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Abstract—Parkinson's disease (PD) is known as an irreversible 

neurodegenerative disease that mainly affects the patient's motor 

system. Early classification and regression of PD are essential to 

slow down this degenerative process from its onset. In this paper, 

a novel adaptive unsupervised feature selection approach is pro-

posed by exploiting manifold learning from longitudinal multi-

modal data. Classification and clinical score prediction are per-

formed jointly to facilitate early PD diagnosis. Specifically, the 

proposed approach performs united embedding and sparse re-

gression, which can determine the similarity matrices and dis-

criminative features adaptively. Meanwhile, we constrain the 

similarity matrix among subjects and exploit      norm to con-

duct sparse adaptive control for obtaining the intrinsic infor-

mation of the multimodal data structure. An effective iterative 

optimization algorithm is proposed to solve this problem. We 

perform abundant experiments on the Parkinson's Progression 

Markers Initiative (PPMI) dataset to verify the validity of the 
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proposed approach. The results show our approach boosts per-

formance on the classification and clinical score regression of 

longitudinal data and surpasses the state-of-the-art approaches. 

 

Index Terms—Classification, clinical score prediction, embed-

ding learning, longitudinal multimodal data, Parkinson's disease, 

sparse regression. 

 

I. INTRODUCTION 

arkinson's disease (PD) is a common neurodegenerative 

disorder that occurs in the elderly. With the worsening of 

the condition, it can trigger incidents leading to death. Patients 

suffering from PD usually not die from the disease but acci-

dents or complications related to the disease. For example, in 

advanced cases of the disease, difficulty in swallowing can 

cause PD patients to inhale food into their lungs, resulting in 

pneumonia or other pulmonary conditions. Patients with PD 

have four main motor symptoms: muscle rigidity, static tremor, 

unstable posture, and bradykinesia [1]. Except for these visual 

symptoms, there are also some concomitant symptoms (e.g., 

depression, lethargy, olfaction disorder, and cognition im-

pairment [2]). These symptoms are mainly caused by the de-

generation of dopaminergic neurons in a region of the brain 

called the substantia nigra [3]. However, in early PD therapeu-

tic trials, dopaminergic imaging has found that approximately 

15 percent of scans are at the normal level, namely scans 

without evidence of dopaminergic degeneration (SWEDD) [4]. 

This condition has undoubtedly augmented the difficulties of 

PD classification. In the early stage of this disease, it may be 

challenging to know if the symptoms indicate or imitate PD. 

Because of this, while early PD classification is essential to 

slow down this degenerative process from its onset, it is a quite 

challenging task. 

 Since multimodal data can offer complementary infor-

mation for the classification of neurodegenerative diseases, 

these data have played an increasingly significant role and 

captured widespread attention [5, 6]. For instance, in [7], mul-

timodal data is utilized to raise the classification performance 

of neurodegenerative disease based on a semi-supervised fea-

ture-subject selection approach. Gray matter (GM) in magnetic 

resonance imaging (MRI) is widely used to obtain information 

about changes in nerve cells. First eigenvalue (L1) and first 

eigenvector (V1) of diffusive tensor imaging (DTI) indicate the 

largest diffusion coefficient and its direction vector, respec-

tively. Therefore, L1 and V1 may be more sensitive to neuro-

degeneration in the brain. Inspired by the above, we propose to 
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explore multiple modalities, namely, GM, L1, and V1, to per-

form PD classification. Nevertheless, for the multimodal data, 

the small dataset size and large feature dimension typically 

cause overfitting problem and renders difficulty in model gen-

eralization [8]. Though deep learning has been extensively used 

in the medical image fields, it is difficult to obtain excellent 

generalization performance on small number of subjects [9]. 

Feature selection is an excellent measure to discover dis-

ease-related characteristics exploiting either supervised or 

unsupervised approaches [10-12]. For most supervised ap-

proaches, they can be individual single-task [13, 14] or united 

multi-task [15, 16]. Generally, the latter has better performance 

since this approach combines multiple related tasks to select 

common features jointly. However, there exist two main limi-

tations in existing multi-task approaches. First, the selected 

features obtained from these approaches are usually linearly 

related to multi-task goals but they ignore the learning of the 

structural information intrinsic within the data. Second, these 

multi-task approaches need additional scores and label infor-

mation to learn the model. On the other hand, unsupervised 

approaches focus more on learning the intrinsic data structure. 

Most unsupervised approaches are developed based on either 

filtering [17, 18] or embedding [19, 20]. The latter is superior in 

many aspects. However, there are three main shortcomings in 

existing embedding approaches. First, they calculate the simi-

larity matrix among subjects and select features, respectively. 

But real data in the original high-dimensional space has noise 

and/or redundancy, which reduces the accuracy of the similar-

ity matrix. Second, when calculating the neighbor graph, the 

similarity matrix among subjects generated by conventional 

approaches rarely represents a proper neighbor distribution. 

The optimal similarity matrix among subjects ought to have 

r-connected components, where r equals to the number of 

classes. Third, many embedding approaches do not take the 

similarity existing among features into consideration. 

 Meanwhile, most existing approaches use      norm to 

conduct sparseness control [21, 22]. This norm cannot achieve 

adaptive sparseness according to different cases. Most existing 

studies only conducted PD classification [7, 23, 24]. Relatively 

few studies considered another essential task of clinical score 

regression [25, 26]. Since clinical score regression (e.g., de-

pression, sleep, olfaction, and cognition scores) can assist 

doctors in staging and treating disease, these two tasks need to 

be conducted simultaneously. In addition, in most existing 

studies, classification and regression are performed only based 

on the baseline data [27, 28], while the longitudinal data (i.e., 

multi-time points data) are ignored. Owing to the persistent 

exacerbation of the disease, it is imperative to learn reliable 

classification and prediction models that meet multi-time points 

[29]. We highlight our contributions: 

1) We propose a novel unsupervised learning method from 

longitudinal multimodal data for feature selection. The 

united embedding learning and sparse regression are 

exploited to adaptively learn the low-dimensional 

manifold structure and select the informative features. 

2) We dynamically update the similarity matrices among 

subjects and features. The connected number among 

subjects from the similarity matrix is equal to the number 

of classes, which can gain the intrinsic structural property 

of the data.  

3) We conduct abundant experiments on the PPMI dataset to 

verify the effectiveness of the proposed approach. The 

results show that our algorithm effectively boosts the 

performance of classification and clinical score regression 

and surpasses other state-of-the-art approaches by taking 

full advantage of the longitudinal data. 

 The paper is organized as follows. In Section II, we discuss 

the most related work on feature selection. Detailed interpreta-

tion of our approach is introduced in Section III. Our results and 

discussions are shown in Section IV and V. Finally, several 

conclusions are recapitulated in Section VI. 

II. RELATED WORK 

In the literature, there are many supervised united multi-task 

and unsupervised embedding approaches. For instance, the 

multimodal multi-task (M3T) [30] approach based on      

norm learns a feature selection model to gain common relevant 

features of multiple tasks from every modality. The multimodal 

sparse learning (MMSL) [15] approach concurrently performs 

classification and regression prediction of PD based on a united 

multi-task feature selection function that considers the similar-

ity of difference among rows and columns in response matrix. 

In [31], multimodal data is utilized to improve performance on 

the classification and regression prediction of Alzheimer's 

disease via relational regularization and discriminative learning. 

In [5], the authors perform joint learning from multiple rela-

tions and modalities to select the discriminative features for 

classification and prediction of PD. Multi-cluster feature se-

lection (MCFS) [32] approach first calculates the nearest 

neighbor graph and then selects the discriminative features that 

best present the clustering information. Flexible manifold em-

bedding (FME) [33] approach is a generalized model exploited 

by many unsupervised and semi-supervised embedding ap-

proaches to reduce feature dimensionality. Robust spectral 

feature selection (RSFS) [19] approach concurrently utilizes 

FME and    norm to robustly select the discriminative features. 

Joint embedding learning and sparse regression (JELSR) [34] 

approach conducts feature selection through embedding 

learning with sparse regression. These existing approaches 

suffer from some limitations. For instance, the supervised 

multi-task approaches ignore to learn the structural information 

intrinsic within the data. Previous unsupervised embedding 

approaches may also calculate an inaccurate similarity matrix 

due to the noise in the original feature space. 

III. METHODOLOGY 

A. System Overview 

The overall flowchart of our approach is illustrated in Fig.1. 

First, we extract features from GM, L1, and V1 and concatenate 

them directly. We then use the proposed approach to perform 

feature selection. Finally, we exploit support vector classifica-

tion (SVC) and support vector regression (SVR) models to 

conduct classification and regression prediction on longitudinal 

multimodal data. 
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Fig. 1. Illustration of the proposed approach through united embedding and sparse regression. 

 

B. Notation 

In this study, the uppercase boldface letter   indicates matrix, 

and the lowercase boldface letter   indicates vector. Let the 

data matrix be   [   ],    and    are its i-th row and j-th 

column, respectively. In addition, the      norm of   is indi-

cated as ‖ ‖    (∑ ‖  ‖   )  
. The transpose and trace oper-

ators of   are indicated as    and   ( ), respectively. 

C. Proposed Approach 

Let        indicate the training data of n subjects and d 

features and        indicate the subject similarity matrix. 

According to our intuitive understanding, closer subjects usu-

ally have greater similarities, and thus we can calculate the 

similarity   using the following formula:    ∑ (‖     ‖           )   ,                           (1) 

where    and    indicate the i-th and j-th subjects of  , re-

spectively.   is a regularization parameter to avert the mean-

ingless solution. The subject similarity matrix   built with (1) 

rarely has a proper neighbor distribution. The optimal subject 

similarity matrix ought to have r-connected components, where 

r equals to the number of classes. Nevertheless, it is nearly 

impossible to obtain   with (1) that satisfies the above re-

quirements. To solve this problem, the rank of the Laplacian 

matrix    of   is ensure to be equal to n – r. In this way, there 

will be r-connected components in the subject similarity matrix 

[35]. We add this constraint on    to (1) as:    ∑ (‖     ‖           )   ,                       (  )      –     (2) 

where    equals to          and the degree matrix   is a di-

agonal matrix whose i-th element value on the diagonal equals 

to ∑          . Since     (  )      –    relies on the subject 

similarity matrix  , it is challenging to optimize (2) directly. To 

solve this problem, let   (  ) indicate the i-th minimum ei-

genvalue of   . Because    is positive semi-definite, we obtain   (  )   . Meanwhile, it can be easy to prove that     (  )      –    equals ∑   (  )         Since it is hard to 

solve the derivation of ∑   (  )    , we refer to Ky Fan's The-

orem [36], and we obtain: ∑   ( )        (     )    ,                        (3) 

Further, we can rewrite (2):    ∑ (‖     ‖           )     (     )   ,                                  (4) 

where   is a model parameter that can be decreased or in-

creased in each iteration to obtain the optimal   when the 

connected components of   are greater or smaller than r, re-

spectively.   is the identity matrix. In (4), the subject similarity 

matrix   is calculated in the original multimodal feature space. 

However, the original high-dimensional data has noise and/or 

redundancy. To tackle this problem, we perform adaptive 

sparseness and embedding learning simultaneously, which is 

expressed as:    ∑ (‖       ‖           )       (     )   ‖ ‖    
,                                      (5) 

where        indicates the feature weight coefficient ma-

trix of m projection dimension.   is a weighting parameter that 

decreases the feature weight   to obtain more sparse features 

as the value of   increases. Meanwhile, we use      norm to 

carry out sparse adaptive control for selecting the most dis-

criminative features via different scenarios. Furthermore, the 

data of high-dimensional features might render the covariance 

matrix of   singular, so we add the constraint       to 

obtain the discriminative features after dimension reduction. 

There exists similarity among features extracted from re-

gions of interest (ROI). If two features, e.g.,    and   , are 

similar, their weight coefficients, e.g.,    and   , will be sim-

ilar because the i-th feature    and j-th feature   in   corre-

spond to the i-th row    and j-th row    in  , respectively. To 

exploit the relationship among features, we propose a regular-

ization term considering the similarity among features, which is 

indicated as:    ∑ (‖     ‖           )   ,                  
 (6) 

where     indicates an element in the feature similarity matrix       .   is a regularization parameter to avert the mean-

ingless solution. Finally, we add this regularization term to (5) 

and then we get:    ∑ (‖       ‖            ‖     ‖              )     (     )   ‖ ‖    
,                                                           (7) 
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D. Optimization 

Since (7) contains      norm and four variables, it is difficult 

to solve this problem directly. Thus, we exploit an alternative 

approach to tackle this problem. Meanwhile, regarding the 

optimization of parameter  , it is necessary to use Laplacian 

matrices to transform (7) into trace forms. Next, we fix the 

similarity matrix   among subjects and the similarity matrix   

among features and then update  . Equation (7) is transformed 

into:      (        )    (     )   ‖ ‖    
,                     (8) 

The objective function with the Lagrange multiplier for (8) is:  (   )    (        )    (     )   ‖ ‖       ( (     )),           (9) 

where        is the diagonal matrix indicating the La-

grange multiplier. We set the derivative of (9) on   to zero and 

get:   (   )                      ,   (10) 

where        is a diagonal matrix and its i-th diagonal el-

ement is defined as:       (         )            (11) 

where we add a floating number eps equal to      to the de-

nominator of (9) since       can be zero in theory. The solu-

tion of (10) equals to:      (        )    (     )     (    ),                     (12) 

where we can exploit an iterative algorithm to solve (12) since   relies on  . The details of the proposed algorithm are shown 

in Algorithm 1. Next, we fix the subject similarity matrix   and 

then update  . Equation (7) is transformed into:      (     ),                          (13) 

where the optimal solution   of (13) is the r eigenvectors cor-

responding to the r minimum eigenvalues of   . Next, we fix   and  , and then update  . Equation (7) is transformed into:    ∑ (‖       ‖           )     (     )   ,                  ,        (14) 

We can transform (14) into the following form:    ∑ (‖       ‖           )   ∑ ‖     ‖           ,                           (15) 

The similarity vector of every subject is independent. Thus 

we can solve the above problem for the i-th subject, and we 

have:    ∑ (‖       ‖           )   ∑ ‖     ‖       ,                           (16) 

where we indicate         with     ‖       ‖     ‖     ‖  . We can rewrite (16):    ‖        ‖  ,                       (17) 

We consider two extreme cases of   in (1). When    , it 

makes only a single element of    not equal to zero. When   ∞, it makes each element of    equal to 
  . The value of   

controls the number of neighbors of a subject. Thus the optimal 

value of   needs to make most    have k non-zero elements, 

where k indicates the number of neighbors connected to   . To 

achieve this goal, we consider the Lagrangian function of (17) 

as follows:  (          )    ‖        ‖    (     )      (     )    (    ),  (18) 

where  ,   , and    indicate Lagrangian multipliers. Accord-

ing to the Karush–Kuhn–Tucker (KKT) condition, the optimal 

solution of    is:              ,          (19) 

Considering the convenience of expression, we suppose that     ,     ,…,      are sorted from small to large corresponding to     ,     ,….,     . When the optimal    contains only k neighbors, 

we know        (         )  and        (             ). Therefore, we have: {              (         )             (             ),    (20) 

According to (19) and the constraint      , we get: ∑ (          )             ∑              ,              ,          (21) 

where the inequality for   is given by (20) and (21):          ∑                        ∑          ,   (22) 

To obtain a good   that can make the most    has k neighbors 

or non-zeros elements, we can calculate   as:     ∑ (           ∑          )     ,       (23) 

Finally, we fix   and then update  . Equation (7) is trans-

formed into:    ∑ (‖     ‖           )   ,                           (24) 

The similarity vector of every feature is independent. Thus 

we can solve the above problem for the i-th feature, and we get:    ∑ (‖     ‖           ) ,                           (25) 

where we indicate         with     ‖     ‖  . There-

fore, we can rewrite (24) as: 

 

Algorithm 1: Solution to (12) 

 Input:       ,        ,        ,  ; 

 Output:       ; 

1 Initialize    ,  ( ) by an identity matrix; 

2 Repeat 

3 

 

Under the current  ( ), the optimal solution  (   ) of 

(12) is the m eigenvectors corresponding to the m mini-

mum eigenvalues of            . 

Update matrix  (   ) by solving (11); 
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7 Until the convergence or stop condition is satisfied. 
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Algorithm 2: Solution to (7) 

 Input:       , r, m, k,  ; 

 Output:       ; 

1 Initialize   by solving (1); 

2 Initialize   by solving the following formula:    ∑ (‖     ‖           )   ,                  ; 

3 Repeat 

4  Update   by Algorithm 1; 

5 

6 

7 

 
 

Calculate the Laplacian matrix    of the similarity matrix  ; 

Update   by solving (13); 

Update   by solving (17); 

Update   by solving (25); 

8 Until the convergence or stop condition is satisfied.    ‖        ‖  ,                       (26) 

The solution of (26) is the same as solving (17). We show the 

details of the total optimization in Algorithm 2. 

E. Convergence Analysis of Algorithm 1 

To prove that algorithm 1 converges, we first need to verify 

the following inequality. 

Theorem 1: For any positive real numbers   and  , with   a 

constant (     ), it holds:                                   (27) 

Proof: We move the left side of the inequality (27) to its 

right-hand side, and then we need to prove the following ine-

quality:  (   )                                (   )  (   )                           
 (28) 

To prove the inequality (28), we consider its Lagrangian func-

tion as:  (         )  (   )                      , (29) 

where    and    indicate Lagrangian multipliers. According to 

the KKT condition, when   equals to  , (29) has the minimum 

value equal to zero. Thus, we can get:  (   )                                   (30) 

which concludes the proof. 

Theorem 2: The iterative updating rules in Algorithm 1 will 

gradually reduce the objective value of (8) until convergence. 

Proof: Supposing the updated   is  ̂, we can easily get:   ( ̂ (        ) ̂)     ( ̂   ̂)    (  (        ) )     (    ),    (31) 

where we add  ∑       (         )      to both sides of the ine-

quality (31) and replace the definition of   with (11), and then 

we can rewrite the inequality (31):   ( ̂ (        ) ̂)   ∑  ( ̂  ̂      )
 (         )            

   (  (        ) )   ∑  (         )
 (         )     ,   (32) 

Based on Theorem 1, we have:  ∑ ( ̂  ̂      )     ∑  ( ̂  ̂      )
 (         )            

  ∑ (         )     ∑  (         )
 (         )          (33) 

We add inequalities (31) and (32) together, and then we can get:   ( ̂ (        ) ̂)    ( ̂  ̂      )    

   (  (        ) )  ∑ (         )     (34) 

which concludes the proof. 

IV. EXPERIMENT 

A. Data Acquisition 

The multimodal data used in this paper is obtained from the 

PPMI database. It is the first comprehensive, large-scale, and 

international database to study PD. In this study, we employ 

MRI and DTI data acquired by the Siemens MAGNETOM Trio 

3.0 T MRI scanner. We select MRI data using these parameters: 

field strength= 3 tesla, flip angle= 9º, slice thickness =1 mm, 

TR = 2300 ms, TE= 2.98 ms, pulse sequence = GR/IR, and 

acquisition plane = SAGITTAL. For DTI data, the data acqui-

sition parameters are: field strength = 3 tesla, flip angle = 90º, 

slice thickness = 2 mm, gradient directions = 64, TR = 

600-1000 ms, and TE = 88 ms, pulse sequence = EP. 

B. Subjects 

In this paper, we collect baseline MRI and DTI data acquired 

from 238 subjects, including 62 normal control (NC) subjects, 

142 PD subjects, and 34 SWEDD subjects. We collect 

12-month data acquired from 186 subjects, including 54 NC 

subjects, 123 PD subjects, and 9 SWEDD subjects. We collect 

24-month data acquired from 127 subjects, including 7 NC 

subjects, 98 PD subjects, and 22 SWEDD subjects. Geriatric 

Depression Scale (GDS), Epworth Sleepiness Scale (ESS), 

University of Pennsylvania Smell Identification Test (UPSIT), 

and Montreal Cognitive Assessment (MoCA) are used to es-

timate the depression, sleep, olfaction, and cognition scores, 

respectively. The GDS score is estimated according to a yes/no 

survey's answer. The GDS scores of normal condition, mild, 

moderate, and severe depression are between 0 and 4, 5 and 7, 8 

and 11, 12 and 15, respectively. The ESS score is estimated 

according to a weighted sum of responses to several questions. 

The ESS scores of normal and sleepy subjects are between 0 

and 9, 10 and 24, respectively. The UPSIT score is between 0 

and 40. A low UPSIT score means that the subject has lost a lot 

of smell sense. The MoCA score is between 0 and 30. A low 

MoCA score means that the subject has lost a lot of cognitive 

ability. Table 1 summarizes the clinical information of the 

subjects. 
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TABLE I 

CLINICAL DETAILS OF ALL SUBJECTS IN LONGITUDINAL TIME POINT 

Time Information NC PD SWEDD 

Baseline 

Number 62 142 34 

GDS scores 5.1±1.2 5.3±1.5 5.6±1.3 

ESS scores 6.5±3.9 5.9±3.4 8.7±4.2 

UPSIT scores 33.4±4.7 22.5±8.5 29.9±8.4 

MoCA scores 28.2±1.1 27.5±2.1 26.9±2.9 

12m 

Number 54 123 9 

GDS scores 4.9±1.4 5.3±1.3 5.6±1.0 

ESS scores 6.1±3.7 6.6±4.3 7.2±3.7 

UPSIT scores - - - 

MoCA scores 27.5±1.9 26.8±2.9 26.4±2.9 

24m 

Number 7 98 22 

GDS scores 4.9±0.4 5.7±1.6 5.4±1.5 

ESS scores 7.1±3.6 7.9±4.4 7.2±3.6 

UPSIT scores - - - 

MoCA scores 28.3±1.0 26.6±2.9 26.0±2.7 

C. Data Preprocessing 

For MRI data, we conduct anterior commissure-posterior 

commissure reorientation exploiting center-of-mass method 

[37] for all images and use statistical parametric mapping 

(SPM8) (http://www.fil.ion.ucl.ac.uk/spm) tool to perform the 

preprocessing procedures based on a well-accepted pipeline. 

First, we correct the head movement and geometric distortion 

and then use the graph-cut method [38] to conduct 

skull-stripping. Then, all MRI images are registered with the 

international consortium for brain mapping template that 

provides coordinates of the relevant anatomical labels. After 

that, we segment the corresponding anatomical regions into 

GM, white matter, and cerebrospinal fluid (CSF). Meanwhile, 

these images are resampled to an isotropic resolution of 1.5mm. 

We spatially smooth the surface of these images using a 60-mm 

full width at half-maximum Gaussian kernel. The purpose of 

smoothing is to suppress the interference of noise. Finally, we 

use a toolbox for data processing and analysis for brain imaging 

(http://rfmri.org/dpabi) to register automated anatomical la-

beling (AAL) atlas [39] with GM and extract 116-dimensional 

features from GM exploiting the registered AAL atlas. 

For DTI data, each subject contains 65 original format im-

ages where the b0 image does not activate the diffusion gra-

dient, while the other 64 images have different gradient direc-

tions. First, we use the FMRIB Software Library (FSL) [40] to 

correct the b0 image distortion. Second, we use bet command 

of FSL tool to generate a mask image corresponding to the 

corrected b0 image. Third, we use dcm2nii tool 

(https://www.nitrc.org/frs/?group_id=152) to convert the 65 

images into a 4D image and generate a b-vector file and a 

b-value file indicating each gradient direction and its scalar 

value, respectively. Fourth, we use eddy_correct command of 

FSL tool to correct the eddy current distortion on the 4D image. 

Fifth, we import the b-value file, the b-vector file, the mask 

image, and the corrected 4D image to dtifit command of FSL 

tool to calculate L1 and V1 images. Finally, we use AAL atlas 

to calculate the mean tissue density of each region of L1 and V1 

and then obtain their 116-dimensional features, respectively. 

D. Experimental Setting 

We use the 10-fold cross-validation approach to verify the 

proposed approach in baseline multimodal data (GM, L1, and 

V1). Specifically, we randomly separate the baseline dataset in 

ten groups, where one group is used for testing, and the rest is 

used for training. We duplicate this process ten times to avert 

the probable bias during data partition. The final result is cal-

culated by averaging the above results. We perform experi-

ments on three binary classifications (i.e., NC vs. PD, NC vs. 

SWEDD, and PD vs. SWEDD) and prediction of four scores 

(i.e., depression, sleep, olfaction, and cognition scores) in 

baseline multimodal data. Due to the existence of data loss 

problem on longitudinal time points, we use the 5-fold 

cross-validation approach to verify the proposed approach on 

the 12-month and 24-month data. In addition, to enhance the 

generalization ability, we use baseline data as part of the 

training data to help 12-month data to learn the classification 

and regression prediction models and exploit baseline and 

12-month data as part of the training data to assist 24-month 

data in determining the classification and regression prediction 

models. We also conduct three binary classification experi-

ments on the 12-month and 24-month data. Due to the lack of 

olfaction scores on the 12-month and 24-month data, we only 

predict depression, sleep, and cognition scores. We determine 

the optimal SVC/SVR parameters of the support vector ma-

chine from     *          +, and     *        +, by 

performing grid search on the hyper-parameters of our objec-

tive function with the spaces of   *         + ,   *            +,   *       +, and   *             + . 

Other parameters of the objective function can be adaptively 

determined during the model optimization. 

E. Algorithm Comparison 

The proposed approach is compared with state-of-the-art 

approaches including (1) principal component analysis (PCA) 

[18], which is added into the MATLAB software as an unsu-

pervised dimensionality reduction method; (2) Laplacian score 

(Lscore) [17] (http://www.cad.zju.edu.cn/home/dengcai/), 

which is an unsupervised feature selection approach 

(http://www.cad.zju.edu.cn/home/dengcai/); the core idea of 

Lscore is to estimate the features based on their locality pre-

serving ability; (3) RSFS [19] 

(https://github.com/LeiShiCS/RSFS), which concurrently ex-

ploits FME and    norm to robustly select the discriminative 

features; (4) the MMSL approach obtained from Lei et al. [15], 

which concurrently conducts classification and regression pre-

diction of PD based on a united multi-task feature selection 

function that considers the similarity of difference among rows 

and columns in response matrix; (5) the joint multi-task learn-

ing (JMTL) approach from Lei et al. [5], which performs clas-

sification and prediction of PD based on a united multi-task 

feature selection function that explores multiple relationships in 

the response matrix, and (6) the M3T [30] approach based on      norm, which learns a feature selection model to gain 

common relevant features of multiple tasks from every modal-

ity; the M3T approach is a particular case of MMSL approach 

when its two regularization terms set to zero. 

F. Model Training 

For PCA, we first learn the principal component coefficient 

matrix, and then we multiply the original data and the coeffi-

cient matrix to conduct the feature dimension reduction. 

Meanwhile, for a fair comparison, other approaches select 

features: we first calculate the    norm of each row of feature 

weight matrix   to obtain the column vector   and then get its 
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average value c. Based on the empirical results, we select fea-

tures corresponding to element values of   greater than or equal 

to        We import the selected features into the support 

vector machine (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) to 

learn SVC models for the classification and SVR models for the 

clinical score prediction. 

G. Evaluation Criteria 

To estimate the performance of the competing approaches, 

we use the quantitative measurements of accuracy (ACC), 

sensitivity (SEN), specificity (SPEC), precision (PREC), un-

weighted average recall (UAR), F1-score, and area under the 

receiver operating characteristic (ROC) curve (AUC) in clas-

sification tasks, and also the quantitative measurements of 

Pearson's correlation coefficient (CC), root mean squared error 

(RMSE), and mean absolute error (MAE) in regression tasks. 

H. Classification Performance 

Tables II, III, and IV show the classification performance of 

the competing approaches on longitudinal multimodal data. 

Meanwhile, the ROC curves of the related approaches are 

compared on three binary classification tasks in Fig. 2. Ac-

cording to these results, we can obtain the following findings. 

First, unsupervised embedding approaches, such as RSFS 

and the proposed approach, have better performance than filter 

approaches such as Lscore and PCA. For example, regarding 

NC vs. SWEDD classification on the baseline data, RSFS 

reaches ACC of 85.56%, F1-score of 90.23%, and AUC of 0.75, 

while our approach reaches ACC of 89.78%, F1-score of 

93.28%, and AUC of 0.84. However, PCA achieves ACC only 

of 80.22%, F1-score of 86.07%, and AUC of 0.75 and Lscore 

merely achieves ACC of 83.67%, F1-score of 88.68%, and 

AUC of 0.75. We see that PCA performs best with 24-month 

data in NC vs. SWEDD and obtains ACC of 82.48%, F1-score 

of 76%, and AUC of 0.95, and the other approaches perform 

relatively worse. The main reason may be that the sample size 

of 24-month data is too small in NC vs. SWEDD. Compared 

with Lscore, RSFS, M3T, MMSL, JMTL, and the proposed 

approaches that learn feature weight to select the discriminative 

features, PCA exploits feature coding to achieve feature di-

mensionality reduction, and thus it would be more efficient to 

perform better under limited data. 

Second, unsupervised approaches are harder than supervised 

approaches because the label information is missing. However, 

the proposed approach has better classification performance 

than M3T, MMSL, and JMTL. For example, our approach 

achieves accuracies higher than M3T, MMSL, and JMTL on 

the baseline data, i.e., our approach and the other three ap-

proaches achieve accuracies of 83.33% vs. 78.90% vs. 81.33% 

vs. 81.81% for NC and PD, 89.78% vs. 82.44% vs. 87.44% vs. 

88.67 for NC and SWEDD, and 88.69% vs. 85.85% vs. 87.52% 

(a) NC vs. PD——Baseline (b) NC vs. PD——12 months (c) NC vs. PD——24 months

(d) NC vs. SWEDD——Baseline (e) NC vs. SWEDD——12 months (f) NC vs. SWEDD——24 months

(g) PD vs. SWEDD——Baseline (h) PD vs. SWEDD——12 months (i) PD vs. SWEDD——24 months
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Fig. 2. Comparison of ROC curves for the competing approaches on longitudinal multimodal data. 
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TABLE II 

CLASSIFICATION PERFORMANCE OF THE COMPETING APPROACHES IN NC VS. PD. BOLD INDICATES THE BEST PERFORMANCE (MEAN± STANDARD DEVIATION). 

Time Method 

 

NC vs. PD 

ACC(%) SEN(%) SPEC(%) PREC(%) UAR(%) F1-score (%) AUC 

Baseline 

PCA 78.45±6.89 64.05±17.69 84.43±11.12 67.71±15.32 74.24±7.79 63.99±10.54 0.73±0.11 

Lscore 79.45±9.20 63.57±18.20 86.71±10.60 70.60±21.06 75.14±10.43 65.05±15.98 0.74±0.09 

RSFS 79.43±7.25 66.67±19.54 85.33±11.57 69.94±17.75 76.00±8.60 65.80±12.13 0.74±0.11 

M3T 78.90±5.82 62.62±23.60 85.90±11.61 68.88±15.42 74.26±8.69 62.57±15.14 0.73±0.12 

MMSL. 81.33±6.58 64.52±18.63 88.62±10.24 76.06±18.56 76.57±8.20 67.09±11.99 0.75±0.09 

JMTL 81.81±4.90 59.76±15.65 91.52±6.48 77.52±13.95 75.64±7.11 65.90±10.66 0.75±0.07 

Proposed 83.33±7.92 68.33±16.91 90.10±6.95 76.52±16.11 79.21±9.77 71.17±13.00 0.76±0.16 

12m 

PCA 72.29±6.95 64.91±7.03 75.67±11.17 55.42±9.34 70.29±4.74 59.11±6.13 0.72±0.08 

Lscore 74.59±8.73 64.55±13.02 79.07±12.31 60.53±18.46 71.81±8.37 61.13±11.61 0.74±0.07 

RSFS 77.35±8.68 66.55±10.80 82.23±11.04 64.31±14.66 74.39±8.23 64.55±10.87 0.76±0.06 

M3T 79.65±8.45 66.36±9.96 85.47±8.68 67.99±17.01 75.92±8.89 66.88±12.97 0.73±0.11 

MMSL. 80.78±3.13 62.91±6.63 88.60±5.32 71.89±9.70 75.75±2.98 66.64±4.78 0.75±0.06 

JMTL 80.84±5.20 65.09±9.22 87.97±9.35 73.84±18.17 76.53±4.22 67.70±6.51 0.79±0.08 

Proposed 81.44±8.35 70.18±8.59 86.33±10.39 71.89±19.10 78.26±7.78 70.30±11.83 0.76±0.12 

24m 

PCA 94.23±4.12 70.00±44.72 95.89±4.37 60.00±43.46 82.95±22.14 59.33±37.89 0.89±0.11 

Lscore 93.28±2.78 70.00±44.72 94.89±3.72 50.00±37.27 82.45±21.69 52.67±31.30 0.89±0.11 

RSFS 94.33±7.83 90.00±22.36 95.00±8.66 78.33±33.12 92.50±10.61 77.33±25.21 0.88±0.18 

M3T 95.23±3.37 90.00±22.36 95.95±4.20 70.00±29.81 92.97±10.20 72.67±18.62 0.96±0.04 

MMSL 96.23±3.97 100.00±0.00 95.89±4.37 73.33±25.28 97.95±2.19 82.67±16.73 0.97±0.03 

JMTL 97.19±2.57 90.00±22.36 98.00±2.74 83.33±23.57 94.00±10.69 82.67±16.73 0.90±0.18 

Proposed 97.19±4.24 100.00±0.00 97.00±4.47 80.00±29.81 98.50±2.24 86.00±21.91 0.98±0.03 

 

TABLE III 

CLASSIFICATION PERFORMANCE OF THE COMPETING APPROACHES IN NC VS. SWEDD. BOLD INDICATES THE BEST PERFORMANCE (MEAN± STANDARD DEVIATION). 

Time Method 

 

NC vs. SWEDD 

ACC(%) SEN(%) SPEC(%) PREC(%) UAR(%) F1-score (%) AUC 

Baseline 

PCA 80.22±9.07 95.00±8.05 51.67±23.83 79.03±7.53 73.33±11.82 86.07±6.53 0.75±0.12 

Lscore 83.67±9.44 98.33±5.27 57.50±24.04 81.41±10.17 77.92±11.63 88.68±6.49 0.75±0.15 

RSFS 85.56±10.82 100.00±0.00 60.00±27.16 82.79±10.62 80.00±13.58 90.23±6.71 0.75±0.20 

M3T 82.44±9.32 96.67±7.03 55.83±25.17 80.98±8.36 76.25±11.63 87.74±5.96 0.69±0.11 

MMSL 87.44±10.72 100.00±0.00 64.17±28.88 85.24±12.13 82.08±14.44 91.61±7.12 0.77±0.19 

JMTL 88.67±7.35 100.00±0.00 68.33±21.08 85.63±8.82 84.17±10.54 92.05±5.03 0.85±0.13 

Proposed 89.78±12.48 100.00±0.00 70.83±33.16 88.24±12.82 85.42±16.58 93.28±7.82 0.84±0.19 

12m 

PCA 96.92±4.21 98.18±4.07 90.00±22.36 98.33±3.73 94.09±10.85 98.18±2.50 0.95±0.12 

Lscore 95.26±4.34 98.18±4.07 70.00±44.72 96.67±4.56 84.09±21.68 97.31±2.46 0.94±0.10 

RSFS 98.33±3.73 100.00±0.00 80.00±44.72 98.33±3.73 90.00±22.36 99.13±1.94 0.84±0.37 

M3T 95.38±6.88 100.00±0.00 70.00±44.72 95.26±6.96 85.00±22.36 97.46±3.75 0.83±0.32 

MMSL 98.46±3.44 100.00±0.00 90.00±22.36 98.33±3.73 95.00±11.18 99.13±1.94 0.94±0.14 

JMTL 98.46±3.44 100.00±0.00 90.00±22.36 98.33±3.73 95.00±11.18 99.13±1.94 0.93±0.16 

Proposed 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 1.00±0.00 

24m 

PCA 82.48±12.04 100.00±0.00 76.00±17.82 63.33±21.73 88.00±8.91 76.00±14.61 0.95±0.11 

Lscore 49.71±17.42 100.00±0.00 34.00±23.02 33.05±10.93 67.00±11.51 48.89±12.04 0.75±0.25 

RSFS 72.95±13.57 100.00±0.00 65.00±15.41 48.33±14.91 82.50±7.71 64.00±14.61 0.87±0.19 

M3T 60.57±17.97 100.00±0.00 47.00±26.60 39.67±10.83 73.50±13.30 56.10±11.41 0.80±0.20 

MMSL 72.10±23.56 100.00±0.00 64.00±30.70 53.00±28.20 82.00±15.35 66.10±21.86 0.73±0.28 

JMTL 72.29±27.73 100.00±0.00 65.00±34.28 60.00±37.91 82.50±17.14 69.33±30.04 0.96±0.09 

Proposed 67.90±23.05 100.00±0.00 57.00±31.14 51.67±29.11 78.50±15.57 64.67±22.80 0.84±0.11 

 

TABLE IV 

CLASSIFICATION PERFORMANCE OF THE COMPETING APPROACHES IN PD VS. SWEDD. BOLD INDICATES THE BEST PERFORMANCE (MEAN± STANDARD DEVIATION). 

Time Method 

 

PD vs. SWEDD 

ACC(%) SEN(%) SPEC(%) PREC(%) UAR(%) F1-score (%) AUC 

Baseline 

PCA 85.82±4.76 99.29±2.26 28.33±28.65 85.76±4.99 63.81±13.71 91.92±2.54 0.62±0.18 

Lscore 85.78±4.78 99.29±2.26 28.33±29.19 85.87±6.07 63.81±13.63 91.93±2.57 0.51±0.18 

RSFS 88.04±3.31 99.29±2.26 39.17±22.58 87.74±3.59 69.23±10.70 93.09±1.78 0.64±0.21 

M3T 85.85±4.65 99.29±2.26 29.17±26.13 85.76±4.99 64.23±12.40 91.92±2.54 0.63±0.19 

MMSL 87.52±5.69 100.00±0.00 34.17±27.90 86.92±5.69 67.08±13.95 92.91±3.19 0.65±0.22 

JMTL 88.07±5.58 100.00±0.00 37.50±27.29 87.40±5.28 68.75±13.64 93.20±3.04 0.67±0.18 

Proposed 88.69±5.79 100.00±0.00 40.83±28.72 88.00±5.50 70.42±14.36 93.54±3.17 0.69±0.19 

12m 

PCA 96.95±3.13 100.00±0.00 50.00±50.00 96.92±3.14 75.00±25.00 98.41±1.62 0.89±0.21 

Lscore 97.75±3.33 100.00±0.00 70.00±44.72 97.72±3.35 85.00±22.36 98.82±1.73 0.90±0.22 

RSFS 97.78±3.31 99.20±1.79 80.00±44.72 98.52±3.31 89.60±22.15 98.82±1.73 0.90±0.20 

M3T 97.72±3.35 100.00±0.00 60.00±54.77 97.72±3.35 80.00±27.39 98.82±1.73 0.79±0.29 

MMSL 98.52±3.31 100.00±0.00 80.00±44.72 98.52±3.31 90.00±22.36 99.23±1.72 0.89±0.25 

JMTL 98.52±2.03 100.00±0.00 80.00±27.39 99.23±1.72 90.00±13.69 99.61±0.88 0.94±0.13 
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Proposed 99.26±1.66 100.00±0.00 90.00±22.36 99.23±1.72 95.00±11.18 99.61±0.88 0.92±0.18 

24m 

PCA 92.49±5.46 100.00±0.00 60.00±29.37 91.81±5.78 80.00±14.68 95.65±3.11 0.88±0.11 

Lscore 92.49±5.46 98.95±2.35 65.00±23.45 92.53±5.12 81.97±12.20 95.58±3.20 0.83±0.18 

RSFS 93.32±5.61 100.00±0.00 64.00±30.70 92.71±5.88 82.00±15.35 96.14±3.17 0.82±0.24 

M3T 92.49±5.46 100.00±0.00 60.00±29.37 91.81±5.78 80.00±14.68 95.65±3.11 0.88±0.11 

MMSL 93.36±4.64 100.00±0.00 65.00±23.45 92.63±5.06 82.50±11.73 96.12±2.70 0.82±0.20 

JMTL 93.36±4.64 100.00±0.00 65.00±23.45 92.63±5.06 82.50±11.73 96.12±2.70 0.82±0.20 

Proposed 95.03±3.40 98.95±2.35 77.00±22.80 95.36±4.55 87.97±10.78 97.04±1.97 0.89±0.10 
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Fig. 3. Confusion matrices for the competing approaches on longitudinal data. 

 

vs. 88.07% for PD vs. SWEDD. The results demonstrate that 

the proposed approach can better learn the structural property 

intrinsic in data. 

Third, on the baseline data, specificity values of the com-

peting approaches are low for discriminating PD and SWEDD. 

For example, PCA, Lscore, RSFS, M3T, MMSL, JMTL, and 

the proposed approaches have specificity values of 28.33%, 

28.33%, 39.17%, 29.17%, 34.17%, 37.50%, and 40.83%. The 

reasons may be that it is difficult to distinguish SWEDD pa-

tients from PD since both PD and SWEDD have asymmetric 

rest tremor, and the size of data is limited. When we exploit 

baseline data to help 12-month data to learn the classification 

model and exploit baseline and 12-month data to assist 

24-month data in learning the classification and model, the 

classification performance improves. For instance, on the 

12-month data, our approach achieves ACC of 99.26%, SEN of 

100%, SPEC of 90%, PREC of 99.23%, UAR of 95%, F1-score 

of 99.61%, and AUC of 0.92. On the 24-month data, the pro-

posed approach has ACC of 95.03%, SEN of 98.95%, SPEC of 

77%, PREC of 95.36%, UAR of 87.97%, F1-score of 97.04%, 

and AUC of 0.89. 

Finally, the proposed approach achieves the best perfor-

mance on most longitudinal time points. Taking NC vs. PD as 

an example, on the baseline data, our approach has ACC of 

83.33%, SEN of 68.33%, SPEC of 90.10%, PREC of 76.52%, 

UAR of 79.21%, F1-score of 71.17%, and AUC of 0.76. On the 

12-month data, the proposed approach has ACC of 81.44%, 

SEN of 70.18%, SPEC of 86.33%, PREC of 71.89%, UAR of 

78.26%, F1-score of 70.30%, and AUC of 0.76. On the 

24-month data, our approach has ACC of 97.19%, SEN of 

100%, SPEC of 97%, PREC of 80%, UAR of 98.5%, F1-score 

of 86%, and AUC of 0.98. Meanwhile, we see that our approach 

obtains the highest UAR overall on the longitudinal data in 

Tables II, III, and IV, also demonstrating the superiority of our 

approach. Further, we obtain the overall/average confusion 

matrices through linearly connecting the predicted labels and 

the actual labels of the test data in the entire cross-validation 

process. Fig.3 shows the confusion matrices of the competing 

approaches on longitudinal data. We can observe that our ap-

proach obtains the optimum performance. 

I. Regression Performance 

Tables V, VI, and VII summarize the regression perfor-

mances of the competing approaches on longitudinal multi-

modal data. According to CC results, our approach and JMTL 

approach obtain the optimum regression performance overall. 

In the regression performance for NC vs. PD, our approach 

achieves the optimal performance for olfaction and cognition 

scores on the baseline data. The corresponding CC, RMSE, and 

MAE are 0.553, 8.243, and 6.820 for olfaction score, and 0.608, 

3.355, and 2.744 for cognition score. JMTL shows the optimal 

performance for depression score on the baseline data. The 

corresponding CC, RMSE, and MAE are 0.603, 4.320, and 

3.466 for depression score. MMSL shows the optimal perfor-

mance for sleep score on the baseline data. The corresponding 

CC, RMSE, and MAE are 0.569, 5.743, and 4.683. On the 

12-month data, our approach achieves the optimal performance 

for depression and sleep scores. The corresponding CC, RMSE, 

MAE are 0.543, 2.083, and 1.643 for depression score, 0.514, 

6.019, and 4.800 for sleep score. JMTL shows the optimal 

performance for cognition score. The corresponding CC, 

RMSE, and MAE are 0.590, 2.681, and 2.006 for cognition 

score. On the 24-month data, our approach has the optimal 

performance for depression and cognition scores. The corre-

sponding CC, RMSE, and MAE are 0.655, 1.546, and 1.064 for 

depression score and 0.726, 2.113, and 1.641 for cognition 

score. JMTL has the optimal performance for sleep score on the 

24-month data. The corresponding CC, RMSE, and MAE are 

0.587, 5.425, and 4.293. 

In the regression performance for NC vs. SWEDD, our ap-

proach obtains the optimal performance for sleep, olfaction, 

and cognition scores on the baseline data. The corresponding 

results are CC of 0.763, RMSE of 5.147, and MAE of 4.427 for 

sleep score, CC of 0.775, RMSE of 5.752, and MAE of 4.374 

for olfaction score, and CC of 0.790, RMSE of 3.632, and MAE 

of 3.062 for cognition score. JMTL obtains the optimal per-

formance for depression score on the baseline data. The cor-

responding results are CC of 0.777, RMSE of 2.473, and MAE 
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TABLE V 

REGRESSION PERFORMANCE OF THE COMPETING APPROACHES IN NC VS. PD. BOLD INDICATES THE BEST PERFORMANCE (MEAN). 

Time Method 

 

Depression score Sleep score Olfaction score Cognition score 

CC RMSE MAE CC RMSE MAE CC RMSE MAE CC RMSE MAE 

Baseline 

PCA 0.446 4.648 3.812 0.461 4.573 3.684 0.451 8.744 7.286 0.523 3.693 2.949 

Lscore 0.516 3.852 3.026 0.498 4.755 3.780 0.489 8.384 6.976 0.535 2.968 2.348 

RSFS 0.560 2.605 1.931 0.561 4.463 3.536 0.525 8.477 7.091 0.582 5.372 4.343 

M3T 0.527 3.612 2.680 0.492 4.864 3.943 0.532 8.952 7.571 0.567 3.185 2.505 

MMSL 0.570 4.404 3.557 0.569 5.743 4.683 0.525 8.447 7.081 0.581 4.138 3.440 

JMTL 0.603 4.320 3.466 0.545 4.355 3.539 0.533 8.535 7.151 0.587 3.36 2.617 

Proposed 0.601 2.410 1.829 0.545 4.879 3.981 0.553 8.243 6.820 0.608 3.355 2.744 

12m 

PCA 0.430 2.652 2.099 0.421 6.086 4.712 -- -- -- 0.491 3.723 2.892 

Lscore 0.440 2.955 2.358 0.400 5.543 4.305 -- -- -- 0.462 2.605 1.943 

RSFS 0.502 3.639 2.972 0.414 6.516 5.409 -- -- -- 0.540 3.722 2.769 

M3T 0.489 4.058 3.236 0.407 5.340 4.079 -- -- -- 0.531 2.639 1.989 

MMSL 0.525 3.271 2.615 0.498 5.168 4.092 -- -- -- 0.557 3.167 2.435 

JMTL 0.535 3.029 2.373 0.469 6.164 4.784 -- -- -- 0.590 2.681 2.006 

Proposed 0.543 2.083 1.643 0.514 6.019 4.800 -- -- -- 0.574 3.489 2.433 

24m 

PCA 0.522 2.136 1.507 0.444 5.139 4.147 -- -- -- 0.635 4.336 3.506 

Lscore 0.548 2.067 1.555 0.434 4.542 3.514 -- -- -- 0.621 2.669 2.022 

RSFS 0.619 1.579 1.157 0.547 5.184 3.800 -- -- -- 0.695 3.645 2.948 

M3T 0.562 1.644 1.154 0.476 4.971 3.949 -- -- -- 0.655 3.811 2.952 

MMSL 0.637 1.792 1.271 0.557 5.919 4.688 -- -- -- 0.676 2.411 1.824 

JMTL 0.621 1.654 1.150 0.587 5.425 4.293 -- -- -- 0.705 2.158 1.682 

Proposed 0.655 1.546 1.064 0.550 4.878 3.814 -- -- -- 0.726 2.113 1.641 

 

TABLE VI 

REGRESSION PERFORMANCE OF THE COMPETING APPROACHES IN NC VS. SWEDD. BOLD INDICATES THE BEST PERFORMANCE (MEAN). 

Time Method 

 

Depression score Sleep score Olfaction score Cognition score 

CC RMSE MAE CC RMSE MAE CC RMSE MAE CC RMSE MAE 

Baseline 

PCA 0.714 3.032 2.312 0.600 4.443 3.602 0.673 7.284 5.811 0.654 4.328 3.414 

Lscore 0.639 4.545 3.532 0.686 5.282 4.392 0.693 7.003 5.263 0.656 2.932 2.050 

RSFS 0.720 2.971 2.377 0.739 4.951 4.060 0.684 5.716 4.224 0.713 3.687 2.917 

M3T 0.693 2.902 2.291 0.708 4.969 4.094 0.711 6.740 5.234 0.675 3.007 2.299 

MMSL 0.764 4.703 3.829 0.728 5.199 4.317 0.748 6.069 4.576 0.759 2.835 2.298 

JMTL 0.777 2.473 1.877 0.731 3.720 3.233 0.727 7.198 5.273 0.782 2.922 2.238 

Proposed 0.775 2.274 1.736 0.763 5.147 4.427 0.775 5.752 4.374 0.790 3.632 3.062 

12m 

PCA 0.551 3.066 2.554 0.588 4.074 3.313 -- -- -- 0.640 2.443 2.121 

Lscore 0.623 1.757 1.389 0.507 4.062 3.353 -- -- -- 0.602 2.485 2.125 

RSFS 0.708 1.108 0.811 0.633 3.889 3.112 -- -- -- 0.709 3.445 2.776 

M3T 0.749 2.833 2.004 0.564 4.580 3.584 -- -- -- 0.622 2.491 2.133 

MMSL 0.735 2.717 2.032 0.694 3.309 2.707 -- -- -- 0.699 2.922 2.439 

JMTL 0.809 1.289 0.887 0.763 3.828 3.122 -- -- -- 0.788 3.605 2.871 

Proposed 0.733 2.872 2.263 0.683 5.866 4.961 -- -- -- 0.720 3.365 2.912 

24m 

PCA 0.745 1.640 1.240 0.818 5.760 4.518 -- -- -- 0.787 4.138 3.410 

Lscore 0.758 1.303 0.946 0.756 3.988 3.171 -- -- -- 0.818 4.427 3.606 

RSFS 0.875 1.609 1.209 0.916 3.097 2.492 -- -- -- 0.893 3.962 3.280 

M3T 0.846 1.318 1.021 0.836 5.402 4.382 -- -- -- 0.909 4.761 3.938 

MMSL 0.873 2.586 2.185 0.900 6.230 5.364 -- -- -- 0.980 4.433 3.460 

JMTL 0.877 3.869 3.203 0.938 7.763 6.491 -- -- -- 0.990 3.128 2.446 

Proposed 0.888 1.542 1.185 0.924 3.791 3.127 -- -- -- 0.944 3.864 3.339 

 

TABLE VII 

REGRESSION PERFORMANCE OF THE COMPETING APPROACHES IN PD VS. SWEDD. BOLD INDICATES THE BEST PERFORMANCE (MEAN). 

Time Method 

 

Depression score Sleep score Olfaction score Cognition score 

CC RMSE MAE CC RMSE MAE CC RMSE MAE CC RMSE MAE 

Baseline 

PCA 0.471 2.128 1.558 0.501 3.918 3.084 0.500 8.552 6.979 0.589 3.185 2.393 

Lscore 0.487 3.824 2.952 0.403 4.757 3.705 0.439 8.875 7.431 0.587 2.869 2.186 

RSFS 0.558 3.277 2.559 0.523 4.477 3.642 0.474 8.934 7.374 0.590 3.624 2.660 

M3T 0.545 4.107 3.038 0.532 4.464 3.536 0.507 8.398 6.927 0.594 3.272 2.522 

MMSL 0.601 4.237 3.344 0.554 5.065 3.981 0.525 8.439 7.218 0.627 3.916 3.132 

JMTL 0.599 4.966 3.994 0.595 5.431 4.323 0.522 8.663 7.258 0.644 2.890 2.216 

Proposed 0.593 2.482 1.931 0.558 4.802 3.841 0.575 8.277 6.945 0.632 3.402 2.649 

12m 

PCA 0.437 1.748 1.311 0.350 5.537 4.525 -- -- -- 0.489 3.760 2.925 

Lscore 0.394 2.178 1.706 0.453 4.890 3.948 -- -- -- 0.517 4.311 3.269 

RSFS 0.533 3.269 2.614 0.494 4.782 3.853 -- -- -- 0.553 2.790 2.104 

M3T 0.489 4.523 3.678 0.445 5.313 3.996 -- -- -- 0.526 3.744 2.974 

MMSL 0.529 4.498 3.637 0.527 5.225 4.091 -- -- -- 0.609 3.215 2.342 

JMTL 0.588 2.908 2.384 0.556 4.546 3.652 -- -- -- 0.641 3.266 2.501 
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Proposed 0.561 2.123 1.719 0.535 4.862 3.885 -- -- -- 0.580 3.716 2.811 

24m 

PCA 0.511 1.452 1.064 0.441 4.814 3.750 -- -- -- 0.686 3.678 3.003 

Lscore 0.491 1.563 1.123 0.392 5.568 4.382 -- -- -- 0.673 3.082 2.503 

RSFS 0.576 2.713 2.193 0.501 4.420 3.373 -- -- -- 0.726 3.119 2.520 

M3T 0.533 3.147 2.554 0.442 4.781 3.936 -- -- -- 0.670 3.086 2.503 

MMSL 0.558 2.158 1.644 0.495 5.080 3.962 -- -- -- 0.703 3.113 2.521 

JMTL 0.558 2.158 1.644 0.496 6.480 5.120 -- -- -- 0.698 3.400 2.699 

Proposed 0.636 1.335 0.982 0.540 4.688 3.535 -- -- -- 0.726 2.995 2.491 
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Fig. 4. Regression performance for the competing approaches on longitudinal multimodal data. 

 

of 1.877 for depression score. On the 12-month data, JMTL 

shows the optimal performance for depression, sleep, and 

cognition scores. The corresponding results are CC of 0.809, 

RMSE of 1.289, and MAE of 0.887 for depression, CC of 0.763, 

RMSE of 3.828, and MAE of 3.122 for sleep score, and CC of 

0.788, RMSE of 3.605, and MAE of 2.871 for cognition score. 

On the 24-month data, our approach achieves the optimal per-

formance for depression score. The corresponding results are 

CC of 0.888, RMSE of 1.542, and MAE of 1.185 for depression 

score. JMTL shows the optimal performance for sleep and 

cognition scores. The corresponding results are CC of 0.938, 

RMSE of 7.763, and MAE of 6.491 for sleep score and CC of 

0.990, RMSE of 3.128, and MAE of 2.446 for cognition score. 

In the regression performance for PD vs. SWEDD, our ap-

proach shows the optimal performance for olfaction score in 

baseline data. The corresponding CC, RMSE, and MAE are 

0.575, 8.277, and 6.945. MMSL shows the optimal perfor-

mance for depression score. The corresponding CC, RMSE, 

and MAE are 0.601, 4.237, and 3.344. JMTL shows the optimal 

performance for sleep and cognition scores. The corresponding 

CC, RMSE, and MAE are 0.595, 5.431, and 4.323 for sleep 

score and 0.644, 2.890, and 2.216 for cognition score. On the 

12-month data, JMTL shows the optimal performance for de-

pression, sleep, and cognition scores. The corresponding CC, 

RMSE, and MAE are 0.588, 2.908, and 2.384 for depression 

score, 0.556, 4.546, and 3.652 for sleep score, and 0.641, 3.266, 
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and 2.501 for cognition score. On the 24-month data, our ap-

proach shows the optimal performance for depression, sleep, 

and cognition scores. The corresponding CC, RMSE, and MAE 

are 0.636, 1.335, and 0.982 for depression score, 0.540, 4.688, 

and 3.535 for sleep score, and 0.726, 2.995, and 2.491 for 

cognition score. Fig. 4 also illustrates regression performance 

for the competing approaches on longitudinal data, and our 

approach has good performance. 

J. Results Summary 

(a) NC vs. PD——Baseline

(b) NC vs. SWED——Baseline

(c) PD vs. SWED——Baseline
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Fig. 5. Index of brain region importance and corresponding visual representa-

tion on the baseline data (Note that the importance of brain regions is sorted 

from top to bottom and left to right in the left table). 

According to the experimental results, we observe that our 

approach has excellent classification performance and regres-

sion performance in NC vs. PD, NC vs. SWEDD, and PD vs. 

SWEDD. The proposed approach is far superior to all other 

approaches for the classification tasks on longitudinal data. 

Meanwhile, we sum up the weights of the same brain regions 

from three modalities to obtain the discriminative brain region 

index. Fig.5. shows the index of brain region importance of 

baseline time point and its corresponding visual representation 

exploiting the BrainNet Viewer tool [41]. For NC vs. PD on the 

baseline data, the top ten brain regions are: right superior 

frontal gyrus, left pallidum, left angular gyrus, right putamen, 

right superior occipital gyrus, left inferior temporal gyrus, right 

superior frontal gyrus (orbital part), left anterior cingulate and 

paracingulate gyri, left fusiform gyrus, and right thalamus. For 

NC vs. SWEDD, the top ten brain regions are right middle 

occipital gyrus, right inferior occipital gyrus, left Rolandic 

operculum, left insula, left gyrus rectus, right angular gyrus, 

right fusiform gyrus, right gyrus rectus, right postcentral gyrus, 

and left precentral gyrus. For PD vs. SWEDD, the top ten brain 

regions are right superior frontal gyrus (orbital part), left 

Rolandic operculum, right superior frontal gyrus, left lingual 

gyrus, left pallidum, left Heschl gyrus, bilateral putamen, and 

bilateral median cingulate and paracingulate gyri. It is note-

worthy these brain regions follow the previous PD studies such 

as superior frontal gyrus, pallidum, angular, and putamen in 

[42], superior frontal gyrus (orbital part), inferior temporal 

gyrus, and fusiform gyrus in [43]. The top regions strongly 

correlate with PD, which may be the potential factors causing 

the disease.  

To further discover the connection relationships between the 

top ten brain regions and other brain regions, we use the feature 

weights obtained by ten-fold cross-validation on our approach 

to calculate the Pearson correlation coefficient matrix. We then 

exploit the matrix to obtain five other brain regions strongly 

connected to each top brain region. In Fig 6, we exploit the 

circularGraph function of MATLAB software to generate the 

correlation maps. In NC vs. PD, we can see that some other 

brain regions strongly connected to multiple top brain regions 

follow the previous PD studies such as Heschl gyrus and su-

perior parietal gyrus [44, 45]. We can also see that the top ten 

brain regions are not only strongly related to each other but also 

connected to other brain regions in NC vs. PD and PD vs. 

SWEDD. However, in [5], most of the top brain regions are 

only related to each other.  Compared with the results in [5], our 

correlation maps can show richer information and thus are more 

suitable as a complement for PD diagnosis. The possible reason 

is that the multi-modal data (i.e., GM, L1, and V1) used in this 

paper is more able to present brain change information more 

effectively. For example, GM of MRI is widely used to obtain 

information about changes in nerve cells. L1 and V1 of DTI 

indicate the largest diffusion coefficient and its direction vector, 

respectively. Therefore, L1 and V1 may be more sensitive to 

neurodegeneration in the brain. Meanwhile, many current ap-

proaches [46, 47] use resting-state functional MRI data to draw 

correlation maps, which can effectively show the functional 

connection differences between different groups or stages. In 

this paper, we use MRI and DTI data to draw correlation maps, 

which can effectively show the connection relationships be-

tween the top brain regions and other related brain regions at 

the structural level, which is complementary to these functional 

studies for PD diagnosis. In addition, we can also see that the 

brain region importance and the correlation maps obtained by 

our approach have many differences from those obtained in [5]. 

The main reason is that we use data from different modalities in 

the two works. Specifically, we use GM, L1, and V1 data in this 

paper while using GM, CSF of MRI, and mean diffusion (MD) 

coefficient of DTI in [5]. 

Finally, Fig. 7 further illustrates the top twenty brain regions 

connectivity on longitudinal data, where the blue, green, and 

cyan lines indicate baseline and 12-month, and 24-month data, 

respectively. We can see that the condition worsens over time, 

and the brain lesion regions also change, which can verify that 

the proposed approach is effective. In NC vs. PD, we can also 

see that some top brain regions present at three-time points 

follow the previous PD studies such as angular gyrus, superior 

occipital gyrus, and inferior temporal gyrus [48, 49]. These 

brain regions are also related to brain cognition. At present, 

most studies mainly focus on PD, and there are few studies on 

SWEDD [5]. In Fig. 6 and Fig. 7, we also show the correlation 

and connection maps of NC vs. SWEDD and PD vs. SWEDD, 

which is helpful to guide doctors to further divide the disease. 
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(a) NC vs. PD (b) NC vs. SWEDD (c) PD vs. SWEDD
 

Fig. 6. Correlation maps between top ten brain regions with red fonts and other brain regions with black fonts on the baseline data. 

 

(a) NC vs. PD (b) NC vs. SWEDD (c) PD vs. SWEDD
 

Fig. 7. Top twenty brain regions connectivity on longitudinal data. 

 

V. DISCUSSIONS 

Our approach has achieved promising performance, but there 

are still several limitations. First, in the data preprocessing, 

MRI images are registered to a standard template for tissue 

segmentation, which may remove some pathological changes 

of PD. We can use deep learning techniques to segment neu-

roimaging data to eliminate this effect [50-52]. Second, in this 

paper, we conduct the three binary classification tasks instead 

of a multi-class classifier for disease classification, which is 

consistent with the doctor's clinical diagnosis. The doctor first 

diagnoses whether the subject is sick and then further tests the 

condition of the subject in detail. Many previous studies have 

learned multiple binary classifiers instead of a multi-classifier 

for disease classification [7]. Third, our approach does not 

consider the relationship among longitudinal data. We are 

considering to add the regularization term between longitudinal 

data to enhance the generalization ability of the proposed ap-

proach [53]. Fourth, our work only uses MRI and DTI data to 

perform united classification and regression. Since some genes 

are related to PD [54], we can combine gene and neuroimaging 

data for improving the classification and regression perfor-

mance. Finally, we do not analyze the full extent DTI data in 

this paper. For example, we can use DTI data to generate fiber 

bundle imaging of top brain regions and quantify white matter 

fiber differences between NC and PD [55], which may clini-

cally contribute to the classification and prediction of PD. 

VI. CONCLUSIONS 

In this paper, we propose a novel adaptive unsupervised 

feature selection approach through embedding learning using 

longitudinal multimodal data for the united classification and 

clinical score prediction of PD. Specifically, the proposed ap-

proach concurrently performs adaptive embedding learning and 

sparse regression; the similarity matrices and discriminative 

features thus can be determined adaptively. Meanwhile, we 

dynamically update the similarity matrices among subjects and 

features and have the connected number of the similarity matrix 

among subjects equal to the number of classes to gain the in-

trinsic structural property of the data. An effective iterative 

optimization algorithm is proposed to solve this problem. By 

constructing the united embedding and sparse regression 

framework, our approach can find the most disease-related 

biomarkers, which is helpful for PD monitoring. We perform 

abundant experiments on the PPMI dataset to verify the validity 

of the proposed approach. We use longitudinal data to boost the 

performance of regression and classification effectively. The 

proposed approach is shown to surpass other state-of-the-art 

methods. 
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