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Abstract

The adoption of Industry 4.0 technologies within the manufacturing and process industries is widely accepted to have

benefits for production cycles, increase system flexibility and give production managers more options on the production
line through reconfigurable systems. A key enabler in Industry 4.0 technology is the rise in Cyber-Physical Systems (CPS)

and Digital Twins (DTs). Both technologies connect the physical to the cyber world in order to generate smart manufac-

turing capabilities. State of the art research accurately describes the frameworks, challenges and advantages surrounding
these technologies but fails to deliver on testbeds and case studies that can be used for development and validation. This

research demonstrates a novel proof of concept Industry 4.0 production system which lays the foundations for future

research in DT technologies, process optimisation and manufacturing data analytics. Using a connected system of com-
mercial off-the-shelf cameras to retrofit a standard programmable logic controlled production process, a digital simula-

tion is updated in real time to create the DT. The system can identify and accurately track the product through the

production cycle whilst updating the DT in real-time. The implemented system is a lightweight, low cost, customable
and scalable design solution which provides a testbed for practical Industry 4.0 research both for academic and industrial

research purposes.
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Introduction

Manufacturing systems are dramatically changing as a

result of the Fourth Industrial Revolution (IR4.0) and

the increase in the digitisation of the manufacturing

industry.1,2 Global competitiveness has amplified the

need for manufacturers to be reactive and adaptive to

increasingly diverse customer demands and on much

shorter time scales than ever before. These factors lead

to increased complexity and a reduction in decision

time within the manufacturing system, both of which

require intelligent and innovative technologies.

Two such technologies that are addressing these

manufacturing challenges are the CPS3–5 and the DT.6,7

Each have similar attributes such that they seek to con-

nect the physical with the cyber world using a variety of

communication methods. A CPS focuses on the interac-

tion between the two worlds whereas the DT provides a

complete digital description of the physical process.

Each can consist of interconnected sensors and commu-

nication networks which may include cloud and/or edge

computing.8–10

A DT is a digital representation of a physical asset.

The degree of complexity of the DT, which can be a

realtime or predictive representation a system, is spe-

cific to the intended use of the DT. DTs can represent

different types of system behaviour and levels of com-

plexity within the system depending on the user
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requirements.11,12 They can be applied to all stages in

the product lifecycle from prototyping through to pro-

duction. Specific to the manufacturing industry, when a

DT and CPS is deployed into production environment

it is termed a Cyber-Physical Production system

(CPPS).

The digitisation of the shop floor has ensured more

accurate and timely information flows which has

improved reporting times, reduced reporting errors and

aided process planning flexibility. The secondary bene-

fit of digitisation has been the availability of data for

Prognostic and Health Management (PHM) applica-

tions. In a modern production process there exists a

need for integration between the factory floor automa-

tion level and the Enterprise Resource Planning (ERP)

level. Interfacing between these two levels is the

Manufacturing Execution System (MES) and the func-

tion of the MES to control production lines in order to

meet the business strategy.13,14 The MES provides a

required level of situational awareness of the produc-

tion process and in order to improve the fidelity and

accuracy of the system a CPPS is required. The CPPS

can be both real-time, to assist time-critical decision

making, and also predictive to enable planners off-line

solutions to on-line problems thereby removing any

unnecessary costs of plant downtime.15 With an ever

increasing and complex set of requirements for the fac-

tory of the future there is a requirement for a DT and

CPPS to operate in real-time. The production manag-

ers and operators then have the ability to view the

whole production system from the unit level through to

the operational level and have complete visibility of the

operating capacity, overall equipment effectiveness

(OEE) and full control of the ERP.

An integral component of a CPS is Machine to

Machine communication (M2M). M2M includes any

communication between machines, controllers and

actuators using both wired and wireless networks.

M2M is a key part of Internet of Things (IoT) net-

works and there is a host of commercial and open-

source protocols which have been designed for the

manufacturing sector.16 MTConnect and OPC-Unified

Architecture (OPC-UA) are two communication proto-

cols specifically designed for industrial automation.17,18

MTConnect has been designed towards the Computer

Numerical Control (CNC) machine shop with prede-

fined data structures and rules whereas OPC-UA pro-

vides a more open user-defined variable structure

which results in a wider scope of implementation.19

OPC-UA has the capability to both receive and send

information where MTConnect can only monitor. The

use of OPC-UA has been an enabling technology in

this research.

The challenge within the CPS context is to use the

available data in a smart manner to improve productiv-

ity, accurately predict system response and reduce sys-

tem downtime.20 Therefore, the same information that

is used to update the MES (PLC and M2M data) can

be used to update the DT. One source of real-time data

is programmable logic controller (PLC).21 Significant

process data can be accessed from the PLC such as

counters for throughput metrics or from radio-

frequency identification (RFID).22–24 tags on pallets.

Pallets are load carrying components of a production

line that transport the product around the plant during

the various phases of production. The RFID tags con-

tain electronically stored information and use electro-

magnetic fields to enable automatic identification and

tracking whilst attached to objects. The RFID tags

located in the pallets can be read by RFID sensors at

strategic points around the production system. The use

of RFID tags to assist tracking in manufacturing

assembly lines has been a proven capability for many

years.25,26 Placing RFID sensors at strategic locations

around a manufacturing plant, such as at stations and

loading/unloading platforms, then the MES can be

kept up-to-date with the state of the production plant.

The data from RFID tags can be sent to the MES

either via PLC communication or through one of the

many M2M communication methods. When RFID

object detection is set far at a distance from the sensor

then signal strength can lead to difficulty in detection

therefore methods have combined RFID with com-

puter vision techniques27,28 to improve detection and

tracking. The technologies described above (RFID,

PLC, Fast M2M communications) are all key compo-

nents to a successful CPPS and DT.

It has been demonstrated that conducting research

on teaching platforms can aid development of Industry

4.0 technologies. A detailed review of manufacturing

and production testbeds for teaching and research is

presented in Abele et al.29 The research highlighted that

many legacy testbeds were designed for a specific man-

ufacturing teaching goal. Many testbeds were designed

to teach production principles pre-Industry 4.0, there-

fore, there is now a shift to develop demonstrators for

smart manufacturing30 and Industry 4.0 technologies.

Some examples are now discussed.

The iFactory, housed with the Intelligent

Manufacturing Systems31 Center at Windsor, Canada

is a reconfigurable manufacturing plant focused on sys-

tems learning, re-configurable processes and product

design and customisation. The Experimental and

Digital Factory32 at the Chemnitz University of

Technology consists of networked laboratories used for

teaching various aspects of manufacturing processes.

The Smart Factory KL33 at the Technical University of

Kaiserslautern consists of a testbed with many of the

key communication technologies used within this

research such as RFID and networked systems. The

facility demonstrates a liquid soap manufacturing sys-

tem. The Smart Factory,34 at the Fraunhofer Project

Center at MTA SZATKI in Hungary, is a compact

production facility which explores physical and virtual

manufacturing processes. The Smart Production

Laboratory (Smart Lab)35 at Aalborg University con-

sists of reconfigurable cells interconnected with con-

veyor systems with research focused on emerging
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digital technologies such as virtual commissioning. Both

the MTA SZATKI and Aalborg plants initially focused

research on the cyber physical production system and

both will subsequently benefit from applied digital twin

research. Other similar modular systems include I4.0

Lab36 at Politecnico di Milano, SmartPro4.037 at Zurich

University of Applied Sciences, Swiss Smart Factory38

at the Switzerland Innovation Park, Bern and the

Industry 4.0 Pilot Factory (I40PF)39 at the Technical

University of Vienna. These centres all offer a multitude

of smart manufacturing capabilities but have yet to take

the CPPS or Digital Twin research to publication. And

finally, in terms of production line tracking, a computer

integrated manufacturing scenario40 implemented a

vision based tracking system to a production line teach-

ing demonstrator which resulted in position updates

every 25 s to a cloud based system for visualisation.

Few studies have demonstrated the implementation

of a real-time production DT for Industry 4.0 research.

There is a need for practical research testbeds to

demonstrate and publish future technologies for the

manufacturing sector. This includes research for the

factory of the future and for the transition of legacy

factories to become IR4.0 capable. Ribeirio and

Bjorkman41 described the challenges from transitioning

from a standard automation system to a CPPS and

Uhleman et al.42 highlighted the need for scalable

demonstrator platforms to demonstrate the IR4.0 prin-

ciples where the requirements included the need for

real-time data acquisition to support DTs.

There exists a gap in research demonstrating produc-

tion digital twin capable testbeds. The platforms are

required to develop and validate future practical indus-

try 4.0 technology and research, moving away from the

theoretical structures and frameworks described in liter-

ature and providing tangible results based research

outputs.

In this paper the authors demonstrate a proof of

concept implementation which fills that gap in the

research in order to provide a testbed for further aca-

demic and industrial research. Intended research appli-

cations include digital twin research, production

process optimisation and manufacturing data analytics.

Paper organisation This paper is organised as fol-

lows, first, the physical description of the CPPS lab is

described, second, the development of the DT model is

presented, third, the development of the vision tracking

system is presented and finally the results of the system

implementation are discussed.

Cyber physical production system

CPPS description

The CPPS Lab, housed at the University of Sheffield,

is a modular Industry 4.0 learning system from FESTO

Didactic. The system is representative of a modern

industrial production line which is fitted with the cap-

abilities to demonstrate and communicate with

Industry 4.0 methodologies and standards. Figure 1

shows the key components defined within automation

level framework. The production factory consists of

many work stations interconnected by conveyor trans-

port systems. The CPPS Lab consists of a remote PC

terminal, two work stations and a pallet carrying robot

station named Robotino. The physical system layout is

divided into two work stations (as shown in Figure 2).

Each work station consists of four hardware modules

which are further broken down into three application

modules and one bridge pallet transfer module. The

four modules are connected in a loop configuration as

shown in Figure 3. The pallet can be loaded or

unloaded from each work station using the bridge pal-

let transfer module. The Robotino carries the pallets

Figure 1. Automation level framework showing the key components of the cyber physical production system laboratory.
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between the two bridge pallet transfer modules which

act as docking stations.

The six application modules each represent a part of

a standard industrial manufacturing process. The spe-

cific function of the CPPS Lab is a mobile phone pro-

duction line where upper and lower panels of a mobile

phone case are joined together and heat treated before

being removed from the conveyor system for unload-

ing. Numbered pallets move around the production

line; stopping at each station to carry out the respective

function. Each pallet contains an RFID chip that is

read by sensors situated at each station for pallet identi-

fication. The application modules consist of the follow-

ing functions (in order) – Magazine application (front

panel), height measuring module, magazine application

(back panel), pneumatic press, tunnel heater and finally

an output module for physical removal from the pro-

duction line.

All eight modules consist of a pallet carrying con-

veyor system, a series of sensors (including an RFID

sensor), a PLC and in-built OPC-UA servers as shown

in Figure 4. The layout is shown in Figure 3. The appli-

cation modules are controlled by Siemens S7 ET200SP

PLCs with Siemens TP700 touch panel human machine

interfaces (HMIs). The PLCs are each connected to a

PROFINET via RJ45 connections. The PROFINET

communicates with the local PC which hosts the MES

via an OPC-UA server for production orders, system

status and maintenance functions. The two bridge mod-

ules are controlled by FESTO PLCs using CoDeSys

software connected to the local PC via an OPC-UA

server. UA Expert was used as an OPC-UA client dur-

ing system testing and for monitoring purposes.

Digital twin

Within this research, the DT is termed a ‘Simulation

DT’, the systems’ behaviour is represented through

Discrete Event Simulation (DES). It is concerned with

the movement of parts through the system which is dri-

ven by discrete events such as operations upon the part.

It is not be concerned with simulating the intricacies of

the operations themselves and the physics involved.

This can be considered the level of abstraction of the

DT. The usefulness of this type of DT for a factory, for

example, comes though the virtual replica (simulation)

of the factory being actively linked to the physical fac-

tory floor. The DT can hence monitor the factory,

identify issues or sub-optimal behaviour, re-optimise

the factory virtually (within the simulation) and, upon

approval, implement these changes back into the physi-

cal factory via connected control systems, all performed

within decision critical times.

A DES model representing the ‘as-is’ simulation DT

of the cell was created using Siemens Tecnomatix

PlantSim software.43 A DES model was used as it has

the ability to use measured data in order to accurately

model the future behaviour and states of the production

process. The model captures the physical and digital

behaviour of the cell. The model uses a functional model

to represent the individual stations and conveyor system

overlaid with a CAD model as viewed in Figure 5.

Combined the system gives a realistic visualisation of the

real-world system (as shown in Figure 6). The DES

model can display RFID Information (Pallet ID), num-

ber and position of parts in the system at a given time

based on touch sensors and RFID tag detection when in

station, cycle times of a production process duration at

any given station and goods-in/goods-out. PlantSim

reads the real-time data from the eight PLCs in the phys-

ical cell via OPC-UA. Each PLC hosts an OPC-UA ser-

ver with one for each station. It is through this OPC-UA

server that the real-time vision system data is hosted.

The DES model provides important information to

the user but it is the overlay of the high-fidelity CAD

Figure 2. The cyber physical production system laboratory

(University of Sheffield, UK).

Figure 3. Station and PLC configuration.
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model that enables a useful visual representation of the

system. This is a key component to DTs where the user

is able to better visualise the status of real-world system

without being physically on-site. Ensuring an accurate

visual representation of the status of the system is one

of the objectives of a DT. In a large factory setting one

of the advantages of this type of DT would be the rapid

diagnosis of the location of a fault. If a pallet became

stuck or there was a sensor fault then it is easy for main-

tenance teams to visualise where the physical location

of the problem is and react quickly. This type of tech-

nology is rapidly expanding into Augmented Reality

maintenance systems aided by DT technologies.

Implementation

Vision tracking system. The objective of the vision track-

ing system was to create a low cost solution to identify,

accurately track and transmit the position of the pallets

to the CPPS DT in real-time. The inputs to the vision

Figure 4. Standard process module components: PROFINET

(LAN connection) (1), PLC (2) (which houses the OPC-UA

server), process module (3) and HMI (4).

Figure 5. Hidden functional objects (left) and CAD model (right).

Figure 6. The CPPS lab (left) compared to the DT (right). The green and red markers indicate active and inactive sensors. The

green marker in the DT shows that the pallet RFID tag is being read and thus the position of the pallet is known whilst it is at the

sensor position. There is a slight difference between pallet position in the DTand the actual position which highlights the need for a

more accurate position detection system.

Ward et al. 5



tracking system are the four video feeds of the pallets

moving along the conveyors and the pallet RFID infor-

mation read at each station. The output was defined to

be an OPC-UA data structure with updated pallet num-

ber, position and order on each conveyor. The system

was designed to be stand alone which then can be used

by the DT to retrieve the data as desired. It has no func-

tion into the control or operation of the lab, therefore it

can be turned on or off without disrupting the produc-

tion process.

Hardware. The vision tracking system consists of

four D435 Intel�RealSense� depth cameras connected

to a Dell Optiplex 5050 CPU (Intel i5-7500 3.4GHz,

8GB 2400MHZ DDR4, Windows 10 Pro OS) via

USB3 cables. The D435 cameras are configured for

depth and colour streaming which provide intrinsic and

extrinsic calibration capabilities.44 The D435 cameras

have excellent low light sensitivity due to the global

shutter sensor and a wide field of view which makes

them suitable for a range of industrial environments.

The mounted positions can be see in Figure 7 and the

corresponding four video feeds can be seen in Figure 8.

The cameras are co-labelled with the station they are

viewing, for example camera 4 is viewing station 4. The

CPU is housed within the CPPS infrastructure and is

connected to the PROFINET via RJ45 cable. Each

camera is mounted such that it is positioned to view

the whole of the individual conveyor and multiple pal-

lets that are transferred along the conveyor.

Software. All custom software was developed using

Visual Studio 2017, written in C# on the .net core 2.2

framework. Figure 9 shows the relationship between

the hardware and software.

The key components of the software are:

� libRealSense 245– for interfacing with the RealSense

cameras, it is a C# wrapper around a C++DLL

that handles configuring the cameras and receiving

new frame data.

� OpenCV 4/OpenCVSharp46– for manipulating and

processing the video frames, and for the Deep

Neural Network interfaces (DNN). Received

frames are converted to OpenCV matrices to allow

further processing.
� Darknet/YOLO v3 tiny47– the used DNN. The

model was crosstrained to allow it to identify the

pallets. The OpenCV matrices are then passed to

an OpenCV DNN. This is running the Darknet

Yolo v3 Tiny model crosstrained on video footage

of the conveyors in order to detect the pallets.
� DLib/DLibDotNet48– for outputting the video

frames to screen during debugging.

Figure 7. Photograph showing the camera mounting position. The internal cameras face towards the opposite conveyor (left

image). The bridge camera views the pallets from above (right image).

Figure 8. Camera views of the four D435 cameras.
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� Track Manager- bespoke software – once object

detections have been performed they are passed to

the track manager. This calculates the cost of

assigning each detected pallet to each existing track,

and then assigns them in the most cost effective

manner.

Pallet detection system

An overview of pallet detection process is shown in

Appendix 1. The vision tracking system can be sum-

marised into object detection, assignment and tracking,

ID assignments, conveyor arrival and departure and

communication. The methodology is explained in the

following section.

Input and object detection

The process initialises when a video feed is received

from the D435 cameras. The Intel RealSense video

frame is converted to an OpenCV matrix. The pallet is

detected as an object using the Yolo detector deep

neural network which has been cross trained using pre-

vious video footage of the conveyors. Once detected, a

bounding box is applied to contain the object (the pal-

let). The software looks in the surrounding area for the

object features in the following frames. The detection is

called every four frames – in between the detection

frames, a Kalman Filter is used to estimate the position.

The estimated position is updated after each detection

frame. This optimises the CPU to reduce processor

usage as a Kalman Filter is more efficient on the CPU

memory than the Yolo object detection algorithm. A

pallet located in the station and behind the struts can be

seen in Figure 10, the red bounding box is clearly seen

with the pallet ID number, order on conveyor (for when

there are multiple pallets on the conveyor) and distance

along the conveyor.

Assignment and tracking

Difficulties arose when the objects passed behind the

struts of the modules, where all tracking algorithms

failed to track objects. In order to overcome this, the

Kalman Filter was used to estimate the pallets next

positions based on the previous estimation and detected

position of the pallet. This enables the system to track

the object as it passes behind the struts.

Figure 9. Hardware and software configurations.

Figure 10. A pallet in station with a bounding box indicating detection alongside tracking information for a single conveyor.
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A cost array is generated and then calculated to

assign predictions to tracks. The Hungarian algo-

rithm49,50 (also known as Kuhn-Munkres algorithm) is

then applied to assign predictions to tracks by minimis-

ing the cost. The Hungarian algorithm is used for two

purposes, one, to map each observed detection to a

track, and two, for multiple object tracking.

Object Detection to Track Mapping The algorithm

uses data from two adjacent frames to link each obser-

vation to a track. The Euclidean distance between an

object in two frames (k and k + 1) is the key metric in

the assignment matrices Dk, k + 1,

Dk, k+1 =

d1k, 1k+1
d1k, 2k+1

d1k, 3k+1

d2k, 1k+1
d2k, 2k+1

d2k, 3k+1

d3k, 1k+1
d3k, 2k+1

d3k, 3k+1

2

4

3

5 ð1Þ

where,

dik, jk+1
=Euclidian distance Oi, k,Oj, k+1

� �

ð2Þ

The algorithm finds the mapping between the two

objects by minimising the solution of the assignment

matrices as follows:

f=Min Dk, k+1f gð Þ

f : O1, k+1 ! O1, kð Þ, O2, k+1 ! O3, kð Þf g j Oi, k,Oi, k+1 2 R2
� �

In this implementation of the Hungarian algorithm, the

cost function is based on the Euclidean distance in the

x axis between detected object position in the Yolo net-

work and the updated state estimate from the Kalman

Filter. Previously assigned tracks are updated and new

tracks are created for any unassigned detections.

Tracks that have expired or not assigned for 15 frames

are deleted.

Multiple Object Tracking More than one pallet can

be on a conveyor at any time. Therefore the vision

tracking system must be capable of multiple object

tracking. To do this, the Hungarian algorithm associ-

ates an object from one frame to another based on a

score. A common approach is to use the IOU

(Intersection Over Union) which means that if the

bounding box in next frame overlaps the bounding box

in the current frame then it is likely the same object.

The algorithm can tell if an object is new, if it has

moved, or if it is stationary, as shown in Figure 11.

In the Yolo detector, two lists are generated, a track-

ing list and a detection list. A cost function gives a

weight to each score and stores these in a matrix. The

maximum and minimum weights are 1 and 0, respec-

tively. A score of 1 would represent an exact match of

a bounding box in two frames. The matrix describes

the mapping between the detections and the tracks.

The Hungarian algorithm uses bipartite graph theory

to calculate each detection. The individual detections

and now mapped to the individual tracks. Each cycle

generates matched detections, unmatched detections

and unmatched tracks. Multiple pallet tracking can be

seen in Figure 12.

ID assignment, conveyor arrival and departure

As each pallet is fitted with an RFID chip, when a pal-

let enters a station the RFID sensor reads the pallet

information and sends the data through the

PROFINET to the OPC-UA server. The software

assigns the pallet ID to the detected object as can be

seen in Figure 10. As the pallet is transferred along the

production line the vision system continually tracks the

pallet and calculates the pallet position. When the pal-

let is about to leave a conveyor, the next conveyor is

waiting to detect a new object. The new object is auto-

matically assigned the pallet ID from the pallet that

has just left the previous conveyor. This enables contin-

uous tracking and pallet identification around the

whole conveyor circuit.

The system has the capability to detect four pallets

on each conveyor, therefore each conveyor is assigned

four sets of tags. The tag sets are presented in terms of

ranked position order, that is, 1st, 2nd, 3rd or 4th and

contain pallet ID and positional information (mm)

along the conveyor. However, due to the time taken in

station to read the pallet ID, only three pallets can be

Figure 11. Multiple object tracking showing (1) stationary

object, (2) and (3) moving objects and (4) new object detected.

The images shows the relationship between the bounding boxes

and the detected objects in two successive frames.

Figure 12. Multiple object tracking – two stations each

showing two detected pallets.

8 Proc IMechE Part B: J Engineering Manufacture 00(0)



on any conveyor at a given time. The ability to conduct

multiple object tracking is important for scalability to

real industrial processes where the conveyor tracks can

be anywhere from 0.5 to 20m and beyond.

System output

The output from the pallet detection system is read by

the DT via OPC-UA. The DT can read the data in real

time and update the visual position of the pallet on the

functional model. With the CAD overlay this provides

an accurate visual representation of the physical system

as shown in Figure 13. The pallet ID and position is

continuously updated on the OPC-UA server as

opposed the previous method where the DT was only

provided up to date information at RFID sensor posi-

tions. Two pallets can be seen in Figure 13 where the

positions have been updated on the DT and the result

is an accurate representation of the real world system.

Research platform

The real-time DT (as presented in Figure 13) is now a

baseline platform for Industry 4.0 research. The cap-

abilities demonstrated include real-time data monitor-

ing, multiple object tracking and real-time DT

visualisations. These foundation capabilities are

enablers which allow further research in DT and CPPS

technologies from multi-disciplinary areas from engi-

neering through to operational business research. The

use of industrial PLC devices, OPC-UA communica-

tion and commercial-off-the-shelf hardware and soft-

ware ensure that the DT can scale directly into an

industrial setting and the industrial research developed

on the platform can translate to a production process.

Conclusions

This paper has demonstrated that a Cyber Physical

Production System can be generated for an existing

industrial production plant. Using existing PLC infor-

mation, a vision based multiple object tracking system

has been implemented to provide accurate real-time

product identification and position throughout the

plant. The real-time information provides inputs to a

visual discrete event model via an OPC-UA server

which results in an accurate real-time DT and visual

representation of the industrial process. This low cost,

reconfigurable and scalable technology is an excellent

testbed for future Industry 4.0 research.

The focus of this research has been to demonstrate a

proof of concept system for Industry 4.0 research. The

next step is to integrate this information with the MES

in order to optimise product launch scheduling and

prove the utility of real-time plant information to opti-

mise resource planning. In the immediate future, the

research effort will extend the current level of simula-

tion and focus on a multi-level DT of the FESTO sys-

tem with the aim of DT at each level in the automation

pyramid (see Figure 1).
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Appendix 1. Flowchart of pallet detection process.

12 Proc IMechE Part B: J Engineering Manufacture 00(0)


