential case [23] (see also [24] for details of relevant techniques),

2 Note that, since mesons are bosons, the Fermi-Dirac statistics cannot be strictly applied.
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where it was found that the O(M2) corrections due to the mass make subleading

contributions as the SLS is approached.

We now consider more closely the effect of varying the particle mass for both

scalars and fermions. To make the comparison relevant, we consider the energy

density per particle degree of freedom, which amounts to dividing EF by 2gF (the

factor of two is required since the particle and anti-particle states are explicitly taken

into account) and ES by gS. Furthermore, we consider the case of vanishing chemical

potential, µ0 = 0, since we have not introduced this quantity for scalars.
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Fig. 2 (a) The mass dependence of the energy (continuous lines and empty symbols) and pressure

(dashed lines and filled symbols) per dof, computed for the Fermi-Dirac (squares) and Bose-Einstein

(circle) statistics. (b) The dependence on the Lorentz factor Γ (13) of the quantity 1 − 3P/E ,

evaluated for the Fermi-Dirac (continuous lines and empty symbols) and Bose-Einstein (dashed

lines and filled symbols) statistics, for various values of the particle mass.

Figure 2(a) shows the effect of the particle mass on the energy density and pressure

on the rotation axis. For both scalars and fermions, these quantities decrease as the

particle mass increases. In figure 2(b) we plot the quantity 1−3P/E , which vanishes

in the massless limit. For a constant value of the Lorentz factor Γ, we see that

1 − 3P/E increases as the mass is increased, thus the ratio 3P/E decreases. As the

SLS is approached, 1− 3P/E decreases, showing that in the vicinity of the SLS, the

gas behaves as though its constituents were massless.

3 Quantum rigidly-rotating thermal states

We now consider the generalization from RKT to QFT, and examine how rigidly-

rotating quantum states may be defined. In the quantization process, the microscopic

momenta are promoted to quantum operators. Thermal states at a temperature T0 are

defined such that the t.e.v. of an operator Â takes the form [25]:
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〈Â〉T0
= Z−1Tr(ρ̂Â), (29)

where Z = Trρ̂ is the partition function and ρ̂ is the Boltzmann factor, which we

define below. The trace is performed over Fock space, that is, the space of all states

of the quantum field containing n particles (or anti-particles), for n = 0, 1, 2, . . ..

For a rigidly-rotating state with temperature T0 on the axis of rotation, the Boltz-

mann factor for a scalar field is given by [26]:

ρ̂S = exp
[
−(ĤS −ΩM̂z

S
)/T0

]
, (30)

where ĤS is the scalar Hamiltonian operator and M̂z
S

is the z-component of the scalar

angular momentum operator. For a fermion field, we include a chemical potential

µ0 on the axis of rotation, which is conjugate to the charge operator. The Boltzmann

factor for a fermion field is then given by [26]:

ρ̂F = exp
[
−(ĤF −ΩM̂z

F
− µ0Q̂F)/T0

]
, (31)

where ĤF is the fermion Hamiltonian operator, M̂z
F

is the z-component of the total

fermion angular momentum operator and Q̂F is the fermion charge operator.

In order to perform the trace over Fock space in (29), we need to define particle

creation and annihilation operators acting on the states. For a neutral scalar field,

we denote the particle annihilation operators by âj , where j labels the quantum

properties of the annihilated particle. For a fermion field, the operators b̂j annihilate

fermions, while the d̂j operators annihilate anti-fermions. In all cases, the adjoint

operators are the corresponding particle creation operators. For scalars, the particle

creation and annihilation operators satisfy the canonical commutation relations

[âj, â
†
j′] = âj â

†
j′ − â

†
j′ âj = δj, j′, [âj, âj′] = 0 = [â†

j
, â

†
j′], (32)

where δj, j′ vanishes unless the labels j and j ′ are identical. For fermions, canonical

anti-commutation relations hold, so that, for the particle operators:

{b̂j, b̂
†
j′} = b̂j b̂

†
j′ + b̂

†
j′ b̂j = δj, j′, {b̂j, b̂j′} = 0 = {b̂

†
j
, b̂

†
j′}, (33)

and similar relations hold for the anti-particle operators.

Using the particle/anti-particle states corresponding to the above creation and

annihilation operators, we consider a quantization which is compatible with the

operator ρ̂, so that, for scalars:

ρ̂Sâ
†
j
(ρ̂S)−1

= e−(Ej−Ωm j )/T0 â
†
j
, (34)

where Ej is the energy of the created particle, and mj = 0,±1,±2, . . . is the z-

component of the angular momentum. Similarly, for fermions we assume that

ρ̂Fb̂
†
j
(ρ̂F)−1

= e−(Ej−Ωm j−µ0)/T0 b̂
†
j
, ρ̂F d̂

†
j
(ρ̂F)−1

= e−(Ej−Ωm j+µ0)/T0 d̂
†
j
, (35)
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where mj = ± 1
2
,± 3

2
, . . . is the projection of the total fermion angular momentum on

the z-axis. The quantities (34, 35) depend on the energy Ẽj of the particle as seen by

a co-rotating observer:

Ẽj = Ej −Ωmj . (36)

Using the canonical commutation/anti-commutation relations (32, 33), together with

(34, 35), we find the t.e.v.s of the number operators for scalars to be [26, 27]:

〈â†
j
âj′〉

T0

=

δj, j′

exp[Ẽj/T0] − 1
, (37)

while for fermions we have

〈b̂†
j
b̂j′〉

T0

=

δj, j′

exp[(Ẽj − µ0)/T0] + 1
, 〈d̂†

j
d̂j′〉

T0

=

δj, j′

exp[(Ẽj + µ0)/T0] + 1
. (38)

The t.e.v.s (37, 38) have the expected Bose-Einstein/Fermi-Dirac thermal distribu-

tions in terms of the co-rotating energy Ẽj .

Consider first the scalar field t.e.v. (37). This has the correct zero-temperature

limit only if Ẽj > 0. Even with this restriction, it can be seen that (37) diverges when

Ẽj → 0, leading to the divergence of all t.e.v.s (29) [26, 28]. From this we deduce

that rigidly-rotating thermal states cannot be defined for a quantum scalar field on

unbounded Minkowski space-time [26, 28, 29].

To understand this result, we consider how a quantum vacuum state is defined

for a scalar field. In the canonical quantization approach to QFT, one starts with an

orthonormal basis of scalar field modes φ j which are solutions of the Klein-Gordon

equation for a massive scalar field,
(
∂µ∂

µ
+ M2

)
φ j = 0. The scalar field operator Φ̂

is then written as a sum over these field modes and their complex conjugates

Φ̂ =
∑
j

[
âjφ j + â

†
j
φ∗j

]
, (39)

where the expansion coefficients are the particle creation and annihilation operators.

In order that the creation and annihilation operators satisfy the canonical commuta-

tion relations (32), it must be the case that

〈φ j, φ j′〉 = δj, j′, 〈φ∗j, φ∗j′〉 = −δj, j′, 〈φ j, φ
∗
j′〉 = 0, (40)

where 〈 , 〉 is the Klein-Gordon inner product, defined for two solutions φ j , φ j′ of the

Klein-Gordon equation by the following integral over a constant-t surface:

〈φ j, φ j′〉 = i

∫
d3x

(
φ∗j∂

tφ j′ − φ j′∂
tφ∗j

)
. (41)

In particular, the modes φ j corresponding to particles must have positive norm

〈φ j, φ j〉, while those modes φ∗
j
corresponding to antiparticle modes must have nega-

tive norm. This restricts whether modes can be labelled as “particle” or “antiparticle”.
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Calculating the inner product for a particle mode with energy Ej , we find

〈φ j, φ j′〉 =
Ej��Ej

��δj, j′, (42)

and hence the relations (40) hold only if the energy Ej of the mode φ j is positive,

Ej > 0 [30]. The vacuum state |0〉 is then defined as that state which is annihilated

by the particle annihilation operators, âj |0〉 = 0, and is simply the (stationary)

Minkowski vacuum. For a quantum scalar field, it is not possible to make the choice

Ẽj > 0 because, for fixed Ẽj > 0, there will be modes with sufficiently large and

negative mj for which Ej = Ẽj + Ωmj < 0, so that (40) no longer holds and we do

not have a valid quantization [30]. Since there is no rotating vacuum for a quantum

scalar field, rotating thermal states for a quantum scalar field are also ill-defined.

One resolution of this difficulty is to insert a reflecting boundary inside the SLS

[26, 28]. The presence of the boundary means that the energy Ej of the scalar field

modes is quantized, and, if the boundary is inside the SLS, it can be shown that

Ẽj > 0 for all mj [28, 31]. In this case a rotating vacuum state (and also rotating

thermal states) can be defined for a quantum scalar field [28].

In view of these difficulties for a quantum scalar field, for the rest of this chapter

we restrict our attention to a quantum fermion field on unbounded Minkowski space-

time. First we consider whether a rotating vacuum state can be defined in canonical

quantization. Beginning with an orthonormal basis of particle mode solutions Uj

and anti-particle mode solutions Vj of the Dirac equation (which will be discussed

in more detail in the next section), the fermion field operator is written as

Ψ̂ =
∑
j

[
b̂jUj + d̂

†
j
Vj

]
, (43)

where the operators b̂j and d̂j satisfy the canonical anti-commutation relations (33).

In contrast to the scalar field case, all particle and antiparticle modes Uj , Vj have

positive Dirac norm, resulting in a greater freedom to label modes as “particle” or

“anti-particle”. This in turn leads to a greater freedom in how vacuum states (and

therefore also thermal states) are defined [29].

One possible quantization is to define “particle” modes as having positive energy

Ej [26]. As in the scalar case, the resulting vacuum is simply the usual (nonrotating)

Minkowski vacuum state. However, for fermions there is another possibility [32]:

particle modes can be defined by setting Ẽj > 0. This leads to a well-defined

quantization and a rotating vacuum state. Furthermore, with this definition the t.e.v.s

(38) have the correct zero-temperature limit, with contributions only from modes

below the Fermi level, for which Ẽj < µ0 for particle modes and Ẽj < −µ0 for

antiparticle modes (we remind the reader that Ẽj > 0 always holds when the rotating

vacuum is employed). This is in agreement with the corresponding result (19) in the

RKT case, and is sufficient to ensure that there are no temperature- and chemical

potential-independent contributions to t.e.v.s.
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4 Mode solutions in cylindrical coordinates

Our purpose for the remainder of this chapter is to compute t.e.v.s of observables for

a quantum fermion field of mass M , and compare the results with those for the RKT

approach in section 2.2. In this section we lay the groundwork for our computation

by considering in more detail the fermion mode solutions discussed schematically

in the previous section. Since we are interested in rigidly-rotating states, we work in

cylindrical coordinates xµ = (t, ρ, ϕ, z) and follow the approach of [29, 33].

The evolution of a free Dirac field with mass M is governed by the least-action

principle, starting from the action:

SF = i

∫
d4x L, L = i

2

(
ψ /∂ψ − /∂ψψ

)
− Mψψ, (44)

where the Feynman slash denotes contraction with the gamma matrices /∂ = γµ∂µ.

The gamma matrices satisfy the canonical anti-commutation relations {γµ, γν} =
2ηµν and in this chapter, we work with the Dirac representation:

γt =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, (45)

where the Pauli matrices are given by:

σx
=

(
0 1

1 0

)
, σy

=

(
0 −i

i 0

)
, σz

=

(
1 0

0 −1

)
. (46)

We are considering four-spinors ψ, which have Dirac adjoint ψ = ψ†γt . Demanding

that the variation of the action SF (44) with respect to the ψ degree of freedom

vanishes yields the Dirac equation

(i /∂ − M)ψ = 0. (47)

As outlined in the previous section, in order to construct t.e.v.s we first require a

set of particle modes {Uj} and anti-particle modes {Vj} satisfying the Dirac equation

(47). Given a particle mode Uj , the corresponding anti-particle mode Vj is related

to Uj by the charge conjugation operation:

Vj = iγyU∗
j . (48)

In deriving the formal expressions for rigidly-rotating t.e.v.s in section 3, we have

assumed a quantization compatible with ρ̂, see (35). This requires that the following

commutation relations must hold:

[ĤF, b̂
†
j
] =Ej b̂

†
j
, [M̂z

F
, b̂

†
j
] =mj b̂

†
j
, [Q̂F, b̂

†
j
] =b̂

†
j
,

[ĤF, d̂
†
j
] =Ej d̂

†
j
, [M̂z

F
, d̂

†
j
] =mj d̂

†
j
, [Q̂F, d̂

†
j
] = − d̂

†
j
. (49)
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Taking into account the expression for the conserved operators in the classical Dirac

field theory,

HF = i∂t, Mz
F
= −i∂ϕ + Sz, (50)

where the z-projection of the spin operator Sz is given by:

Sz
=

1

2

(
σz 0

0 σz

)
, (51)

the particle mode solutions Uj must thus be chosen to be simultaneous eigenfunctions

of HF and Mz
F
:

HFUj = EjUj, Mz
F
Uj = mjUj . (52)

The above eigenvalue equations are insufficient to specify the particle mode solutions

uniquely. The remaining degrees of freedom can be fixed by choosing Uj to be

eigenfunctions of the longitudinal momentum operator Pz
F
= −i∂z and of the helicity

operator W0 = J · PF/2p (where p is the magnitude of the momentum):

Pz
F
Uj = k jUj, W0Uj = λjUj, (53)

where k j and λj are real constants. The expression for W0 can be obtained as follows:

W0 =

(
h 0

0 h

)
, h =

σ · PF

2p
=

1

2p

(
Pz

F
P−

P+ −Pz
F
,

)
, (54)

where PF = −i∇, while P± are defined in terms of cylindrical coordinates as:

P± = Px
F ± iP

y

F
= −ie±iϕ(∂ρ ± iρ−1∂ϕ). (55)

It can be shown that W2
0
=

1
4
. The eigenvalues λj = 1/2 and −1/2 correspond to

positive and negative helicity, respectively.

The Dirac equation (47) can be written with respect to the above operators as:(
HF − M −2ph

2ph −HF − M

)
ψ = 0. (56)

The operators HF and Pz
F

are diagonal with respect to the spinor structure, thus the

corresponding eigenvalue equations can be solved immediately:

Uj =
Kj

2π
e−iEj t+ik j zu j, u j =

(C−
j
φ j

C+
j
φ j,

)
, (57)

where u j is a four-spinor which depends only on ϕ and ρ and Kj is a normalization

constant. In (57), C±
j

are integration constants and φ j is a two-spinor satisfying the

remaining two eigenvalue equations, namely:(
−i∂ϕ +

1

2
σz

)
φ j = mjφ j, hφ j = λjφ j . (58)
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Substituting (57) into the Dirac equation (56) gives(
Ej − M −2pjλj
2pjλj −Ej − M

)
u j = 0, (59)

where the magnitude of the momentum is now pj , and from this the following

relation can be established for C±
j
:

C−
j =

2λjpj

Ej − M
C+j . (60)

Next we consider the angular momentum equation, the first relation in (58), which

allows φ j to be written in the form:

φ j =

(
φ−
j
ei(m j− 1

2
)ϕ

φ+
j
ei(m j+

1
2
)ϕ

)
, (61)

where mj = ± 1
2
,± 3

2
, . . . is an odd half-integer, while φ±

j
≡ φ±

j
(ρ) are functions

which depend only on the radial coordinate ρ. Taking into account the result [from

(55)] P+P− = P−P+ = −∂2
ρ − ρ−1∂ρ − ρ−2∂2

ϕ , the second relation in (58) reduces to:

[
ρ2 ∂2

∂ρ2
+ ρ

∂

∂ρ
+ q2

j ρ
2 −

(
mj ±

1

2

)2
]
φ±j = 0, (62)

where the longitudinal momentum qj is defined by

qj =

√
p2
j
− k2

j
=

√
E2
j
− k2

j
− M2. (63)

Equation (62) can readily be identified with the Bessel equation [34], having two

linearly independent solutions Jm±1/2(qρ) and Ym±1/2(qρ). Demanding regularity at

the origin discards the Neumann function Ym±1/2(qρ), and therefore

φ±j = N±
j Jm j± 1

2
(qj ρ). (64)

The connection between the integration constants N+
j

and N−
j

can be established by

noting that the operators P± act as ladder operators, in the sense that:

P±ei(m j∓ 1
2
)ϕ Jm j∓ 1

2
(qj ρ) = ±iqje

i(m j± 1
2
)ϕ Jm j± 1

2
(qj ρ), (65)

where the following properties were employed [34]:
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J ′
m j+

1
2

(qj ρ) =Jm j− 1
2
(qj ρ) −

mj +
1
2

qj ρ
Jm j+

1
2
(qj ρ),

J ′
m j− 1

2

(qj ρ) = − Jm j+
1
2
(qj ρ) +

mj − 1
2

qj ρ
Jm j− 1

2
(qj ρ). (66)

The helicity equation [the second relation in (58)] then yields

N+j =
iqj

k j + 2pjλj
N−

j = 2iλj
p−
j

p+
j

N−
j , (67)

with

p±j =

(
1 ±

2λj k j

pj

)1/2
. (68)

Noting that an overall normalization constant, N−
j

√
2/p+

j
, can be absorbed into Kj

in (57), we write φ j in the form:

φ j =
1
√

2

(
p+
j
ei(m j− 1

2
)ϕ Jm j− 1

2
(qj ρ)

2iλjp
−
j
ei(m j+

1
2
)ϕ Jm j+

1
2
(qj ρ)

)
. (69)

Introducing the angle ϑj made by the momentum vector with the z-direction, so that

k j = pj cos ϑj (with 0 ≤ ϑj ≤ π), it can be seen that

1
√

2
p±j =

(
1

2
± λj

)
cos

ϑj

2
+

(
1

2
∓ λj

)
sin

ϑj

2
. (70)

Thus, the two-spinor φ j can be written compactly as follows (where we have explicitly

written out all the parameters on which this depends):

φ
1/2
p,k,m

=

(
cos ϑ

2
ei(m− 1

2
)ϕ Jm− 1

2
(qρ)

i sin ϑ
2

ei(m+
1
2
)ϕ Jm+ 1

2
(qρ)

)
, φ

−1/2
p,k,m

=

(
sin ϑ

2
ei(m− 1

2
)ϕ Jm− 1

2
(qρ)

−i cos ϑ
2

ei(m+
1
2
)ϕ Jm+ 1

2
(qρ)

)
.

(71)

Using the identity
∞∑

n=−∞
J2
n(qj ρ) = 1, (72)

where the sum runs over all integers n ∈ Z, it can be established that the two-spinors

φ j (71) satisfy the normalization condition

∞∑
m=−∞

φ
λ,†
p,k,m

φλ
′

p,k,m = δλ,λ′, (73)

We now return to the four-spinors u j (57), for which we impose the normalization

condition
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∞∑
m=−∞

u
λ,†
E,k,m

uλ
′

E,k,m = δλ,λ′ . (74)

This can be achieved by setting C+
j
= (2λjEj/|Ej |)E−j /

√
2, such that

u j =
1
√

2

(
E+
j
φ j

2λ jEj

|Ej | E
−
j
φ j

)
, E±j =

(
1 ± M

Ej

)1/2
, (75)

where Ej/|Ej | is the sign of Ej .

The final piece of the puzzle is to establish unit norm for the modes Uj (57). This

is achieved using the Dirac inner product, defined for two solutions ψ and χ of the

Dirac equation (47) by:

〈ψ, χ〉 =
∫

d3x ψγt χ, (76)

where the integration is taken over a constant-t surface. Performing the integral with

respect to cylindrical coordinates and using the relation∫ ∞

0

dρ ρ Jm+ 1
2
(qj ρ)Jm+ 1

2
(qj′ρ) =

δ(qj − qj′)
qj

, (77)

it can be seen that, with Kj = 1, we have the required normalisation condition

〈Uj,Uj′〉 =δλ j,λ j′ δm j,m j′ δ(k j − k j′)
δ(qj − qj′)

qj

θ(EjEj′)

=δλ j,λ j′ δm j,m j′ δ(k j − k j′)
δ(Ej − Ej′)

|Ej |
. (78)

We therefore write the particle modes Uj as

Uλ
E,k,m =

e−iEt+ikz

2π
uλE,k,m, uλE,k,m =

1
√

2

(
E+φλ

p,k,m
2λE
|E | E

−φλ
p,k,m

)
. (79)

The four-spinors Vj corresponding to the anti-particle modes are then obtained via

the charge conjugation operation (48):

Vλ
E,k,m =

eiEt−ikz

2π
v
λ
E,k,m, v

λ
E,k,m =

(−1)m− 1
2

√
2

iE

|E |

(
E−φλ

p,−k,−m
− 2λE

|E | E
+φλ

p,−k,−m

)
. (80)

The two-spinor φλ
p,k,m

is defined in (69), and also in (71) in terms of the angle ϑ

between the momentum vector and the z-axis. Due to the relationship (48) between

the particle and anti-particle modes, the anti-particle modes Vj also satisfy the

normalization condition (78). In particular, anti-particle modes, like particle modes,

have positive Dirac norm. As discussed in the previous section, this is crucial for the

definition of rigidly-rotating quantum states for fermions.
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5 Quantum stationary thermal expectation values

With a complete orthonormal basis of fermion modes constructed in the previous

section, we are now in a position to compute t.e.v.s of physical quantities. While our

primary interest is in rigidly-rotating states, we first study the t.e.v.s for stationary,

nonrotating states with vanishing angular speed Ω.

At the level of the classical field theory, the CC Jµ and SET Tµν can be constructed

using Noether’s theorem [27]:

Jµ = ψγµψ, Tµν =
i

2

[
ψγ(µ∂ν)ψ − ∂(µψγν)ψ

]
. (81)

The trace of the SET is proportional to the FC ψψ:

Tµ
µ = Mψψ. (82)

The generalisation to QFT is made by replacing the classical field ψ with the corre-

sponding quantum operator, Ψ̂. Due to the anti-commutation relations (33) satisfied

by the quantum operators, there is an ambiguity in the ordering of the action of the

quantum operators on the Fock space states. For operators which are quadratic in

the field operators, such as those arising from (81, 82), and since we are working

on flat space-time, this ambiguity can be overcome by introducing normal ordering,

a procedure by which the vacuum expectation value (v.e.v.) is subtracted from the

operator itself. For an operator Â, the normal-ordered operator : Â : is therefore

defined to be

: Â := Â − 〈0| Â|0〉 . (83)

Inserting the schematic mode expansion (43) in (81), the following expressions

are obtained

: Ψ̂Ψ̂ :=
∑
j, j′

[
b̂
†
j
b̂j′U jUj′ − d̂

†
j′ d̂jV jVj′

]
,

: Ĵµ :=
∑
j, j′

[
b̂
†
j
b̂j′J

µ(Uj,Uj′) − d̂
†
j′ d̂jJ

µ(Vj,Vj′)
]
,

: T̂µν :=
∑
j, j′

[
b̂
†
j
b̂j′Tµν(Uj,Uj′) − d̂

†
j′ d̂jTµν(Vj,Vj′)

]
, (84)

where we have introduced the sesquilinear forms Jµ(ψ, χ) and Tµν(ψ, χ) for nota-

tional brevity, based on the classical quantities (81):

Jµ(ψ, χ) = ψγµ χ, Tµν(ψ, χ) =
i

2

[
ψγ(µ∂ν) χ − ∂(µψγν) χ

]
. (85)

As discussed in section 3, the nonrotating Minkowski vacuum is defined by taking

all modes corresponding to the positive eigenvalues of the Hamiltonian (Ej > 0) as

particle modes. This leads to the following decomposition of the field operator:
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Ψ̂ =
∑
λ=± 1

2

∞∑
m=−∞

∫ ∞

M

dE E

∫ p

−p
dk

[
b̂λE,k,mUλ

E,k,m + d̂λ
E,k,m

†Vλ
E,k,m

]
, (86)

where the spinor modes are given by (79, 80). Substituting the mode expansion (86)

into (84), and using the relations (38), we find the following t.e.v.s for a stationary

(nonrotating) state at temperature T0:

〈: Ψ̂Ψ̂ :〉T0
=

∑
j

{
U jUj

exp[(Ej − µ0)/T0] + 1
−

V jVj

exp[(Ej + µ0)/T0] + 1

}
,

〈: Ĵµ :〉T0
=

∑
j

{
Jµ(Uj,Uj)

exp[(Ej − µ0)/T0] + 1
−

Jµ(Vj,Vj)
exp[(Ej + µ0)/T0] + 1

}
,

〈: T̂µν :〉
T0
=

∑
j

{ Tµν(Uj,Uj)
exp[(Ej − µ0)/T0] + 1

−
Tµν(Vj,Vj)

exp[(Ej + µ0)/T0] + 1

}
, (87)

where Ẽj = Ej in the case when Ω = 0.

5.1 Fermion condensate

Using the charge conjugation property (48), it can be shown that:

V jVj = U
∗
jγ

yγyU∗
j = −(U jUj)∗, (88)

since (γy)2 = −1. Using the spinor mode (79), we have

U jUj =
M

8π2Ej

[
J+m j

(qj ρ) +
2λj k j

pj

J−m j
(qj ρ)

]
, (89)

where we define (we will need J×m(qρ) later)

J±m(qρ) = J2

m− 1
2

(qρ) ± J2

m+ 1
2

(qρ), J×m(qρ) = 2Jm− 1
2
(qρ)Jm+ 1

2
(qρ). (90)

Since U jUj is a real scalar, it can be seen that V jVj = −U jUj . Furthermore, noting

that the term proportional to λj in (89) makes a vanishing contribution under the

summation with respect to λj , the t.e.v. of the FC, given in the first line of (87), is:

〈: Ψ̂Ψ̂ :〉T0
=

M

4π2

∞∑
m=−∞

∫ ∞

M

dE

[
1

e(E−µ0)/T0 + 1
+

1

e(E+µ0)/T0 + 1

] ∫ p

−p
dk J+m(qρ).

(91)

Taking into account the identity (72), the sum over m can be performed:
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∞∑
m=−∞

J+m(qρ) = 2

∞∑
n=−∞

Jn(qρ) = 2, (92)

where m = ± 1
2
,± 3

2
, . . . , while n = 0,±1,±2, . . . . After performing the sum over m

in (91), the integration variable can be changed from E to p, giving:

〈: Ψ̂Ψ̂ :〉T0
=

M

π2

∫ ∞

0

dp p2

E

[
1

e(E−µ0)/T0 + 1
+

1

e(E+µ0)/T0 + 1

]
. (93)

The above expression coincides with that for (EF − 3PF )/M (26), obtained in RKT

with gF = 2 (taking into account the fermion helicities) andΩ = 0. Thus, the FC has

no corrections in the QFT setting compared to its RKT counterpart.

5.2 Charge current

The charge conjugation property (48) can be used to show that:

Jµ(Vj,Vj) = U
∗
jγ

yγµγyU∗
j = (U jγ

µUj)∗ = [Jµ(Uj,Uj′)]∗, (94)

where, as well as (88), the properties γyγµ = 2ηyµ − γµγy and (γy)∗ = −γy were

used. Thus, it is sufficient to compute Jµ(Uj,Uj). Substituting µ = t and µ = i for

the index µ, we find:

Jt (Uj,Uj) =
1

4π2
φ
†
j
φ j, Ji(Uj,Uj) =

1

4π2

2λjpj

Ej

φ
†
j
σiφ j . (95)

It is convenient to work with components taken with respect to the tetrad introduced

in (8). The sigma matrices constructed with respect to this tetrad are:

σρ̂
=

(
0 e−iϕ

eiϕ 0

)
, σϕ̂

=

(
0 −ie−iϕ

ieiϕ 0

)
. (96)

The following relations can be established:

φ
†
j
φ j =

1

2
J+m j

(qj ρ) +
λj k j

pj

J−m j
(qj ρ), φ

†
j
σρ̂φ j =0,

φ
†
j
σẑφ j =

1

2
J−m j

(qj ρ) +
λj k j

pj

J+m j
(qj ρ), φ

†
j
σϕ̂φ j =

λjqj

pj

J×m j
(qj ρ), (97)

where the functions J±m(qρ) and J×m(qρ) were introduced in (90).

Noting that the density of states factors [e(E±µ0)/T0 + 1]−1 are invariant under the

transformation k → −k, λ → −λ and m → −m, it can be seen that the spatial

components of Jµ vanish. This is because J−m(qρ) and J×m(qρ) are odd with respect

to m → −m, while φ
†
j
σẑφ j is odd under the transformation (k,m) → (−k,−m). The
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time component of the CC can then be written as:

〈: Ĵ t̂ :〉T0
=

1

4π2

∞∑
m=−∞

∫ ∞

M

dE E

[
1

e(E−µ0)/T0 + 1
− 1

e(E+µ0)/T0 + 1

] ∫ p

−p
dk J+m(qρ).

(98)

After performing the sum over m using (92), an angle ϑ can be introduced such that

k = p cos ϑ and q = p sin ϑ. The integration measure E dE dk = q dq dk is then

changed to p2 sin ϑ dϑ dp. Since, after the sum over m is performed, the integrand

is independent of ϑ, the integration with respect to this variable can be performed

automatically, yielding
∫ π

0
dϑ sin ϑ = 2. Thus 〈: J t̂ :〉T0

reduces to:

〈: Ĵ t̂ :〉T0
=

1

π2

∫ ∞

0

dp p2

[
1

e(E−µ0)/T0 + 1
− 1

e(E+µ0)/T0 + 1

]
. (99)

As was the case for the FC, the above expression coincides with the fermion charge

density QF (24) obtained using RKT with gF = 2 and Ω = 0, showing that there are

no quantum corrections.

5.3 Stress-energy tensor

In a manner similar to the one employed to derive (94), it can be shown thatTµν(Vj,Vj)
can be related to Tµν(Uj,Uj) via:

Tµν(Vj,Vj) = − i

2
[U jγ(µ∂ν)Uj − ∂(µU jγν)Uj]∗ = −[Tµν(Uj,Uj)]∗, (100)

where the last − sign comes from the complex conjugate of the imaginary unit

i prefactor. Using the properties (66) of the Bessel functions, we can derive the

following relations:

φ
†
j
σρ̂∂ρφ j =

iq2
j
λj

pj

[
J+m j

(qj ρ) −
mj

qj ρ
J×m j

(qj ρ)
]
,

φ
†
j
σϕ̂∂ϕφ j =

imjqjλj

pj

J×m j
(qj ρ). (101)

For stationary states, all off-diagonal tetrad components of the SET vanish. However,

when we consider rigidly-rotating states in the next section, the component Tt̂ϕ̂ will

be nonzero. We therefore write down the diagonal tetrad components and the (t̂, ϕ̂)
component which we will require later:
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T̂t t̂ (Uj,Uj) =
Ej

8π2

[
J+m j

(qj ρ) +
2λj k j

pj

J−m j
(qj ρ)

]
,

T̂tϕ̂(Uj,Uj) = −
1

16π2ρ

[(
mj −

λj k j

pj

)
J+m j

(qj ρ) −
(
1

2
−

2λj k jmj

pj

)
J−m j

(qj ρ)
]

−
qj

16π2
J×m j

(qj ρ),

Tρ̂ρ̂(Uj,Uj) =
q2
j

8π2Ej

[
J+m j

(qj ρ) −
mj

qj ρ
J×m j

(qj ρ)
]
,

Tϕ̂ϕ̂(Uj,Uj) =
qjmj

8π2Ej ρ
J×m j

(qj ρ),

T̂zẑ(Uj,Uj) =
k2
j

8π2Ej

J+m j
(qj ρ) +

λj k jpj

4π2Ej

J−m j
(qj ρ). (102)

Using the summation formula:

∞∑
m=−∞

mJ×m(qρ) =
∞∑

n=−∞
(2n + 1)Jn(qρ)Jn+1(qρ) = 1, (103)

where, as before, m = ± 1
2
,± 3

2
, . . . , while n = 0,±1,±2, . . . , it can be shown that the

t.e.v. of the SET for nonrotating states has the simple diagonal form

〈: T̂α̂σ̂ :〉T0
= diag(EF, PF, PF, PF ), (104)

where EF and PF were obtained in (26) using the RKT formulation with gF = 2.

Therefore there are no quantum corrections to t.e.v.s for stationary states.

6 Quantum rigidly-rotating thermal expectation values

In the previous section, the construction of stationary thermal states was based on

the nonrotating Minkowski vacuum, defined by setting the energy Ej > 0 for particle

modes. When the rotation is switched on, as discussed in section 3, we can define a

rotating vacuum for fermions by instead setting the corotating energy Ẽj > 0 (36) to

be positive for particle modes [32]. We therefore define the fermion field operator as

follows:

Ψ̂ =
∑
λ=± 1

2

∞∑
m=−∞

∫
|E |>M

dE |E |
∫ p

−p
dk Θ(Ẽ)

×
[
b̂λE,k,mUλ

E,k,m(x) + d̂λ
E,k,m

†Vλ
E,k,m(x)

]
, (105)
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where the particle spinors Uλ
E,k,m

and anti-particle spinors Vλ
E,k,m

can be found

in (79, 80) respectively. The field operator (105) should be compared with the

corresponding definition (86) for the stationary case. In (86) the integral over E

involves only positive energy E > 0, whereas in (105) we also take into account

negative energy modes, provided that the mass shell condition |E | > M is satisfied.

Instead, the requirement that the co-rotating energy is positive, Ẽ > 0, is imposed

by the presence of the Heaviside step function Θ(Ẽ).
With the decomposition (105) of the fermion field operator, we can proceed

to construct t.e.v.s using the method employed in section 5 in the stationary case.

The mode expansion (105) is inserted into the FC, CC and SET operators (84), to

obtain mode sums involving the particle and anti-particle creation and annihilation

operators. The t.e.v.s of the particle number operators are then given by (38), where

the temperature on the axis of rotation is fixed to be T0. The density of states factor

in (38) now has a dependence on the angular momentum quantum number mj as

well as the energy Ej . In this section we study the t.e.v.s of the FC, CC and AC for a

rigidly-rotating thermal state. We consider the SET separately in section 7.

6.1 Fermion condensate

Starting from (105), the following expression is obtained for the t.e.v. of the FC:

〈: Ψ̂Ψ̂ :〉T0
=

∑
λ=± 1

2

∞∑
m=−∞

∫
|E |>M

dE |E |
∫ p

−p
dk Θ(Ẽ)

×

U

λ

E,k,mUλ
E,k,m

e(Ẽ−µ0)/T0 + 1
−

V
λ

E,k,mVλ
E,k,m

e(Ẽ+µ0)/T0 + 1


. (106)

Using (88, 89), the sum over λ can be performed, yielding:

〈: Ψ̂Ψ̂ :〉T0
=

M

4π2

∞∑
m=−∞

∫
|E |>M

dE sgn(E)
∫ p

−p
dk Θ(Ẽ) J+m(qρ)

×
[

1

e(Ẽ−µ0)/T0 + 1
+

1

e(Ẽ+µ0)/T0 + 1

]
, (107)

where sgn(E) = |E |/E is the sign of the energy of the mode. To simplify the

integration above, the integral over E can be split into its positive (E > M) and

negative (E < −M) domains. On the negative branch, the simultaneous sign flip

(E,m) → (−E,−m) can be performed, under which Ẽ → −Ẽ . Noting that J+−m(qρ) =
J+m(qρ), the following expression is obtained:
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〈: Ψ̂Ψ̂ :〉T0
=

M

4π2

∞∑
m=−∞

∫ ∞

M

dE

∫ p

−p
dk J+m(qρ) sgn(Ẽ)

×
[

1

e( |Ẽ |−µ0)/T0 + 1
+

1

e( |Ẽ |+µ0)/T0 + 1

]
. (108)

In order to study the massless limit of M−1 〈: Ψ̂Ψ̂ :〉T0
, we now attempt to simplify

the integrand, by replacing sgn(Ẽ) = 1 and |Ẽ | = Ẽ . To this end, consider the

quantity F1

F1 =

∞∑
m=−∞

∫ ∞

M

dE

[
sgn(Ẽ)

e( |Ẽ |−µ0)/T0 + 1
+

sgn(Ẽ)
e( |Ẽ |+µ0)/T0 + 1

]
f(m, E), (109)

where f(m, E) is a function depending on m and E , We now write F1 as a sum of

a term {F1}simp where |Ẽ | is replaced by Ẽ (that is, the modulus is removed) and

sgn(Ẽ) is set equal to one, and a remainder ∆F1:

F1 = {F1}simp + ∆F1, (110)

where

{F1}simp =

∞∑
m=−∞

∫ ∞

M

dE

[
1

e(Ẽ−µ0)T0 + 1
+

1

e(Ẽ+µ0)/T0 + 1

]
f(m, E),

∆F1 = −
∞∑

m=mM

∫ Ωm

M

dE

[
1

e(−Ẽ−µ0)/T0 + 1
+

1

e(−Ẽ+µ0)/T0 + 1

+

1

e(Ẽ−µ0)/T0 + 1
+

1

e(Ẽ+µ0)/T0 + 1

]
f(m, E)

= −
∞∑

m=mM

∫ Ωm

M

dE 2f(m, E), (111)

where mM is the minimum value of m for whichΩm > M . The last line follows from

the identity (ex +1)−1
+ (e−x +1)−1

= 1. The last equality above shows that ∆F1 does

not depend on T0 or µ0 unless f(m, E) explicitly depends on these parameters (which

it does not for the FC). The dependence of ∆F1 on Ω is due to the definition of the

rotating vacuum, where Ω appears explicitly when restricting the energy spectrum

to positive co-rotating energies. We thus find

M−1
{
〈: Ψ̂Ψ̂ :〉T0

}
simp
=

1

2π2

∞∑
m=−∞

∫ ∞

M

dE

[
1

e(Ẽ−µ0)/T0 + 1
+

1

e(Ẽ+µ0)/T0 + 1

]

×
∫ p

0

dk J+m(qρ). (112)
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In the massless limit, the following exact result can be obtained (see [17, 18] for

further details of the techniques used to perform the integration):

M−1
{
〈: Ψ̂Ψ̂ :〉T0

}
simp

⌋
M=0

=

T2

6
+

µ2

2π2
+

3ω2
+ 2a2

24π2
, (113)

where ω
2
= Ω2Γ2 and a2

= ρ2Ω2Γ4 are the squares of the spatial parts of the

kinematic vorticity and acceleration introduced in (15), while Γ is the Lorentz factor

(13). The last term is independent of µ and T and hence represents the contribution

due to the difference between the rotating and stationary vacua. Subtracting this

contribution gives

M−1 〈: Ψ̂Ψ̂ :〉T0

⌋
M=0
=

T2

6
+

µ2

2π2
, (114)

which agrees with the RKT result (28) with gF = 2, diverging as Γ → ∞ and the

SLS is approached.

6.2 Charge current

Since the density of states factor in (38) now has a dependence on the angular

momentum quantum number m as well as the energy E , the ϕ̂ component of the CC

no longer vanishes when the state is rigidly-rotating. The nonzero components of the

t.e.v. of the CC take the form:

(
〈: Ĵ t̂ :〉T0

〈: Ĵϕ̂ :〉T0

)
=

1

4π2

∞∑
m=−∞

∫ ∞

M

dE

[
1

e( |Ẽ |−µ0)/T0 + 1
− 1

e( |Ẽ |+µ0)/T0 + 1

]

×
∫ p

−p
dk

(
E J+m(qρ)
q J×m(qρ)

)
. (115)

To compute the above integrals in the massless limit, we follow the method employed

for the FC and define a quantity

F2 =

∞∑
m=−∞

∫ ∞

M

dE

[
1

e( |Ẽ |−µ0)/T0 + 1
− 1

e( |Ẽ |+µ0)/T0 + 1

]
f(m, E). (116)

Writing F2 as a sum of a term {F2}simp where |Ẽ | is replaced by Ẽ and a remainder

∆F2

F2 = {F2}simp + ∆F2, (117)

we find



26 Victor E. Ambrus, , Elizabeth Winstanley

{F2}simp =

∞∑
m=−∞

∫ ∞

M

dE

[
1

e(Ẽ−µ0)T0 + 1
− 1

e(Ẽ+µ0)/T0 + 1

]
f(m, E),

∆F2 =

∞∑
m=mM

∫ Ωm

M

dE

[
1

e(−Ẽ−µ0)/T0 + 1
− 1

e(−Ẽ+µ0)/T0 + 1

− 1

e(Ẽ−µ0)/T0 + 1
+

1

e(Ẽ+µ0)/T0 + 1

]
f(m, E). (118)

The term inside the square brackets in ∆F2 is identically zero. Thus, it can be con-

cluded that F2 = {F2}simp for any function f(m, E), which simplifies the integration.

The following expressions are then obtained for massless fermions [17, 18]:

〈: Ĵ t̂ :〉T0
=

µ0Γ
4

3

(
T2

0 +
µ2

0

π2

)
+

µ0Ω
2Γ4

4π2

(
4

3
Γ2 − 1

3

)
= Γ

[
QF +

µ

12π2
(3ω2

+ a2)
]
,

〈: Ĵϕ̂ :〉T0
=ρΩΓ

[
QF +

µ

12π2
(ω2
+ 3a2)

]
. (119)

As expected, the ϕ-component vanishes whenΩ = 0 and the state is nonrotating. The

first terms appearing on the right-hand-side correspond to the RKT results for gF = 2

(27). The second terms are the quantum corrections, and are proportional to Ω2,

vanishing when the rotation is zero. The quantum corrections do not depend on the

temperature T , only on the chemical potential, local vorticity and local acceleration.

The quantum corrections are therefore present even in the zero-temperature limit.

The decomposition of the CC with respect to the kinematic tetrad in (15) will be

discussed in section 7.2.

The t.e.v. of the CC vanishes identically when the chemical potential on the axis

µ0 is zero. This is to be expected since, with vanishing chemical potential, a rigidly-

rotating thermal state will contain equal numbers of particles and anti-particles.

When µ0 is nonzero, the current diverges as Γ→ ∞ and the SLS is approached. For

both components of the CC, the quantum corrections diverge more rapidly than the

RKT contributions as ρ → Ω−1. Therefore, close to the SLS, the CC is completely

dominated by quantum effects and the RKT contributions are subleading.

6.3 Axial current

The classical AC J
µ

5
is defined by

J
µ

5
= ψγµγ5ψ, (120)

where we have introduced the chirality matrix

γ5 = iγtγxγyγz =

(
0 1

1 0

)
. (121)
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Using the Dirac equation (47), and taking into account that γ5 anti-commutes with

all of the other γ matrices, {γ5, γ
µ} = 0, we find ∂µJ

µ

5
= 2iMψγ5ψ, and hence

J
µ

5
is conserved for massless particles. Nonvanishing values of J

µ

5
can be induced

through the chiral vortical effect (for a review, see [8]). The expectation values of

J
µ

5
computed for massless fermions using a perturbative approach were recently

reported in [13]. Here we consider the t.e.v. of J
µ

5
using QFT techniques.

Using the mode expansion (105), the t.e.v. of (120) takes the form:

〈: Ĵ
µ

5
:〉
T0
=

∑
j

{
J
µ

5
(Uj,Uj)

exp[(Ẽj − µ0)/T0] + 1
−

J
µ

5
(Vj,Vj)

exp[(Ẽj + µ0)/T0] + 1

}
, (122)

where J
µ

5
(ψ, χ) = ψγµγ5 χ. Following the same reasoning applied to obtain (94), it

is not difficult to show that J
µ

5
(Vj,Vj) = −[Jµ

5
(Uj,Uj)]∗, while

Jt5(Uj,Uj) =
pj

8π2Ej

[
2λj J

+

m j
(qj ρ) +

k j

pj

J−m j
(qj ρ)

]
,

J
ϕ

5
(Uj,Uj) =

λjqj

4π2pj

J×m j
(qj ρ),

Jz
5
(Uj,Uj) =

1

8π2

[
J−m j

(qj ρ) +
2λj k j

pj

J+m j
(qj ρ)

]
. (123)

When considering the sum over j in (122), the terms which are odd with respect to

λ and k vanish. Thus, the only non-vanishing component of the t.e.v. of the AC is

〈: Ĵz
5

:〉
T0
=

1

4π2

∞∑
m=−∞

∫ ∞

M

dE E

∫ p

−p
dk J−m(qρ)sgn(Ẽ)

×
{

1

exp[(|Ẽ | − µ0)/T0] + 1
+

1

exp[(|Ẽ | + µ0)/T0] + 1

}
. (124)

As in the cases of the FC and CC, the t.e.v. of the axial current can be computed

exactly in the massless limit. We simplify as discussed in section 6.1, replacing

sgn(Ẽ) = 1 and |Ẽ | = Ẽ , to find:

{
〈: Ĵz

5
:〉
T0

}
simp
=

1

2π2

∞∑
m=−∞

∫ ∞

M

dE E

[
1

e(Ẽ−µ0)/T0 + 1
+

1

e(Ẽ+µ0)/T0 + 1

]

×
∫ p

0

dk J−m(qρ). (125)

In the massless limit, the following exact result can be obtained [17, 18]:
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{
〈: Ĵz

5
:〉
T0

}
simp

⌋
M=0

=

ΩT2
0
Γ4

6

(
1 +

3µ2
0

π2T2
0

)
+

Ω3Γ4

24π2
(4Γ2 − 3)

=ωẑ

(
T2

6
+

µ2

2π2
+

ω
2
+ 3a2

24π2

)
, (126)

where ωα̂ is the kinematic vorticity introduced in (15). The last term is independent

of µ0 and T0 and hence represents the contribution due to the difference between the

rotating and stationary vacua [29]. Eliminating this term allows the t.e.v. of the AC

to be obtained as:

〈: Ĵα̂5 :〉
T0

⌋
M=0
= σω

Aω
α̂, σω

A =
T2

6
+

µ2

2π2
, (127)

where σω
A

is the axial vortical conductivity, which allows an axial charge flow to

develop along the kinematic vorticity vector. As expected, the AC (127) vanishes in

the stationary case, but, unlike the CC, it is nonzero even when the chemical potential

vanishes [29].

The AC vanishes in classical RKT. Restoring the reduced Planck’s constant, the

AC (127) is proportional to ~Ω and is therefore larger than the quantum corrections

to the CC, which are O(~2Ω2).
The AC has been studied previously by a number of authors [8, 36, 37]. Up

to possible overall factors due to differences in definitions, (127) agrees with the

corresponding quantity in [8] only on the rotation axis, where Γ = 1. The axial

current in [36] (derived using the ansatz for the Wigner function proposed in [39])

matches (126) only on the axis of rotation, but no distinction is made in [36] between

the stationary and rotating vacua. Constructed using a QFT approach and considering

the stationary Minkowski vacuum, the AC in [37] agrees with (126), again only on

the axis of rotation. Finally, the result obtained in [38] using perturbative QFT agrees

fully with (126).

7 Hydrodynamic analysis of the quantum stress-energy tensor

In this section we consider in detail the t.e.v. of the SET for rigidly-rotating states.

Following the approach of the previous section, we first derive the components of this

t.e.v. with respect to the orthonormal tetrad (8). For comparison with the RKT results

from section 2, we then consider quantities defined with respect to the β-frame (or

thermometer frame).

7.1 Stress-energy tensor expectation values

The t.e.v. of the SET can be written compactly as:
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〈: T̂α̂σ̂ :〉T0
=

1

4π2

∞∑
m=−∞

∫ ∞

M

dE E

∫ p

−p
dk Tα̂σ̂ sgn(Ẽ)

×
[

1

e( |Ẽ |−µ0)/T0 + 1
+

1

e( |Ẽ |+µ0)/T0 + 1

]
, (128)

where the tensor Tα̂σ̂ has the following non-vanishing components:

Tt̂ t̂ = E J+m(qρ), Tt̂ϕ̂ = − 1

2ρ

[
mJ+m(qρ) −

1

2
J−m(qρ)

]
− q

2
J×m(qρ),

Tρ̂ρ̂ =
q2

E

[
J+m(qρ) −

m

qρ
J×m(qρ)

]
, Tϕ̂ϕ̂ =

mq

ρE
J×m(qρ), Tẑẑ =

k2

E
J+m(qρ).

(129)

As with the t.e.v.s considered in section 6, we can obtain closed-form expressions

in the massless limit. We first simplify using the approach of section 6.1, and then

integrate using a procedure whose details can be found in [17, 18]. The results are:

〈: T̂t̂ t̂ :〉T0
=PF(4Γ2 − 1) + Ω

2Γ2

8

(
T2
+

3µ2

π2

) (
8

3
Γ4 − 16

9
Γ2
+

1

9

)
,

〈: T̂t̂ϕ̂ :〉
T0
= − ρΩΓ2

[
4P2

F +
2Ω2Γ2

9

(
T2
+

3µ2

π2

) (
3

2
Γ2 − 1

2

) ]
,

〈: T̂ρ̂ρ̂ :〉
T0
=PF +

Ω2Γ2

24

(
T2
+

3µ2

π2

) (
4

3
Γ2 − 1

3

)
,

〈: T̂ϕ̂ϕ̂ :〉
T0
=PF(4Γ2 − 3) + Ω

2Γ2

24

(
T2
+

3µ2

π2

) (
8Γ4 − 8Γ2

+ 1
)
, (130)

while 〈: T̂ẑẑ :〉T0
= 〈: T̂ρ̂ρ̂ :〉

T0
(this relation holds also in the case of massive field

quanta [17, 29]). The first term in each component of the SET is the contribution

from RKT (see section 2), while the second term is the quantum correction. As for

the CC (see section 6.2), the quantum corrections are all proportional to Ω2 and, as

expected from section 5, vanish in the stationary case. Unlike the CC, the quantum

corrections are now temperature-dependent. All components of the t.e.v. of the SET

diverge on the SLS, and, once again, the quantum corrections diverge more quickly

as Γ→ ∞.

7.2 Thermometer frame

Further insight into the effect of quantum corrections can be gleaned from a hydro-

dynamic analysis of the SET. In relativistic fluid dynamics, the equivalence between

mass and energy transfer makes the macroscopic four-velocity uµ an ambiguous

concept. A frame is defined by making a choice for the definition of uµ. Here we
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work in the β-frame, also termed the natural frame [40], or thermometer frame

[41] (see also [15] for an analysis of the properties of this frame). In the β-frame,

the macroscopic four-velocity uµ is proportional to the temperature four-vector βµ,

that is, uµ
= T βµ, where T is the local temperature. For rigidly-rotating states, the

macroscopic four-velocity is then given by (12).

With this definition of uµ, we decompose the CC and SET as follows [42]:

Jµ = Qβuµ
+Jµ

β
, Tµν

= Eβ uµuν−(Pβ+̟)∆µν+Πµν
+uµWν

+uνWµ, (131)

where Qβ , Eβ and Pβ are the usual equilibrium quantities, Jµ and Wµ represent the

charge and heat flux in the local rest frame,̟ is the dynamic pressure and Πµν is the

pressure deviator. The tensor ∆µν = g
µν − uµuν is a projector on the hypersurface

orthogonal to uµ. The nonequilibrium quantities Jµ,Πµν andWµ are also orthogonal

to uµ, by construction. The isotropic pressure Pβ + ̟ is given as the sum of the

hydrostatic pressure Pβ , computed using the equation of state of the fluid, and of the

dynamic pressure ̟, which in general depends on the divergence of the velocity.

In the case of massless (or ultrarelativistic) particles, the SET is traceless, since

the massless Dirac field is conformally coupled and the conformal trace anomaly

vanishes on flat space-time [43]. From (131), the SET trace is Tµ
µ = Eβ −3(Pβ +̟,

and therefore̟ vanishes for massless particles since Eβ = 3Pβ . Moreover, since the

velocity field is divergenceless (∇µuµ
= 0), it is reasonable to assume that ̟ = 0

also when M > 0. However, below we keep this term for clarity.

For both massive and massless particles, the macroscopic quantities can be ex-

tracted from the components of Jµ and Tµν as follows [14]:

Qβ = uµJµ, Eβ = uµuνTµν, Pβ +̟ = −1

3
∆µνTµν,

Jµ
= ∆µν Jν, Wµ

= ∆µνuλTνλ, Πµν
= T 〈µν〉, (132)

where the notation A〈µν〉 for a general two-index tensor denotes

A〈µν〉
=

[
1

2

(
∆µλ∆νσ + ∆νλ∆µσ

)
− 1

3
∆µν∆λσ

]
Aλσ . (133)

Since in general, J ρ̂
= J ẑ

= 0 and J α̂uα̂ = 0, it can be seen that J α̂ points along

the circular vector τα̂, introduced in (15):

J α̂
= στ

V τ
α̂, στ

V =
ρΩJ t̂ − Jϕ̂

ρΩ3Γ3
, (134)

where στ
V

is the circular vector (electric) charge conductivity. Similarly, the structure

of Tµν indicates that W ρ̂
= W ẑ

= 0, while the orthogonality between W α̂ and uα̂

allows W α̂ to be written as:

W α̂
= στ

ε τ
α̂, στ

ε =
1

Ω2Γ2

(
Tt̂ t̂ + Tϕ̂ϕ̂ +

1 + ρ2Ω2

ρΩ
Tt̂ϕ̂

)
, (135)
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where στ
ε is the circular heat conductivity. Finally, noting that Πα̂σ̂ is symmetric,

traceless and orthogonal to uα̂ with respect to both indices, as well as the property

T ρ̂ρ̂
= T ẑẑ , only one degree of freedom is required to characterise Πα̂σ̂ , introduced

as Πβ below [17, 18]:

Πα̂σ̂
=Πβ

(
τα̂τσ̂ − ω

2

2
aα̂aσ̂ − a2

2
ωα̂ωσ̂

)
= ρ2Ω6Γ8Πβ

©«

ρ2Ω2Γ2 0 ρΩΓ2 0

0 − 1
2

0 0

ρΩΓ2 0 Γ2 0

0 0 0 − 1
2

ª®®®¬
,

Πβ =
2(Pβ +̟ − Tẑẑ)

ρ2Ω6Γ8
. (136)

In the case of massless fermions, substituting the SET components (130) into the

contractions (132) yields the following closed form results:

Qβ =QF + ∆Q, QF =
µ

3

(
T2
+

µ2

π2

)
, ∆Q =

µ(ω2
+ a2)

4π2
,

Pβ =PF + ∆P, PF =
7π2T4

180
+

T2µ2

6
+

µ4

12π2
, ∆P =

3ω2
+ a2

72

(
T2
+

3µ2

π2

)
,

στ
V =

µ

6π2
, στ

ε = −
1

18

(
T2
+

3µ2

π2

)
, Πβ =0. (137)

The above results agree with [13, 17, 18, 44]. The first terms in Qβ and Pβ coincide

with the RKT results in (27) with gF = 2. On the rotation axis, where ρ = 0, equation

(137) shows that the conductivitiesστ
V

andστ
ε remain finite, while the circular vector

τα̂ vanishes. This conclusion holds also in the massive case. This can be seen by

noting that, according to equations (115, 128), both 〈: Ĵϕ̂ :〉T0
and 〈: T̂t̂ϕ̂ :〉

T0
vanish

when ρ = 0. Furthermore, Eβ = 〈: Tt̂ t̂ :〉T0
(since ρΩ = 0) and it can be shown that

〈: Tρ̂ρ̂ :〉
T0
= 〈: Tϕ̂ϕ̂ :〉

T0
= 〈: Tẑẑ :〉T0

and thus, the SET takes the perfect fluid form

at ρ = 0.

7.3 Quantum corrections to the SET

We now examine the effect of quantum corrections on the SET, comparing first the

exact RKT results (27) and QFT results (137) in the massless case. There are three

features of note.

First, quantum corrections mean that the SET no longer has the perfect fluid

form, due to the presence of nonequilibrium terms, except on the axis of rotation,

where the circular vector τα̂ (15) vanishes. Second, the quantum corrections to the

equilibrium quantities Qβ , Eβ and Pβ are proportional to Ω2. Third, the quantum

corrections in (137) diverge more quickly than the RKT quantities as Γ→ ∞ and the
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SLS is approached. Therefore there is a neighbourhood of the SLS where quantum

corrections become dominant.

In order to assess the relative contribution made by quantum corrections with

respect to the RKT results, we first focus on the energy density for massless par-

ticles and consider two quantities (we restore the reduced Planck’s constant ~ and

Boltzmann constant kB):

Eβ

EF

− 1 =
15

14

(
~Ω

πkBT0

)2 (
4

3
Γ2 − 1

3

)
1 + 3(µ0/πkBT0)2

1 + 30
7
(µ0/πkBT0)2 + 15

7
(µ0/πkBT0)4

,

1 − EF

Eβ

=

[
1 +

14

5(4Γ2 − 1)

(
πkBT0

~Ω

)2 1 + 30
7
(µ0/πkBT0)2 + 15

7
(µ0/πkBT0)4

1 + 3(µ0/πkBT0)2

]−1

.
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Fig. 3 Relative differences (a) Eβ/EF − 1 and (b) 1 − EF /Eβ between the β-frame energy

density Eβ (137) and the RKT result EF (27) for massless fermions. The curves correspond to

kBT0 = 0.13 GeV (filled purple squares, empty red circles and filled blue circles) and 0.2 GeV

(empty black triangles). The angular velocity is set to Ω = 5 × 1022 s−1 (filled purple squares),

2 × 1022 s−1 (empty red circles) and 1022 s−1 (filled blue circles and empty black triangles). The

chemical potential on the rotation axis is µ0 = 0.1 GeV.

Figure 3(a) shows the relative departure of the QFT energy density Eβ (137)

measured in the thermometer frame, compared to the RKT energy density EF = 3PF

(27). We use values of the chemical potential and angular speed relevant for heavy

ion collisions, as in section 2.2. For kBT0 = 0.2 GeV and Ω = 1022 s−1, the relative

difference is about 10−4 on the rotation axis. From (138), this value can be increased

by either increasing the angular velocity Ω or decreasing the temperature T0. We

thus also consider a lower temperature relevant to the QGP, kBT0 ≃ 0.13 GeV. This

enlarges the relative difference by a factor of ∼ 2.4. At larger values of the angular

speed, quantum corrections are close to 1% on the rotation axis. Away from the
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rotation axis, the relative difference Eβ/EF − 1 increases roughly as Γ2 (138). This

is confirmed for all regimes considered in figure 3(a).

The relative difference 1−EF/Eβ is presented in figure 3(b). On the rotation axis,

this ratio is negligible. As Γ→ ∞, equation (138) shows that the second term in the

square bracket goes to 0 and thus limΓ→∞ 1−EF/Eβ → 1. Close to the SLS, quantum

corrections therefore become the dominant contribution to the energy density Eβ .

The gray, dashed line in figure 3(b) indicates where the quantum corrections become

equal to the classical contribution, Eβ = 2EF . This happens closer to the SLS when

the temperature is increased or when the angular velocity is decreased.
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Fig. 4 Dependence on (a) the distance ρ, measured in fm from the rotation axis, and (b) on the

Lorentz factor Γ (13), of the energy densities Eβ and EF obtained in QFT (empty symbols and

continuous lines) and RKT (filled symbols and dashed lines) at µ0 = 0.1 GeV andΩ = 5×1022 s−1.

In (a), the temperature on the rotation axis is fixed at kBT0 = 0.13 GeV and the mass Mc2 is set

to 0 (continuous purple line, only Eβ is shown), 0.140 GeV (blue squares) and 0.548 GeV (red

circles). In (b), kBT0 = 0.20 GeV (upper lines) and 0.13 GeV (lower lines). The analytic results

for the massless limit are shown using continuous (QFT) and dashed (RKT) lines without symbols

(purple is used for kBT0 = 0.2 GeV and blue corresponds to kBT0 = 0.13 GeV).

We next consider the effect of the mass on the energy density Eβ . Figure 4(a)

shows a comparison between the energy densities Eβ and EF , as functions of the

distance ρ from the rotation axis. When Ω = 5 × 1022 s−1, the SLS is located at

ρ = c/Ω = 6 fm. The energy density for particles of mass 0.14 GeV follows the

result for the massless limit very closely, while the case with Mc2
= 0.548 GeV can

be distinguished from the massless limit only up to ρ . 5.5 fm. Figure 4(b) shows

the dependence of the energy densities Eβ and EF on the Lorentz factor Γ (13).

The RKT and QFT energy densities can be distinguished when Γ & 10, where the

higher order divergence induced by the quantum corrections becomes important. At

large values of Γ, both the QFT and RKT energy densities follow their respective

massless asymptotics, indicating that also in the QFT case, the corrections due to

the mass terms contribute at a subleading order close to the SLS, compared with the

corresponding massless limit.
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Finally, we discuss the properties of quantum corrections on the rotation axis.

Since the nonequilibrium terms vanish on the rotation axis, only the equilibrium

quantities, Eβ , Pβ and Qβ need to be considered (we assume that ̟ = 0 here).

Instead of discussing Pβ , we focus on the trace of the SET. Figure 5 shows the

properties of the quantum corrections (a) Eβ/EF −1, (b) (Eβ −3Pβ)/(EF −3PF )−1

and (c) Qβ/QF − 1, computed as relative differences between the QFT and RKT

results.
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Fig. 5 Relative differences (a) Eβ/EF − 1, (b) (Eβ − 3Pβ )/(EF − 3PF ) − 1, (c) Qβ/QF − 1, on

the rotation axis (ρ = 0), as functions of the particle mass. The chemical potential on the rotation

axis is µ0 = 0.1 GeV, and the temperature on the rotation axis is set to kBT0 = 0.13 GeV (empty

symbols and continuous lines) and 0.2 GeV (filled symbols and dashed lines). We consider angular

speeds Ω equal to 5× 1022 s−1 (red empty squares with continuous lines and filled blue circles with

dashed lines), 7.70 × 1022 s−1 (black filled squares with dashed lines) and 3.25 × 1022 s−1 (purple

empty circles with continuous lines).

Focussing on the small mass regime, it can be seen that the relative quantum

corrections of the SET trace exhibit a rapid variation with respect to M . This variation

can be attributed to the presence of the sign function in the SET components (128),

which can take negative values only when Mc2 < ~Ω/2. In particular, the quantity

(Eβ −3Pβ)/M2c4 exhibits no quantum corrections with respect to the corresponding

RKT quantity when M = 0. A rapid increase can be seen at small masses bringing

the relative quantum corrections to the SET trace from zero to the values observed

for the other quantities (energy and charge density). At intermediate masses, a slow

increase in the relative quantum corrections of all quantities can be seen. In the large

mass limit, the relative quantum corrections seem to reach a plateau value.

8 Rigidly-rotating quantum systems in curved space-time

Thus far, we have focussed our attention on a quantum field in a rigidly-rotating state

on unbounded Minkowski space-time. We have seen that thermal states for such a

set-up cannot be defined if the quantum field is a scalar field [26, 28]. However, it is

possible to define rigidly-rotating thermal states for a quantum scalar field constrained

within a cylindrical reflecting boundary enclosing the axis of rotation, providing the

boundary lies completely within the SLS [26, 28]. In this latter situation the rotating
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vacuum is identical to the nonrotating vacuum state and t.e.v.s are well-behaved. In

[28] it is shown that the t.e.v.s in a corotating frame are very well approximated by

the RKT quantities derived in section 2, except for a region close to the boundary,

where the Casimir effect becomes important.

In this chapter we have shown that the situation on unbounded Minkowski space-

time is very different for a fermion field compared to a scalar field [29], in particular

we can define a rotating fermion quantum vacuum state and rigidly-rotating thermal

fermion states. T.e.v.s in these states are regular up to the SLS, where they diverge.

A natural question is whether it is possible to consider a set-up similar to that for

the scalar field, namely by including a reflecting boundary. For fermions, defining

reflecting boundary conditions is more involved than it is for scalars (where one can

simply impose, for example, Dirichlet boundary conditions). Using either nonlocal

spectral boundary conditions [45] or the local MIT-bag boundary condition [46] on

a cylindrical boundary inside the SLS, the rotating fermion vacuum is identical to

the nonrotating fermion vacuum [33]. Furthermore, rigidly-rotating thermal states

have well-defined t.e.v.s, which are computed in [33] for the case of zero chemical

potential. At sufficiently high temperatures, the t.e.v.s for the bounded scenario are

very well approximated by the unbounded t.e.v.s we have discussed in sections 6

and 7, except for a region close to the boundary. In [47] it is shown that, as well as the

“bulk” mode considered in [33], the fermion field also has “edge states” localized

near the boundary, which must also be taken into account. The effect of interactions

for rigidly-rotating fermions inside a cylindrical boundary is studied in [48, 49].

In Minkowski space-time a rigidly-rotating quantum system is therefore unphys-

ical unless an arbitrary boundary is introduced in such a way that there is no SLS.

A natural question is whether rigidly-rotating quantum states exist in curved space-

time. One advantage of working on Minkowski space-time is that, as well as having

no curvature, the space-time has maximal symmetry, which simplifies many aspects

of the analysis. To explore the effect of space-time curvature on rigidly-rotating quan-

tum states, one may consider anti-de Sitter space-time (adS) [50, 51]. This space-time

has maximal symmetry but constant negative curvature. Furthermore, the boundary

of the space-time is time-like, as is a cylindrical boundary in Minkowski space-time.

In particular, appropriate conditions have to be applied to the field on the space-time

boundary [52].

The properties of nonrotating thermal states on adS have been studied in the

framework of RKT and QFT, for both scalars [53] and fermions [53, 54], in the

absence of a chemical potential. The curvature of adS space-time affects these states

in a number of ways. First, the normal-ordering procedure applied in section 5 is not

valid in a general curved space-time due to the fact that v.e.v.s for the nonrotating

vacuum are nonzero, for both scalars [55] and fermions [56]. Unlike our Minkowski

space-time results in section 5, the t.e.v.s for stationary states of both scalars and

fermions receive quantum corrections in adS [53, 54, 57].

What about rigidly-rotating quantum states in adS? Due to its time-like boundary,

there is no SLS in adS if ΩR < 1, where Ω is the angular speed and R is the radius

of curvature of the space-time. In other words, if the radius of curvature is small and

the angular speed not too large, there is no SLS. Rigidly-rotating quantum states on
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adS have been studied in much less detail than their Minkowski counterparts. For a

quantum scalar field, it is known that the only possible choice of global vacuum state

is the nonrotating vacuum [58], as in Minkowski space-time. One might conjecture

that rigidly-rotating thermal states for scalars can be defined only if there is no SLS,

but this question has yet to be addressed. For a quantum fermion field, the rotating

and nonrotating vacua are identical if there is no SLS, while if an SLS is present, a

distinct rotating vacuum state can be defined [59]. The preliminary analysis in [59]

shows that rigidly-rotating thermal states have at least some features similar to those

seen in sections 6 and 7 in Minkowski space-time, in particular the t.e.v.s diverge on

the SLS (if there is one).

These results demonstrate that space-time curvature does have an effect on rigidly-

rotating quantum states. Asymptotically-adS space-times in particular may be rele-

vant for studying the QGP via gauge-gravity duality (see, for example, [60, 61, 62, 63]

for reviews). In this approach, string theory on an asymptotically adS space-time is

dual to a conformal quantum field theory (CFT) on the boundary of adS (which

itself is conformal to Minkowski space-time). The idea is that calculations on one

side of the duality may shed light on phenomena on the other side. For example,

thermal states in the boundary CFT would correspond to asymptotically adS black

holes in the bulk. This is because black holes emit thermal quantum radiation [3],

the temperature of the radiation being known as the Hawking temperature. Asymp-

totically adS rotating black holes [64] can be in thermal equilibrium with radiation

at the Hawking temperature provided either the black hole rotation is not too large,

or the adS radius of curvature is sufficiently small [65]. These conditions ensure that

there is no SLS for these black holes. A full QFT computation of the t.e.v. of the

stress-energy tensor for a quantum field on a rotating asymptotically adS black hole

is, however, absent from the literature.

Some of the most astrophysically important space-times with rotation are Kerr

black holes [66]. These black holes are asymptotically flat, that is, far from the black

hole the space-time approaches Minkowski space-time, rather than adS space-time

as for the black holes discussed in the previous paragraph. Kerr black holes therefore

always have an SLS, a surface on which an observer must travel at the speed-of-light

in order to corotate with the black hole’s event horizon. The quantum state describing

a black hole in thermal equilibrium with radiation at the Hawking temperature is

known as the Hartle-Hawking state [67]. In contrast to the situation for asymptotically

adS rotating black holes, such a state cannot be defined for a quantum scalar field

on an asymptotically flat Kerr black hole [5, 68]. Indeed, it can be shown that any

quantum state which is isotropic in a frame rigidly-rotating with the event horizon of

the black hole must be divergent at the SLS [69]. If the black hole is enclosed inside

a reflecting mirror sufficiently close to the event horizon of the black hole, then a

Hartle-Hawking state can be defined for a quantum scalar field [70]. Interestingly,

this state is not exactly rigidly-rotating with the angular speed of the horizon [70].

For a quantum fermion field, it is possible to define a Hartle-Hawking-like state on

the Kerr black hole without the mirror present [6]. While this state is also not exactly

rigidly-rotating, it is nonetheless divergent on the SLS [6].
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Rotating black hole space-times are much more complicated that the toy model

of rigidly-rotating states on Minkowski space-time that we consider in this chapter.

However, the key physics remains the same in both situations. Namely, rigidly-

rotating states cannot be defined for a quantum scalar field if there is an SLS present.

Rigidly-rotating thermal states can be defined for a quantum fermion field, even

when there is an SLS, but such states diverge as the SLS is approached.

9 Summary

In this chapter we have considered the properties of rigidly-rotating systems in QFT.

Our toy models are free massive scalar and fermion fields on unbounded flat space-

time. Such systems cannot be realized in nature due to the presence of the SLS, the

surface outside which particles must travel faster than the speed of light in order to

be rigidly rotating. Nonetheless, this approach has revealed some interesting physics

which is relevant to more realistic set-ups, such as the QGP as formed in heavy-ion

collisions or quantum fields on black hole space-times.

We began the chapter by briefly reviewing the properties of rigidly-rotating ther-

mal states for scalar and fermion particles within the framework of RKT. The main

feature is that, for both scalars and fermions, macroscopic quantities such as the

energy and pressure diverge on the SLS but are regular inside it.

Next we constructed rigidly-rotating thermal states within the canonical quanti-

zation approach to QFT on unbounded Minkowski space-time. Here there is a sig-

nificant difference between scalar and fermion fields. In particular, rigidly-rotating

thermal states for scalars cannot be defined. The quantization of the fermion field

is less constrained than that of the scalar field, and as a result we are able to define

rigidly-rotating thermal states for fermions. We computed the t.e.v.s of the FC, CC,

AC and SET in these states. All t.e.v.s diverge on the SLS but are regular inside it.

Relative to the RKT results, the quantum t.e.v.s diverge more rapidly as the SLS is

approached. Quantum corrections therefore dominate close to the SLS. We stress

that the advantage of the canonical quantization approach considered in this chapter

is that it allows t.e.v.s to be expressed in integral form, which can then be used to

obtain analytic (in the massless case) or numerical (in the massive case) results in

a non-perturbative fashion, with arbitrary numerical precision, even in the regime

where quantum corrections are dominant.

The toy model considered in this chapter is a good approximation to more physical

rigidly-rotating systems enclosed inside a reflecting boundary, except in the vicinity

of the boundary. The key physics features are also shared with more complicated

systems in curved space-time. We therefore conclude that our method based on

canonical quantization can serve as a reliable tool to compute t.e.v.s in rigidly-

rotating systems of particles, in particular in set-ups relevant to relativistic heavy-ion

collisions, from the nearly-classical regime to the quantum-dominated regime, with

arbitrary numerical precision.
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