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Abstract—The introduction of connected and autonomous vehicles enables new possibilities in

vehicle routing: Knowing the origin and destination of each vehicle in the network can allow for

coordinated real-time routing of the vehicles to optimize network performance. However, this

relies on individual vehicles being “altruistic” i.e., willing to accept alternative less-preferred

routes. We conduct a study to compare different levels of agent altruism in decentralized

vehicles coordination and the effect on the network-level traffic performance. This work

introduces novel load-balancing scenarios of traffic flow in real-world cities for varied levels of

agent altruism. We show evidence that the new decentralized optimization router is more

effective with networks of high load.

NEW MOBILITY concepts are at the forefront

of research and innovation in smart cities. They

are enabled by advances in intelligent infrastruc-

tures [1]. The shift toward an autonomous vehicle

(AV) fleet means that we will soon have the

possibility to control the routes that individual

vehicles take. Even before AVs are prevalent on

our roadways, vehicle connectivity via smart-
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phone apps (e.g., Waze, Google Maps, Apple

Maps, Nokia HERE, etc.) make it possible to

suggest individualized routes for each driver in

the network, and optimize these routes based on

some desired network state: the system optimal

(SO) route assignment [2]. However, compliance

to these routes cannot be enforced. Furthermore,

coordination solutions between AVs at the system

level are limited but required to guarantee that

traffic systems remain in a viable equilibrium.

If routes are assigned to drivers to achieve a

network state under some SO criteria, these may

not be routes that are best for each individual

driver. Instead, depending on how selfish they

are, an individual driver may select the user

equilibrium (UE) route, i.e. the route that is

optimal for each individual driver based on a

greedy assessment of the route options [2]. While

selfish drivers may select the route that is best

for them, more altruistic drivers may be willing

to accept the SO route assignment, while some

drivers who have both selfish and altruistic traits

may select a route that makes a trade-off.

Dynamic traffic assignment (DTA) dates back

to the late 1970s [3] and studies how vehi-

cles are routed in networks. An excellent sum-

mary of early DTA efforts is provided by Peeta

and Ziliakopoulos [4]. Much of the existing

early literature on DTA focuses on mathematical

programming-based solutions to routing vehicles

in fixed time steps [3], while other approaches in-

clude the formulation as an optimal control prob-

lem [5]. Some consider DTA with AVs (e.g., [6]).

With respect to prior work, this study focuses on

the use of a decentralized approach to compare

alternative routing plans and cooperatively select

one that optimizes the network-level traffic flow

with respect to roadway utilization.

Our main thesis is that the efficiency of the

entire network can be improved by pursuing a

global objective such as reducing CO2 emissions

or balancing the traffic flow assigned to each link

in the network. In particular, we assume based

on earlier evidence [7] that even if some of the

agents pursue a mix of UE and SO routing, this

can benefit all agents in the system, including the

selfish ones, and still improve the efficiency of

the network. To support this thesis, we explore

the trade-off between optimizing complex non-

linear global and local objectives1 that the agents

consider when selecting a route. In this context, a

global objective is a system-level objective such

as balancing the traffic flow in the network, while

a local objective is one that is specific to an

individual vehicle, such as travel time.

The specific mechanisms to incentivize travel

behavior or nudge drivers to become “altruistic”

and take SO routes are the focus of other works

(e.g. [8]), and are beyond the scope of this paper.

Instead, assuming an incentivization mechanism

exists, we try to answer the question: What degree

of altruism is required by the agents to observe

system-level benefits and to what extent is the

required altruism dependent on the traffic level

in the network?

In the context of employing multi-agent learn-

ing to optimize route planning, we make the

following contributions:

• We present a study that compares different

altruism levels of agents (autonomous vehi-

cles) and their effect on the overall traffic

performance optimization.

• The understanding of how different traffic lev-

els in the network influence the effectiveness

of alternative optimized routes.

• The first application of an open-source soft-

ware framework2 [9] to different large-scale

urban transport networks.

Technical Background

In order to investigate the behavioral influence

of selfish vs altruistic agents on local and global

objectives under dynamic traffic assignment, we

performed an agent-based simulation study with

real-world urban traffic networks. Note that we

do not study the effect of a particular agents’

behavior observed in reality, but rather we profile

a spectrum of agents’ behavior to understand

how it influences the distributed optimization

performance. In this section, we outline a novel

applicability scenario of the traffic simulator–

SUMO, integrated with the agent-based planning

framework–EPOS, for the purpose of our study.

1Such objectives make agents’ route choices dependent on each
other and as a result agents need to coordinate these choices.

2TRAPP, available at https://github.com/iliasger/TRAPP
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Traffic Simulation with SUMO

SUMO (Simulation of Urban MObility) is a

well-known open-source microscopic traffic sim-

ulator3. It can be used for simulating up to

hundreds of thousands of vehicles in complex,

realistic city networks. High realism is achieved

by simulating acceleration and deceleration of

cars in traffic lights and intersections, vehicle

manoeuvres, and different driving styles, etc. In

our experiments, we relied on a module of SUMO

that can be used for controlling a SUMO simu-

lation via Python.

In order to experiment with dynamic route as-

signment, we implemented three different routers

in Python. All routers rely on the internal repre-

sentation of a city network as a graph and perform

a Dijkstra algorithm to find the shortest path

between an initial position A and a destination

B. The difference of the routers is what they

consider as cost of an edge (street). In the first

router such a cost is the length of the street,

resulting in routes of minimal overall length. In

the second router, the cost is the inverse of the

maximum speed allowed on a street, resulting in

routes of maximum overall speed. In the third

router, the cost is formed by the length of a street

divided by the maximum speed allowed on the

street, resulting in routes of minimal length and

maximum overall speed.

In our experiments, each router produced a

single route for each trip, hence each car could

select among three different routes to navigate

from A to B. Which route to choose was a

decision that involved agent-based planning via

EPOS, described next.

Traffic Optimization with EPOS

EPOS (Economic Planning and Optimized

Selections) is a decentralized multi-agent opti-

mization framework written in Java [10]. EPOS

can be used for efficiently solving complex multi-

objective combinatorial problems via participa-

tory collective learning. EPOS is designed for

problems in which a number of agents needs to

coordinate their decisions in order to effectively

use a shared medium such a power grid or a set of

streets. Each agent’s decision may influence the

decision of other agents, i.e. agents make choices

3https://www.eclipse.org/sumo/

based on non-linear cost functions. The problem

that EPOS solves is to allow each agent to take

decisions that considers both local and global ob-

jectives with the minimum number of interactions

with the other agents. This is achieved by having

agents in EPOS self-organize in tree topologies

over which they can perform efficient aggregation

and decision-making in an iterative fashion: con-

secutive child-parent interactions in the bottom-

up phase, followed by parent-child interactions

in the top-down phase. In the following, we will

describe EPOS only to extent necessary for this

study, we refer the interested reader to [10] for

more details.

In this study, an EPOS agent is an AV, i.e. a

vehicle with a decision-support systems in rout-

ing selection. Decision-making in EPOS involves

selecting a plan from a finite set of plans for each

agent. In our setting, a plan corresponds to a route

from a position A to a destination B. As explained

in the previous subsection, we equipped each AV

with the ability to select among three possible

routes, each corresponding to one of the three

available routers (“minimum length”, “maximum

speed”, and “combined length and speed” router).

Nevertheless, our setting can be easily extended

to accommodate more routes and routers, even

routers that only serve specific cars (essentially

creating agents that have more options). EPOS is

then used by the AVs so that each car selects one

route to follow out of the three options they have

(Figure 1).

A plan is represented as a vector of real values

in EPOS, each representing the “contribution” of

the agent to the shared medium. In our study,

the shared medium is the set of all streets in

a city. A plan hence becomes a vector of real

values containing the expected utilization of each

street by the car for a specific planning horizon

(e.g. 30 minutes). For instance, assuming a city

consisting of only four streets, A, B, C, D, a

route that only uses A is encoded as X, 0, 0,

0, where X depends on the expected occupancy of

A (calculated based on the street length, vehicle

length and expected time spent on the street).

Plan 2 of agent n in Figure 1 is a concrete such

example with X = 0.3.

Each plan comes with a cost denoting the

agent dislike for this plan. Agents can express

preferences for their plans by lowering the cost

3
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(Simulation)
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Figure 1: Plan specification and selection via inter-operation of SUMO and EPOS in our study.

of preferred plans. For instance, plan 3 for agent n

in Figure 1 is preferred over plans 1 and 2. In our

study, we assign costs using historical (simulated)

runs of the AVs (see Study Design section).

In EPOS, an agent makes a plan selection

based on two criteria: (i) global cost (GC) and

(ii) local cost (LC). We model global cost as

the variance of street utilization by all cars (by

summing up element-wise all the selected plans

and then calculating the variance of the resulting

vector). Our model of global cost is a natural

one, since global cost represents what needs to

be optimized at system-level. This is a commonly

used metric for quality of load balancing in com-

puter and communication networks, but can also

apply for load distribution on infrastructure or

roadway traffic networks [11]. In our case, this is

the variance of street utilization, since we would

like to balance the AVs in the available streets

to avoid congestion on any particular part of the

network. The variance is a quadratic cost function

and, as a result, agents need to coordinate their

route selections [10]. EPOS is performing this

coordination in a fully decentralized and privacy-

preserving way. Local cost represents the prefer-

ence for each plan, as provided by each agent (see

Figure 1). The final cost of a plan is a weighted

sum of the two criteria:

(1− β)GC + βLC (1)

where β is real values in [0,1].

The objective of each agent is to select the

plan with the lowest final cost. High values of

β represent more selfish agents, since they care

more about their local cost than the global one.

Conversely, lower values of β represent more

altruistic agents.

Integration of SUMO and EPOS

In this study, we couple each car present in

SUMO to an agent present in EPOS. Using the

TRAPP framework [9] developed in our earlier

work, we are able to run SUMO simulations

which involve invoking EPOS at predefined time

points (e.g. at the beginning of the simulation

and periodically). At each invocation, the Python-

controlled simulation pauses and waits for the

EPOS run to complete. After completion, the

selected routes are applied to the active simulation

and the simulation resumes.

From user’s perspective, the simulation can be

configured with different maps, different number

of cars, and different values of the β parameter

that controls the altruism level of agents in EPOS.

In order to evaluate the effect of balancing the

cars in a city network—the main performance
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indicator for the passengers of self-driving cars—

we log the duration of all completed trips.

Study Design
This paper focuses on the following research

questions:

1) What altruism level is required to coordi-

nate agents’ route choices such that the trip

times are optimized?

2) How does a varied traffic level in the net-

work influence the agents’ coordination?

To investigate the above questions, we used

the TRAPP framework that integrates SUMO

and TraCI, a well-known traffic simulator, with

EPOS, a decentralized optimization framework,

as described in the previous section. We per-

formed several simulation runs using different4

values of the β parameter of EPOS on different

traffic settings– city maps and traffic levels– as

described below. We also provide the open-source

software TRAPP, together with concrete replica-

tion instructions online5.

For each traffic setting (explained next), we

performed a systematic parameter sweep of β

starting from 1 (corresponding to completely self-

ish agents) to 0 (corresponding to completely

altruistic agents) with a step of 0.1. We kept all

other TRAPP parameters constant to observe the

effect of changing β alone. For each β value, we

performed 5 simulation runs with different ran-

dom seeds, which affect the initial positions and

destinations of cars, to obtain statistical validity.

Hence, for each traffic setting we performed a

total of 5x11 = 55 simulation runs.

We consider a simulation run as the simula-

tion of a specific number of cars on the specific

city network for a time duration–the simulation

horizon. The initial position of cars (each ve-

hicle’s origin) are selected to be proportional

to the population distribution of city districts.

This simulates morning commute where each

vehicle begins its trip at a home location and

4We assume that all vehicles adopt the same beta value for
each different beta we assess, i.e. homogeneous population.
While such homogeneity is hard to achieve in practice and may
require calibrated incentive mechanisms, we use it here as an
approximation to avoid the explosion of the parameter space.
Note also that earlier work indicates that such homogeneous cases
can approximate well heterogeneous ones [7].

5https://github.com/iliasger/TRAPP/blob/experiments/Beta
Alpha Testing README.md

drives to a place of work that may be located

anywhere within the city. Since no city-specific

origin/destination data is available for the cities

studied in this numerical example, a uniform

distribution of trip destinations is assumed for the

purpose of this numerical example. Note, how-

ever, that the underlying method of conducting

traffic assignment using EPOS would also be ap-

plicable if additional data were available such as

in the examples presented by [12], [13]. EPOS is

invoked only at the beginning of each run, with a

planning horizon equal to the simulation horizon,

and selects one route for each car. Cars follow

their routes without further planning. Once a car

completes its trip, it picks another random desti-

nation and retrieves a new route via its preferred

low-cost router. This ensures that the number of

cars remains constant for the whole duration of

a run. After a run completes, the duration of the

first completed trip of each car are analyzed to

determine the effect of EPOS optimization with

the particular β value on traffic. In particular, we

compute the average of all logged trip overheads,

where a trip overhead is an actual trip duration

divided by the theoretical trip duration if the car

would drive alone in maximum speed.

A traffic setting in our study is defined by the

city map and the number of cars in the simula-

tion. The study considers four cities, Annapolis,

Boulder, Duluth, and the borough of Manhattan

in New York City. All of the cities used for the

comparative study are located in the United States

for the consistency of ZIP codes, census data, and

commute data. These cities were also chosen for

their diversity of urban infrastructure, including

their area, population size, population density, and

street organization.

The number of cars used for each simulation

run was determined by comparing cities based

on morning commute time. Hence, we first set

the simulation horizon of a simulation run to

30 minutes, which roughly corresponds to the

average commute time in the US of 25.5 minutes.

Then, we calculate the total number of commut-

ing trips using the percentage of drivers in each

city that drive alone and the total population of

the city from the 2010 census. This total number

of commuting trips is divided by six, as typical

morning peak traffic is from 6:30 am to 9:30

am, covering six half-hour time periods. Thus,

5
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the assumption that commuters are uniformly

distributed in time over the morning commute

is implicitly made. The number of cars and the

simulation horizon thus represent a period of peak

traffic of a morning commute.

To make the study more realistic, it is impor-

tant to consider additional factors that contribute

to traffic flow, like traffic route patterns. We used

a simplified model for traffic patterns based on

the assumption that during peak morning traffic

people are driving from their places of residence

to work. In our model, cities are divided into dis-

tricts (squares in the map) with certain number of

residents—population. We computed a district’s

population by adding up the population of all

ZIP codes whose centroids lie within the district.

(Population per ZIP code is also obtained by

the US 2010 Census data.) Then, we calculated

the distribution of a city’s population in districts.

Using this distribution, cars’ initial positions are

assigned to districts; their specific position (a

street within a district) is selected uniformly at

random. Each trip destination is randomly se-

lected within the city using a uniform distribution

in space (without considering districts).

Finally, for each traffic setting, we conducted

a number of baseline simulation runs to mine the

cost that each agent associates with each router.

The difference from the normal simulation runs

that were used to derive the results is that in the

baseline runs EPOS was not invoked. Instead,

each car was selecting a router at random to

perform a trip and logging the trip’s overhead. For

each traffic setting, we performed 100 baseline

runs with different random seeds. We then calcu-

lated the average trip overhead per car per router,

which became the cost of that particular router

for that car. These costs characterize the local

objective of each agent in EPOS. They represent

the effectiveness of a certain router in a certain

traffic network.

Study Results
The local cost of a run represents the average

cost of the selected routes. This gives an estimate

of how much agents are dissatisfied — lower

values of local cost are better. Figure 2a depicts

the (normalized) local costs. For high β values,

the local cost remains unaffected, however, for

β close to 0, local cost increases sharply. Due

to different numeric values, trade-offs between

global vs. local cost show sensitivity only in low

β values6.

The global cost of a run represents the ex-

pected variance of street utilization, This gives an

estimate of an important system-level objective of

EPOS, i.e. to balance the presence of cars in the

streets. Figure 2b depicts the (normalized) global

costs. With varying β, we see the inverse trend

than local costs: global cost decreases going from

β = 1 to β = 0. As higher priority is given to

the reduction of global cost with the reduction of

β, the variance decreases, indicating more load-

balanced street utilization.

The trip overhead is the main7 metric used to

evaluate the effectiveness of our overall approach.

For each setting we calculated the mean of the trip

overheads corresponding to the first trip of each

car. This provides an estimate of the overall utility

of the system – with lower mean trip overhead

corresponding to faster trips and hence higher

system utility. Figure 2c depicts the (normalized)

mean trip overheads of all runs performed for

each traffic setting and for each β value.

The first observation is that trip overhead

clearly depends on the setting, with Annapolis

having the highest values and Duluth the lowest.

With varying β values, trip overhead shows no

discernible trend, except for two cases: Manhattan

with β = 0 and Duluth with β = 0 both

show a statistically significant decrease in the trip

overhead. This trend is however not observed for

Boulder and Annapolis. We show next that the

traffic level of the network can influence the travel

times equilibrium.

Influence of traffic level

As a next step, we hypothesized that the effect

of optimization is stronger when the network

load, i.e. traffic level, is at a critical state. The in-

tuition is that balancing of traffic flows decreases

trip overhead only if there is a certain amount

of traffic congestion in the network. Alternative

6Techniques for Pareto front optimality and solutions to such
numerical problems in weighted multi-objective optimization are
studied in literature [14], [15], however, applying such schemes
in a decentralized multi-agent context remains an open question.

7It measures the optimization effect more explicitly on the
traffic network, in contrast to the global and local cost that are
performance indicators of the (traffic-agnostic) EPOS optimiza-
tion heuristic.
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(a) Boxplots of local cost for all four cities as a function of selfishness β. Blue dots represent averages (over 5 runs). The

trend shows that in all four cities, the local cost is constant except for the completely altruistic case (β = 0), where local

cost is significantly increased.

(b) Boxplots of global cost for all four cities as a function of selfishness β, showing in increasing global cost with increased

selfishness, meaning that when agents are more selfish, the overall cost for all agents is increased. Blue dots represent averages

(over 5 runs).

(c) Boxplots of trip overheads for all four cities showing an increasing trend with selfishness β for Manhattan and Duluth,

and no discernible trend with respect to selfishness β for Boulder and Annapolis. Blue dots represent averages (over 5 runs).

(d) Distribution of selected routers that route cars based on minimum length of streets (Min length), maximum speed allowed

on streets (Max speed), or based on a combination of the two (Balanced) for different β values and different traffic settings.

Figure 2: Local costs, global costs, trip overheads and selected routers in our study.

routes in a network free of traffic congestion are

likely to increase travel times, while alternative

routes in a congested networks are likely to

reduce them.
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(a) Trip overhead. (b) Global cost. (c) Local cost.

Figure 3: Median results (over 5 random runs) for different number of cars in Eichstätt.

Given the large spectrum of the different

performed experiments on large-scale networks,

simulations are very computationally costly. For

this reason, the aforementioned hypothesis is as-

sessed on a smaller-scale network. We use the

city of Eichstätt and varying number of cars

ranging from 100 to 1500 with a step of 100

(see Figure 3). Cars have random starting points

and random destinations. Similar to the other

experiments, when a car reaches a destination it

picks another one to drive to; this ensures that the

total number of cars in a run remains constant.

Each run has a duration of 800 SUMO ticks,

which is long enough to ensure that almost all

the initial trips of each car are completed. In these

experiments, we investigate the influence of total

altruism (β=0) versus total selfishness (β=1, the

baseline) under different number of cars.

With respect to trip overheads (Figure 3),

there is a critical state between 400 and 500 cars

after which altruistic agents following the alterna-

tive routes consistently reduce the trip overhead.

The differences in median of trip overheads ob-

served between altruistic and selfish agents is on

average 20 to 40 seconds across all settings with

a different number of cars8. In a similar vein,

we observe a sharp increase in the difference of

global cost between altruistic and selfish agents

for a number of cars starting from 700 on. On the

contrary, local costs show a consistent difference

between altruistic and selfish agents across all

number of cars.

8For instance, for 200 vehicles, these calculations consider
the median simulation duration (300 ticks in this case), the
observed overheads, and the fact that one simulation tick in
SUMO corresponds to one second’s duration in real-world.

Interpretation of results

The effect of changing the level of drivers’

altruism (β value) is both clear and consistent

across city settings for both the local and global

cost. Local cost is practically unaffected for β

values other than 0 and increases sharply when

complete altruism is in place (β= 0). In complete

altruism, optimization in EPOS takes into account

only the global objective (“reduce the variance

of street utilization”) without taking the agents’

preferences into account. Even slight considera-

tion of agents’ preferences (e.g. β = 0.1 or 0.2)

drastically reduces the cost that the agents pay

for the optimization to take place. The same “all

or nothing” pattern is present in the evolution of

global costs: even slight introduction of selfish

behavior is enough to increase the global cost

considerably. Still, in contrast to local costs, the

global costs show a more gradual value change

by increasing the altruism level.

Looking at the results on trip overheads, we

conclude that it is possible to use EPOS with

altruistic agents, distribute vehicles more evenly

in the streets and, as a result, reduce the overall

trip overheads, especially when the network is at

a critical high traffic flow state.

We clearly see such a positive traffic effect

on average overhead values when setting β= 0

for Manhattan and Duluth. However, such an

effect (i) is only present for the case of complete

altruism (β= 0), and (ii) is not present in Boulder

and Annapolis. This provides another indication

that the traffic load on the network (and not

the structural properties9 or the particular plans)

9We measured correlations of density without confirming in-
fluence.
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explains the insignificant effect on trip overheads

in the cases of large cities. Future work will

confirm this using a large-scale computational

infrastructure to support networks larger than

Eichstätt.

In all settings, the distribution of router uti-

lization changes as moving from altruistic (β=0)

to selfish (β=1) agents, signaling the selection of

the more preferred balanced router over the min-

lenth one.

Conclusion and Outlook
In this paper, we focused on new mobility

concepts in smart cities and investigated the use

of multi-agent learning in optimizing route plan-

ning. Considering each (potentially autonomous)

car as an agent that has several plans, i.e. routes to

a destination, we investigated whether increasing

the altruism of the agents can have a positive

effect on the overall performance of traffic un-

der varying traffic levels. We performed rigorous

measurements to answer the above question using

a simulation framework that integrates SUMO,

a well-known traffic simulator, and EPOS, a

decentralized agent-based framework. Our study

focused on rush hour traffic in four US cities and

found that (i) load-balancing is indeed achieved

by increasing the agents’ altruism, (ii) whether

a positive effect on network performance can be

observed depends primarily on the traffic load.

As future work, we would like to compare

further cities under varying traffic levels. In our

future experiments, we would like to consider

cities for which real traces for traffic demand is

available, as in [12] to further increase the validity

of our results. Finally, a very interesting direction

of research concerns the addition of fairness ob-

jectives in the decision making of agents.
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