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Automated Commonsense Spatial
Reasoning: Still a Huge Challenge

20.1 Introduction

Achieving “commonsense reasoning” capabilities in a computational system has been
one of the goals of Artificial Intelligence since its inception in the 1960s (McCarthy
and Hayes, 1969; McCarthy, 1989; Thomason, 1991). However, as Marcus and Davis
have recently argued (Marcus and Davis, 2019): “Common sense is not just the hardest
problem for AI; in the long run, it’s also the most important problem”. Moreover, it is
generally accepted that space (and time) underlie much of what we regard as common-
sense reasoning. For example, in the list of commonsense reasoning challenges given
at www-formal.stanford.edu/leora/commonsense/, most of these rely crucially on
spatial information.

From the 1990s onwards, considerable attention has been given to developing the-
ories of spatial information and reasoning, where the vocabulary of the theory was
intended to correspond closely with properties and relationships expressed in natural
language but the structure of the representation and its inference rules were formu-
lated in terms of computational data and algorithms (Forbus et al., 1991; Egenhofer,
1991; Freksa, 1992; Frank, 1992; Ligozat, 1993; Hernández, 1993; Gahegan, 1995; Zim-
mermann, 1993; Faltings, 1995; Escrig and Toledo, 1996; Gerevini and Renz, 1998;
Moratz et al., 2011; Mossakowski and Moratz, 2012) or in a precise logical language,
such as classical first-order logic (Randell et al., 1992; Gotts, 1994; Cohn, 1995; Borgo
et al., 1996; Cohn et al., 1997; Galton, 1998; Pratt and Schoop, 1998; Pratt, 1999;
Cohn and Hazarika, 2001; Galton, 2004).

However, despite a great number of successes in dealing with particular restricted
types of spatial information, the development of a system capable of carrying out au-
tomated spatial reasoning involving a variety of spatial properties, of similar diversity
to what one finds in ordinary natural language descriptions, seems to be a long way off.
The lack of progress in providing general automated commonsense spatial reasoning
capabilities suggests that this is a very difficult problem.

As with most unsolved problems, there are a variety of opinions about why com-
monsense spatial reasoning is so difficult to achieve and what might be the best ap-
proach to take. A point of particular contention, which will be explored in detail in
the current chaper, is: what is the role of natural language in relation to commonsense
spatial reasoning?
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The main purpose of this chapter is to help researchers orient and focus their in-
vestigations within the context of a highly complex multi-facetted area of research.
We believe that research into computational commonsense spatial reasoning is some-
times misdirected for one or both of the following reasons: a) the goal of the research
may incorporate several sub-problems that would be better tackled separately; b) the
methodology of the research may assume that other related problems can be solved
much more easily than is actually the case.

The chapter gives a fairly general (though not comprehensive) overview of the
goal of automating commonsense reasoning by means of symbolic representations and
computational algorithms. Previous work in the area will be surveyed, the nature of
the goal will be clarified and the problem will be analysed into a number of interacting
sub-problems. Key difficulties faced in tackling these problems will be highlighted and
some possibilities for solving them will be proposed.

The rest of the chapter is structured in terms of the following list of what we
consider to be the most important problems that are obstructing the development of
automated commonsense spatial reasoning systems:

1. Lack of a precise meaning of “commonsense reasoning”.

2. Difficulty of establishing a general foundational ontology of spatial entities and
relationships.

3. Identification and organisation of a suitable vocabulary of formalised spatial prop-
erties and relations.

4. How to take account of polysemy, ambiguity and vagueness of natural language.

5. Difficulty of modelling the role of various forms of implicit knowledge (context,
background knowledge, tacit knowledge).

6. Lack of a default reasoning mechanism suited to reasoning with spatial informa-
tion.

7. Intrinsic complexity of reasoning with spatial information.

Of course we do not claim that there has been no progress in addressing these
challenges (and indeed we mention a few examples of works that do below), but it
seems to us that these still represent considerable challenges to solve in the general
case.

20.2 Commonsense Reasoning

In this section we examine the nature of commonsense reasoning and look at the ways
in which research in computational Artificial Intelligence has sought to model and
simulate human commonsense reasoning.

20.2.1 The Nature of Commonsense Reasoning

Although the specific processes by which human reasoning occurs are little understood,
the meaning of the word ‘reasoning’ is relatively clear. It refers to any kind of process by
which new implicit information is derived from given or assumed information. However,
there are several different forms in which information is manifested and communicated.
Fig. 20.1 illustrates those types of information and relationships that we consider to
be particularly relevant to the understanding of different modes of reasoning.
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Fig. 20.1 Types of information and the relationships between them. Note that none of

the arrows denote causal relationships, perhaps with the exception of the “mental processes”

arrow; rather they denote a wide variety of other kinds of relationships such as epistemological

and metalogical relationships.

One might define commonsense reasoning as that kind of reasoning that humans
use in everyday situations, without explicit use of logical, mathematical or scientific
theories. As such, the ambit of commonsense reasoning corresponds to the lighter grey
region of the diagram, with its primary components being: mental state, perceptual
information and propositional information (expressed in natural language).

Although the idea of an agent’s ‘mental state’ is widely used in explanations of the
behaviour of humans and animals, its constitution and function are poorly understood
and we will not speculate on these; nor do we have the space here to consider the dis-
tinction between short and long term representations which are clearly important but
not germane to our main argument here. For present purposes, we need only consider
what types of information might in some way be stored within an agent’s mind. We
assume that a mental state includes some kind of mental model (Johnson-Laird, 1983),
which somehow stores some correlate of received perceptual information in such a way
that it can be used to remember or predict useful information about the state of the
world. We also assume that the mental state incorporates tacit knowledge (Polanyi,
1966; Schacter, 1987; Kimble, 2013), which provides the agent with certain capabilities
and skills (either instinctive or learned). Mental models and tacit knowledge are taken
to be non-linguistic forms of information and hence can be possessed by agents with
no linguistic capability. These kinds of information are difficult to articulate in verbal
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form. Researchers studying tacit knowledge often claim that it is impossible to convert
it into an equivalent propositional form. Other researchers (e.g. in symbolic AI) take
the view that it is very difficult but not impossible to specify an explicit symbolic
correlate of tacit knowledge. We tend towards the latter view.

In the case of beings with linguistic capabilities, their mental state will also some-
how store (or be able to generate) propositional information — i.e. internal correlates
of natural language sentences. These correspond to the verbalisable beliefs of the agent.
A special case of such beliefs would be theoretical knowledge of logic, mathematics
or science. Although such theoretical knowledge may be part of the mental state of a
sophisticated linguistically capable agent and applied in their processes, its use goes
beyond what would be considered commonsense reasoning. (Hence, in Fig. 20.1, ‘the-
oretical knowledge’ is not within the light grey area of the diagram.)

There are several paths that reasoning can take. The most basic is where the ap-
pearance of the world generates perceptual information, which is (somehow) absorbed
into an agent’s mental state. Mental processes then take place that modify the current
mental state to produce a new state that may include the results of some kind of in-
ferential process. (We will not speculate on any details of how mental inference might
operate.) Finally, the updated mental state may incorporate some prediction about the
world state. This prediction is some piece of information that was not directly present
in the perceptual information (nor in information derived by low level processing that
takes place as part perception) but has been derived by the reasoning process.

The kind of reasoning just described does not necessarily involve any kind of lin-
guistic information. Hence, it could be carried out by languageless animals. However,
the diagram also includes a category of propositional information and indicates that in-
formation expressed in natural language may also play a part in human commonsense
reasoning. Perceptual information may be converted into propositional information by
linguistic interpretation. This can then be incorporated into an agent’s mental state, in
the form of propositional beliefs. Mental processes may then make use of this proposi-
tional information (often in combination with other types of information in the mental
state) in order to draw inferences by some kind of mental argumentation process.

The reader will have noticed that the diagram also indicates a second mode of rea-
soning, which is ostensibly very different from commonsense: the darker grey area of
the diagram demarcates the types of information that are manipulated by automated
symbolic reasoning mechanisms. This kind of reasoning is relatively well-understood
by mathematicians and computer scientists. However, it is only indirectly linked to
the components of the commonsense reasoning system just described. The most overt
connection between commonsense reasoning and automated reasoning occurs within
the category of propositional1 information. Here we have both natural language propo-
sitions (i.e. assertive sentences) and formulae of some logical language. We may map
between these by procedures of formalisation (natural to formal) and natural lan-
guage generation (formal to natural). However, establishing appropriate mappings has

1By propositional information, we mean information expressed in propositions of any form. We do
not mean that the logical form of expressions is restricted to only atomic propositions and compounds
formed using propositional operators. So any natural language assertive sentence or formula of some
logical language would be an example of propositional information.
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proved to be extremely difficult, especially in the direction natural-to-formal. There is
huge controversy over how this should be done and even over whether it can be done
at all in a general and reliable way. Moreover, even the details of a logical language
suitable for capturing the meanings of natural language sentences are disputed, both
in terms of the non-logical predicates that will be needed and in terms of the logical
operators and structures that will be required.

Another linkage between commonsense and automated reasoning processes occurs
indirectly via reality itself — i.e. in relation to the world state (the physical material
and structure of reality). On one side of the connection, the world state interacts with
commonsense reasoning in two ways: the world generates perceptual information; and
the contents of a mental state somehow enable predictions to be made about the
world state. On the other side of the link, the world state is regarded as having some
correspondence (albeit usually very coarse grained) with a mathematical model that
provides an interpretation (i.e. a model in the sense of model theoretic semantics) for
the formal logical representation. Here again there is great controversy over what form
an appropriate mathematical model should take and even whether it is possible to
provide an adequate model at all.

We have also included in the diagram some further linkages indicated by dashed
arrows. These are of a more putative nature. One possibility is that one might carry out
some kind of ‘perceptual modelling’, that would map perceptual information either into
a formal logic or into some other representation of truth conditions. we also indicate
that some kind of ‘doxastic modelling’ could provide a mapping from mental state
either to some formal logical representation or directly to truth conditions (which
would then consist of the set of possible worlds that are compatible with the beliefs
held within the mental state (Hintikka, 1962)). Our motivation in adding these links
is to allow for the possibility that human commonsense reasoning could be simulated
by an automated reasoning system without the need to use natural language as a
bridging representation. Nevertheless, it is far from obvious how these links could be
substantiated by an actual modelling process (although work on mental models has
attempted to explicate a linkage to truth conditions and hence to human reasoning
processes (Johnson-Laird, 1983)).

20.2.2 Computational Simulation of Commonsense Spatial Reasoning

A typical approach to developing computational commonsense spatial reasoning within
the field of symbolic AI has been to design formal logical representations that are en-
visaged as being close to natural language forms of spatial description, and therefore
similar to the kinds of propositional information used in human commonsense reason-
ing (Randell et al., 1992; Borgo et al., 1996). Since, reasoning with numerical informa-
tion is generally considered to be mathematical rather than commonsense reasoning,
the formal language is usually restricted to representing qualitative properties and re-
lationships; hence the field is known as Qualitative Spatial Reasoning (QSR) (Ligozat,
2011; Cohn and Renz, 2008) which in turn is part of the larger field of Qualitative
Reasoning (Forbus, 2019). For example, the Region Connection Calculus (RCC) has
been widely used for a variety of purposes from modelling geographic information to
representing activities in video. The two most common variants of RCC are RCC-8
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and RCC-5 (8 and 5 referring to the number of jointly exhaustive and pairwise disjoint
(JEPD) relationships in the calculus). The RCC-8 relations are depicted in Fig. 20.2;
Egenhofer (1991) has postulated a similar set of relations from a different mathemat-
ical basis. The RCC calculi, along with most other QSR systems, can not only be
structured into “conceptual neighbourhoods” as depicted in the figure, but also one
can construct composition tables which enable inferences to be made about relation-
ships between spatial relations not already explicit (e.g. from NTPP(a,b) ∧ TPP(b,c)
infer NTPP(a,c)).
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Fig. 20.2 A depiction of the RCC-8 relations. The connecting arcs indicate the “concep-

tual neighbourhood” – i.e. those neighbouring relations which one relation can transition to

immediately, assuming continuous transitions or deformations. These ‘conceptual neighbour’

relations can be used to perform qualitative spatial simulations in order to predict possible

futures, e.g. see Cui et al. (1992). RCC-5 is formed from RCC-8 by merging DC and EC, TPP

and NTPP, and TPPi and NTPPi.

There are several potential problems with this approach. One is the difficulty of
ensuring that the formal language developed is adequate for the kinds of reasoning
that can be carried out by human commonsense. Indeed that has certainly not been
achieved in a general way. The most that can be claimed is that formal represen-
tations have been developed that are capable of simulating some fragment of human
commonsense reasoning. Several researchers have conducted psychological experiments
to determine the extent to which sets of qualitative relations that have been used as
the basis of qualitative spatial representations are comprehensible to human agents
and are cognitively plausible — i.e. compatible with human spatial reasoning capabil-
ities, e.g. (Klippel et al., 2013; Knauff et al., 1997). The latter concluded from their
experiments that the more fine grained RCC-8 relations (rather than RCC-5) “are
actually the most promising starting point for further psychological investigations on
human conceptual topological knowledge. However, further evidence will be needed
before a detailed modeling of human conceptual knowledge is possible”. Knauff (1999)
also investigated the cognitive adequacy of Allen’s Interval Calculus (IA), which has
13 JEPD relations between intervals such as ‘before’, ‘meets’, ‘overlaps’, ‘during’; the
IA has often been used for reasoning about space. Knauff found that some evidence
to support the cognitive adequacy of the IA, particular wrt to the associate compo-
sition table. However, whereas it had been postulated in the literature that errors
in choice of a relation would normally be conceptual neighbours rather than random
relations was not upheld in his experiments. Knauff also found that his results agreed
with the ‘mental model’ theory that has been suggested as a human problem solving
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paradigm (Knauff et al., 1998).
Another problem is that, as we have elaborated above, propositional information

is not the only kind of information involved in human reasoning, and is probably
not involved at all in many reasoning tasks, which are effected by manipulation of
mental models (Ragni et al., 2005) and/or tacit knowledge. Nevertheless, this need
not necessarily be reason not to use formal propositional representations. Such rep-
resentations have very general expressiveness, so it is plausible that even though the
mind of an intelligent agent may be working with non-propositional tacit knowledge
and/or neurologically implemented mental models, it might still be possible to encode
the relevant information content in a propositional form. This possibility corresponds
to the ‘doxastic modelling’ arrow in Fig. 20.1. Of course one cannot directly access
the structure and content of a human mind; so the modelling would need to be done
indirectly, by a process of hypothesis and testing.

A different approach is to model the perceptual information received by an agent
and use this directly within a reasoning system. This is the approach taken within
the situated approach to AI promulgated by Rodney Brooks, among others (Brooks,
1986).

20.2.3 But Natural Language is still a Promising Route to Commonsense

Despite the caveats of the last section, we still believe that natural language is likely
to provide the most accessible entry point into commonsense spatial reasoning and
provide fruitful insight into the semantic distinctions and inference patterns upon
which it is based. If we could compute inferences from natural language information
(e.g. text) that were judged to be broadly correct by humans, then we would have
solved a large part of the problem of automating commonsense reasoning. In so far
as non-linguistic information plays a part in commonsense, this would need to be
somehow built into the inference generation mechanism. But, given the generality of
logical reasoning techniques, there seems to be no obvious reason why this could not
be done.

If we do choose to attack the problem of automating commonsense reasoning via
the analysis of natural language, there are still several different ways in which this
can be done. Contrasting views have been put forward by Davis (2013) and Bateman
et al. (2010, Bateman (2013). Davis’ analysis of spatial reasoning required for natural
language text understanding begins by analysing the semantics of sentences in terms
of the geometrical constraints that they seem to obey (in many cases identifying vari-
ous constraints corresponding to different interpretations). Bateman’s approach is to
try to model the semantics of natural language terminology more directly, without
attempting to resolve all ambiguities in their geometrical interpretation. The idea is
that language-oriented inference rules can be formulated, which generalise over the
variety of different ways in which natural language terminology can be employed in
spatial descriptions.

Each of these approaches has its own problems:
With the Davis approach, the mapping from natural language to a formal repre-

sentation is achieved by the expert judgement of a knowledge engineer. This leaves
a significant gap in achieving automatic reasoning with natural language. Moreover,
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questions regarding why a particular interpretation was chosen may be difficult to
answer.

The Bateman approach faces the following problem: on the one hand in many cases
it will be difficult (sometimes impossible, we would suggest) to specify the semantics
of a natural language term in a way that is sufficiently general to capture all its most
common uses ; on the other hand it will be difficult so to do in a way that is not so
general that it captures inferences that one would expect to only follow from particular
applications of a term, which one would expect to have a more specific semantic
interpretation. In other words, the Bateman approach may suffer due to a difficulty
in distinguishing generality from ambiguity without recourse to some extra-linguistic
semantic view point (such as mathematically specified geometrical constraints). An
associated problem is that the Bateman approach seems to fall short of supplying
truth conditions for propositions. This means that it is unclear what criteria would be
used to judge the validity of an inference.

20.3 Fundamental Ontology of Space

Despite having been an object of enquiry for thousands of years, the constitution and
structure of space and the material world is still a subject of much controversy. Al-
though, scientific theories provide detailed accounts in terms of particles, fields and
forces, the mathematical models developed by physicists are far removed from the ter-
minology and informal inference patterns used in everyday description and reasoning
about spatial properties and relationships. Over the past couple of decades the need for
theories of space and material object that correspond more closely to natural modes
of description have been recognised by many researchers in Artificial Intelligence and
information science (Bennett, 2001; Masolo et al., 2003; Grenon and Smith, 2004);
nevertheless, some fundamental problems remain.

20.3.1 Defining the Spatial Extent of Material Entities

Fundamental to spatial reasoning is the association between material objects and spa-
tial regions. However, determining the spatial extent of a material entity is complicated
by the following considerations:

• The conditions for determining whether a particle is a constituent of a particular
entity may be vague. For example, the surface of an animal (i.e. its skin) may
have an outer layer incorporating dead or damaged cells, which are only loosely
attached, and for which it is unclear which of them should be taken as constituents
of the animal. Similarly, a rock may be made up of an agglomeration of rock
particles, such that it can be unclear which are actually part of the rock and
which are separate but ingrained within a cavity of the rock’s surface.

• The exact positions of particles are unknown and intrinsically uncertain.

• Matter is made up of particles that are relatively sparsely distributed in space.

• Many materials (e.g. rock) contain tiny voids, such that it is not clear whether the
volume of the voids should be considered as part of the material. To complicate
matters, the voids may sometimes be filled with other materials such as water
(Hahmann and Brodaric, 2012; Hahmann and Brodaric, 2014).
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Let us suppose that intrinsic uncertainty and vagueness can be ignored. That is,
we assume that:

• Although it may be difficult (or even impossible) to determine in practice, each
physical entity is associated with a definite set of atoms (often combined into
molecules).

• Although the positions of atoms are uncertain and constantly variable, it is possi-
ble in principle (though in most cases not in practice) to establish an assignment
of a precise spatial location to each atom (e.g. by numerical coordinates), such
that the resulting structure of spatially located atoms is sufficient to capture all
aspects of the structure of an entity required to characterise its physical properties
— except those that depend on sub-molecular scale details.

Even under the assumption that the particles that ultimately constitute matter
have definite spatial locations, we still have the problem that these particles are rel-
atively sparsely distributed in space, so that their combined spatial extent would be
more like a scattered cloud of almost point-like regions than a continuously filled vol-
ume of space. One method of determining the spatial extent of a material entity would
be by constructing an α-volume (Edelsbrunner et al., 1983). This gives a well-defined
procedure for determining a reasonable containing volume for an arbitrary set of points.
The only problem with this is that it depends on the choice of a parameter, α, that
determines what size of gap between points gets filled in to form the volume. When
considering most physical entities, an α distance that is microscopic but considerably
larger than the length of a molecule would be appropriate, since then the α-volumes
of cells and larger entities would be continuous and connected, whereas if a smaller α
distance were used, their α-volumes would have many gaps and discontinuities arising
from the spaces between molecules. But in considering the structure of a molecule or
atom, a much smaller α parameter would be needed, otherwise their α-volumes would
be too course-grained to exhibit any distinctive spatial structure.

20.4 Establishing a Formal Representation and its Vocabulary

We may divide the analysis of natural language semantics into two parts: the elicitation
of logical form (compositional structure) and the specification of content (meanings of
terms).

20.4.1 Semantic Form

The application of automated symbolic reasoning techniques to natural language sen-
tences requires that they be translated into a form that makes explicit their logical
structure. For example, “The pot contains lead” would be represented by a formula
such as ∃x[“Pot”(x) ∧ “Contains”(x, “lead”)], which indicates predicative and quan-
tificational structure but retains the vocabulary of the original sentence2. Performing
this conversion is in general non-trivial. However, even where a sentence conveys spa-
tial information, there is nothing particularly spatial about the logical form of the
sentence. Hence, although this conversion is a problem for commonsense reasoning in

2Note that for simplicity we render the definite article ”The” by the existential quantifier in this
example.
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general (at least if we want to automatically input information expressed in natural
language into our commonsense reasoning system) it is not specifically a sub-problem
of automating spatial commonsense reasoning.

20.4.2 Specifying a Suitable Vocabulary

By contrast, providing a semantics for the vocabulary of sentences conveying spatial
information is a significant part of the commonsense spatial reasoning problem.

Specifying a suitable spatial vocabulary for a commonsense spatial reasoning sys-
tem is a large and complex task. The concepts and relations used in natural language
give a guide to the range of concepts required and the distinctions that one will want
to make. However, the expression of these concepts in natural language is often highly
ambiguous. Spatial phrases are applied in a wide variety of different situations, so that
it is not obvious what is the core meaning or whether there are several different inter-
pretations. To make matters worse, there can be considerable overlap between possible
interpretations of different phrases. Such differences or overlapping of senses depend
very much on the specific details of a particular spatial situation: in some situations,
two phrases may seem to be equally appropriate, whereas in others one phrase will be
much more apt than another.

In order to ensure the consistency and semantic rigour of a formal spatial vocab-
ulary, the classification of meanings will need to be conducted in a systematic way.
However, there are several different ways in which such a classification might be or-
ganised:

• Taxonomic — concepts are identified by successive differentiation of general con-
cepts into more specific refinements.

• Compositional — a limited set of basic concepts/relations is used to construct
a more comprehensive vocabulary. This in turn can be achieved in at least two
different ways:

∗ Analytic — a set of primitives is identified in order to provide fundamental
conceptual units from which more complex concepts can be constructed by
definitions that are expressed as structured combinations of the primitives.
There is little if any overlap in the meaning of each primitive concept

∗ Synthetic — key general concepts are identified from which more specific
concepts can be constructed by combination. The key concepts may overlap
so that specialisation may be achieved by their conjunction.

20.4.3 The Potentially Infinite Distinctions among Spatial Relations

A primary reason why a purely taxonomic approach is unlikely to achieve full gen-
erality is that ordinary language allows arbitrary elaboration of our descriptions of a
spatial situation. An obvious way in which we can express limitless variety in spatial
relations is by referring numerically to multiple sub-features of a spatial situation. For
example, an entity could have any number of protruding sub-parts and these could be
spatially related to some other entity in specific ways. Fig. 20.3 illustrates two rela-
tively simple cases of the potentially infinite number of variants of relations between
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two disconnected regions that can occur when one region has multiple lobes, each of
which protrudes into a distinct open cavity of the other region.

Fig. 20.3 Denumerable variants of disconnectedness with respect to multiple cavities.

Counting sub-features is a rather trivial way in which spatial relationships can
be differentiated into more and more sub-types. However, there are other types of
relation refinement that give rise to large numbers of distinctive spatial configurations.
Fig. 20.4(a) illustrates how, in the context of considering the topological relationship
between an arbitrary self-connected region and an entity with an internal cavity (the
shaded ‘doughnut’), the RCC-8 relations can be refined into various more specialised
relations. Fig. 20.4(b) shows a large number of possible refinements of an external
connection relation holding with respect to a region with an external concavity (cf
(Cohn et al., 1997)).
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Fig. 20.4 (a) Refining RCC-8 (Randell et al., 1992) with respect to a region with an internal

cavity (in 2D). (b) Refining the relation of external connection with respect to a region with

an external concavity.

These examples suggest to us that the approach used widely in ontology construc-
tion, of specifying properties and relations by means of a taxonomy that successively
refines concepts from general to specific, may not be the most appropriate for spatial
concepts. In (Bennett et al., 2013), it is suggested that a structured classification of
spatial concepts consisting of an initial shallow hierarchy of topological relations sup-
plemented by an open ended set of analytic definitions of more specialised relations,
formulated by explicitly referring to entities such as surfaces and cavities, may be a
better approach.
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20.5 Formalising Ambiguous and Vague Spatial Vocabulary

Many spatial concepts have such a wide variety of uses that it seems to be impossible
to give any concise definition that would cover all kinds of application of the concept
(e.g. the general concept of ‘place’ (Bennett and Agarwal, 2007)). Nevertheless, such
concepts somehow seem to give the impression of conveying a coherent and unprob-
lematic meaning. As well as often involving concepts that are ambiguous — i.e. having
several distinct (although possibly overlapping) meanings — spatial concepts may also
be vague — i.e. subject to gradations of meaning with no clear cut-off point regarding
the applicability of the concept (Bennett, 2011). A number of researchers have investi-
gated ways in which typical cut-off points or ranges of cut-off-points can be elucidated
from human subjects (Mark and Egenhofer, 1994; Mark et al., 1995; Montello et al.,
2003).

In this section we shall consider a variety of examples that illustrate the ubiquity of
ambiguity and vagueness in natural language spatial vocabulary and thereby indicate
the scale of the difficulty that these phenomena pose to the endeavour of formalis-
ing commonsense spatial reasoning based on natural language expression of spatial
information.

20.5.1 Crossing

Phrases of the form ‘x crosses y’ are very common in spatial descriptions, and the
notion of one entity crossing another seems to convey a basic notion. But such phrases
can have a wide range of different interpretations. The nature of the relationship
referred to can often be determined (or at least narrowed down) by knowledge of the
type of the entities x and y that are involved, but additional background knowledge
may also be needed in order to disambiguate the meaning.

Some different interpretations are as follows:

• A flat elongated entity is part of a surface and runs from one edge of the surface
to another. For example a path may cross a park.

• Two elongated entities may intersect (typically, approximately at right angles) at
some location that is at a mid-point (or mid-section) of both of them. For example
two roads may cross.

• An entity may cross a barrier by passing through a hole in the barrier.

• An entity may cross a barrier and also be part of that barrier. For example a
protein that is part of a cell membrane and protrudes both into the cytoplasm
and out to the exterior of the cell.

• A line or linear entity or a three-dimensional entity may cross a surface by having
a part on one side of the surface and a part on the other side of the surface.

• An entity may cross another entity by going over it from one side to another.

• There are also many dynamic interpretations of ‘cross’ — as in “The runner
crossed the finishing line”. The dynamic interpretations vary in similar ways to
the static interpretations. (Such interpretations will not be considered further in
this report.)
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20.5.2 Position Relative to ‘Vertical’

The concepts of ‘above’, ‘below’, ‘over’, ‘under, ‘beneath’, depend on having some
notion of the directions ‘up’ and ‘down’ in relation to the entities being considered.
The clearest cases are where ‘up’ and ‘down’ are interpreted according to the reference
frame of our planet Earth itself. ‘Up’ normally means away from the centre of the
Earth, whereas down is towards the centre of the Earth.

However, there is a certain amount of ambiguity in these relations when we consider
the variety of situations in which they might be judged to apply. Some possibilities
are illustrated in Fig. 20.5. The cases shown are as follows:

(Fig. 20.5.a) Here every point of the lower region is directly below some point of the
upper region (and no point of the upper region is below any point of the lower
region).

(Fig. 20.5.b) Here every point of the upper region is directly above some point of
the lower region (and no point of the upper region is below any point of the lower
region).

(Fig. 20.5.c) Here some points of the upper region are above some points of the lower
region (and no point of the upper region is below any point of the lower region).

(Fig. 20.5.d) Here every point of the upper region is higher than every point of the
lower region, even though no point of either region is above (or below) any point
of the other region.

Up

(a) (b) (d)(c)

Fig. 20.5 Variants of the Above-Below Relationship.

It is worth noting that only cases (a) and (b) are transitive. Also, out of all the
cases, (a) and (b) seem to be the most typical examples that one would describe by
saying one region was above (or below) the other. Hence, is tempting to interpret
‘x is above/below y as holding whenever either of the situations (a) and (b) occurs.
However, if we take above(x, y) as holding when either of the situations (a) and (b)
occurs, then this relation is not transitive. By referring explicitly to the relative vertical
positions of points (or parts) of the entities concerned, it is possible to define a variety
of different relations that describe the relative vertical positions of extended entities.
However, these will have different semantics, and hence, different import with respect
to logical entailment. Moreover, the mappings between these and relations referred to
in natural language will be ill-defined.
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20.5.3 Sense Resolution

In the works (Bennett et al., 2013; Bennett and Cialone, 2014), the authors investigated
(by analysing a text corpus obtained from a large Biology text book (Reece et al.,
2011)) the use of the spatial relation terms ‘contain’, ‘enclose’ and ‘surround’. For each
occurrence of any of these words (and cognate forms) the geometrical configuration
to which the word was being applied was determined (from the text and with the use
of auxiliary reference works). The authors found that around 15 different geometric
conditions seemed to cover all usages of the terms. They calculated the frequencies
with which each word was used to describe a particular geometrical constraint and
found that each word could be applied to a variety of different geometrical constraints
and that there was considerable overlap in the use of the terms. However, there were
also significant differences in the frequencies that a particular term was applied to a
given situation, with each having different typical and atypical uses.

Given the many-many correspondence between natural language spatial terminol-
ogy and geometrical constraints, commonsense spatial reasoning conducted on the
basis of linguistic descriptions must employ some method of ascertaining the intended
meaning of a given work use. By sense resolution we mean the mechanism by which
a word or phrase with multiple possible interpretations is associated with a particular
axiomatically defined predicate. The following sentences all use the word ‘surround’,
but in each it refers to a different spatial relation: “The embryo is surrounded by
amniotic fluid”; “The embryo is surrounded by a shell”; “The cell is surrounded by
its membrane”; “The garden is surrounded by a wall”; “The building is surrounded
by guards”. To reason on the basis of one of these sentences we need to know what
spatial relation is intended. Many factors place constraints on possible interpretations
of a lexical predicate. An important consideration is the type(s) of thing to which the
predicate is applied. Surrounding by a fluid is different from surrounding by a rigid
shell, or a wall or a group of people.

As a further illustration, contrast the meaning of ‘contains’ in “This bottle contains
wine” and “The wine contains alcohol”. In the first case, the wine is located within
a cavity enclosed by, but not overlapping the bottle, whereas in the second alcohol
is an ingredient of the wine. These are very different spatial relations. Establishing
a robust automated mechanism for sense resolution would be a significant advance
towards achieving automated commonsense reasoning.

20.6 Implicit and Background Knowledge

Suppose we take a convincing chain of reasoning expressed in natural language and
translate it into a logical language (e.g. first-order logic): we are unlikely to get a for-
mally valid sequence of inferences. It could be that the formal language that we use
does not incorporate the types of logical operations required to articulate the infer-
ences. But even if the logical language is sufficiently expressive in terms of its logical
expressivity we are still unlikely to get a valid argument. This is because the reasoning
will in typical cases also depend heavily on various kinds of implicit knowledge that is
covertly utilised within commonsense reasoning processes.

One source of additional information would be the definitions of spatial (and other)
terms and the axioms that specify semantic properties of primitives from which these
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terms are defined — in other words semantic knowledge. In addition to this there is
a huge amount of contingent background information that can be potentially drawn
upon to facilitate commonsense reasoning. For instance, knowledge about particular
spatial properties and configurations of various kinds of object (tools, buildings, people
etc). This kind of knowledge is often called commonsense knowledge and is critical to
effective commonsense reasoning3. (Davis, 2017) discusses such knowledge at length
and categorises it as, “roughly, what a typical seven year old knows about the world,
including fundamental categories like time and space, and specific domains such as
physical objects and substances; plants, animals, and other natural entities; humans,
their psychology, and their interactions; and society at large”. Encoding and storing
such background information is a major goal of the long running AI project, CYC
(Guha and Lenat, 1990). However, despite several decades of research the original
goal of CYC project is still to be achieved.

As well as supplying additional information, background knowledge may also be
used to select between different possible interpretations of vague and ambiguous vocab-
ulary terms — i.e. to facilitate sense resolution, as described in the previous section.
This seems to be particularly important in the resolution of certain ambiguous spatial
relationships.

A kind of tacit knowledge that is particular to spatial reasoning is our ability to
transfer information between multiple reference frames without any explicit expression
of the relationships between these frames or of the reasoning steps that we must
somehow be performing.

Geometry and physics represent space and time by coordinate systems defined rel-
ative to some reference frame regarded as fixed. Often a single reference frame will
suffice, even for a complex physical situation, and, where multiple frames are used,
precise mappings between them are defined. This contrasts sharply with natural lan-
guage, which typically jumps quickly between multiple reference frames. E.g.: “The
girl hid behind the curtains, but was visible through the window from the front of
the house. The policeman in the garden saw the girl but not the lion in the living
room.” To model human-like reasoning, we need a representation that can capture
such chains of relative location. One object may be used to locate another either di-
rectly (using phrases like ‘behind’, ‘through’, ‘in front of’) or indirectly via background
knowledge (e.g. the typical relative locations of curtains, windows, houses, gardens and
living rooms). Such relative locations have been an important research focus in QSR
(Donnelly, 2005) and Scheider’s contribution in (Gangemi et al., 2014).

20.7 Default Reasoning

It is widely recognised that commonsense reasoning is often non-monotonic in nature.
This means that there are cases where is reasonable to infer some conclusion φ from

3Such implicit knowledge is critical in Winograd Schema Challenge problems. An example
such problem from the corpus at https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/
WSCollection.html is “Jim signaled the barman and gestured toward his [empty glass/bathroom
key]. Whose [empty glass/bathroom key]? Answers: Jim/the barman”. Although this is a spatial
reasoning problem, background (implicit) knowledge about objects involved is required to perform
the appropriate inference.
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some set of information Σ, but if we acquire some additional information α, the con-
clusion φ is no longer warranted. (Symbolically, we may have Σ |∼ φ, but Σ, α /|∼ φ,
where ‘|∼’ is a commonsense inference relation.) A number of logical calculi have been
developed to formalise non-monotonic reasoning, the best known being Reiter’s default
logic (Reiter, 1980) and the circumscription theory McCarthy (1986).

Typical examples of default reasoning are inferences such as: If x is a bird, then x
can fly (unless you know that x is a penguin or other flightless bird); Gert is German,
therefore Gert drinks beer (but not if we know that Gert is 3 years old).

It seems that relatively little work had been done on specifically spatial modes of
non monotonic reasoning (though see, e.g., Walega et al (Walega et al., 2017). Yet
there are many reasoning examples that suggest that commonsense spatial reasoning
is very often supported by simplifying assumptions regarding the spatial properties of
objects and configurations. Here are some examples:

• When reasoning with information concerning objects situated in an environment,
in many cases we assume that space is empty except for those parts that we know
to be occupied by physical objects or matter. (How this affects reasoning about
objects moving in space has been considered in detail by (Shanahan, 1995)).

• A spatial extent can be assumed to be convex if nothing is known to the contrary.
For example, reasoning about objects fitting into containers typically assumes we
are dealing with convex objects in containers whose containing space is convex,
unless we have explicit information to the contrary4.

• If a region is known to be small relative to some other regions then the small
region can usually be assumed to behave like a point with regard to inferences
involving these regions. For instance, if we know there is a gap between two ‘large’
objects, we will tend to assume that a ‘small’ object will fit through it.

There is an interesting relationship between default reasoning and mental models
that could be potentially useful in the implementation of commonsense reasoning. A
mental model it often regarded as storing a mental correlate of the most typical way
in which a set of beliefs could be realised. Thus construction of a mental model may
be seen as the limit of default reasoning, where although one’s knowledge does not
fully pin down the state of the world, one constructs a prototypical example situation
that is compatible with that knowledge and uses that as a basis for reasoning (Knauff
et al., 1995). Clearly, such reasoning is not deductively valid; but the inferences drawn
could be useful in many cases.

20.8 Computational Complexity

From the point of view of traditional computer science, the most obvious difficulty fac-
ing the development of automated commonsense spatial reasoning is computational
complexity. Indeed many of the intractable or undecidable problems studied in compu-
tational complexity theory are spatial in nature. A result of (Grzegorczyk, 1951) proves
undecidability of some relatively simple topological theories due to the fact that they

4This assumption is required in order to reason appropriately about the Winograd Schema: “The
trophy would not fit in the case because it was too big/small”(Levesque et al., 2012).
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can encode arithmetical operators and formulae. It is actually very straightforward to
model numbers in terms of multi-piece spatial regions. We simply take the number of
components of such a region as representing a number. It is then possible to define
equality as a spatial relation and addition and multiplication as spatial constructions.

The extremely high expressive power of spatial concepts is also demonstrated by
Tarski’s (1956) paper on the definability of concepts, which shows that any concept
that can be fully axiomatised within a theory that includes concepts sufficient to
axiomatise Euclidean geometry, can actually be defined in terms of the geometrical
concepts. This means that the logical properties of any concept can be fully modelled
in terms of geometrical properties, with no need for any further axioms, since the
standard axioms of geometry together with the geometrical definition of the concept
are sufficient (Bennett, 2004).

If we restrict attention to reasoning problems formulated in terms of the limited
sets of predicates and operators typically used in QSR, the complexity results are
somewhat better, but still rather discouraging. For example, Renz and Nebel (1999)
identified maximal tractable subsets of a topological constraint language based on the
RCC-8 relation set (Randell et al., 1992). These subsets can be used to carry out useful
spatial reasoning tasks, but it is disappointing that it is not possible to reason effec-
tively with more expressive extensions of these languages. Certain tractable extensions
have been identified (e.g. by (Gerevini and Renz, 1998), who devised a reasoning algo-
rithm for a combination of topological and size constraints). However, it seems that as
we add expressive power in terms of combining different types of spatial property and
relation, we very quickly end up with computationally intractable reasoning problems
(see e.g. (Davis et al., 1999)) unless we strictly limit other aspects of the represen-
tation language. Also, introducing natural global constraints to a reasoning problem,
such as requiring regions to be self-connected and/or embeddable in the plane tends
to raise complexity of spatial reasoning problems and often results in undecidability
(Dornheim, 1998).

However, one should bear in mind that the type of problem for which these un-
palatable complexity results arise, is very different from the circumstances to which
one would expect commonsense reasoning to be applied and the types of computation
performed (e.g. consistency checking of networks of spatial relations) are quite far
removed from everyday reasoning tasks. Whereas existing automated spatial reason-
ing systems typically carry out exhaustive reasoning with respect to large numbers of
spatial constraints expressed a very limited set of spatial relationships, commonsense
spatial reasoning typically operates with a small number of spatial facts expressed
using a rather wide vocabulary of spatial properties and relations. Thus, although
computational complexity is clearly a problem for computational spatial reasoning, it
is not necessarily a problem for automated commonsense spatial reasoning, since exist-
ing spatial reasoning algorithms seem to be doing something very different from what
one would expect from commonsense reasoning – humans can clearly make comonsense
spatial inferences rather quickly.
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20.9 Progress towards Commonsense Spatial Reasoning

The preceding sections have been largely negative in tone: pointing out the challenges
in endowing machines with commonsense spatial reasoning. Of course there has been
progress towards this goal, and indeed we have already mentioned some of this in the
earlier part of this chapter. In this section we briefly mention some of the highlights of
such work. Foremost in this direction is the work on qualitative spatial representation
and reasoning. There are now a large number of QSR calculi capable of represent-
ing spatial information about (mereo)topology, direction, shape, distance, size among
other aspects of spatial information. The computational complexity of reasoning with
many of these calculi, at least the constraint languages associated with them, has been
investigated thoroughly, and tractable subclasses identified (e.g. (Renz and Nebel,
1999). There are toolkits for reasoning with many of these, such as SparQ (Wolter
and Wallgrün, 2013) and for extracting QSRs from video data, e.g. QSRlib (Gatsoulis
et al., 2016). Moreover there are many implemented systems, particularly in the do-
main of activity understanding which exploit QSR (e.g. (Duckworth et al., 2019) or
which learn about spatial relations (e.g. (Alomari et al., 2017)) from real world data.
There is still though a disconnect between much of this work on QSR and the real
problems of commonsense reasoning, as noted by Davis and Marcus (2015). Davis
has contributed much to the field of commonsense reasoning, and spatial reasoning in
particular e.g. his work on liquids (Davis, 2008) and containers (Davis et al., 2017).

There has also been work addressing the problem of how to acquire symbolic knowl-
edge from perceptual sensors which are typically noisy and only incompletely observe
the world, e.g. because of occlusion. Approaches in the literature which try to address
these issues, include the use of formalisms which explicitly represent spatial vagueness
such as Cohn and Gotts (1996), or ways of smoothing noisy detections (e.g Sridhar
et al. (2011), building probabilistic models of QSR, e.g. Kunze et al. (2014), or by
explicitly reasoning about occlusion, e.g. Bennett et al. (2008).

As is the case for AI in general, the more task/domain is constrained and well
specified, the easier it is to come up with a (spatial) theory that is sufficient for appro-
priate reasoning and inference. The real challenge is to achieve general commonsense
(spatial) reasoning.

20.10 Conclusions

In this chapter we have decomposed the problem of achieving automated common-
sense spatial reasoning into a number of sub-problems (seven to be precise), which we
consider to be key to solving the general problem, and are sufficiently independent
from each other as to be addressed separately. Possibly, we have missed out further
important problems, or conflated issues that would be best treated separately. For ex-
ample one issue that we have little discussed is how a commonsense knowledge could
be acquired by an automated reasoning system, and in particular spatially related
knowledge. One approach, adopted by the CYC system already mentioned above is to
manually specify such knowledge; the challenge here is the enormity of the knowledge
and it is clear that despite several decades of research and development this remains an
unfinished enterprise. The alternative is to try to acquire such knowledge via a process
of learning. The NELL project (Mitchell et al., 2018) aims to learn such knowledge
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by learning from text. An alternative is to learn from multimodal data, which has the
advantage in simultaneously learning a semantic grounding in the perceptual world.
For example Alomari et al. (2017) show how the meaning of object properties, spatial
relations and actions, as well as a grammar, can be learned from paired video-text
clips, while Richard-Bollans et al. (2020) demonstrate how the different senses of spa-
tial prepositions such as in, above, against, and under can be acquired from human
annotations in a virtual reality setting.

Another issue we have hardly discussed is how embodiment affects perception and
spatial awareness. Tversky, among others, (e.g. has discussed at length how embodi-
ment affects the human reasoning: “Spatial thinking comes from and is shaped by per-
ceiving the world and acting in it, be it through learning or through evolution” (Tver-
sky, 2009). There is work in AI which takes an embodied approach to spatial cognition
and spatial commonsense (e.g. (Alomari et al., 2017; Spranger et al., 2014)) but more
research on this is certainly needed.

Most of the problems we have discussed actually apply to commonsense reasoning
in general, rather than exclusively to spatial reasoning; and yet in the examples we
have considered, it is primarily in the spatial aspects of semantics and reasoning where
the difficulties lie. This is because the spatial domain is extremely rich and manifests
huge variety and complexity. Issues relating to ambiguity vagueness are particularly
apparent for spatial relationships because, although we have well-developed mathe-
matical theories within which geometrical constraints can be precisely defined, there
is no direct mapping from natural language terms to these precise constraints. And,
even if these interpretative problems are circumvented, reasoning about space involves
many highly intractable computations (though perhaps these go beyond the realm of
commonsense).

Our analysis was not intended to be prescriptive of a particular research direction
or methodology5. As well as exposing a large number of problems, we have indicated a
variety of different approaches that might lead to their solution. Our aim was primarily
to provide an overview that would help researchers progress effectively by focusing
their attention on some particular aspect of the highly complex problem of achieving
automated commonsense spatial reasoning.
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