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We obtain inequalities for all Laplace eigenvalues of Riemannian manifolds with

an upper sectional curvature bound, whose rudiment version for the 1st Laplace

eigenvalue was discovered by Berger in 1979. We show that our inequalities continue to

hold for conformal metrics, and moreover, extend naturally to minimal submanifolds.

In addition, we obtain explicit upper bounds for Laplace eigenvalues of minimal

submanifolds in terms of geometric quantities of the ambient space.

1 Statement and Discussion of Results

1.1 Introduction

Let (M, g) be a closed Riemannian manifold of dimension m and inj(g) its injectivity

radius. A classical result by Berger [5] in 1979 says that for every 0 < r < inj(g), there

exists a point p ∈ M such that the 1st nonzero Dirichlet eigenvalue of a geodesic ball

B(p, r) in M satisfies the inequality

λ0(B(p, r)) � C1(m)
Volg(M)

rm+2 ,

where C1(m) is a positive constant that depends on the dimension m only. He uses this

inequality to obtain the following upper bound for the 1st nonzero Laplace eigenvalue

of M.
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2 G. Kokarev

Berger’s inequality. Let (M, g) be a closed Riemannian manifold that admits an

involutive isometry without fixed points. Then, its 1st nonzero Laplace eigenvalue

satisfies the inequality

λ1(g) � C2(m)
Volg(M)

inj(g)m+2 , (1.1)

where C2(m) is a constant that depends on the dimension m only.

Berger [5] asks under what other geometric hypotheses on M inequality (1.1)

may hold. The 1st answers are given by Bérard and Besson [4], who show that this

inequality holds for homogeneous Riemannian manifolds and locally harmonic spaces.

In a seminal paper, Croke [17] proves, among other results, a version of inequality (1.1)

that uses the convexity radius conv(g) instead of inj(g) and holds for arbitrary closed

Riemannian manifolds. More precisely, he shows that

λ1(g) � C3(m)
Volg(M)2

conv(g)2m+2 . (1.2)

The argument in [17] uses a slightly different (to the one above) estimate for the 1st

nonzero Dirichlet eigenvalue of geodesic balls, which actually yields inequalities for all

Laplace eigenvalues

λk(g) � C3(m)
Volg(M)2

conv(g)2m+2 k2m, (1.3)

where k � 1 is an arbitrary integer. These inequalities for higher eigenvalues do not

seem to appear in the literature, and we refer to Appendix A for related details.

The purpose of this paper is to prove a version of the Berger inequality (1.1) for

all Laplace eigenvalues of Riemannian manifolds with an upper sectional curvature

bound and their minimal submanifolds. For example, we show that inequality (1.1),

as well as its neat version for higher Laplace eigenvalues, holds for manifolds of

nonpositive sectional curvature. More importantly, we show that these eigenvalue

inequalities are conformal in nature, that is, the ratio Volg(M)/inj(g)m controls Laplace

eigenvalues of all metrics conformal to g. We also discover another interesting feature of

these inequalities—they are naturally inherited my minimal submanifolds in M. Below,

we discuss the results in detail.
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Berger’s Inequality 3

1.2 Conformal nature of the Berger inequality

Let (M, g) be a closed m-dimensional Riemannian manifold whose sectional curvatures

are not greater than δ � 0. By rad(g), we denote the quantity min{inj(g), π/(2
√

δ)}. When

δ = 0, we always assume that π/(2
√

δ) equals +∞, and hence, rad(g) coincides with the

injectivity radius inj(g). Further, we denote by

0 = λ0(g) < λ1(g) � λ2(g) � . . . � λk(g) � . . .

the Laplace eigenvalues of a metric g on M repeated with respect to multiplicity. Our

1st result gives the following conformal bounds for all Laplace eigenvalues.

Theorem 1.1. Let (M, g) be a closed Riemannian manifold whose sectional curvatures

are not greater than δ � 0. Then, for any Riemannian metric g̃ conformal to g its Laplace

eigenvalues satisfy the inequalities

λk(g̃)Volg̃(M)2/m � C4(m)

(Volg(M)

rad(g)m

)1+2/m

k2/m

for any k � 1, where rad(g) equals min{inj(g), π/(2
√

δ)} and C3(m) is a positive constant

that depends on the dimension m of M only. In particular, the Laplace eigenvalues of

the metric g satisfy the inequalities

λk(g) � C4(m)
Volg(M)

rad(g)m+2 k2/m (1.4)

for any k � 1.

Note that under the hypotheses of Theorem 1.1, even the inequality for the 1st

nonzero Laplace eigenvalue in (1.4) seems to be absent in the literature. When the

sectional curvatures of M are nonpositive, inequalities (1.4) give a neat generalisation

of the Berger inequality and improve Croke’s inequalities (1.3). To our knowledge, it is

unknown whether in the absence of a curvature hypothesis the power k2m in inequalities

(1.3) can be replaced by the asymptotically sharp power k2/m.

Recall that a celebrated result by Korevaar [23] says that for any closed m-

dimensional Riemannian manifold (M, g̃) its Laplace eigenvalues satisfy the inequalities
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4 G. Kokarev

λk(g̃)Volg̃(M)2/m � Ck2/m,

where C is the constant that depends on the conformal class of a metric g̃ in a rather

implicit way. Thus, Theorem 1.1 can be viewed as an explicit version of Korevaar’s result

that describes the dependance of the constant on the geometry of a background metric

g in a given conformal class. Upper bounds for Laplace eigenvalues in terms of other

conformal invariants can be also found in [21, 25]. Using the Weyl law

λk(g)Volg(M)2/m ∼ 4π2

ω
2/m
m

k2/m as k → +∞,

where ωm is the volume of a unit ball in the m-dimensional Euclidean space, we may

pass to the limit as k → +∞ in the inequalities in Theorem 1.1 to obtain that Volg(M) �
C4(m)rad(g)m. This inequality is well known: it is a consequence of standard volume

comparison theorems and is reminiscent to Berger’s isoembolic inequality [6]; see the

discussion in Section 2. Thus, the collection of inequalities (1.4) can be viewed as a

quantised version of the classical geometric inequality.

The proof of Theorem 1.1 builds on the results from [16, 19] and [21]. The key

ingredient is a construction of disjoint sets whose measure is carefully controlled by

our geometric hypotheses. Though similar ideas, originating in the work by Buser [8]

and Korevaar [23], have been used in a few papers recently, see for example [21, 22, 24,

25], our hypotheses are rather different from the previous work. In particular, we do

not use a lower Ricci curvature bound for a background or auxiliary metric, which is so

essential in most of the past papers. Our argument is based on the revision of recently

developed techniques that allows to obtain a rather neat control of constants in the

estimates for the measure of disjoint sets.

1.3 The Berger inequality for minimal submanifolds

Now, we consider closed Riemannian manifolds (�n, g�) that can be isometrically

immersed into (M, g) as minimal submanifolds. In the sequel, we might endow such

a manifold �n with another metric h and denote by

0 = λ0(�n, h) < λ1(�n, h) � λ2(�n, h) � . . . � λk(�n, h) � . . .
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Berger’s Inequality 5

its Laplace eigenvalues, repeated with respect to multiplicity. Our next result shows that

conformal eigenvalue bounds in Theorem 1.1 extend naturally to minimal submanifolds

�n ⊂ M.

Theorem 1.2. Let (M, g) be a closed Riemannian manifold whose sectional curvatures

are not greater than δ � 0 and �n ⊂ M a closed immersed minimal submanifold of

dimension n. Then, for any Riemannian metric h on �n conformal to g� its Laplace

eigenvalues satisfy the inequalities

λk(�n, h)Volh(�n)2/n � C6(n)

(
Volg(�n)

rad(g)n

)1+2/n

k2/n

for any k � 1, where rad(g) is the ambient quantity min{inj(g), π/(2
√

δ)} and C6(n) is

a positive constant that depends on the dimension n only. In particular, the Laplace

eigenvalues of the metric g� satisfy the inequalities

λk(�n, g�) � C6(n)
Volg(�n)

rad(g)n+2 k2/n (1.5)

for any k � 1.

Similar to the discussion after Theorem 1.1, we note that even the inequality for

the 1st nonzero Laplace eigenvalue in (1.5) is new. Passing to the limit as k → +∞ in

inequalities (1.5), we obtain the lower bound for

Volg(�n) � C6(n)rad(g)n (1.6)

the volume of an immersed minimal submanifold �n. This geometric inequality

can be independently obtained from comparison monotonicity theorems for minimal

submanifolds; see the discussion in Section 2. When the sectional curvatures of M are

nonpositive, inequality (1.6) can be already derived from the work of Anderson [2]. When

the upper bound δ for sectional curvatures of M is positive, to our knowledge, it is

unknown whether the quantity used by Anderson is monotonic; see [20] for a related

discussion. For this case, we prove monotonicity of a different quantity, which might be

of independent interest. These monotonicity theorems yield two-sided volume bounds

for the volumes of extrinsic balls and play a crucial role in the proof of Theorem 1.2.

Theorem 1.2 can be extended to the case when M is complete but not neces-

sarily compact. If the injectivity radius inj(g) of M is positive, then the statement of
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6 G. Kokarev

Theorem 1.2 continues to hold for closed minimal submanifolds �n ⊂ M. If inj(g) = 0,

then the injectivity radius in the formula for rad(g) should be replaced by the quantity

inf{injp(g) : p ∈ �n}. If �n is not closed, then one can consider boundary value

problems for domains � ⊂ �n. In this case, the statement of Theorem 1.2 is amenable

to extensions to the Neumann eigenvalue problem. Below, we give a sample version of

such a result. For the sake of simplicity, we assume that the ambient manifold M is a

Cartan–Hadamard space, that is, a complete simply connected space with nonpositive

sectional curvatures. First, we introduce more notation.

Let �n be a complete minimal submanifold in a Cartan–Hadamard space M.

By the monotonicity theorem of Anderson [2], the ratio Vol(B(p, r) ∩ �n)/(ωnrn) is a

nondecreasing function of r > 0, where B(p, r) is a ball of radius r in M and ωn is

the volume of a unit ball in the Euclidean space R
n. By θ(�n), we denote the (possibly

infinite) quantity

θ(�n) = lim
r→+∞

Volg(B(p, r) ∩ �n)

ωnrn ;

it does not depend on a reference point p ∈ M and is called the density at infinity of �n.

We have the following version of Theorem 1.2.

Theorem 1.3. Let (M, g) be a Cartan–Hadamard manifold and �n ⊂ M a complete

properly immersed minimal submanifold. Then, for any precompact domain � ⊂ �n

and any Riemannian metric h on � conformal to g� its Neumann eigenvalues satisfy the

inequalities

λk(�, h)Volh(�)2/n � C7(n)θ(�n)1+2/nk2/n

for any k � 1, where C7(n) is a positive constant that depends on the dimension n only.

We end this discussion on the Neumann problem with the following two

remarks. First, when M is a Euclidean space R
m, there are many examples when θ(�n) is

finite—this is always the case when �n has finite total curvature; see the discussion in

[30]. More precisely, by the classical results of Osserman [31, 32], Chern and Osserman

[12], and Anderson [3], such manifolds have finite topological type, that is, they are

diffeomorphic to smooth compact manifolds with finitely many points removed. These

points correspond to the ends of a minimal submanifold �n, and the density at infinity

θ(�n) coincides with their number counted with multiplicity. When n � 3, by [3], each
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Berger’s Inequality 7

end of �n is embedded and its multiplicity equals one. In other words, when n � 3,

the density at infinity of such a minimal submanifolds is precisely the number of

ends. Thus, Theorem 1.3 yields topological eigenvalue bounds for domains in minimal

submanifolds �n ⊂ R
m of finite total curvature.

Second, to our knowledge, no upper bounds for Neumann eigenvalues of

domains in minimal submanifolds �n ⊂ R
m is known until now, unless �n is an affine

subspace. The situation is in contrast with the Dirichlet problem, where (in this case

more natural lower) bounds for the Dirichlet eigenvalues have been known since 1984;

see [10, 29]. Thus, Theorem 1.3 gives an answer to the question that appears to have

been open for some time.

1.4 Ambient bounds for Laplace eigenvalues of minimal submanifolds

There is another version of Theorem 1.2 that leads to bounds for Laplace eigenvalues of

minimal submanifolds in terms of geometry of the ambient space.

Theorem 1.4. Let (M, g) be a closed Riemannian manifold whose sectional curvatures

are not greater than δ � 0 and �n ⊂ M a closed immersed minimal submanifold of

dimension n. Then, for any Riemannian metric h on �n conformal to g� , its Laplace

eigenvalues satisfy the inequalities

λk(�n, h)Volh(�n)2/n � C4(m)

( Volg(M)

rad(g)m+2

)
Volg(�n)

2/nk2/n

for any k � 1, where rad(g) is the ambient quantity min{inj(g), π/(2
√

δ)} and C4(m) is

the constant from Theorem 1.1. In particular, the Laplace eigenvalues of the metric g�

satisfy the inequalities

λk(�n, g�) � C4(m)
Volg(M)

rad(g)m+2 k2/n (1.7)

for any k � 1.

We proceed with one more related result. It also gives eigenvalue bounds in

terms of geometry of the ambient space but has an extra, more traditional hypothesis—

we additionally assume that the Ricci curvature of the ambient space is bounded below.

Theorem 1.5. Let (M, g) be a closed Riemannian manifold whose sectional curvatures

are not greater than δ � 0, and Ricci curvature is bounded below, Ricci � −(m − 1)κ,
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8 G. Kokarev

where κ � 0. Let �n ⊂ M be a closed immersed minimal submanifold of dimension n.

Then, for any Riemannian metric h on �n conformal to g� , its Laplace eigenvalues

satisfy the inequalities

λk(�n, h)Volh(�n)2/n � C8(m) max{κ, rad(g)−2k2/n}Volg(�n)
2/n

for any k � 1, where rad(g) is the ambient quantity min{inj(g), π/(2
√

δ)} and C8(m) is

a positive constant that depends on the dimension m only. In particular, the Laplace

eigenvalues of the metric g� satisfy the inequalities

λk(�n, g�) � C8(m) max{κ, rad(g)−2k2/n} (1.8)

for any k � 1.

To our knowledge, Theorems 1.4 and 1.5 are the 1st results in the literature

that give upper bounds for Laplace eigenvalues in terms of ambient geometry. Pre-

viously, spectral properties (mostly related to the 1st nonzero eigenvalue) of minimal

submanifolds have been studied in rank one symmetric spaces only; see [18, 25, 27]

and the references therein. Note also that any complex submanifold of a Kähler

manifold is minimal, and hence, the theorems above yield eigenvalue bounds for all

complex submanifolds in terms of geometry of the ambient Kähler manifold. It is

extremely interesting to know whether such upper bounds for complex submanifolds

can be extended to all Kähler metrics with cohomologous Kähler forms. For projective

submanifolds, such results are obtained in [26].

Concerning lower bounds for minimal submanifolds, we mention the following

result due to Cheng and Tysk [11]: for any closed minimal submanifold �n ⊂ M, its

Laplace eigenvalues satisfy the inequalities

C(n, M)k2/n � λk(�n, g)Volg(�n)2/n

for any k � C̄(n, M)Volg(�n), where C(n, M) and C̄(n, M) are positive constants that

depend on the dimension n of �n and the geometry of M in a rather implicit way.

It is important to note that, in contrast with these lower bounds, the scale-invariant

quantities λk(�n, g)Volg(�n)2/n cannot be bounded above in terms of the ambient

geometry only. To see this, recall that by [13] for any so-called bumpy metric g on a

closed ambient manifold M of dimension m, where 3 � m � 7, there is a sequence of
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Berger’s Inequality 9

closed connected embedded minimal hypersurfaces {�m−1
i } whose volumes tend to +∞.

As is known [35, 36], bumpy metrics form a dense subset in the set of all metrics on M,

and in particular, we may choose a bumpy metric g of positive Ricci curvature. Then, by

the result of Choi and Wang [14], we conclude that

λ1(�m−1
i , g)Volg(�m−1

i )2/(m−1) � CVolg(�m−1
i )2/(m−1) → +∞ when i → +∞,

where C > 0 is a constant that depends on the lower bound for the Ricci curvature.

Thus, no ambient upper bound for λk(�n, g)Volg(�n)2/n for any k � 1 may exist.

We end with a brief discussion of the following corollary of Theorem 1.5, which

gives particularly simple estimates for Laplace eigenvalues of minimal submanifolds in

certain positively curved spaces.

Corollary 1.1. Let (M, g) be a compact Riemannian manifold such that one of the

following holds:

(i) either M is even-dimensional and its sectional curvatures satisfy the bounds

0 < Kp(σ ) � δ for any plane σ ∈ TpM,

for any point p ∈ M;

(ii) or M is simply connected and has 1
4-pinched sectional curvatures,

1

4
δ � Kp(σ ) � δ for any plane σ ∈ TpM,

for any point p ∈ M, where δ > 0.

Let �n ⊂ M be a closed immersed minimal submanifold. Then, for any Riemannian

metric h on �n conformal to g� its Laplace eigenvalues satisfy the inequalities

λk(�n, h)Volh(�n)2/n � C9(m)δVolg(�n)2/nk2/n

for any k � 1, where C9(m) is a positive constant that depends on the dimension m of M

only. In particular, the Laplace eigenvalues of a metric g� satisfy the inequalities

λk(�n, g) � C9(m)δk2/n

for any k � 1.
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10 G. Kokarev

Corollary 1.1 is a direct consequence of Theorem 1.5 and Klingenberg’s bounds

for the injectivity radius; see [1, 34]. The most significant difference between the two

cases in it is the pinching condition that appears in the latter. Note that it imposes

strong topological restrictions on M: assuming that M is simply connected, as in case

(ii) of Corollary 1.1, it has to be diffeomorphic to a compact symmetric space of rank one;

see [1, 7]. As examples with geodesics and minimal tori in the Berger spheres show, when

M is odd-dimensional, this condition is essential for an upper bound for the Laplace

eigenvalues. More generally, the statements above suggest that the relationship between

the injectivity radius of M and Laplace eigenvalues of minimal submanifolds might be

interesting on its own. In dimension one, it traces to the classical relationship between

the injectivity radius and the lengths of closed geodesics; see [34].

1.5 Organisation of the paper

The paper is organised in the following way. In Section 2, we discuss volume comparison

theorems and closely related volume monotonicity theorems for minimal submanifolds

in Riemannian manifolds whose sectional curvatures are bounded above. In Section 3,

we revisit the recent constructions, due to [16, 19, 21], of disjoint sets with controlled

amount of measure in pseudo-metric spaces. The improvements obtained there are

necessary for our main results. The proofs of Theorems 1.1– 1.5 are collected in

Section 4. The arguments in all proofs follow the same strategy but use different

ingredients from Sections 2 and 3. There is also a certain logical dependence between

the proofs of different statements—in one of them, we may refer to the notation or

argument used in another. The paper has a short appendix, where we prove inequalities

(1.3), extending to higher Laplace eigenvalues the inequality for the 1st eigenvalue found

by Croke [17] in 1980.

2 Preliminaries

2.1 Volume comparison and its consequences

Let (M, g) be a complete m-dimensional Riemannian manifold whose sectional curva-

tures are not greater than δ, where δ ∈ R. We start with recalling the background

material on volume comparison theorems for such manifolds. First, we introduce the

necessary notation. Below, by snδ, we denote the real-valued function given by the
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Berger’s Inequality 11

formula

snδ(t) =

⎧⎪⎪⎨
⎪⎪⎩

(1/
√

δ)sin(
√

δt), if δ > 0,

t, if δ = 0,

(1/
√|δ|)sinh(

√|δ|t), if δ < 0.

(2.1)

Then, for any 0 < r < π/
√

δ, we have the following relations for the volumes of a geodesic

sphere and a geodesic ball of radii r in a simply connected m-dimensional space of

constant sectional curvature δ:

Aδ(r) = mωmsnm−1
δ (r), Vδ(r) = mωm

r∫
0

snm−1
δ (t) dt, (2.2)

where ωm is the volume of a unit ball in the m-dimensional Euclidean space. We always

assume that π/
√

δ = +∞ when δ is nonpositive.

Let (t, ξ) be geodesic spherical coordinates around a point p ∈ M, where

t ∈ (0, injp) and ξ is a unit vector in TpM. Let Ap(t, ξ) be the density of the volume

measure in these coordinates, that is,

Ap(t, ξ) = tm−1 det(Dtξ expp),

where expp : TpM → M is the exponential map; see [9]. Recall that the Günther–Bishop

comparison theorem [9, Theorem III.4.1] says that the function

t 
−→ Ap(t, ξ)

snm−1
δ (t)

, where 0 < t < min
{

injp(g),
π√
δ

}

is nondecreasing for any unit vector ξ ∈ TpM. The following statement is a consequence

of this result, which does not seem to appear explicitly in the literature. For reader’s

convenience, we sketch a proof below.

Proposition 2.1. Let (M, g) be a complete m-dimensional Riemannian manifold whose

sectional curvatures are not greater than δ, where δ ∈ R. Then, for any point p ∈ M, the

function

r 
−→ 1

Vδ(r)
Volg(B(p, r)), where 0 < r < min

{
injp(g),

π√
δ

}
,
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12 G. Kokarev

is nondecreasing. Besides, if it equals one at some value r, then the ball B(p, r) is

isometric to a ball of radius r in the space form of constant curvature δ.

Proof. Integrating the function Ap(t, ξ)/snm−1
δ (t) over unit vectors ξ ∈ TpM, by the

Günther–Bishop theorem, we conclude that the function

t 
−→ Area(S(p, t))

Aδ(t)
, where 0 < t < min

{
injp(g),

π√
δ

}
,

and S(p, t) is a geodesic sphere of radius t, is nondecreasing. Now, note that if

for positive real-valued functions f (t) and g(t) of one variable the ratio f /g is a

nondecreasing function, then the ratio
∫ r

0 f /
∫ r

0 g is also a nondecreasing function. Taking

as f (t) the function Area(S(p, t)), and as g(t) the function Aδ(t), we arrive at the 1st

statement of Proposition 2.1. The 2nd statement—the equality case—follows from the

equality case in the standard volume comparison theorem [9, Theorem III.4.2]. �

Recall that a classical result by Berger [6] says that for any closed m-

dimensional Riemannian manifold the inequality

Volg(M) � (m + 1)ωm+1(inj(g)/π)m

holds, and the equality occurs if and only if after rescaling M is isometric to the unit

round sphere. As a direct consequence of the volume comparison theorems, we also have

the comparison version of this result:

Volg(M) � Vδ(rad(g)), (2.3)

where rad(g) is min{inj(g), π/(2
√

δ)}, and the function Vδ(·) is given by the 2nd relation

in (2.2). This is a sharper inequality, if δ � 0. One can also characterise the case of

equality—it occurs if and only if δ > 0 and after scaling M is isometric to the unit round

sphere.

For the sequel, we need the following consequence of the volume comparison

theorems.

Corollary 2.2. Let (M, g) be a closed m-dimensional Riemannian manifold whose

sectional curvatures are not greater than δ, where δ � 0. Then, for any point p ∈ M
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Berger’s Inequality 13

the volume of a geodesic ball B(p, r) satisfies the inequalities

21−mωmrm � Volg(B(p, r)) � 2m−1
Volg(M)

rad(g)m rm, (2.4)

where rad(g) stands for min{inj(g), π/(2
√

δ)}, and 0 < r � rad(g).

Proof. Indeed, by Proposition 2.1, we obtain

1 �
Volg(B(p, r))

Vδ(r)
�

Volg(B(p, rad))

Vδ(rad)
(2.5)

for any 0 < r � rad(g), where rad = rad(g). When δ = 0, we have Vδ(r) = ωmrm, and

the statement follows directly from (2.5). Now, suppose that δ > 0. Then, from the

inequalities

1

2
t � snδ(t) � t for any 0 � t � π

2
√

δ
,

we obtain

1

2m−1 ωmrm � Vδ(r) � ωmrm for any 0 � r � π

2
√

δ
.

Combining the last relations with the inequalities in (2.5), we arrive at the statement of

the corollary. �

2.2 Monotonicity theorems for minimal submanifolds

Let �n be an n-dimensional immersed minimal submanifold in a Riemannian manifold

(M, g); we assume that the sectional curvatures of M are not greater than δ, where δ ∈ R.

As above, we use the notation

An−1
δ (r) = nωnsnn−1

δ (r), Vn
δ (r) = nωn

r∫
0

snn−1
δ (t) dt, (2.6)

where 0 < r < π/
√

δ, for the volumes of a geodesic sphere and a geodesic ball of radii r

in an n-dimensional space form of curvature δ.

The following volume monotonicity theorem can be viewed as an extension

of Proposition 2.1 to minimal submanifolds. When δ � 0, it is due to Anderson [2].

For δ > 0, the statement appears to be new.
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14 G. Kokarev

Proposition 2.3. Let (M, g) be a complete Riemannian manifold whose sectional

curvatures are not greater than δ, where δ ∈ R, and let �n be an n-dimensional properly

immersed minimal submanifold in M. Then, for any point p ∈ M, the following holds:

(i) if δ � 0, the function

r 
−→ 1

Vn
δ (r)

Volg(B(p, r) ∩ �n), where 0 < r < injp(g),

is nondecreasing;

(ii) if δ > 0, the function

r 
−→ 1

An
δ (r)

Volg(B(p, r) ∩ �n), where 0 < r < min
{

injp(g),
π√
δ

}
,

is nondecreasing.

Remark 2.1. Under the hypotheses of Proposition 2.3, consider the case when δ > 0.

To our knowledge, the answer to the following question, also implicitly raised in [20], is

unknown: is the function

r 
−→ 1

Vn
δ (r)

Volg(B(p, r) ∩ �n), where 0 < r < min
{

injp(g),
π√
δ

}

nondecreasing?

Proposition 2.3 immediately implies comparison inequalities for the volumes of

extrinsic balls B(p, r) ∩ �n; see also [10, 29], where these inequalities are obtained from

the heat kernel comparison theorems. In particular, we obtain volume bounds for any

immersed minimal submanifold �n ⊂ M; for example, if δ � 0, then

Volg(�n) � Vn
δ (rad(g)). (2.7)

By the results in [10, 29], the above inequality continues to hold for the case δ > 0

also, while Proposition 2.3 gives a weaker result in this case. Inequality (2.7) can be

viewed as a version of comparison inequality (2.3), inherited by minimal submanifolds.

Proposition 2.3 also implies the following version of Corollary 2.2.

Corollary 2.4. Let (M, g) be a complete Riemannian manifold whose sectional curva-

tures are not greater than δ, where δ � 0, and let �n be an n-dimensional immersed
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Berger’s Inequality 15

closed minimal submanifold in M. Then, for any point p ∈ �n the volume of an extrinsic

ball B(p, r) ∩ �n in �n satisfies the inequalities

2−nnωnrn � Volg(B(p, r) ∩ �n) � 2n
Volg(�n)

rad(g)n rn, (2.8)

where rad(g) stands for min{inj(g), π/(2
√

δ)}, and 0 < r � rad(g).

The proof of Corollary 2.4 follows the line of the argument in the proof of

Corollary 2.2. The rest of the section is devoted to the proof of Proposition 2.3. Our

argument borrows some observations from the exposition in [28], where the authors

describe other monotonic quantities for the case δ � 0. Let us also mention that for the

case δ > 0 a monotonic quantity different from the one in Proposition 2.3 is used in [20].

We start with a number of auxiliary lemmas. The 1st statement underlines the

difference in the cases δ � 0 and δ > 0. Its proof is elementary and therefore is omitted.

Lemma 2.5. For any positive integer n the function snδ(r), defined by (2.1), satisfies

the following relations:

(i) if δ � 0, then

(n − 1)sn′
δ(r)

r∫
0

snn−1
δ (t) dt � snn

δ (r) � nsn′
δ(r)

r∫
0

snn−1
δ (t) dt

for any r > 0;

(ii) if δ > 0, then

nsn′
δ(r)

r∫
0

snn−1
δ (t) dt � snn

δ (r)

for any 0 < r < π/
√

δ.

For the sequel, we need the following consequence of Lemma 2.5.

Corollary 2.6. For any positive integer n, the function αδ(r) = Vn
δ (r)/An−1

δ (r) is

nondecreasing for any δ ∈ R. Moreover, it is concave for δ � 0 and is convex for δ > 0,

where 0 < r < π/
√

δ.
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16 G. Kokarev

Proof. Differentiating αδ(r), we obtain

α′
δ(r) = 1 − (n − 1)

sn′
δ

snn
δ

(r)

r∫
0

snn−1
δ (t) dt, (2.9)

and by Lemma 2.5, conclude that α′
δ(r) � 0. To prove the 2nd statement of the corollary

it is sufficient to consider the cases when δ equals −1, 0, and 1. We give an argument

for the case δ = 1; the others are considered similarly. A direct computation gives

α′′
1(r) = − n − 1

(sin r)n+1

(
(sin r)n cos r − (n − 1)(cos r)2

∫ r

0
(sin t)n−1 dt −

∫ r

0
(sin t)n−1 dt

)
.

Denote by ω(r) the expression in the brackets on the right-hand side; we claim that it is

nonpositive, ω(r) � 0. Computing its derivative, we obtain

ω′(r) = 2 sin r
(

−(sin r)n + (n − 1) cos r
∫ r

0
(sin t)n−1 dt

)
� 0

for 0 < r < π , where in the last inequality we used Lemma 2.5. Since ω(0) = 0, we

conclude that ω(r) is indeed nonpositive, and hence, the function α′′
1(r) is nonnegative

on the interval (0, π). �

We proceed with the following consequence of the Hessian comparison theorem.

Lemma 2.7. Under the hypotheses of Proposition 2.3, let r(x) be a distance function

dist(p, x) to a point p ∈ M restricted to a minimal submanifold �n. Then, the relation

�nr(x) � sn′
δ

snδ

(r(x))(n − |∇r(x)|2)

holds for any x ∈ �n such that 0 < r(x) < min{injp(g), π/
√

δ}.

Proof. Let φ be a smooth function on M and ϕ be its restriction to �n. Note that gradxϕ

is the tangential (lying in Tx�n) component of gradxφ and a straightforward calculation

shows that

Hessxφ(X, X) = Hess�n

x ϕ(X, X) − 〈gradxφ, Bx(X, X)〉
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Berger’s Inequality 17

for any vector X ∈ Tx�n, where Bx(·, ·) is the 2nd fundamental form of �n. As

a consequence of this relation, we obtain the following identity for an arbitrary

submanifold �n ⊂ M:

�nϕ(x) =
n∑

i=1

Hessxφ(Xi, Xi) + 〈gradxφ, Hx〉,

where Hx is the mean curvature vector of �n at x and {Xi} is an orthonormal basis of

Tx�n. Recall that the Hessian comparison theorem, see [34], says that

Hessxr(V, W) � sn′
δ

snδ

(r(x)) (〈V, W〉 − 〈(∂/∂r), V〉〈(∂/∂r), W〉)

for any vectors V, W ∈ TxM, where 0 < r(x) < min{injx(g), π/
√

δ}. Now, combining the

last two relations together with the assumption that �n is minimal, we arrive at the

statement of the lemma. �

Finally, we need the following well-known application of the co-area formula.

We omit its proof and refer to [28, 33] where related details can be found.

Lemma 2.8. Under the hypotheses of Proposition 2.3, the function V(r) = Volg(B(p, r)∩
�n) is differentiable almost everywhere and V ′(r) � Volg(∂B(p, r) ∩ �n).

Now, we proceed with a proof of Proposition 2.3.

Proof of Proposition 2.3. Consider the function

f (r) =
r∫

0

Vn
δ (t)/An−1

δ (t) dt, where 0 < r < π/
√

δ.

Note that it satisfies the relations

f ′′(r) + (n − 1)
sn′

δ

snδ

(r)f ′(r) = 1, f (0) = 0, f ′(0) = 0. (2.10)

The 1st relation above is another form of relation (2.9). Define the function ψ on B(p, r)∩
�n by the formula ψ(x) = f ◦r(x), where r(x) = dist(p, x). Computing the Laplacian of ψ ,
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18 G. Kokarev

we obtain

�nψ = f ′′(r) |∇r|2 + f ′(r)�nr � f ′′(r) |∇r|2 + f ′(r)
sn′

δ

snδ

(r)(n − |∇r|2)

= 1 + (1 − |∇r|2)

(
f ′(r)

sn′
δ

snδ

(r) − f ′′(r)
)

, (2.11)

where we used Lemma 2.7 in the inequality above and identity (2.10) in the last relation.

The term in the brackets on the right-hand side can be rewritten in the form

f ′(r)
sn′

δ

snδ

(r) − f ′′(r) = n
sn′

δ

snn
δ

(r)
∫ r

0
snn−1

δ (t) dt − 1. (2.12)

Now, we consider cases when δ � 0 and δ > 0 separately.

Case (i). When δ � 0, by Lemma 2.5, we see that the quantity in (2.12) is nonnegative, and

hence, by relation (11), we conclude that �nψ � 1. Using the divergence theorem, we

obtain

V(r) = Volg(B(p, r) ∩ �n) �
∫

Br∩�n

�nψdVolg =
∫

∂Br∩�n

〈gradψ , ν〉 � f ′(r)Volg(∂B(p, r) ∩ �n),

where ν is a unit normal vector, and we used the relation |∇r| � 1 in the last inequality.

Note that the use of the divergence theorem above is justified by the hypothesis that �n

is immersed properly in M. Now, by Lemma 2.8, we get

V(r) � f ′(r)V ′(r) = Vn
δ (r)

An−1
δ (r)

V ′(r).

The latter inequality is equivalent to the hypothesis that the ratio V(r)/Vn
δ (r) is a

nondecreasing function of r, where 0 < r < injp(g).

Case (ii). When δ > 0, by Lemma 2.5, the quantity in (2.12) is nonpositive. Introducing

the new notation

εδ(r) = 1 − n
sn′

δ

snn
δ

(r)
∫ r

0
snn−1

δ (t) dt � 0,

we can rewrite relation (11) in the form

1 � �nψ + (1 − |∇r|2)εδ(r) � �nψ + εδ(r).
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Berger’s Inequality 19

Further, using Corollary 2.6, one can conclude that εδ(r) is a nondecreasing function as r

ranges in the interval (0, π/
√

δ). The latter can be seen as the consequence of the relation

ε′
δ(r) = n

n − 1
α′′

δ (r);

see identity (2.9), where αδ is a function from Corollary 2.6. This observation together

with the argument in Case (i) above yields the inequality

V(r) � Vn
δ (r)

An−1
δ (r)

V ′(r) + εδ(r)V(r),

where V(r) is the volume Vol(B(p, r) ∩ �n). By the definition of εδ(r), we obtain

nV(r)
sn′

δ

snn
δ

(r)
∫ r

0
snn−1

δ (t) dt � V ′(r) 1

snn−1
δ (r)

∫ r

0
snn−1

δ (t) dt,

where 0 < r < π/
√

δ. The latter is equivalent to

(snn
δ )′

snn
δ

(r) = n
sn′

δ

snδ

(r) � V ′(r)
V(r)

,

and we conclude that the ratio V(r)/snn
δ (r) is nondecreasing. �

Remark 2.2. Note that in the course of the proof of Proposition 2.3, we established the

following isoperimetric inequalities

An−1
δ (r)

Vn
δ (r)

�
Volg(∂B(p, r) ∩ �n)

Volg(B(p, r) ∩ �n)
, when δ � 0,

n
sn′

δ

snδ

(r) �
Volg(∂B(p, r) ∩ �n)

Volg(B(p, r) ∩ �n)
, when δ > 0.

The 1st inequality has an explicit comparison flavour. Similar results are also obtained,

by a different method, in [33], but under more restrictive hypotheses—the author

assumes that the intersection B(p, r) ∩ �n is connected and a point p lies in �n.

3 Revisiting Constructions of Disjoint Sets in Metric Measure Spaces

3.1 Covers refinement functions

In this section, we revisit the so-called decomposition theorems, that is, the con-

structions of disjoint sets in pseudo-metric measure spaces with controlled amount
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20 G. Kokarev

of measure. Such results originate in the work of Buser [8] and Korevaar [23] and are

essential for obtaining upper bounds for the whole spectrum; see, for example, [15, 16,

21, 22, 24–26]. The known constructions rely heavily on covering properties by balls

of the underlying pseudo-metric space. For our applications, it is important to keep

track of the bound for the radii of the balls in covers and record how refined covers are

used. These considerations motivate the definitions below. Throughout this section, by

(X, d), we denote a separable pseudo-metric space and B(p, r) stands for an open ball

{x ∈ X : d(p, x) < r} in X.

Definition 3.1 (Small balls). A nondecreasing function N : (1, +∞) → R
+ is called the

small cover refinement function for a pseudo-metric space (X, d), if for any ρ > 1 each

ball B(p, r) with 0 < r � 1 can be covered by at most N(ρ) balls of radius r/ρ.

Definition 3.2 (Arbitrary balls). A nondecreasing function N : (1, +∞) → R
+ is called

the cover refinement function, if for any ρ > 1 each pseudo-metric ball B(p, r) with

r > 0 can be covered by at most N(ρ) balls of radius r/ρ.

The distinction between considering covers of arbitrary balls and only small

balls is important for our applications; see also [21, 22]. Note that if for some ρ0 > 1

each pseudo-metric ball B(p, r) with 0 < r � 1 can be covered by N0 balls with radius

r/ρ0, then each B(p, r) can be covered by N(ρ) balls with radius r/ρ for any ρ > 1; see

[19, Lemma 3.4]. Moreover, the argument in the proof of [19, Lemma 3.4] shows that the

number N(ρ) of such balls in the covering can be chosen so that the function ρ 
→ N(ρ) is

nondecreasing. In other words, if such a covering property holds for some ρ0 > 1, then

a small cover refinement function exists. Unlike many previous papers, see for example

[19, 21, 22, 25] and the references therein, where the mere fact whether such a covering

property holds for some ρ0 > 1 was used, for our purposes the (small) cover refinement

function itself is important. For these reasons, we restate and sharpen some of the key

results from [19, 21]. First, we recall the necessary notation.

By an annulus A in a pseudo-metric space (X, d), we mean a subset of the

following form:

{x ∈ X : r � d(x, a) < R},

where a ∈ X and 0 � r < R < +∞. These real numbers r and R are often referred to as

the inner and outer radii, respectively, and the point a—as the centre of an annulus A.
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Berger’s Inequality 21

By 2A, we denote the annulus

{x ∈ X : r/2 � d(x, a) < 2R}.

Recall that a measure μ on a pseudo-metric space (X, d) is called nonatomic if for any

point p ∈ X the mass μ(B(p, r)) → 0 as r → 0+. When (X, d) is a metric space, this is

equivalent to saying that the measure does not charge a single point in X.

The following statement follows by examining the proof of [19, Theorem 3.5]; it

is stated in the form reminiscent to [19, Corollary 3.12].

Proposition 3.1. Let (X, d) be a separable pseudo-metric space such that all balls

B(p, r) are precompact and N(ρ) a cover refinement function for it. Then, for any finite

nonatomic measure μ on X and any positive integer k, there exists a collection of k

annuli {Ai} such that the annuli {2Ai} are pair-wise disjoint and

μ(Ai) � μ(X)/(ck) for any 1 � i � k,

where c = 8N(1600).

Note that the existence of a cover refinement function is one of the hypotheses in

Proposition 3.1. We also need a statement with the weaker hypothesis—the existence of

a small cover refinement function. It can be obtained by revisiting [16, 21]. The following

proposition is a sharpened version of [21, Theorem 2.1].

Proposition 3.2. Let (X, d) be a separable pseudo-metric space such that all balls

B(p, r) are precompact and N(ρ) a small cover refinement function for it. Then, for any

finite nonatomic measure μ on X and any positive integer k there exists a collection of

k bounded Borel sets {Ai} such that

μ(Ai) � μ(X)/(ck) for any 1 � i � k,

where c = 64N(1600), and one of the following possibilities hold:

(i) either all the Ais are annuli and then the annuli 2Ai are pair-wise disjoint

and their outer radii are not greater than one;

(ii) or the r0-neighbourhoods

Ar0
i = {

x ∈ X : dist(x, Ai) � r0

}

are pair-wise disjoint, where r0 = 1600−1.
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22 G. Kokarev

An important new point in Proposition 3.2 is the linear dependence of the

constant c on the refinement function N. The proof of Proposition 3.2 follows the idea in

[21]; it relies on the argument in the proof of [19, Theorem 3.5] and an improved version

of a statement from [16]. We discuss it in more detail at the end of the section.

Now, we consider the main example that is used in the sequel—pseudo-metric

measure spaces with homogeneous bounds on the measure of balls. We describe it in

the form of the following lemma; its proof is rather standard, but we include it for the

sake of completeness.

Lemma 3.3. Let (X, d) be a pseudo-metric space equipped with a measure ν such that

C1rα � ν(B(p, r)) � C2rα for any p ∈ X and 0 < r � 3,

where C1, C2, and α are positive constants. Then, the function N(ρ) = (6ρ)αC2/C1 is a

small cover refinement function for X. If the above inequalities hold for any r > 0 and

any p ∈ X, then the function N(ρ) is a cover refinement function for X.

Proof. We prove the 1st statement of the lemma; the 2nd statement for arbitrary balls

follows by the same argument. For a given value ρ > 1 and a ball B(p, r) with 0 < r � 1,

let {B(pi, r/(2ρ))} be a maximal collection of disjoint balls of radii r/(2ρ) centred at a

point pi ∈ B(p, r), where i = 1, . . . , �. It is straightforward to see that the family of balls

{B(pi, r/ρ)}, where i = 1, . . . , �, covers the ball B(p, r). Thus, for a proof of the statement,

it is sufficient to show that the cardinality � of this cover is not greater than (6ρ)αC2/C1.

Let i0 be an index such that the measure ν(B(pi0 , r/(2ρ))) is the least value among

all measures ν(B(pi, r/(2ρ))), where i ranges over 1, . . . , �. Then, we obtain

�ν(B(pi0 , r/(2ρ))) �
�∑

i=1

ν(B(pi, r/(2ρ))) � ν(B(p, 2r)) � ν(B(pi0 , 3r)), (3.1)

where in the 2nd inequality, we used the inclusion B(pi, r/(2ρ)) ⊂ B(p, 2r), and in the 3rd,

the inclusion B(p, 2r) ⊂ B(pi0 , 3r). Thus, using the hypotheses on the lemma, we obtain

� �
ν(B(pi0 , 3r))

ν(B(pi0 , r/(2ρ)))
� C2(3r)α

C1(r/2ρ)α
= (6ρ)α

C2

C1

and finish the proof of the 1st statement. �
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Berger’s Inequality 23

3.2 On the proof of Proposition 3.2

A new ingredient in the proof of Proposition 3.2 is the following improved version of

[16, Corollary 3.12]; see also [15, Lemma 2.1].

Lemma 3.4. Let (X, d) be a separable pseudo-metric space, r > 0 a real number, and

N a positive integer such that any ball of radius 4r in X can be covered by N balls of

radius r. Let μ be a finite Borel measure and k a positive integer such that

μ(B(p, r)) � μ(X)

4Nk
for any p ∈ X.

Then, there exists a collection of k bounded Borel subsets {Ai} such that

μ(Ai) �
μ(X)

2Nk
for any 1 � i � k,

and the r-neighbourhoods {Ar
i }s are pair-wise disjoint.

The proof of this lemma is based on the following statement.

Claim 3.5. Let (X, d) be a separable pseudo-metric space, r > 0 a real number, and N a

positive integer such that any ball of radius 4r in X can be covered by N balls of radius r.

Let μ be a finite Borel measure and β < μ(X) a positive real number such that

μ(B(p, r)) � β

2
for any p ∈ X. (3.2)

Then, there exist bounded Borel subsets A ⊂ D in X such that

β � μ(A) � μ(D) � 2Nβ,

and dist(A, Dc) � 3r.

Proof. For a positive integer �, let U� be the collection of all subsets in X that can be

written as unions of at most � balls of radius r, that is,

U� =
⎧⎨
⎩

�⋃
j=1

B(xj, r) : x1, . . . , x� ∈ X

⎫⎬
⎭ .
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24 G. Kokarev

By ξ�, we denote the supremum sup{μ(U) : U ∈ U�}. Note that U� ⊂ U�+1, and hence, the

sequence ξ� is nondecreasing, ξ� � ξ�+1. Since X is a separable pseudo-metric space, it

is straightforward to see that there exists a sequence of subsets {U�} such that U� ∈ U�,

U� ⊂ U�+1 for each �, and ∪�U� = X. Thus, we conclude that the sequence ξ� converges to

the value μ(X). Since by (3.2), we have ξ1 � β/2, then there exists an integer k � 2 such

that

ξk−1 � β < ξk.

The 2nd inequality implies that there exists a set A ∈ Uk such that μ(A) > β. The set A

has the form ∪B(pj, r) for some points pj ∈ X, and then we define the set D ⊂ X as the

union

D =
k⋃

j=1

B(pj, 4r).

It is straightforward to see that dist(A, Dc) is at least 3r. Thus, for a proof of the claim

it remains to show that μ(D) � 2Nβ.

To prove the last inequality, note that each ball B(pj, 4r) can be covered by N

balls of radius r. Thus, the set D can be covered by kN balls of radius r, that is, D ⊂ W,

where W ∈ UkN . Since kN � 2(k − 1)N, we see that W can be represented as the union

W =
2N⋃
j=1

Wj, where Wj ∈ Uk−1,

and we obtain

μ(D) � μ(W) �
2N∑
j=1

μ(Wj) � 2Nξk−1 � 2Nβ.

Thus, the claim is proved. �

Proof of Lemma 3.4. Equipped with Claim 3.5, we can now prove the lemma by

following the line of the argument in [15, Section 4]. More precisely, taking β =
μ(X)/(2Nk), one can construct inductively k pairs (Aj, Dj), where 1 � j � k, such that

Aj ⊂ Dj, dist(Aj, (∪i�jDi)
c) � 3r,
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Berger’s Inequality 25

the inequalities

β � μ(Aj) � μ(Dj) � 2Nβ = μ(X)

k

hold, and additionally, Aj ⊂ (∪i<jD)c. The above claim is used in the induction step.

Then, the family {Aj} satisfies the conclusion of Lemma 3.4. Indeed, we have

μ(Aj) � β = μ(X)

2Nk
,

and since

dist(Al, Aj) � dist(Al, (∪i�lDi)
c) � 3r

for l < j, we see that the r-neighbourhoods {Ar
j } are pair-wise disjoint.

To make the exposition more self-contained, we describe briefly the induction

argument for the existence of such pairs (Aj, Dj). Taking β = μ(X)/(2Nk), by the

hypotheses of the lemma, we see that Claim 3.5 applies, and there are bounded Borel

sets A1 ⊂ D1 such that

β � μ(A1) � μ(D1) � 2Nβ = μ(X)

k
,

and dist(A1, Dc
1) � 3r. Now, suppose that for 1 � j < k the desired pairs {(Ai, Di)}, where

i = 1, . . . , j, are constructed. Denote by μj+1 the measure on X, obtained by restricting μ

to the complement (∪i�jDi)
c. Note that for any ball B(p, r) the inequalities

μj+1(B(p, r)) � μ(B(p, r)) � μ(X)

4Nk
= β

2

hold. By the induction hypotheses, we also have

μj+1(X) � μ(X) −
j∑

i=1

μ(Dj) � μ(X)

(
1 − j

k

)
� μ(X)

k
,

and hence, see that

β = μ(X)

2Nk
�

μj+1(X)

2N
< μj+1(X).
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26 G. Kokarev

Thus, Claim 3.5 applies to the measure μj+1 on X, and there are sets A ⊂ D in X such

that

β � μj+1(A) � μj+1(D) � 2Nβ = μ(X)

k
,

and dist(A, Dc) � 3r. The pair (Aj+1, Dj+1) is defined by setting

Aj+1 = A ∩ (∪i�jDi)
c and Dj+1 = D ∩ (∪i�jDi)

c.

It is straightforward to check that these sets satisfy the required hypotheses. �

Now, the proof of Proposition 3.2 follows the scheme in [21, Section 2] with

necessary adjustments for the constants involved. It relies on the argument in the proof

of [19, Theorem 3.5] and uses Lemma 3.4 above in place of [21, Lemma 2.3].

4 Proofs

4.1 Proof of Theorem 1.1

Let (M, g) be an m-dimensional Riemannian manifold that satisfies the hypotheses of

Theorem 1.1 and distg(·, ·) a distance function on it. Scaling the metric g, we may assume

that rad(g) equals three. Then, the combination of Lemma 3.3 and Corollary 2.2 implies

that the function

N(ρ) = C11(m)
Volg(M)

rad(g)m ρm, (4.1)

where C11(m) = 24m/ωm is a small cover refinement function for the metric space

(M, distg). For a given metric g̃ conformal to g, denote by μ its volume measure Volg̃
on M. Then, by Proposition 3.2, for any given positive integer k, there exists a collection

of 2(k + 1) bounded Borel sets {Ai} such that

μ(Ai) � μ(M)/(2c(k + 1)) � μ(M)/(4ck) (4.2)

for all i = 1, . . . , 2(k + 1), where c = 64N(1600), and one of the following possibilities

hold:

(i) either all the Ais are annuli and the annuli 2Ais are pair-wise disjoint and

their outer radii are not greater than one;
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Berger’s Inequality 27

(ii) or the r0-neighbourhoods of the Ais, where r0 = 1600−1, are pair-wise

disjoint.

Note that, using formula (4.1), the estimate for μ(Ai) in relation (4.2) can be re-written

in the form

Volg̃(Ai) �
Volg̃(M)

k

(
256(1600)mC11(m)Volg(M)/rad(g)m

)−1
(4.3)

for all i = 1, . . . , 2(k + 1). Now, we consider two cases corresponding to the two

possibilities (i) and (ii) above.

Case (i). Since the annuli 2Ais are pair-wise disjoint, we have

2(k+1)∑
i=1

μ(2Ai) � μ(M),

and hence, there exists at least (k + 1) sets Ai such that

μ(2Ai) � μ(M)/(k + 1) � μ(M)/k. (4.4)

After reordering, we may assume that the above relation holds for i = 1, . . . , k + 1. For

such an i, we denote by ui the test-function constructed in the following way: it vanishes

on the complement of the exterior annulus 2Ai, equals one on the interior annulus Ai =
B(ai, Ri)\B(ai, ri), and is given by the formula

ui(x) =

⎧⎪⎪⎨
⎪⎪⎩

2

ri
dist(x, ai) − 1, if x ∈ B(ai, ri)\B(ai, ri/2),

2 − 1

Ri
dist(x, ai), if x ∈ B(ai, 2Ri)\B(ai, Ri),

on the complement 2Ai\Ai. It is straightforward to see that each ui is a Lipschitz

function, and moreover, on the complement 2Ai\Ai its gradient satisfies the inequalities

∣∣∇ui

∣∣ � 2/ri on B(ai, ri)\B(ai, ri/2), (4.5)

∣∣∇ui

∣∣ � 1/Ri on B(ai, 2Ri)\B(ai, Ri). (4.6)
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28 G. Kokarev

Now, we estimate the Dirichlet energy of ui with respect to the metric g̃. By the Hölder

inequality, we obtain

∫
M

∣∣∇ui

∣∣2
g̃ dVolg̃ � Volg̃(2Ai)

1−2/m
(∫

B(ai,2Ri)

∣∣∇ui

∣∣m
g̃ dVolg̃

)2/m

= Volg̃(2Ai)
1−2/m

(∫
B(ai,2Ri)

∣∣∇ui

∣∣m
g dVolg

)2/m

� Volg̃(2Ai)
1−2/m

(
(2/ri)

mVolg(B(ai, ri)) + (1/Ri)
mVolg(B(ai, 2Ri))

)2/m
,

where in the equality above, we used the conformal invariance of
∫ |∇u|m dVol, and in

the last relation inequalities (4.5)–(4.6). Now, since by Proposition 3.2 the outer radii

satisfy the inequality 2Ri � 1 < rad(g), the volume bounds in Corollary 2.2 apply and

we obtain

∫
M

∣∣∇ui

∣∣2
g̃ dVolg̃ � 16Volg̃(2Ai)

1−2/m
(
Volg(M)/rad(g)m

)2/m

� 16(Volg̃(M)/k)1−2/m
(
Volg(M)/rad(g)m

)2/m
, (4.7)

where in the last inequality, we used relation (4.4). Combining inequalities (4.3) and (7),

we can now estimate the Rayleigh quotient:

Rg̃(ui) =
(∫

M

∣∣∇ui

∣∣2
g̃ dVolg̃

)
/

(∫
M

u2
i dVolg̃

)

� C12(m)(Volg̃(M)/k)−2/m
(
Volg(M)/rad(g)m

)1+2/m

= C12(m)(Volg̃(M))−2/m
(
Volg(M)/rad(g)m

)1+2/m
k2/m,

where i = 1, . . . , k + 1. Since the uis form a system of W1,2-orthogonal functions, by the

variational principle, we conclude that

λk(g̃)Volg̃(M)2/m � C12(m)
(
Volg(M)/rad(g)m

)1+2/m
k2/m.

Thus, the statement of the theorem is proved in this case.
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Berger’s Inequality 29

Case (ii). Since the r0-neighbourhoods of the Ais are pair-wise disjoint, as in the 1st case,

we may assume that

μ(Ar0
i ) � μ(M)/k for any i = 1, . . . , k + 1. (4.8)

For such an i, we denote by ui the test-function supported in the r0-neighbourhood Ar0
i

that is given by the formula

ui(x) =
{

1, if x ∈ Ai,

1 − r−1
0 dist(x, Ai), if x ∈ Ar0

i \Ai,

where dist(·, A) stands for the distance to a subset A. It is straightforward to see that

ui is a Lipschitz function such that
∣∣∇ui

∣∣ � r−1
0 on Ar0

i \Ai. Thus, following the line of

argument above, we obtain

∫
M

∣∣∇ui

∣∣2
g̃ dVolg̃ � Volg̃(Ar0

i )1−2/m

(∫
A

r0
i

∣∣∇ui

∣∣m
g̃ dVolg̃

)2/m

= Volg̃(Ar0
i )1−2/m

(∫
A

r0
i

∣∣∇ui

∣∣m
g dVolg

)2/m

� (Volg̃(M)/k)1−2/mVolg(M)2/mr−2
0 ,

where in the last inequality, we used relation (4.8). Recall that by our normalisation

assumption, we have

r0 = 1

1600
= 1

4800
rad(g).

Hence, the bound above for the Dirichlet energy of ui can be rewritten in the form

∫
M

∣∣∇ui

∣∣2
g̃ dVolg̃ � 48002(Volg̃(M)/k)1−2/m

(
Volg(M)/rad(g)m

)2/m
, (4.9)

where i = 1, . . . , k + 1. Now, combining inequalities (4.3) and (4.9), we arrive at the

estimate

Rg̃(ui) � C13(m)(Volg̃(M))−2/m
(
Volg(M)/rad(g)m

)1+2/m
k2/m,

for all i = 1, . . . , k + 1. Thus, by the variational principle, we conclude that the desired

inequalities for the eigenvalues of λk(g̃) hold in this case as well.
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30 G. Kokarev

Remark 4.1. Note that choosing the sets Ai in the argument in Case (ii) more carefully,

such that in addition to relation (4.8) the following inequalities hold:

Volg(Ar0
i ) � Volg(M)/k for any i = 1, . . . , k + 1,

one can show that the eigenvalue λk(g̃) is bounded independently of k in this case.

However, this observation does not give any improvement to the final result.

4.2 Proof of Theorem 1.2

The proof of Theorem 1.2 follows the strategy used in the proof of Theorem 1.1. However,

the way we use the decomposition theorem, Proposition 3.2, as well as a few ingredients

involved, are different.

Let (�n, g) be a manifold isometrically immersed to M, via ı : �n → M, as a

proper minimal submanifold. Below, we denote by g the metric on both manifolds �n

and M. We equip �n with a pseudo-metric d̄(·, ·) obtained by restricting the distance

function distg(·, ·) on M to the image ı(�n). A metric ball B̄(p̄, r) in this pseudo-metric

can be viewed as the pre-image ı−1(B(p, r)), where ı(p̄) = p and B(p, r) is a metric ball in

(M, distg). Abusing the notation, it is also denoted by B(p, r)∩�n in Section 2. A measure

μ̄ on �n is nonatomic with respect to d̄(·, ·), see Section 3, if and only if the pushforward

measure ı∗μ̄ is nonatomic on M. Since ı : �n → M is an immersion, it is straightforward

to see that for any metric h on �n its volume measure is nonatomic with respect to the

pseudo-metric d̄(·, ·).
As in the proof of Theorem 1.1, we assume that the metric g on M is scaled such

that rad(g) equals three. Then, the combination of Lemma 3.3 and Corollary 2.4 implies

that the function

N̄(ρ) = C14(n)
Volg(�n)

rad(g)n ρn, (4.10)

where C14(n) = 24n/(nωn) is a small cover refinement function for the pseudo-metric

space (�n, d̄). Now, let h be a metric on �n that is conformal to g and μ̄ its volume

measure. By the discussion above, Proposition 3.2 applies to the pseudo-metric space

(�n, d̄) equipped with μ̄. Thus, for any positive integer k, there exists a collection of

2(k + 1) bounded Borel sets {Āi} in �n such that

μ̄(Āi) � μ̄(�n)/(2c(k + 1)) � μ̄(�n)/(4c̄k), (4.11)
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Berger’s Inequality 31

for all i = 1, . . . , 2(k + 1), where c̄ = 64N̄(1600), and one of the following possibilities

hold:

(i) either all the Āis are annuli for the pseudo-metric d̄(·, ·), and the annuli 2Āis

are pair-wise disjoint and their outer radii are not greater than one;

(ii) or the r0-neighbourhoods of the Āis, where r0 = 1600−1, are pair-wise

disjoint.

Now, the cases (i) and (ii) can be considered following the line of argument in the

proof of Theorem 1.1. The test-functions are constructed similarly but using the pseudo-

metric d̄(·, ·). A new ingredient in the estimate of their Dirichlet energies is one of the

inequalities in Corollary 2.4. Below, we briefly sketch the key points of the argument. In

the sequel, we use estimate (4.11) for μ̄(Āi) in the following form:

Volh(Āi) �
Volh(�n)

k

(
256(1600)nC14(n)Volg(�n)/rad(g)n

)−1
. (4.12)

It follows by combination of the relation c̄ = 64N̄(1600) with formula (4.10) for a small

cover refinement function.

Case (i). As in the proof of Theorem 1.1, we may assume that

μ̄(2Āi) � μ̄(�n)/(k + 1) � μ̄(�n)/k (4.13)

for i = 1, . . . , k + 1. For each such i the test-function ūi is set to equal one on the interior

annulus Āi = B̄(āi, Ri)\B̄(āi, ri) and zero on the complement of the exterior annulus 2Āi.

On the complement 2Āi\Āi, it is given by the formula

ūi(x) =

⎧⎪⎪⎨
⎪⎪⎩

2

ri
d̄(x, āi) − 1, if x ∈ B̄(āi, ri)\B̄(āi, ri/2),

2 − 1

Ri
d̄(x, āi), if x ∈ B̄(āi, 2Ri)\B̄(āi, Ri).

(4.14)

It is straightforward to see that
∣∣∣∇d̄(x, ·)

∣∣∣ � 1 for any point x ∈ �n, and hence, the

gradient of ūi satisfies the inequalities

∣∣∇ūi

∣∣ � 2/ri on B̄(āi, ri)\B̄(āi, ri/2),

∣∣∇ūi

∣∣ � 1/Ri on B̄(āi, 2Ri)\B̄(āi, Ri).
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32 G. Kokarev

Arguing as in the proof of Theorem 1.1, we can now estimate the Dirichlet energy of ūi.

In more detail, we obtain

∫
�n

∣∣∇ūi

∣∣2
h dVolh � Volh(2Āi)

1−2/n
(
(2/ri)

nVolg(B̄(āi, ri)) + (1/Ri)
nVolg(B̄(āi, 2Ri))

)2/n

� 16Volh(2Āi)
1−2/n

(
Volg(�n)/rad(g)n

)2/n

� 16(Volh(�n)/k)1−2/n
(
Volg(�n)/rad(g)n

)2/n
,

where we used Corollary 2.4 to estimate volumes of extrinsic balls in the 2nd inequality

and relation (4.13) in the 3rd. Combining the last inequality with relation (4.12), we

obtain the following estimate for the Rayleigh quotient of ūi:

Rh(ūi) =
(∫

�n

∣∣∇ūi

∣∣2
h dVolh

)
/

(∫
�n

ū2
i dVolh

)

� C15(n)(Volh(�n))−2/n
(
Volg(�n)/rad(g)n

)1+2/n
k2/n

for any i = 1, . . . , k + 1. By the variational principle, these estimates immediately yield

the desired inequality for the Laplace eigenvalue λk(�n, h).

Case (ii). As in the proof of Theorem 1.1, we may assume that

μ(Ār0
i ) � μ(�n)/k for any i = 1, . . . , k + 1. (4.15)

The test-function ūi, supported in the r0-neighbourhood Ār0
i , is defined by the formula

ūi(x) =
{

1, if x ∈ Āi,

1 − r−1
0 dist(x, Āi), if x ∈ Ār0

i \Āi,

where dist(·, Ā) is the distance to a subset in the sense of pseudo-metric d̄(·, ·). As above,

we see that
∣∣∇ūi

∣∣ � r−1
0 on the complement Ār0

i \Āi and estimate its Dirichlet energy in

the following way:

∫
�n

∣∣∇ūi

∣∣2
h dVolh � Volh(Ār0

i )1−2/n

(∫
Ā

r0
i

∣∣∇ūi

∣∣n
g dVolg

)2/n

� (Volh(�n)/k)1−2/nVolg(�n)2/nr−2
0

= 48002(Volh(�n)/k)1−2/n
(
Volg(�n)/rad(g)n

)2/n
,
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Berger’s Inequality 33

where we used relation (4.15) in the 2nd inequality and the scaling assumption rad(g)=3

together with r0 = 1600−1 in the last relation. Combining this estimate with relation

(4.12), we obtain

Rh(ūi) � C16(n)(Volh(�n))−2/n
(
Volg(�n)/rad(g)n

)1+2/n
k2/n

for any i = 1, . . . , k + 1. Now, the desired inequality for the Laplace eigenvalue λk(�n, h)

follows from the variational principle.

4.3 Proof of Theorem 1.3

As in the proof of Theorem 1.2, we consider a pseudo-metric space (�n, d̄), where a

pseudo-metric d̄(·, ·) is obtained by restricting the distance function distg(·, ·) to the

image of an immersed submanifold �n. For a point p̄ ∈ �n the volume of a pseudo-

metric ball B̄(p̄, r) satisfies the inequalities

ωnrn � Volg(B̄(p̄, r)) � ωnθ(�n)rn (4.16)

for any r > 0, where ωn is the volume of a unit ball in the Euclidean space R
n and

θ(�n) is the density at infinity. These inequalities are direct consequences of the volume

monotonicity for minimal submanifolds; see Proposition 2.3. By Lemma 3.3, inequalities

(4.16) imply that the function N̄(ρ) = θ(�n)(6ρ)n is a cover refinement function for this

pseudo-metric space.

Let h be a metric conformal to g on a domain � ⊂ �n and μ̄ its volume measure

restricted to �. As in the proof of Theorem 1.2, we conclude that the measure μ̄ is

nonatomic with respect to d̄(·, ·) and Proposition 3.1 applies. Thus, for any positive

integer k, there exists a collection of 2(k + 1) annuli {Āi} in �n such that the annuli

{2Āi} are pair-wise disjoint and

μ̄(Āi) � μ̄(�n)/(2c(k + 1)) � μ̄(�n)/(4c̄k)

for all i = 1, . . . , 2(k + 1), where

c̄ = 8N̄(1600) = C17(n)θ(�n).

Let ūi be a test-function constructed as in Case (i) of the proof of Theorem 1.2; it is

supported in the annulus 2Āi. Then, using inequalities (4.16) in place of Corollary 2.4,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab073/6224272 by guest on 02 Septem

ber 2021



34 G. Kokarev

one can repeat the argument in the proof of Theorem 1.2 to show that

Rh(ūi) =
(∫

�

∣∣∇ūi

∣∣2
h dVolh

)
/

(∫
�

ū2
i dVolh

)
� C18(n)(Volh(�))−2/nθ(�n)1+2/nk2/n

for some k + 1 test-functions. Since these test-functions are supported in pair-wise

disjoint sets, by the variational principle, we obtain the corresponding inequalities for

the Neumann eigenvalues λk(�, h).

4.4 Proof of Theorem 1.4

The proof of the theorem uses ingredients from the proofs of both Theorems 1.1 and 1.2.

The idea is to apply Proposition 3.2 to the metric space (M, distg) equipped with the

pushforward measure μ∗ = ı∗Volh, where ı : �n → M is an immersion. The test-

functions on �n are obtained by pulling back the test-functions ui that are used in

the proof of Theorem 1.1, and their Dirichlet energies are estimated following the line

of argument in the proof of Theorem 1.2.

In more detail, let h be a metric on �n conformal to g and μ∗ the pushforward

volume measure ı∗Volh. It is straightforward to see that μ is nonatomic. Scaling the

metric g on M, we may assume that rad(g) equals three. Applying Proposition 3.2 to

the metric space (M, distg), for any positive integer k, we obtain a collection of 2(k + 1)

bounded Borel sets {Ai} in M such that

μ∗(Ai) � μ∗(M)/(4ck) for all i = 1, . . . , 2(k + 1), (4.17)

where c = 64N(1600), the function N(ρ) is given by formula (4.1), and one of the

following possibilities hold:

(i) either all the Ais are annuli and the annuli 2Ais are pair-wise disjoint and

their outer radii are not greater than one;

(ii) or the r0-neighbourhoods of the Ais, where r0 = 1600−1, are pair-wise

disjoint.

In the sequel, we also use the notation Āi for the Borel set ı−1(Ai) in �n. Then, relation

(4.17) can be rewritten in the form

Volh(Āi) �
Volh(�n)

k
(256(1600)mC11(m)Volg(M)/rad(g)m)−1 (4.18)
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for all i = 1, . . . , 2(k + 1). Now, we briefly describe the arguments for the cases (i) and

(ii), corresponding to the different properties of the sets Ai.

Case (i). As in the proof of Theorem 1.1, without loss of generality, we may assume that

μ∗(2Ai) � μ∗(M)/(k + 1) � μ∗(M)/k

for all i = 1, . . . , k + 1. Let ui be a test-function constructed in Case (i) in the proof

of Theorem 1.1. By ūi, we denote the test-function supported in 2Āi = ı−1(2Ai), given

by ūi = ui ◦ ı. Note that the sets Āi = ı−1(Ai) and 2Āi = ı−1(2Ai) are annuli in the

pseudo-metric space (�n, d̄), and using the notation in the proof of Theorem 1.2, our

test-functions ūi can be also described by formula (4.14). In particular, we may repeat

the argument in the proof of Theorem 1.2 to obtain the estimate

∫
�n

∣∣∇ūi

∣∣2
h dVolh � 16(Volh(�n)/k)1−2/n

(
Volg(�n)/rad(g)n

)2/n

for any i = 1, . . . , k + 1. Combining the latter with relation (4.18), we arrive at the

following estimate for the Rayleigh quotient:

Rh(ūi) =
(∫

�n

∣∣∇ūi

∣∣2 dVolh

)
/

(∫
�n

ū2
i dVolh

)

� C12(m)(Volh(�n)/k)−2/n
(
Volg(M)/rad(g)m

) (
Volg(�n)/rad(g)n

)2/n

= C12(m)(Volh(�n))−2/n
(
Volg(M)/rad(g)m+2

)
Volg(�n)2/nk2/n

for any i = 1, . . . , k + 1. Since the ūis are supported in the pair-wise disjoint sets

2Āi = ı−1(2Ai) in �n, they form a W1,2-orthogonal system, and the inequalities for

λk(�n, h) now follow from the variational principle.

Case (ii). As in the proof of Theorem 1.1, we may assume that

μ∗(A
r0
i ) � μ∗(M)/k for any i = 1, . . . , k + 1.

Let ui be a test-function constructed in Case (ii) in the proof of Theorem 1.1. By ūi, we

denote the test-function supported in Ār0
i = ı−1(Ar0

i ), given by ūi = ui ◦ ı. As above, we

see that

∣∣∇ūi

∣∣ � ∣∣∇(ui ◦ ı)
∣∣ � r−1

0 on ı−1(Ar0
i \Ai),
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and arguing as in the proof of Theorem 1.2, we obtain

∫
�n

∣∣∇ūi

∣∣2
h dVolh � (Volh(�n)/k)1−2/nVolg(�n)2/nr−2

0

= 48002(Volh(�n)/k)1−2/n
(
Volg(�n)/rad(g)n

)2/n
.

Combining the latter with relation (4.18), we arrive at the following estimate:

Rh(ūi) � C13(m)(Volh(�n)/k)−2/n
(
Volg(M)/rad(g)m

) (
Volg(�n)/rad(g)n

)2/n

= C13(m)(Volh(�n))−2/n
(
Volg(M)/rad(g)m+2

)
Volg(�n)2/nk2/n

for any i = 1, . . . , k + 1 and the inequalities for λk(�n, h) now follow from the variational

principle.

4.5 Proof of Theorem 1.5

As in the proof of Theorem 1.4, the strategy is to apply Proposition 3.2 to the metric

space (M, distg) equipped with the pushforward measure μ∗ = ı∗Volh, where ı : �n → M

is an immersion. However, using the lower Ricci curvature bound, we can construct a

different, from the one used before, small cover refinement function on (M, distg).

In more detail, a standard application of the Bishop–Gromov relative volume

comparison theorem for spaces with a lower Ricci curvature bound, see [9], yields the

inequality

Volg(B(p, R))

Volg(B(p, r))
�

(
R

r

)m

e(m−1)
√

κR (4.19)

for any 0 < r � R, where B(p, t) stands for a metric ball of radius t > 0 in the space

(M, distg). Scaling the metric g on M, we may assume that

min
{

1√
κ

, rad(g)

}
= 3. (4.20)

Using relation (4.19), we can repeat the argument in the proof of Lemma 3.3 to conclude

that the function

N0(ρ) = (6ρ)me(m−1)

is a small cover refinement function on (M, distg).
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Now, let h be a metric on �n conformal to g and μ∗ be the pushforward measure

ı∗Volh. As in the proof of Theorem 1.4, the measure μ∗ is nonatomic and Proposition 3.2

applies to the metric space (M, distg). Thus, for any positive integer k, we can find a

collection of 3(k + 1) bounded Borel sets {Ai} in M such that

μ∗(Ai) � μ∗(M)/(3c(k + 1)) � μ∗(M)/(6ck) (4.21)

for all i = 1, . . . , 3(k + 1), where c = 64N0(1600), and one of the following possibilities

occur:

(i) either all the Ais are annuli and the annuli 2Ais are pair-wise disjoint and

their outer radii are not greater than one;

(ii) or the r0-neighbourhoods of the Ais, where r0 = 1600−1, are pair-wise

disjoint.

Using the notation Āi for the Borel set ı−1(Ai) in �n, relation (4.21) can be rewritten in

the form

Volh(Āi) �
Volh(�n)

k
C19(m) (4.22)

for all i = 1, . . . , 3(k + 1). Now, we consider the cases (i) and (ii).

Case (i). As in the proof of Theorem 1.1, without loss of generality, we may assume that

μ∗(2Ai) � μ∗(M)/(k + 1) � μ∗(M)/k

for all i = 1, . . . , k + 1. Let ūi be a test-function supported in ı−1(2Ai) from the proof of

Theorem 1.4; see Case (i). As was shown there, the Dirichlet energy of ūi satisfies the

inequality

∫
�n

∣∣∇ūi

∣∣2
h dVolh � 16(Volh(�n)/k)1−2/n

(
Volg(�n)/rad(g)n

)2/n

for any i = 1, . . . , k + 1; the argument uses the inequality rad(g) � 3; see relation (4.20).

Combining this estimate with relation (4.22), we obtain

Rh(ūi) =
(∫

�n

∣∣∇ūi

∣∣2
h dVolh

)
/

(∫
�n

ū2
i dVolh

)

� C20(m)(Volh(�n))−2/n
(
Volg(�n)/rad(g)n

)2/n
k2/n
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for any i = 1, . . . , k + 1. Now, by the variational principle, we conclude that

λk(�n, h)Volh(�n)2/n � C20(m)rad(g)−2Volg(�n)2/nk2/n.

Case (ii). Denote by ν the pushforward measure ı∗Volg on M. Since all sets Ai are pair-

wise disjoint, we can choose (k + 1) sets such that

μ∗(A
r0
i ) � μ∗(M)/k and ν(Ar0

i ) � ν(M)/k. (4.23)

Indeed, there exists at least 2(k + 1) sets such that the 1st inequalities occur. Among

these sets, we can choose further (k + 1) sets such that the 2nd inequalities for the

measure ν hold. Without loss of generality, we may assume that both inequalities in

(4.23) hold for i = 1, . . . , k + 1. Let ūi be a test-function supported in Ār0
i = ı−1(Ar0

i ) from

the proof of Theorem 1.4; see Case (ii). Recall that its gradient satisfies the relation∣∣∇ūi

∣∣ � r−1
0 on ı−1(Ar0

i \Ai). Thus, we obtain

∫
�n

∣∣∇ūi

∣∣2
h dVolh � Volh(Ār0

i )1−2/n

(∫
Ā

r0
i

∣∣∇ūi

∣∣n
g dVolg

)2/n

� Volh(Ār0
i )1−2/nVolg(Ār0

i )2/nr−2
0 � (Volh(�n)/k)1−2/n(Volg(�n)/k)2/nr−2

0

= 48002

k
Volh(�n)1−2/nVolg(�n)2/n max{κ, rad(g)−2},

where we used relations (4.23) in the 3rd inequality and the scaling assumption (4.20) in

the last equality. Combining this estimate with relation (4.22), we obtain

Rh(ūi) � C21(m)Volh(�n)−2/nVolg(�n)2/n max{κ, rad(g)−2}

for any i = 1, . . . , k + 1. Applying the variational principle, we get the inequalities

λk(�n, h)Volh(�n)2/n � C21(m)Volg(�n)2/n max{κ, rad(g)−2}.

Comparing the latter with the eigenvalue inequalities in Case (i) above, we conclude that

in both cases the Laplace eigenvalues λk(�n, h) satisfy

λk(�n, h)Volh(�n)2/n � C8(m) max{κ, rad(g)−2k2/n}Volg(�n)2/n

for any k � 1, where C8(m) equals max{C20(m), C21(m)}.
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A Appendix: Croke’s Bounds for Higher Laplace Eigenvalues

The purpose of this appendix is to give a proof of the following statement.
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Proposition A.1. Let (M, g) be a closed Riemannian manifold of dimension m. Then,

its Laplace eigenvalues λk(g) satisfy the inequalities

λk(g) � C3(m)
Volg(M)2

conv(g)2m+2 k2m

for any k � 1, where conv(g) is the convexity radius of (M, g) and C3(m) is the constant

that depends on the dimension m only.

For k = 1 the inequality in Proposition A.1 is due to Croke [17, Corollary 19].

Its proof is based on the following upper bound for the 1st Dirichlet eigenvalue of a

geodesic ball B(p, r) in M:

λ0(B(p, r)) � C̄3(m)
Volg(B(p, r))2

r2m+2 , (A.1)

where 0 < r � conv(g) and C̄3(m) is a constant that depends on m only; see [17, Theorem

18]. Below, we demonstrate how inequality (A.1) can be used to prove Proposition A.1.

Proof of Proposition A.1. Pick an arbitrary point p ∈ M, and let q be a point from the

cut locus of p. Thus, we have

distg(p, q) � inj(g) � conv(g).

Denote by L the distance distg(p, q), and let γ : [0, L] → M be a shortest unit speed

geodesic joining p and q. For a given positive integer k consider geodesic balls B(pi, r),

where r = L/(4k), the pis are the points γ (iL/(2k)) on the geodesic γ , and i = 0, . . . , 2k. It

is straightforward to see that these balls are pair-wise disjoint, and hence,

2k∑
i=0

Volg(B(pi, r)) � Volg(M).

Thus, there exists at least (k + 1) points pi such that

Volg(B(pi, r)) � Volg(M)/(k + 1) � Volg(M)/k.

Combining the last inequality with Croke’s inequality (A.1), we obtain

λ0(B(pi, r)) � C̄3(m)
(Volg(M)/k)2

r2m+2 � 42m+2C̄3(m)
Volg(M)2

conv(g)2m+2 k2m,

where in the last inequality, we used the relation r � conv(g)/(4k). Now, let ϕi be a

Dirichlet λ0-eigenfunction on the ball B(pi, r) extended to M, by setting it to be equal

to zero on the complement M\B(pi, r). The above inequalities show that the Rayleigh

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab073/6224272 by guest on 02 Septem

ber 2021



42 G. Kokarev

quotients on M of at least (k + 1) such functions ϕi satisfy the inequality

Rg(ϕi) � C3(m)
Volg(M)2

conv(g)2m+2 k2m,

where we set C3(m) = 42m+2C̄3(m). Since the supports of these ϕis are disjoint, by

the variational principle, we conclude that the desired inequalities for the Laplace

eigenvalues λk(g) hold indeed. �
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