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External pilot trials of complex interventions are used to help determine if
and how a confirmatory trial should be undertaken, providing estimates of
parameters such as recruitment, retention, and adherence rates. The decision
to progress to the confirmatory trial is typically made by comparing these esti-
mates to pre-specified thresholds known as progression criteria, although the
statistical properties of such decision rules are rarely assessed. Such assessment
is complicated by several methodological challenges, including the simultane-
ous evaluation of multiple endpoints, complex multi-level models, small sample
sizes, and uncertainty in nuisance parameters. In response to these challenges,
we describe a Bayesian approach to the design and analysis of external pilot
trials. We show how progression decisions can be made by minimizing the
expected value of a loss function, defined over the whole parameter space to
allow for preferences and trade-offs between multiple parameters to be articu-
lated and used in the decision-making process. The assessment of preferences is
kept feasible by using a piecewise constant parametrization of the loss function,
the parameters of which are chosen at the design stage to lead to desirable operat-
ing characteristics. We describe a flexible, yet computationally intensive, nested
Monte Carlo algorithm for estimating operating characteristics. The method is
used to revisit the design of an external pilot trial of a complex intervention
designed to increase the physical activity of care home residents.
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1 INTRODUCTION

Complex interventions, defined as those comprised of several interacting components,1 can be challenging to evaluate
in randomized controlled trials (RCTs) due to factors such as slow patient recruitment, poor levels of adherence to the
intervention, and low completeness of follow-up data. To identify these problems prior to the main RCT we often conduct
small trials1 known as pilots. These typically take the same form as the planned RCT but with a considerably lower sample
size.2 If there is a seamless transition between the pilot and the main RCT, with all data being pooled and used in the final
analysis, they are known as internal pilots. External pilots, in contrast, are carried out separately to the main RCT with
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a clear gap between the two trials. Pilot trials, which aim to inform the feasibility and optimal design of a subsequent
definitive trial,3 are distinct from phase II trials, which focus instead on assessing potential efficacy and safety.

The data generated by an external pilot trial are used to help decide if the main RCT should go ahead, and if so, whether
the intervention or the trial design should be adjusted to ensure success. In the United Kingdom, the National Institute for
Health Research asks that these progression criteria are pre-specified and included in the research plan,4 and the recent
CONSORT extension to randomized pilot trials requires their reporting.5 A single pilot trial can collect data on several
progression criteria, often focused on the aforementioned areas of recruitment, protocol adherence, and data collection.6
Although they may take the form of single threshold values leading to binary stop/go decision rules, investigators are
increasingly using two thresholds to accommodate an intermediate decision between stopping altogether and progressing
straight to the main trial, which would allow progression but only after some adjustments have been made.5 The need for
appropriate progression criteria is clear when we consider the consequences of poor post-pilot progression decisions. If
the criteria are too lax, there is a greater risk that the main trial will go ahead but found to be infeasible and thus a waste
of resources; if the criteria are too strict, a promising intervention may be discarded under the mistaken belief that the
main trial would be infeasible. Despite this, there is little published guidance about how they should be determined.6,7

In addition to pre-specifying progression criteria, another key design decision is the choice of pilot sample size. Con-
ventional methods of sample size determination, which focus on ensuring the trial will have sufficient power to detect a
target difference in the primary outcome, are rarely used since they would lead to a pilot sample size comparable with the
main trial sample size. Several methods for pilot sample size determination instead aim to provide a sufficiently precise
estimate of the variance in the primary outcome measure to inform the sample size of the main trial.8-13 Others have sug-
gested a simple rule of thumb for when the goal is to identify unforeseen problems.14 While some have noted that the low
sample size in pilots may lead to a considerable probability that a certain progression criterion will be met (or missed) due
to random sampling variation,12,15 and despite the consequences of making the wrong progression decision, the statistical
properties of pilot decision rules are rarely used to inform the choice of sample size. This may be due to the method-
ological challenges commonly found in pilot trials of complex interventions, including the simultaneous evaluation of
multiple endpoints, complex multi-level models, small sample sizes, and prior uncertainty in nuisance parameters.16

In this article, we will describe a method for designing and analyzing external pilot trials which addresses these chal-
lenges. We take a Bayesian view, allowing for complex models to be estimated in the typically small sample context of pilot
trials and for external information to be leveraged.17 We propose progression decisions should then be made to minimize
the expected value of a loss function with respect to a posterior distribution on model parameters. This decision-theoretic
approach allows for the various trade-offs between model parameters to be expressed and guide progression decisions.
By implicitly defining a pre-specified decision rule, the use of a loss function also ensures operating characteristics can
be calculated and used as a basis for pilot trial sample size determination.

We propose a loss function with three parameters whose values can be determined either through direct elicitation
of preferences or by considering the pilot trial operating characteristics they lead to. The operating characteristics we
propose are all unconditional probabilities (with respect to a prior distribution) of making incorrect decisions, also known
as assurances.18 Using assurances rather than the analogous frequentist error rates brings several benefits, including the
ability to make use of existing knowledge whilst allowing for any uncertainty, and a more natural interpretation.19 As
we will show, assurances are also useful when our preferences for different end-of-trial decisions are based on several
attributes in a complex way that involves trading off some against others.

The remainder of this article is organized as follows. In Section 2, we describe the general framework for pilot design
and analysis, some operating characteristics used for evaluation, and a routine for optimizing the design. Two illustrative
examples are then described in Sections 3 and 4. Finally, we discuss implications and limitations in Section 5.

2 METHODS

2.1 Prior specification

Consider a pilot trial which will produce data x according to model p(x|𝜃). We decompose the parameters into 𝜃 = (𝜙, 𝜓),
where 𝜙 denotes the parameters of substantive interest and 𝜓 the nuisance parameters. We follow Wang and Gelfand20

and assume that two joint prior distributions of 𝜃 have been specified. First, the analysis prior pA(𝜃) is that which will be
used when fitting the model once the pilot data is obtained. It has been argued that regulators are unlikely to accept the
prior beliefs of the trial sponsor for analysis of the data,18,21 and as such a weakly or non-informative prior should be used
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WILSON et al. 2879

for pA(𝜃) in order to “let the data drive the inference.”20 The choice of such a prior will depend on the specific model being
used, although methodological guidance for various specific cases such as logistic regression22 and hierarchical models23

is available. It should be emphasized, however, that the typically small sample size of a pilot trial can mean the effect of
the analysis prior is non-negligible. As such, the analysis prior should provide a credible and justifiable representation
of prior ignorance, avoiding extreme default choices which may place too much prior weight on infeasible regions of the
parameter space.

The design prior pD(𝜃) will be used when evaluating the statistical performance of a proposed pilot trial design. It
may be considered as purely hypothetical in the spirit of a “what-if” analysis,20 in which case several candidate design
priors may be suggested and performance evaluated under each of these. Alternatively, and as we will assume in the
remainder of this article, pD(𝜃) can be a completely subjective prior which fully expresses our knowledge and uncertainty
in the parameters at the design stage. Although eliciting such a prior is potentially challenging, many examples describing
successful practical applications of expert elicitation for clinical trial design are available,19,21,24 as are tools for its conduct
such as the Sheffield Elicitation Framework (SHELF).25 From a strictly subjective Bayesian perspective, we can then
view the weakly informative analysis prior as representing the beliefs of the person who will analyze the data and who is
relatively uninformed with regards to the model parameters.

2.2 Analysis and progression decisions

After observing the pilot data x, we must decide whether or not to progress to the main RCT. We consider three possible
actions following the aforementioned “traffic light” system commonly used in pilot trials:

• red—discard the intervention and stop all future development or evaluation;
• amber—proceed to the main RCT, but only after some modifications to the intervention, the planned trial design, or

both; or
• green—proceed immediately to the main RCT.

In what follows we will denote these decisions by r, a, and g, respectively. We assume that our preferences between the
three possible decisions are influenced by 𝜙 but independent of 𝜓 , formalizing the separation of 𝜃 into substantive and
nuisance components. We partition the substantive parameter space Φ into three disjoint subspaces ΦI , for I =R, A, G.
Each subspace label corresponds to the decision we would make if we knew the true value of 𝜙. For example, if 𝜙 ∈ ΦR
then the optimal decision is r(ed)-halt development and do not proceed to a definitive trial. We will henceforth refer to
these three subsets as hypotheses, and to conditioning on the event 𝜙 ∈ ΦI as “under hypothesis ΦI .” Throughout, we will
distinguish hypothesis I from the corresponding optimal decision i by using upper and lower case letters, respectively.

When 𝜙 ∈ ΦI and we choose a decision j≠ i, there will be negative consequences. In particular, we may make three
kinds of mistakes: proceed to an infeasible main RCT; discard a promising intervention; or make unnecessary adjustments
to the intervention or trial design. We denote these errors as E1, E2, E3, respectively. The occurrence of error j will be
denoted by Ej = 1, otherwise Ej = 0. An error’s occurrence will be a function of the decision made d and the true parameter
value 𝜙, that is, Ej(d, 𝜙) ∶ {r, a, g} × Φ → {0, 1} for j= 1, 2, 3. We then use a loss function to express the preferences of the
decision-maker(s) on the space of possible events E1 ×E2 ×E3 under uncertainty, defined as

L(d, 𝜙) = c1E1(d, 𝜙) + c2E2(d, 𝜙) + c3E3(d, 𝜙).

Note that the additive form of the loss function implies that the our preferences for any one of the attributes E1, E2, E3 are
independent of the values taken by the others.26

To determine appropriate values of the parameters c1, c2, c3, we first scale the loss function by setting c1 + c2 + c3 = 1.
Thus, a loss of 0 is obtained if no errors occur, and a loss of 1 is obtained if all errors occur (although note that this is
not possible in this setting). We then follow the procedure described by French and Rios Insua (page 99),26 eliciting some
judgments from the decision-maker(s) and using these to determine the values of c1, c2, c3. One such judgment involves
a simple gamble of obtaining the event (E1 = 0, E2 = 0, E3 = 0) with probability 1− p1 and the event (E1 = 1, E2 = 0, E3 = 1)
with probability p1. The decision-maker is asked to compare this gamble against an alternative of obtaining the event
(E1 = 1, E2 = 0, E3 = 0) for certain, and to adjust the value of p1 until they feel indifferent between the two options.
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Hypothesis

𝝓 ∈ 𝚽R 𝝓 ∈ 𝚽A 𝝓 ∈ 𝚽G

Decision r 0 c2 c2

a c1 + c3 0 c3

g c1 c1 + c2 0

T A B L E 1 Losses associated with each decision under each
hypothesis

Since this indifference implies the expected losses of the two options are equal, we will then have

p1(c1 + c3) = c1.

Similarly, we can ask the decision-maker(s) to consider a gamble between the event (E1 = 0, E2 = 0, E3 = 0) with proba-
bility 1− p2 and the event (E1 = 1, E2 = 1, E3 = 0) with probability p2, and compare this against the option of obtaining
(E1 = 1, E2 = 0, E3 = 0) for certain. Again, by determining the value of p2 which corresponds to indifference and thus equal
expected loss, we deduce that

p2(c1 + c2) = c1.

This gives three equations that can be solved to obtain

c1 =
−p1p2

p1p2 − p1 − p2
, c2 =

p1p2 − p1

p1p2 − p1 − p2
c3 =

p1p2 − p2

p1p2 − p1 − p2
.

Note that the two specific judgments suggested here are only two of many possible similar questions which could be posed
to the decision-maker(s). It is recommended that more indifferences are elicited in order to seek out any inconsistencies
and further clarify their true preferences.

The loss function will then take values as given in Table 1. For example, suppose we make a “green” decision under
the “amber” hypothesis. The subsequent trial will be infeasible because the necessary adjustments will not have been
made; but we have also discarded a promising intervention, since it would have been redeemed had the adjustments been
made. The overall loss is therefore c1 + c2.

Given a loss function with parameters c= (c1, c2, c3), we follow the principle of maximizing expected utility (or in our
case, minimizing the expected loss) when making a progression decision. We first use the pilot data in conjunction with
the analysis prior pA(𝜃) to obtain a posterior p(𝜙 | x), and then choose the decision i* such that

i∗ = arg mini∈{r,a,g}E𝜙|x[L(i, 𝜙)] (1)

= arg mini∈{r,a,g} ∫ L(i, 𝜙)p(𝜙|x)d𝜙. (2)

We can simplify this expression by noting that, given the piecewise constant nature of the loss function, the expected
loss of each decision depends only on the posterior probabilities pI = Pr[𝜙 ∈ ΦI | x] for I =R, A, G. We then have

E𝜙|x[L(r, 𝜙)] = pAc3 + pGc3, (3)

E𝜙|x[L(a, 𝜙)] = pRc1 + pRc2 + pGc2, (4)

E𝜙|x[L(g, 𝜙)] = pRc1 + pAc1 + pAc3. (5)

For some simple models that admit a conjugate analysis, the posterior probabilities pI can be obtained exactly. Other-
wise, Monte Carlo estimates can be computed based on the samples from the joint posterior distribution generated by an
MCMC analysis of the pilot data. Specifically, given M samples 𝜙(1), 𝜙(2), … , 𝜙(M) ∼ p(𝜙 | x),

pI ≈
1
M

M∑
k=1

I(𝜙(k) ∈ ΦI), (6)

where I(.) is the indicator function.
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WILSON et al. 2881

2.3 Operating characteristics

Defining a loss function and following the steps of the preceding section effectively prescribes a decision rule mapping
the pilot data sample space  to the decision space {r, a, g}. To gain some insight at the design stage into the properties of
this rule, we propose to calculate some trial operating characteristics. These take the form of unconditional probabilities
of making an error when following the rule, calculated with respect to the design prior pD(𝜃). We consider the following:

• OC1 = EpD[E1] = Pr[a & 𝜙 ∈ ΦR] + Pr[g & 𝜙 ∈ ΦR ∪ ΦA] - probability of proceeding to an infeasible main RCT;
• OC2 = EpD[E2] = Pr[r & 𝜙 ∈ ΦA ∪ ΦG] + Pr[g & 𝜙 ∈ ΦA] - probability of discarding a promising intervention;
• OC3 = EpD[E3] = Pr[a & 𝜙 ∈ ΦR ∪ ΦG] - probability of making unnecessary adjustments to the intervention or the trial

design.

These operating characteristics can be estimated using simulation. First, we draw N samples
(𝜃(1), x(1)), (𝜃(2), x(2)), … , (𝜃(N), x(N)) from the joint distribution p(𝜃, x) = p(x|𝜃)pD(𝜃). For each dataset, we then apply the
analysis and decision-making procedure described in Section 2.2, using some vector c to parametrize the loss function.
This results in N decisions i(k) which can be contrasted with the corresponding true parameter value 𝜃(k) and in which
hypothesis it resides, noting if any of the three types of errors have been made. MC estimates of the operating character-
istics can then be calculated as the proportion of occurrences of each type of error in the N simulated cases. Assuming
that N is large, the unbiased MC estimate of an operating characteristic with true probability p will be approximately
normally distributed with variance p(1− p)/N.*

2.4 Eliciting loss parameters through optimization

Elicitation of the loss function parameters c= (c1, c2, c3) in the manner described in Section 2.2 may be challenging, par-
ticularly when multiple decision-makers are involved.27 An alternative way to determine c is through examining the
operating characteristics it leads to (for some fixed pilot design). As c is adjusted, the balance between the conflicting
objectives of minimizing each OC will change, and the task is then to find the c which returns the best balance from the
perspective of the decision-maker. Formally, and thinking of operating characteristics as functions of c, we wish to solve
the multi-objective optimization problem

min
c∈ (OC1(c), OC2(c), OC3(c)) (7)

where  = {c1, c2 ∈ [0, 1] | c1 + c2 ≤ 1}.
Since the three objectives are in conflict, there will be no single solution which simultaneously minimizes each one.

We would instead like to find a set ∗ = {c(1), c(2), … , c(K)} such that each member provides a different balance between
minimizing the three operating characteristics. If there exist c, c′ ∈ ∗ such that OCi(c′) ≤ OCi(c) for all i∈ {1, 2, 3} and
OCi(c′) < OCi(c) for some i∈ {1, 2, 3}, we say that c′ dominates c. In this case, because c leads to worse (or at least no
better) values of all three operating characteristics when compared to c′, we have no reason to include it in our set ∗.
Because the search space  has only two dimensions, problem (7) can be approximately solved by generating a uniform
random sample of c’s and estimating the operating characteristics for each. Any parameters which are dominated in
this set can then be discarded, and the operating characteristics of those which remain can be illustrated graphically.
The decision-maker(s) can then view the range of available options, all providing different trade-offs among the three
operating characteristics, and choose from among them.

To solve the problem in a timely manner, we must be able to estimate operating characteristics quickly. Noting from
Equation (3) that the expected loss of each decision depends only on c and the posterior probabilities pR, pA and pG,
we first generate N samples of these posterior probabilities and then use this same set of samples for every evaluation.

*Note that in the case of complex models which do no admit a conjugate analysis, the posterior probabilities obtained using an MCMC analysis will
themselves be approximate and as such the optimal decision will be subject to error, which may increase the variance of the operating characteristic
estimates. However, this issue can be sidestepped by assuming that, for each dataset, the analysis that is simulated corresponds exactly to the analysis
that would be carried out in practice. In particular, we assume that exactly M posterior samples will be generated by the same MCMC algorithm, using
the same seed in the random number generator.
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2882 WILSON et al.

This approach not only ensures that optimization is computationally feasible, but also means that differences in operat-
ing characteristics are entirely due to differences in costs, as opposed to differences in the random posterior probability
samples.

3 ILLUSTRATIVE EXAMPLE—CHILD PSYCHOTHERAPY (TIGA- CUB)

TIGA-CUB (Trial on Improving Inter-Generational Attachment for Children Undergoing Behavior problems) was a
two-arm, individually-randomized, controlled pilot trial informing the feasibility and design of a confirmatory RCT com-
paring Child Psychotherapy (CP) to Treatment as Usual (TaU), for children with treatment resistant conduct disorders.
The trial aimed to recruit 60 primary carer-child dyads, to be randomized equally to each arm. This sample size was
chosen to give desired levels of precision in the estimates of the common standard deviation of the primary outcome,
the follow-up rate, and the adherence rate. Here, we focus on the latter two parameters and consider how our proposed
method could have informed the design of TIGA-CUB.

We model the number of participants successfully followed-up (denoted f ) using a binomial distribution with param-
eter pf , and similarly the number successfully adhering to the intervention (denoted a) with a binomial distribution with
parameter pa. For a fixed pilot trial per-arm sample size n, the parameters of the model are 𝜙 = (pf , pa), with no nuisance
parameters. Assuming for simplicity that the numbers followed-up and adhering are independent, the likelihood is then

p(f , a|pf , pa) =
[(

2n
f

)
pf

f (1 − pf )2n−f
]
×
[(n

a

)
pa

a(1 − pa)n−a
]
.

At the design stage, the follow-up rate pf was thought to be somewhere in the range 62% to 92%, while the adherence
rate pa was thought to lie between 40% and 95%. We reflect these ranges of uncertainty in our design priors by using beta
distributions pf ∼Beta(40, 10) (thus giving a prior mean of 0.8), and pa ∼Beta(11.2, 4.8) (giving a prior mean of 0.7). We
assume that a uniform “non-informative” prior Beta(1, 1) will be used for each parameter in the analysis.

TIGA-CUB’s progression criteria included only simple stop/go thresholds, with no intermediate “amber” decisions. As
such, in this example, we partition the parameter space into two hypotheses, ΦG and ΦR. For the purposes of illustration,
we define the hypothesis ΦG as the subset of the parameter space where pf >= 0.8 and pa >= 0.7, hypothesis ΦR being
its complement. Thus, in this example, we do not consider there to be a trade-off between the two parameters of interest.
For the main trial to be feasible, both must be above their respective thresholds. The prior distributions on parameters pf
and pa imply an a priori probability of 0.28 that 𝜙 ∈ ΦG, that is, that both follow-up and adherence are sufficiently high.

In this special case, the loss function is

L(d, 𝜙) = c1E1(d, 𝜙) + c2E2(d, 𝜙)

and the expected losses of decisions g and r will be E𝜙|x[L(g, 𝜙)] = c1pR and E𝜙|x[L(r, 𝜙)] = c2pG, where pR + pG = 1 and
c1 + c2 = 1. Decision g is therefore optimal whenever pG > c1. The posterior probability pG can be easily calculated given
the pilot data due to the beta prior distributions being conjugate. Specifically, given a total sample size 2n and observing
xf participants with follow-up and xa participants with adherence, the posterior probability Pr[𝜙 ∈ ΦG | x] is given by

pG = [1 − F(0.8; 1 + xf , 1 + 2n − xf )] × [1 − F(0.7; 1 + xa, 1 + n − xa)], (8)

where F(y; 𝛼, 𝛽) denotes the cumulative probability function of the beta distribution with parameters 𝛼, 𝛽.
At the design stage, we can calculate the probability of an infeasible trial (OC1),

Pr[g, 𝜙 ∈ ΦR] = ∫ΦR

Pr[g | 𝜙]p(𝜙)d𝜙 (9)

= ∫ΦR

⎛⎜⎜⎝
2n∑

xf =0

[ n∑
xa=0

I(pG < c1 | xf , xa,n)p(xa | 𝜙)] p(xf | 𝜙)⎞⎟⎟⎠ p(𝜙)d𝜙, (10)

and similarly for the probability of discarding a promising intervention. As these calculations can be computation-
ally expensive for moderate n due to the nested summation term, we use Monte Carlo approximations as described in
Section 2.
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F I G U R E 1 Probabilities of an infeasible main trial
(OC1) and of discarding a promising intervention (OC2)
for a range of loss parameters c1 when sample size is
fixed at n= 30
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F I G U R E 2 Probabilities
of an infeasible main trial (OC1)
and of discarding a promising
intervention (OC2) for a range
of per-arm sample sizes and
different values of the loss
parameter c1
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Keeping the sample size fixed at n= 30 per arm, we estimated the operating characteristics using a range of cost param-
eters values c1 = 0, 0.02, 0.04, … , 1 using N = 106 Monte Carlo samples. The results are plotted in Figure 1, with some
specific values of c1 highlighted. The decision-maker can decide which point on the operating characteristic curve best
reflects their own priorities in terms of the two types of error. For example, if the consequences of running an infeasi-
ble main RCT are considered less important than those of needlessly discarding a potentially effective intervention, the
decision-maker may choose to set c1 = 0.2 and would obtain OC1 = 0.19, OC2 = 0.05.

To examine the effect of adjusting the sample size, we evaluated the operating characteristics obtained for
n= 10, 12, 14, … , 50 per arm whilst setting c1 = 0.2, 0.36, 0.5. The results are shown in Figure 2. Each line includes a
shaded area denoting the 95% Monte Carlo error intervals, although these are so small as to be illegible given the high
number (N = 106) of MC samples used for each calculation. Although operating characteristics generally improve as the
sample size is increased, we see that for c1 = 0.36 and 0.5 the probability of an infeasible main trial, OC1, remains flat
whilst OC2 has a downward trend. As we would expect, the expected loss reduces smoothly as n increases in all cases. In
contrast, there is some variability beyond that explained by MC error in the OCs. This can be explained by the discrete
nature of simulated adherence and follow-up data. Our results show that, for the design priors and hypotheses used in
this example, the chosen sample size in TIGA-CUB of n= 30 can provide error rates broadly in line with conventional
type I and II error rates under the usual hypothesis testing framework.

4 ILLUSTRATIVE EXAMPLE—PHYSICAL ACTIVITY IN CARE HOMES
(REACH)

The REACH (Research Exploring Physical Activity in Care Homes) trial aimed to inform the feasibility and design of a
future definitive RCT assessing a complex intervention designed to increase the physical activity of care home residents.28

The trial was cluster randomized at the care home level, with twelve care homes in total randomized equally between
treatment as usual (TaU) and the intervention plus TaU.

Data on several feasibility outcomes were collected. Here, we focus on four: recruitment (measured in terms of the
average number of residents in each care home who participate in the trial, or average cluster size); adherence (a binary
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T A B L E 2 Pre-specified progression criteria used in the original REACH design

Outcome Red Amber Green

Recruitment (avg. per care home) Less than 8 Between 8 and 10 At least 10

Adherence Less than 50% Between 50% and 75% At least 75%

Follow-up Less than 65% Between 65% and 75% At least 75%

indicator at the care home level indicating if the intervention was fully implemented); data completion (a binary indicator
for each resident of successful follow-up at the planned primary outcome time of 12 months); and potential efficacy
(a continuous measure of physical activity at the resident level). Progression criteria using the traffic light system were
pre-specified for all of these outcomes except potential efficacy, as detailed in Table 2.

Denoting the size of the jth cluster by mj and the number of care homes in each arm by k, we assume that clus-
ter sizes are normally distributed, mj ∼ N(𝜇c, 𝜎

2), j = 1, … , 2k. We further assume that the probability of a participant
being followed-up is constant across clusters and arms, and that the total number follows a binomial distribution
f ∼ Bin(

∑2k
j=1 mj, pf ). The number of care homes which successfully adhere to the intervention is assumed to binomially

distributed, a∼Bin(k, pa).
The continuous measure of physical activity is expected to be correlated within care homes. We model this using a

random intercept, where the outcome yij of resident i in care home j is

yij = Xj × Yj × 𝜇 + uj + 𝜀i. (11)

Here, Xj is a binary indicator of care home j being randomized to the intervention arm, Y j is a binary indicator of care
home j successfully adhering to the intervention, 𝜇 is the mean treatment effect, uj ∼  (0, 𝜎2

B) is the random effect for
care home j, and 𝜀i ∼  (0, 𝜎2

W ) is the residual for resident i. We parametrize the model using the intracluster correlation
coefficient, 𝜌 = 𝜎2

B∕(𝜎
2
B + 𝜎2

W ).
The parameters describing average cluster size, follow-up, and adherence rates, and mean treatment effect are of sub-

stantive interest when making progression decisions, giving 𝜙 = (𝜇c, pf , pa, 𝜇). The remainder are nuisance parameters,
𝜓 = (𝜎2, 𝜌, 𝜎2

W ).

4.1 Prior and hypothesis specification

To begin specifying a model for the REACH trial, we first note that the four substantive parameters can be divided into two
pairs. First, mean cluster size and follow-up rate relate to the amount of information which a confirmatory trial will gather.
Second, potential efficacy and adherence relate to the effectiveness of the intervention, where effectiveness is thought of
as the effect which will be obtained in practice when the effect of non-adherence is accounted for. We expect that a degree
of trade-off between adherence and potential efficacy will be acceptable, with a decrease in one being compensated by an
increase in the other. Likewise, low mean cluster size could be compensated to some extent by higher follow-up rate, and
vice versa.

While there may be trade-offs within these pairs of parameters, we do not expect trade-offs between them. A trial
with no effectiveness will be futile regardless of the amount of information collected, and so should not be conducted.
Similarly, a confirmatory trial should not be conducted if it is highly unlikely to produce enough information for the
research question to be adequately answered. We therefore consider the sub-spaces of Φ formed by these parameter pairs,
partition these into hypotheses, and combine these together. Constructing hypotheses in these two-dimensional spaces is
cognitively simpler than working in the original four-dimensional space, not least because they can be easily illustrated
graphically.

Formally, let Φi be the sub-space of mean cluster size and follow-up rate, and Φe be that of adherence and potential
efficacy. Having specified hypotheses Φi

I ,Φ
e
I for I =R, A, G, we then have

𝜙 ∈
⎧⎪⎨⎪⎩
ΦR if 𝜙i ∈ Φi

R or 𝜙e ∈ Φe
R

ΦG if 𝜙i ∈ Φi
G and 𝜙e ∈ Φe

G

ΦA otherwise.

(12)
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F I G U R E 3 Marginal hypotheses over parameters for, A, follow-up rate pf and mean cluster size 𝜇c; and, B, adherence rate pa and
potential efficacy 𝜇. Each point is a sample from the joint prior distribution [Colour figure can be viewed at wileyonlinelibrary.com]

4.1.1 Follow-up and cluster size

Recall that cluster sizes are assumed to be normally distributed with mean 𝜇c and variance 𝜎2. A normal-inverse-gamma
prior

𝜎2 ∼ Γ−1(𝛼0, 𝛽0), 𝜇c ∼ N(𝜇0, 𝜎
2∕𝜈0) (13)

is placed on the mean and variance to allow for prior uncertainty in both parameters. It was anticipated that an average
of 8 to 12 residents would be recruited in each care home. To reflect this prior belief we set the hyper-parameters to
𝜇0 = 10, 𝜈0 = 6, 𝛼0 = 20, 𝛽0 = 39, giving a prior cluster size of 10 with mean variance 2.05.

For the probability of successful follow-up, pf , we take a Beta distribution with hyper-parameters 𝛼0 = 22.4, 𝛽0 = 9.6
as the prior. This gives a prior with a mean of 0.7 and a standard deviation of 0.08.

To partition the parameter space into hypotheses, we first consider the case where follow-up is perfect, that is, pf = 1.
Conditional on this, we reason that a mean cluster size of below 5 should lead to a red decision (stop development),
whereas a size of above 7 should lead to a green decision (proceed to the main trial). As the probability of successful
follow-up decreases, we suppose that this can be compensated by an increase in mean cluster size. We assume the nature
of this trade-off is linear and decide that if pf were reduced to 0.8, we would want to have a mean cluster size of at least 8
to consider decisions a or g. We further decide that a follow-up rate of less than pf = 0.6 would be critically low, regardless
of the mean cluster size, and should always lead to decision r. Similarly, a follow-up rate of 0.6≤ pf < 0.66 should lead
to modification of the intervention or trial design. Together, these conditions lead to the following partitioning of the
parameter space:

(pf , 𝜇c) ∈
⎧⎪⎨⎪⎩
Φi

R if pf < 0.6 or 20 − 15pf > 𝜇c

Φi
G if pf > 0.66 and 22 − 15pf < 𝜇c

Φi
A otherwise.

(14)

The hypotheses are illustrated in Figure 3A. Having specified both the hypotheses and the prior distribution for
these two parameters, we can obtain prior probabilities of each hypothesis by sampling from the prior and calculating
the proportion of these samples falling into the regions Φi

R,Φ
i
A and Φi

G. We have plotted 1000 samples from the prior
in Figure 3A, falling into hypotheses Φi

R,Φ
i
A, and Φi

G in proportions 0.354, 0.517, and 0.129, respectively. This demon-
strates that there is significant prior uncertainty regarding the optimal decision, indicating the potential value of the pilot
trial.
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2886 WILSON et al.

4.1.2 Adherence and potential efficacy

Having defined priors and hypotheses with respect to cluster size and follow-up, we now consider adherence and potential
efficacy. Recall that the number of care homes which successfully adhere to the intervention delivery plan is assumed to
be binomially distributed with probability pa. We assume that adherence is absolute in the sense that all residents in a
care home which does not successfully deliver the intervention will not receive any of the treatment effect. We place a
Beta prior on pa, with hyper-parameters 𝛼 = 28.8 and 𝛽 = 3.2 giving a prior mean of 0.9 and a standard deviation of 0.05.

For the continuous measure of physical activity, we place priors on the mean effect 𝜇, the intracluster correlation
coefficient 𝜌, and the within-cluster variance 𝜎2

W in the manner suggested by Spiegelhalter.23 Specifically, we choose

𝜇 ∼ N(0.2, 0.252) (15)

𝜎2
W ∼ Γ−1(50, 45) (16)

𝜌 ∼ Beta(1.6, 30.4). (17)

To reflect prior expectation of an ICC around 0.05 but possibly as large as 0.1, the hyperparameters give a prior mean
of 0.05 for the ICC with a prior probability of 0.104 that it will exceed 0.1.

While there is potential for adherence to be improved after the pilot, we assume there will be little opportunity to
improve the potential efficacy of the intervention. Moreover, we suppose an absolute improvement in adherence of up
to around 0.1 is feasible. To define the hypotheses in this subspace, we first set a minimal level of potential efficacy to be
0.1, and decide that we would be happy to make decision g at this point if and only if adherence is perfect. As pa reduces
from 1, a corresponding linear increase in potential efficacy is considered to maintain the overall effectiveness of the
intervention. The rate of substitution for this trade-off is determined to be approximately 0.57 units of potential efficacy
per unit of adherence probability. We consider an absolute lower limit in adherence of pa = 0.5, below which we will
always consider decision r to be optimal. Taking these considerations together, the marginal hypotheses are defined as

(pa, 𝜇) ∈
⎧⎪⎨⎪⎩
Φe

R if pa < 0.5 or 0.96 − 0.57𝜇 > pa

Φe
G if pa > 0.6 and 1.06 − 0.57𝜇 < pa

Φe
A otherwise.

(18)

The hypotheses are illustrated in Figure 3B. Again, a sample of size 1000 from the joint marginal prior distribution
p(pa, 𝜇) is also plotted, falling into hypotheses Φe

R,Φ
e
A, and Φe

G in proportions 0.234, 0.470, and 0.296, respectively. As
before, this indicates substantial prior uncertainty regarding the optimal decision and thus supports the use of a pilot
study.

The marginal hypotheses are combined together using Equation (12). Considering the same 1000 samples from the
design prior plotted in Figure 3, these now fall into the regions ΦR,ΦA, and ΦG in proportions 0.507, 0.458, and 0.035,
respectively. Note that the prior probabilities of these overall hypotheses are quite different to those of the marginal
hypotheses. In particular, there is a considerable increase in the probability that decision r will be optimal, and a
considerable decrease that decision g will be.

4.2 Evaluation

4.2.1 Weakly informative analysis

We applied the proposed method assuming that a weakly informative joint prior distribution will be used at the analysis
stage.† We took the sample size of the trial to be k= 6 clusters per arm. For calculating operating characteristics we
generated N = 104 samples from the joint distribution p(𝜃, x) = p(x|𝜃)pD(𝜃). We analyzed each simulated dataset using
Stan via the R package rstan,29 in each case generating 5000 samples in four chains and discarding the first 2500 samples

†Full details of the weakly informative prior are given in the supplementary material (see data availability statement).
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WILSON et al. 2887

F I G U R E 4 Operating characteristics of the
example pilot trial for a range of loss parameter vectors,
when a weakly informative analysis prior is used
[Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Estimated operating
characteristics (with standard errors) of the
REACH trial for the three loss parameter
vectors highlighted in Figure 4, when a
weakly informative analysis prior is used

Label (c1, c2, c3) OC1 OC2 OC3

a (0.07, 0.9, 0.03) 0.107 (0.003) 0.108 (0.003) 0.232 (0.004)

b (0.18, 0.58, 0.24) 0.021 (0.001) 0.394 (0.005) 0.08 (0.003)

c (0.01, 0.29, 0.7) 0.151 (0.004) 0.539 (0.005) 0.002 (0)

Note: Costs have been rounded to 2 decimal places; operating characteristics and their errors to 3.

in each to allow for burn-in, leading to M = 104 posterior samples in total. This gave a maximum Monte Carlo error
of approximately 0.005 when estimating a posterior probability Pr[𝜙 ∈ ΦI | x], which we considered sufficient. These
posterior samples were then used to find the posterior probabilities of each hypothesis, for each simulated dataset.

We evaluated the operating characteristics for a sample of parameters (c1, c2, c3) as described in Section 2.4. A total of
254 parameter vectors were evaluated, of which 62 led to operating characteristics which were worse in every respect than
some other vector (ie, dominated) and were discarded. The operating characteristics of the non-dominated parameters
are shown in Figure 4. The three operating characteristics are found to be highly correlated. In particular, changing the
parameters to give a lower probability of discarding a promising intervention (OC2) tends to lead to a reduction in the
probability of making an unnecessary adjustment (OC3). When selecting (c1, c2), the key decision appears to be trading
off the probability of an infeasible trial, (OC1), against OC2. There is a very limited opportunity to minimize OC3 at the
expense of these. For example, compare points b and c in Figure 4, details of which are given in Table 3. We see that point
c reduces OC3 by 0.078 in comparison to point b, but only at the expense of increase in OC1 and OC2 of 0.13 and 0.145,
respectively.

We would expect to see a clear relationship between the value of parameters c1, c2, c3 and the operating characteristics
they relate to. We explore this in Figure 5 with scatter plots of each parameter against each operating characteristic. The
results show that there is indeed a strong relationship between the loss assigned to discarding a promising intervention,
c2, and the probability that this event will occur, OC2 (see center plot). Moreover, c2 also seems to be the main determinant
of operating characteristics OC1 and OC3. The implication is that once the c2 ∈ [0, 1] has been chosen, the operating
characteristics of the trial depend only weakly on the way in which the remaining 1− c2 is allocated to c1 and c3. This
appears to be due to the fact that, regardless of how errors are weighted, the way we have defined our prior distributions
and hypotheses means we are much more likely to make the error of discarding a promising intervention than the other
types of error. The cost we assign to this error is therefore more influential on the overall operating characteristics than
the other costs.

To illustrate the effect of varying sample size in the REACH trial, we set the loss function parameters to that of point a in
Figure 4 and Table 3, (c1, c2, c3)= (0.07, 0.9, 0.03). We then estimated the operating characteristics obtained for k= 6, 12, 18
clusters per arm. Note that we considered only three choices of sample size due to the significant computational burden
of each evaluation. The results are plotted in Figure 6. Increasing the sample size appears to have little effect on OC1 and
OC3, while leading to a decrease in OC2, the probability of discarding a promising intervention. This behavior reflects the
priorities encoded by the costs parameter, where c2 = 0.9.

4.2.2 Incorporating subjective priors

Rather than use weakly or non-informative priors when analyzing the pilot data, we may instead want to make use of the
(subjective) elicited knowledge of parameter values described in the design prior pD(𝜃). Anticipating criticisms of a fully
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F I G U R E 5 Relationships between the three loss parameters (x axes) and resulting operating characteristics (y axes)

F I G U R E 6 Operating characteristics of the REACH trial
for per-arm sample sizes k= 6, 12, 18 and setting
(c1, c2, c3)= (0.069, 0.116, 0.815). Error bars denote 95%
confidence intervals. All points have been adjusted
horizontally to avoid overlap [Colour figure can be viewed at
wileyonlinelibrary.com]

subjective analysis, we can envisage two particular cases where this might be appropriate. First, using the components of
the design prior which describe the nuisance parameters 𝜓 while maintaining weakly informative priors on substantive
parameters 𝜙. Second, when very little data on a specific substantive parameter is going to be collected in the pilot, using
the informative design prior for that parameter could substantially improve operating characteristics.

We replicated the above analysis for these two scenarios. For the second, we used informative priors for all nuisance
parameters and for the probability of adherence, pa. Recall that this is informed by a binary indicator at the care home
level and only in the intervention arm, and will therefore have very little pilot data bearing on it. For each case we used
the same N samples of parameters and pilot data which were used in the weakly informative case, repeating the Bayesian
analysis using the appropriate analysis prior and obtaining estimated posterior probabilities pR, pA, and pG as before. These
were used in conjunction with the same set of loss parameter vectors  to obtain corresponding operating characteristics
(Figure 7).

For brevity, we will refer to the three cases as weakly informative (WI), informative nuisance (IN), and informative
nuisance and adherence (INA). Comparing the operating characteristics of cases WI and IN, we found very little differ-
ence (further details are provided in the supplementary material). When we contrast cases WI and INA, however, there is
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F I G U R E 7 Operating characteristics and expected
utilities for weakly (WI) and partially informative (INA)
[Colour figure can be viewed at wileyonlinelibrary.com]
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a clear distinction. Using the INA analysis prior will lead to larger probabilities of an infeasible trial (OC1) and of unnec-
essary adjustment (OC3), while reducing the probability of discarding a promising intervention (OC2), for almost all loss
parameters. The expected loss is always lower for the INA analysis than for WI, as we would expect.

5 DISCUSSION

When deciding if and how a definitive RCT of a complex intervention should be conducted, and basing this decision on an
analysis of data from a small pilot trial, there is a risk we will inadvertently make the wrong choice. A Bayesian analysis
of pilot data followed by decision-making based on a loss function can help ensure this risk is minimized. The expected
results of such a pilot can be evaluated through simulation at the design stage, producing operating characteristics which
help us understand the potential for the pilot to lead to better decision-making. These evaluations can in turn be used to
find the loss function which leads to the most desirable operating characteristics, and to inform the choice of sample size.

Our proposal has been motivated by some salient characteristics of complex intervention pilot trials, and offers several
potential benefits over standard pilot trial design and analysis techniques. The Bayesian approach to analysis means that
complex multi-level models can be used to describe the data, even when the sample size is small. In contrast to the usual
application of independent progression criteria for several parameters of interest, we provide a way for preferential rela-
tionships between parameters to be articulated and used when making decisions. Using a subjective prior distribution on
unknown parameters at the design stage allows both our knowledge and our uncertainty to be fully expressed, meaning we
can leverage external information whilst also avoiding decisions which are highly sensitive to imprecise point estimates.

Our proposed design is related to the literature on assurance calculations for clinical trials,18 applying the idea of
using unconditional event probabilities as operating characteristics to the pilot trial setting. In doing so we have shown
how assurances can be defined for multiple substantive parameters with trade-offs between them, and with respect to
the “traffic light” red/amber/green decision structure commonly found in pilot trials. The multi-objective optimization
framework we have used to inform trial design allows the decision-maker to explicitly consider the different trade-offs
between operating characteristics which are available, and select that which best reflects their own preferences. A similar
approach has been taken in the context of phase II trials using the statistical concept of admissible designs.30,31 This can
be contrasted with the conventional and much criticized approach common in the frequentist context, where arbitrary
constraints are placed on type I and II error rates in order to define a single optimal design.32

The benefits brought by the Bayesian approach must be set against the challenges it brings, particularly in terms
of computation time and implementation. In terms of the latter, we are required to specify a joint prior distribution
over the parameters 𝜃 and a partitioning of the parameter space into the three hypotheses. The specification of the prior
distribution may be a challenging and time-consuming task. Although some relevant data relating to similar contexts may
be available, for example, in systematic reviews or observational studies, expert opinion may still be required to articulate
the relevance of such data to the problem at hand. When no data are available, which is not unlikely given the early phase
nature of pilot studies, expert opinion will be the only source of information. Although potentially challenging, many
examples describing successful practical applications of elicitation for clinical trial design are available,19,21,24 as are tools
for its conduct such as the Sheffield Elicitation Framework (SHELF).25 Dividing the parameter space into three hypotheses
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may also prove challenging in practice, particularly when trade-offs between more than two parameters are to be elicited.
There is a need for methodological research investigating how methods for multi-attribute preference elicitation, such as
those set out by Keeney and Raiffa,27 can be applied in this context.

The computational burden of the proposed method is significant, particularly when the model is too complex to allow a
conjugate analysis to be used when sampling from the posterior distribution. We have used a nested Monte Carlo sampling
scheme to estimate operating characteristics, as seen elsewhere.18,20,33 One potential approach to improve efficiency is to
use non-parametric regression to predict the expected losses of Equation (3) based on some simulated data, thus bypassing
the need to undertake a full MCMC analysis for each of the N samples in the outer loop. This approach has been shown
to be successful in the context of expected value of information calculations.34,35 The computational difficulties will be
particularly pertinent when using our approach to determine sample size, as several evaluations of different sample size
choices will be required. If the choice of sample size can be framed as an optimization problem, methods for efficient
global optimization of computationally expensive functions such as those described by Jones36 and Roustant et al.37 may
be useful.16 Alternatively, one of several rules-of-thumb for choosing pilot sample size3,9,11,13 could be used, with the
resulting operating characteristics evaluated using the proposed method. Volumes.

We have defined our procedure in terms of a loss function, where the decision-making following the pilot will min-
imize the expected loss. However, the piecewise constant loss function we have proposed may not adequately represent
the preferences of the decision-maker. For example, we may object to the loss associated with discarding a promising
intervention being independent of exactly how effective the intervention is. An alternative is to try to define a richer repre-
sentation of the loss function through direct elicitation of the decision-makers preferences under uncertainty,26 leading to
a fully decision-theoretic approach to design and analysis.38 However, as previously noted by others,39-41 implementation
of these approaches has been limited in practice and this may be indicative of their feasibility.

The proposed method could be extended in several ways. More operating characteristics could be defined and used in
design optimization, more complicated trade-off relationships between multiple parameters could be addressed, or the
hypotheses could be expanded to include nuisance parameters which would be used as part of the sample size calculation
in the main RCT. A particularly interesting avenue for future research is to consider how to model post-pilot trial actions in
more detail. For example, while we allow for the possibility of making an “amber” decision, indicating that modifications
to the intervention or trial design should be made, we do not model what that decision will actually look like and how
it should relate to the observed pilot data. Methodology for jointly modeling a pilot and subsequent main RCT in this
manner could be informed by developments for designing phase II/III programs in the drug setting.42-45
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