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Abstract 

We report the effect of single and dual radio frequency (RF) plasma discharge on the 

composition and dynamics of a titanium plasma plume produced in a plasma-enhanced 

pulsed laser deposition (PE-PLD) system. The study was carried out in a nitrogen 

environment at different pressures. Time-resolved images, optical emission spectroscopy, 

and interferometry were employed to analyze the plasma. We were able to fit time-resolved 

images using different expansion models, obtained an expansion velocity between 6 and 30 

x 103 m/s. Emission lines from N II, Ti II, were observed by changing the pressure and RF 

conditions. An increase in emission line intensity from N II was observed by increasing the 

pressure and RF power. We used Ti II lines to estimate the plasma temperature by using the 

Boltzmann equation, and we obtained the density from the Ti II line (454.9 nm) through Stark 

broadening. In addition, a Mach-Zehnder interferometer was employed to make a two-

dimensional map of the electron density at early times. The estimated temperatures and 

densities are between 0.8 - 2.0 eV and 1017 – 1018 cm-3, respectively. The results suggest that 

increasing RF power enhanced the Ti-N atoms interaction, which is crucial in titanium nitride 

film applications. 

Keywords: Titanium nitride, plasma-enhanced pulsed laser deposition, dual radio-frequency 

plasma, thin film, optical spectroscopy, interferometry.  
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1. Introduction 

Titanium is widely used in industrial applications where its high resistance to heat and 

corrosion is valued. Furthermore, titanium may be combined with other elements to produce 

new materials with superior properties in a wide application range. For example, titanium 

nitride (TiN) is widely employed in semiconductor manufacturing, selective transparent film, 

high-performance cutting, biocompatible surface, forming tools, and thermal barriers in 

nuclear fusion and chemical reactors. These applications rely on a wide range of distinctive 

properties, including hardness, high melting point, high electrical conductivity, and 

tribological affinity [1-7]. 

There have been many investigations on the growth of Ti thin films using different 

modern techniques such as magnetron plasma [8], plasma ion implantation [9], physical 

vapor deposition [10], chemical vapor deposition [11], and Pulsed Laser Deposition (PLD) 

[12]. In particular, PLD provides several advantages for depositing thin films compared to 

the other techniques; the most relevant are a) high stoichiometric reproducibility from the 

material target into the film. b) Atoms and ions have high kinetic energy when arriving at the 

substrate, which improves the sticking and superficial mobility, allowing deposition with less 

temperature than other techniques and c) the thickness can be easily controlled by the number 

of pulses or laser  fluence [13, 14].  However, PLD also has some disadvantages; for example, 

only a small area and few samples can be deposited at a time since the plasma volume limits 

effective area. To overcome this, several authors have used a laser scanning unit to move the 

plasma plume to cover more area, achieving a homogeneous deposit of surfaces up to 200 

mm in diameter [15, 16].   Another challenge is that the PLD technique limits the absorption 

of atoms from the background gas due to the working gas's reactivity level and collisionality.  

The use of an external/background plasma environment has shown potential benefits in terms 

of the film quality and the deposition rate due to the increased plasma reactivity with the 

laser-ablated molecules [17-20]. The combination is termed as plasma-enhanced PLD (PE-

PLD). However, most of the studies on PE-PLD merely focus on studying changes in the 

deposited films without characterizing the interaction between the laser-produces plasma and 

the RF plasma. Research of the plasma can play a crucial role in the process of optimizing 

and controlling the thin films, since knowing plasma parameters, together with the dynamics 

and composition, it is possible to make correlations with the properties of the grown films. 



Moreover the emission of energetic ions during laser ablation aids reactive species formation, 

permitting better adhesion to the substrate and growth of epitaxial films at low temperatures 

[21].  

Here we report a study on the physics behind the use of capacitive coupled dual RF 

plasma as a background medium to the PLD. The novelty of this work is that we used a dual 

radio frequency reactor to create the PE-PLD configuration.  In this way we add two 

additional parameters: the source RF power and the frequencies. Both parameters are 

important as they allow the interaction between the plasma regions present. The reason is 

that for dual capacitive coupled plasmas, the capacitive sheath is thicker at lower frequencies 

and provides great impedance to the low frequency current. Consequently, by tuning the low 

frequency (LF) power, it is possible to control the high energy ion bombardment at the 

powered electrode. In contrast, at higher frequencies, the sheath is thinner and provides a 

lower value of the impedance to the high frequency (HF) current and permits a greater flow 

of HF currents, which leads to enhanced plasma ionization. By these means, the tuning of the 

HF power can control the plasma density and the ion flux at the powered electrode [22].   

In this work we compare the plasma parameters, dynamics, and composition for both 

PLD and PE-PLD configurations.  As a result we are able to contribute to the improvement 

and understanding of the growth of TiN films in a PE-PLD system, by reporting and 

discussing differences in the expansion of titanium plasma in a nitrogen environment. We 

use optical emission spectroscopy to identify excited species of titanium plasma and their 

interaction with the background gas. The electron temperature Te and the density Ne are 

determined from the relative ionic line intensity measurements using a Boltzmann plot and 

Stark broadening, respectively. The dynamics of the shock wave are observed using fast 

photography. In addition, interferometry is used at early times to complement the density 

measurements made by Stark broadening of the titanium plasma and to determine the initial 

density of the plasma plume and the shock wave.  

2. Experimental setup  

The experiment setup is shown in Figure 1. The experiments were performed in a stainless-

steel vacuum chamber at a base pressure of 0.05 mTorr.  Laser 1 is used to ablate titanium 

from a pure titanium target.  Laser 1 is a Nd:YAG pulsed laser at 1064 nm with a 4.8 ns full 



width half maximum (FWHM) operated at 10 Hz repetition rate and provide 200 mJ/pulsed 

laser energy to the target. The target is rotated between shots and the laser has an orientation 

approximately 60° off normal.  The Laser spot on the target is elliptical with an area of 1.57 

mm2 and the resulting fluence is 12.74 J/cm2 with a power density of 2.65 GW/cm2. The 

ablation of titanium is performed in a nitrogen atmosphere in the pressure range of 10-1000 

mTorr. The PLD setup is enhanced by generating RF plasma in an asymmetric capacitive 

coupled configuration.  Detailed description may be found elsewhere [23, 24].  The chamber 

has an inner diameter of 40 cm and a height of 35.7 cm. Two stainless steel plates (AISI 314) 

form plane-parallel electrodes, between which the plasma is generated. The upper electrode 

has a diameter of 10 cm and is grounded. The lower electrode (powered electrode) has a 

diameter of 8 cm and is connected to two RF generators, at 2.26 MHz (LF) and 13.56 MHz 

(HF) via a combination of impedance matching networks. The powered electrode is 

surrounded by a solid polyethylene bar. The HF generator is an ENI ACG-6B and the LF 

generator is a Barthel RFG-2–300-L. These have a maximum power of 600 W and 300W, 

respectively. The automatic matching networks (ENI MWH-5–01 and MCi-2–300) 

maximize the power delivered to the plasma. In each RF generator a filter blocks the return 

path of undesired frequencies. 

 

 

 

Figure 1. Experimental Setup of PE-PLD system with the diagnostic systems. 



We used three experimental techniques to study the physics of PLD and PE-PLD systems 

at different pressures and RF conditions.  First, in order to observe the plasma evolution 

images of the emission of the expanding plasma plume were obtained using a gated 

microchannel plate (MCP) camera, with a resolution of 15 ns (Camera 1), over a range of 

times with respect to the laser ablation pulse.  Second, time-resolved optical spectra of the 

plasma emission are observed 5 mm from the target surface using a lens-fiber optic system, 

with a spatial resolution of 4 mm. The emission is resolved with a Spectra Pro 275 (1200 

g/mm) spectrometer. The detection system consist of 512 diodes array (model 1455 EG&G 

Princeton Applied Research) with a gating interval of 15 ns. The entire system is calibrated 

for wavelength and intensity.  Third, the plasma density profiles are measured with a Mach-

Zehnder interferometer using a second laser (Laser 2, 4 ns FWHM at 532 nm).  A bandpass 

interference filter is placed in front of the camera (Camera 2) to select the laser wavelength. 

3. Results and discussion 

3.1.Time-resolved images 

The images of the plasma self-emission show the expansion of the plasma. The images in 

Figure 2 show the titanium plasma expansion at different nitrogen background pressures.   

 

 
 

Figure 2. Time-resolved images of plasma expansion at different nitrogen pressure: a) 10 

mTorr, b) 50 mTorr, c) 130 mTorr, d) 500 mTorr and e) 1 Torr. White circle represents the 

region where the spectra are acquired. 



The evolution of the plasma structure is seen to be pressure dependent:  At 10 mTorr, the 

lifetime of the plasma plume is short, and the expansion is essentially perpendicular to the 

target surface due to the long mean free path. At 50 mTorr, the interaction with the 

background gas becomes significant, and the plume front tends towards spherical geometry. 

It is also visible for longer. At 130 mTorr, the extent of the plasma plume is greatest and its 

front becomes sharpened. At 500 mTorr and 1 Torr, the intensity of the plume increases, as 

does its lifetime. However the size of the plasma plume decreases and distortions or fine 

structures in the shock front are distinguished after 400 ns. 

The sharp pointed plume in a PLD system has been reported in an aluminum plasma 

[25,26]. The sharp nature was attributed to the fact that ions with a higher charge state 

dominate in the direction normal to the target. Therefore, in the initial state, when electrons 

are ejected, a space charge field accelerates the ions, causing the ions with a higher charge 

state to be faster. The sharp pointed plume has also been reported in plasma produced by 

femtosecond laser where the higher kinetic energy components travel in a direction normal 

to the target, with their densities falling in the radial direction [27].    

The images of the plasma plume can be used to understand the processes of the plasma 

expansion.  The position of the plasma front at different times (R-time plot) is shown in 

Figure 3.  The wide range of pressures used requires the use of different models to cover the 

different regimes. At 10 mTorr, as shown in Figure 3a, a linear behavior is observed. This 

corresponds to the long mean free path (mfp) of the titanium plasma in the background gas. 

Here, the model supposes the interaction of smooth rigid elastic spherical molecules [28]. In 

the case of nitrogen at 10 mTorr, the mfp is estimated to be 17 mm, which is close to the 

maximum visible extension of Figure 2a. Hence, we anticipate (near) free adiabatic 

expansion.  However, at 50 mTorr, the mfp is approximately 3.5 mm.  In which case, the 

interaction of the plasma plume with the neutral nitrogen background becomes appreciable. 

On increasing the pressure to 130 mTorr, the expansion is not even approximately linear. In 

this regime, the data is best fitted by the shock wave model, as can be seen in Figure 3b. This 

model assumes that the amount of background gas swept up becomes comparable to the 

initial mass of ejected material and the energy released in the ablation is much greater than 

the energy lost by radiation. The result is that the wave pressure is higher than the ambient 



pressure [29].  The wavefront expansion is predicted using the shock wave model proposed 

by Taylor-Sedov: 

𝑅 = 𝜉 (𝐸𝜌)1/(2+𝛽) 𝑡2/(2+𝛽)  .                                          (1) 

Here, 𝐸 is the energy released during explosion, 𝜌 is the ambient gas density, 𝑡 is the delay 

time,  𝛽  is a dependent parameter of the expansion geometry and has values of 1, 2, and 3 

for the planar, cylindrical, and spherical cases. Finally, 𝜉 is a constant which depends on the 

specific heat ratio 𝛾 and is given by: 𝜉 = [( 7516𝜋) (𝛾−1)(𝛾+1)23𝛾−1 ]1/5
. At 50 mTorr and 130 mTorr, 

we observed that the exponent is estimated to be 0.60 and 0.57, respectively.  

 

Figure 3. Temporal evolution of the plasma front is modeled at different nitrogen 

pressures.  a) 10 mTorr using the free expansion model, b) 50 and 130 mTorr with the 

shock model and c) 500 mTorr and 1 Torr with the drag model. 



 

At 500 mTorr and 1 Torr, the shock front is also pointed, but the visible intensity of the plume 

increases. We ascribe this to the increased interaction between the titanium plasma and the 

background.  The confining effect on the plume, where increased collisionality allows the excited 

species to stay for longer, while at the same time the energy lost from radiation increases.  Under 

these conditions, it is appropriate to apply the drag model. This may be seen in Figure 3c. In the 

drag model, viscosity is proportional to the velocity of ejected material, i.e. 𝑑𝑣 𝑑𝑡⁄ =  −𝛽𝑣, where 𝛽 is called the stopping or drag coefficient [30]. The solution is given by  

 𝑅 = 𝑅0(1 − 𝑒−𝛽𝑡) ,                                                     (2) 

where 𝑅0 = 𝑣0 𝛽⁄   is the stopping distance.  

 

In addition we have compared the expansion behavior of the plume with and without the 

presence of RF power in the nitrogen environment.  We ascribe this to the imaging method used, 

as it collects radiation from the plasma over a wide spectral range of 350–900 nm, making the 

method insensitive to specific wavelength changes. However, in the following section, we discuss 

the differences observed when using spectroscopy analysis. 
 

3.2. Optical emission spectroscopy 

The temporal evolution of the emission spectrum was observed at 5 mm from the target using a 15 

ns temporal window.  The nitrogen pressure was varied from 10 mTorr to 1 Torr and the RF power 

was provided in single and dual configuration mode at the same total power of 70 W.  Figure 4a 

shows a representative time-resolved spectrum of titanium plasma ejected into 50 mTorr neutral 

nitrogen (no RF). We observed nitrogen lines between 20 and 100 ns. This suggests the existence 

of an initial or first front that is not detected in the image analysis due to its low intensity. Therefore, 

the self-emission images, described in the previous section, correspond principally to emissions 

from titanium. Several molecular bands (N2) and a singly ionized nitrogen line (N II) are identified 

at 37 ns, as shown in Figure 4b. It should be noted here that the intensity of the N II line increases 

significantly in the presence of the nitrogen RF plasma, which we discuss in the following section.  

Titanium lines were observed from 200 ns onwards, which is in agreement with Figure 2. At later 

time, several transition lines from singly ionized titanium (Ti II) were identified from the NIST 

database [31]. These are shown in Figure 4c. 



In order to study the variations of titanium and nitrogen ions, we plot in Figure 5 the 

temporal evolution of Ti II (454.9 nm) and N II (460.1 nm) emission lines for different values of 

pressure and RF configurations, in single and dual frequency mode. The intensities corresponds 

only to the plasma produced by the laser component since it is not possible to measure the RF 

plasma contribution for the acquisition time used (15 ns).  With the RF applied, we observe that the 

RF power promotes the formation of N II ions. An increase in RF power increases N II emission 

intensity and allows its formation earlier than at lower powers. Moreover, we observe a higher N 

II emission intensity when using only the HF source, as seen in Figure 5a.  In contrast, the opposite 

trend is observed in the case of titanium, where the intensity from Ti II line decreases on using HF 

source, as may be seen in Figure 5b. The increase in the N II line is attributed to the  

 

Figure 4. Optical emission spectrum at 50 mTorr neutral nitrogen, a) time resolved, b) 37 

ns, and c) at 405 ns. 



addition of RF energy, which improves probability of collision between electrons and atoms in the 

presence of HF power [32]. This increase in collisions allows the formation of more excited species 

that may in turn be ionized easily on interaction with the plume.  In contrast, we anticipate that the 

decrease in Ti II may be due to recombination or transition to different energetic levels and the 

formation of TiN, whose emission lines are outside the range of wavelengths observed.  We recall 

that on this point the influence of nitrogen plasma on the TiN film deposition was apparent in our 

previous study in the same PE-PLD system [33]. An increase in the nitrogen concentration and 

changes in the TiN film structure were observed on increasing RF power.  

 

 

Figure 5. The temporal evolution of spectral intensity emission from a) N II (460.1 nm) 

and b) Ti II (454.9 nm) at different RF powers. In c) N II (460.1nm) and d) Ti II (454.9 

nm) at different neutral pressures. 

 

On the other hand, we observed an increase in the line intensity of N II and Ti II lines, 

with increasing pressure, as shown in Figures 5c and 5d. The increase in the intensity of Ti 



II line is attributed to the fact that at higher pressure the effect of confinement mentioned 

above stimulates ionization from collisions, while the increase in the intensity of N II line is 

due to the laser intensity threshold for plasma initiation, which decreases with increasing 

pressure [34,35]. In consequence, the energy transferred from the laser and from the Ti plume 

to the background gas is more efficient in ionizing nitrogen. In addition, a shift in maximum 

intensity and longer lifetime is observed with increasing pressure as shown in Figure 5d, 

which we attribute to the effect of confinement observed from the analysis of the images in 

the previous section. 

3.3.Electron temperature and density  

Temperature and electron density were obtained assuming the plasma to be in local 

thermodynamic equilibrium (LTE). The validity of this assumption is considered later in this 

section. Under LTE, the Boltzmann method describes the population in excited energy levels 

as a function of temperature and electron density [36].  𝑙𝑛 (𝐼𝑘𝑖𝜆𝑘𝑖𝐴𝑘𝑖𝑔𝑘) = 𝑙𝑛 (𝑁(𝑇)𝑈(𝑇)) − 𝐸𝑘𝑘𝑇                                          (3) 

where 𝐼𝑘𝑖 is the intensity of the transition line from upper level (𝑘) to a lower level (i), 𝜆𝑘𝑖 is 

the wavelength,  𝐴𝑘𝑖  is the transition probability, 𝑔𝑘 is the statistical weight, 𝑁(𝑇) is the 

density, 𝑈(𝑇)  is the partition function, 𝐸𝑘  is the energy of the upper level, 𝑘 is the Boltzmann 

constant and 𝑇 is the temperature to be determined. We use the relative intensities of eight 

lines of singly ionized titanium to plot 𝑙𝑛 (𝐼𝑘𝑖𝜆𝑘𝑖𝐴𝑘𝑖𝑔𝑘) vs. 𝐸𝑘, in which case the slope is − 𝐸𝑘𝑘𝑇 .  The 

values of 𝜆𝑘𝑖 , 𝐴𝑘𝑖, 𝑔𝑘, and 𝐸𝑘 were taken from the NIST database [31], which are listed in 

Table 1. Stark broadening describes the full width at half maximum (Δ𝜆1/2) of an emission 

line with the electronic density given by equation (4).  Δ𝜆𝑠𝑡𝑎𝑟𝑘 = 2𝑤 ( 𝑁𝑒1016)                                                      (4) 

This technique allows us to determine the electron density between 1014 and 1018 cm-3 [36]. 𝑁𝑒 is the electronic density in cm-3 and 𝑤 is the electronic impact parameter, which was 

obtained from [37,38].  Ionic broadening may be neglected here because it is much less than 

electronic broadening.  The Δ𝜆𝑠𝑡𝑎𝑟𝑘 was obtained by means of the Lorentzian profile 



deconvolution process using individually ionized titanium line at 454.9 nm and the 

instrumental broadening [39].  

 Δ𝜆𝑠𝑡𝑎𝑟𝑘 = Δ𝜆𝑡𝑜𝑡 − Δ𝜆𝑖𝑛𝑠𝑡                                                      (5) 

The instrumental broadening (0.53±0.02 nm), was measured using the FWHM at the second 

laser harmonic.  
 

Table 1 

Wavelength 

 𝜆𝑘𝑖, nm 

Lower level Upper level 𝐴𝑘𝑖𝑔𝑘, s-1 𝐸𝑘, eV 

430.00 3d3a4P 3d2(3F)4pz4D° 1.30 x 108 4.0626 

439.50 3d2(1D)4sa2D   3d2(3F)4pz2F° 7.50 x 107 3.9043 

444.38 3d2(1D)4sa2D 3d2(3F)4pz2F° 6.48 x 107 3.8692 

446.45 3d3a2G 3d2(3F)4pz2F° 8.00 x 107 3.9043 

448.83 3d4s2c2D 3d2(1G)4px2F° 1.02 x 108 5.8851 

450.13 3d3a2G 3d2(3F)4pz2F° 5.62 x 107 3.8692 

454.96 3d3a2H 3d2(3F)4pz2G° 2.53 x 108 4.3082 

457.20 3d3a2H 3d2(3F)4pz2G° 1.54 x 108 4.2828 
 

Figures 6a and 6b show the time-evolution of Te and Ne at different RF powers.  We observe 

a tendency to decrease in Te and Ne with increasing power. However, the range of these 

variations is within the error bars and therefore, it is not possible to determine if it occurs due 

to the RF source. On the other hand, Figures 6c and 6d show the time-evolution of Te and Ne 

at different nitrogen pressures. Here we observe that, with increasing pressure, both the 

density and the temperature decrease slowly. We attribute this to the plume confinement, 

since fast image analysis at low pressure shows that the plume expands rapidly, while at high 

pressure, the expansion is slowed down by collisions with the background gas. 

The McWhirter criterion was used to validate whether the plasma is in LTE [40]  

𝑁𝑒(𝑐𝑚−3) ≥ 1.6𝑥1012𝑇1/2Δ𝐸3 ,                               (6) 

where T is the temperature (in kelvin) and Δ𝐸 is the energy difference between states (in 

electron-volts). The highest temperature value we obtained was approximately 2 eV. Hence 



in our experiment, the criterion gives 𝑁𝑒 ≥ 4.93 𝑥 10 15𝑐𝑚−3. Since, we measured an 

average density value of 1 𝑥 10 17𝑐𝑚−3, it can be assume that the plasma at 5 mm from the 

target is in LTE. 

 

 

Figure 6. Temporal evolution of a) Te and b) Ne at different RF power, c) Te and d) Ne at 

different neutral pressure. 

3.4. Interferometry 

A Mach-Zehnder interferometer was used to obtain a two-dimensional plume density profile 

at early times. The phase shift is proportional to the line integral of density [39]: 

Δϕ = 𝑒2𝜆4𝜋𝜀𝑜𝑚𝑒𝑐2 ∫ 𝑁𝑒 . 𝑑𝑙  ,                                           (7) 

where Δϕ is the phase shift in fringe, λ is the laser probe wavelength and 𝑁𝑒 is the electron 

density. Interferometric Data Evaluation Algorithms (IDEA) software was used to make the 



two-dimensional map [41,42]. FFT analysis was employed from IDEA to extract the phase 

map, subtracted the background fringe, and calibrated in units of (cm-2). 

 

 

 

Figure 7. Optical interferograms of Ti expansion at 1 Torr of neutral nitrogen at different 

delay times of a) 20 ns, b) 60 ns, and c) 114 ns, (d, e) Show the 2D electronic density map 

obtained at 1 Torr of nitrogen without and with RF plasma (70 WHF), respectively. Figs. 

(f,g,h) show the 2D electronic density map at 50 mTorr, 500 mTorr and 1 Torr of neutral 

nitrogen, respectively.  



Figures 7a, 7b, and 7c show a series of interferograms in 1 Torr of nitrogen at delays of 20 

ns, 60 ns, and 114 ns, respectively.  At 20 ns or less, a dark hemisphere is observed because 

at such early time the plasma density is too refractive. Later, at 114 ns, the plasma has 

expanded sufficiently and the fringe shift produced by the shock front is barely observable. 

The density Ne at this time is of the order of 1016 − 1017𝑐𝑚−3, which agrees with the Stark 

broadening analysis. At 60 ns, the plasma has an intermediate density, which allows a good 

quality interferogram. Figures 7d and 7e show 2D electronic density map obtained at 1 Torr 

of nitrogen without and with RF plasma (70W HF), respectively. Shock front formation is 

observed due to the compression of background gas by the plasma plume expansion. No 

significant differences are observed between this pair of images. However, a slight variation 

in the plasma plume size, with well-defined boundaries, is observed in the presence of the 

background RF plasma. Figures 7f, 7g, 7h show the behavior of plasma plume at different 

neutral nitrogen pressure. Here it may be seen that, as the pressure increases, the size of the 

plasma plume decreases; hence it is denser due to the effect of confinement.  Furthermore, a 

strong shock wave is observed at higher pressure due to the increase in the number of particles 

that are compressed by the plasma plume. In all cases, the electron density was calculated 

near the target, as indicated by a solid yellow line in figure 7h. On assuming the plasma to 

have cylindrical symmetry, the inverse Abel transform gives a maximum value for the 

titanium plasma density of 7.5 x1018 cm-3. 

 

3.5. Relevance to materials science  

The results we have presented provide extensive information which is very relevant 

understand and optimize the process of growing thin films of TiN.  The image analysis allows 

the measurement of maximum plume volume to be at 130 mTorr.  Consequently, a larger 

area may be deposited on a nearby substrate but at a lower deposition rate. At lower pressures, 

the deposition rate could increase while the coverage area decreases because the expansion 

is mostly perpendicular to the surface.  Furthermore, the adhesion to the substrate may well 

be greater due to free expansion with corresponding higher velocities. If the pressure is above 

130 mTorr, the deposition rate may increase but the area covered decreases. However, the 

adhesion to the substrate will decrease due to the deceleration of the plasma by the drag 

effect.  Again, the film roughness may well increase due to the appearance of small droplets 



formed in the cooling process of the confined plasma. This is especially detrimental to 

possible optical applications.  Optical spectroscopy highlights more relevant results of this 

work. We observe that increasing the nitrogen pressure increases the concentration of N II 

species. This favors the concentration of nitrogen in the deposited film [33]. However, as we 

have also discussed, increasing pressure could increase film roughness. On the other hand, 

we observe that high-frequency power increases the ion concentration due to the very rapid 

response of electrons at high frequencies which enhances excitation by electron-atom 

collision. This effect is useful since a higher concentration of nitrogen in the film can be 

obtained without affecting its roughness. Finally, interferometry allows spatial and temporal 

measurement of the plasma plume density and shock wave under different experimental 

conditions. Moreover, interferometry allows us to observe different dynamic structures that 

cannot be visualized by image analysis alone.  

 

4. Conclusions 

We have used a radio frequency discharge to study the effect of RF power on the composition 

and dynamics of the titanium plasma plume formed in a PE-PLD system with nitrogen at 

different background pressures. We have combined three different non-invasive techniques 

to complete a coherent study. From the fast image analysis, information on the velocity and 

morphology was obtained for different pressure values and RF power. In addition, the 

information from the images allows us to distinguish the region of the plasma where the 

spectra were taken, which in turn allows an improved interpretation of the evolution of the 

plasma density and temperature.  

The principal difference between the PLD and PE-PLD system is observed in the 

emission spectra analysis, where an increase in the background reactivity is shown to be the 

case. In a nitrogen background an increase in the N II line (460.1 nm) was observed with 

increasing frequency. Furthermore, a decrease in the Ti II line (454.9 nm) was observed with 

increasing power. This allows the conclusion that, by increasing the background reactivity, 

titanium may either recombine with the background RF plasma species or make transitions 

to another energy level due to changes in the plasma parameters. With increasing pressure, 

the effect of confinement affects the velocity of the plume and in consequence the cooling 

rate and density of the plasma. In addition it was observed that, with increasing pressure, the 



intensity of the Ti II (454.9 nm) and N II (460.1 nm) lines increase due to increased 

collisionality. Finally, a denser shock wave is observed with increasing pressure.  

The plasma parameters and characteristics of this study contribute to the 

understanding of both basic plasma physics and applications in thin film deposition by PE-

PLD.  A consequence of this is that it is expected that the increase in ionic species of Ti, and 

N, due to the enhanced collisionality, will improve the deposition and chemical bonding of 

titanium alloys. Future research in hand will study the effects of these differences in dynamics 

and composition in the growth of TiN thin films. 
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