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Abstract 27 

Background. To address the growing antibiotic resistance problem, new antibacterial drugs 28 

must exert activity against pathogens resistant to agents already in use. With a view to 29 

providing a rapid means for deselecting antibacterial drug candidates that fail to meet this 30 

requirement, we report here the generation and application of a platform for detecting cross-31 

resistance between established and novel antibacterial agents. 32 

 33 

Methods. This first iteration of the cross-resistance platform (CRP) consists of 28 strains of 34 

defined resistance genotype, established in a uniform genetic background (the SH1000 strain 35 

of the clinically-significant pathogen, Staphylococcus aureus). Most CRP members were 36 

engineered through introduction of constitutively-expressed resistance determinants on a 37 

low-copy number plasmid, with a smaller number selected as spontaneous resistant mutants.  38 

 39 

Results. Members of the CRP collectively exhibit resistance to many of the major classes of 40 

antibacterial agent in use. We employed the CRP to test two antibiotics that have been 41 

proposed in the literature as potential drug candidates; γ-actinorhodin and batumin. No 42 

cross-resistance was detected for γ-actinorhodin, whilst a CRP member resistant to triclosan 43 

exhibited a 32-fold reduction in susceptibility to batumin. Thus, a resistance phenotype that 44 

already exists in clinical strains mediates profound resistance to batumin, implying that this 45 

compound is not a promising antibacterial drug candidate.  46 

 47 

Conclusion. By detecting cross-resistance between established and novel antibacterial 48 

agents, the CRP offers the ability to deselect compounds whose activity is substantially 49 

impaired by extant resistance mechanisms. The CRP therefore represents a useful addition to 50 

the antibacterial drug discovery toolbox. 51 

 52 

 53 

 54 

 55 

 56 
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Introduction 59 

It is widely accepted that new antibacterial drugs will be required to address the growing 60 

problem of antibiotic resistance in pathogenic bacteria. 1 ‘New’ in this context is often 61 

understood to mean unprecedented in terms of chemical structure and/or antibacterial mode 62 

of action, and it is certainly the case that useful antibacterial drug candidates will likely 63 

possess one or both of these attributes. Nevertheless, these attributes are proxies for the 64 

type of novelty that is ultimately required: the ability to exert an antibacterial effect against 65 

pathogens resistant to drug classes already in clinical use. After all, an antibacterial drug 66 

candidate that possesses chemical and/or mechanistic novelty will have limited utility if its 67 

activity is substantially comprised as a result of cross-resistance with earlier classes. 68 

 69 

Despite this, little direct effort is expended on investigating/ avoiding cross-resistance in the 70 

typical antibacterial discovery project. Instead, the potential for cross-resistance to newly-71 

discovered scaffolds is usually addressed indirectly – and often at a relatively advanced stage 72 

of preclinical evaluation - by assessing the activity of the compound against sizeable 73 

collections of target pathogen(s) isolated from the clinic. 2 An exception to this approach is in 74 

discovery efforts that seek to identify novel analogues of an established antibacterial drug 75 

class, since such projects must proceed alive to the potential for cross-resistance from the 76 

very outset. In these cases, analogues are tested at an early stage of evaluation against strains 77 

harbouring resistance determinants known to compromise the antibacterial activity of 78 

clinically-deployed class members (e.g. 3).  79 

 80 

We consider that this latter strategy could usefully be employed more broadly in antibacterial 81 

discovery to provide a rapid and direct indication of potential cross-resistance issues at an 82 

early stage in the process, thereby reducing wasted effort in progressing compounds that are 83 

only later revealed to possess such resistance liabilities. Here, we describe the initial iteration 84 

of a platform for cross-resistance testing, comprising a panel of Staphylococcus aureus strains 85 

of defined antimicrobial resistance genotype established in a uniform genetic background. 86 

Use of this cross-resistance platform (CRP) to test two potential antibacterial drug candidates 87 

revealed that the activity of one of these (batumin) is dramatically attenuated by a resistance 88 

phenotype that pre-exists in the clinic, implying that it is not a promising candidate for 89 



antibacterial chemotherapy, and underscoring the utility of the proposed approach to cross-90 

resistance testing. 91 

 92 
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Materials & Methods 94 

Generation of the CRP. Horizontally-acquired antibiotic resistance genes were in most cases 95 

amplified by PCR and cloned in E. coli using a modified version of shuttle vector pSK5487 4  96 

termed pSK5487M (Supplementary Information), downstream of the constitutive qacR 97 

promoter. 5 Where appropriate template DNA for PCR amplification was not available, DNA 98 

fragments corresponding to the resistance gene(s) were instead obtained by synthesis 99 

(Genewiz). All PCR amplicons and synthesized DNA encompassed the native ribosome-binding 100 

sites of resistance determinants, and most introduced BstBI-restriction sites at the terminii of 101 

the fragments for ligation into BstBI-digested pSK5487M (the exception being resistance 102 

determinants whose sequence included an internal BstBI site, which were instead ligated into 103 

pSK5487M by blunt-end cloning at the blunted BstBI site). Constructs established in E. coli 104 

were subjected to DNA sequencing before electroporation into the restriction-deficient 105 

staphylococcal cloning host, RN4220, 6 with subsequent recovery and electroporation into S. 106 

aureus SH1000. 7 Introduction of pSK5487M: mecA into SH1000 did not result in a detectable 107 

change in oxacillin MIC, a phenomenon attributable to the fact that only a minority 108 

subpopulation of artificially-generated mecA+ strains usually expresses resistance; 8 109 

homogeneous/ overt resistance was subsequently selected in this strain by plating onto agar 110 

containing oxacillin at 100 mg/L as described. 8, 9 111 

 112 

Several strains exhibiting resistance to antibacterial agents as a result of mutation were 113 

isolated and characterized in previous studies (AJUL22,10 AJUL26/ AJUL27 11). Strains with 114 

mutational resistance to rifampicin and triclosan were selected on agar/ by serial passage, 115 

respectively, and characterized in the former case by PCR amplification and DNA sequencing 116 

of rpoB and in the latter case by whole genome sequencing according to established 117 

methodology; 12 the mutants ultimately chosen for inclusion in the CRP carry resistance 118 

mutations commonly found in clinical isolates 13, 14 (whilst the FabID101G substitution in our 119 

triclosan-resistant mutant does not appear to have been detected in clinical isolates, the -C34T 120 

and -T109G mutations upstream of the fabI gene have both independently been reported to 121 

mediate resistance in such strains through increased FabI expression). Strain AJUL25, which 122 

exhibits resistance to sulfamethoxazole as a result of two common resistance mutations in 123 

the dhps gene, 15 was created by 𝜙80-mediated transduction of this locus from a strain (S. 124 

aureus Newman) that naturally harbours these.  125 



Susceptibility testing. MIC determinations were generally performed by broth microdilution 126 

in cation-adjusted Mueller Hinton (MH) broth, according to CLSI guidelines. Exceptions were 127 

made in isolated cases to improve discrimination between susceptible and resistant strains. 128 

For sulfamethoxazole, the bacterial inoculum was reduced 10-fold (to 5 x 104 cfu), whilst 129 

susceptibility testing with fusidic acid was conducted by agar dilution using MH agar. 130 

Antibacterial agents were from Sigma-Aldrich, with the exception of linezolid and 131 

quinupristin-dalfopristin (both from Cambridge Bioscience) and mupirocin (PanReac 132 

AppliChem). 133 
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Results and Discussion 135 

The basic design principles of the CRP are as follows. This initial iteration of the platform was 136 

established in a Gram-positive bacterium to offer the broadest utility, since the vast majority 137 

of antibacterial drug candidates exhibit anti-Gram-positive activity (by contrast, only a small 138 

minority are active against Gram-negative bacteria). Accordingly, we generated the CRP in 139 

the important Gram-positive pathogen, Staphylococcus aureus, employing the well-140 

characterized and -behaved laboratory strain, SH1000. 7  141 

 142 

Each member of the CRP possesses a defined resistance genotype. Only one strain in the 143 

collection has been specifically engineered to carry more than one type of resistance 144 

determinant (AJUL17; to provide simultaneous resistance to group A and B streptogramins, 145 

and hence to the combination drug, quinupristin-dalfopristin), though all strains carrying 146 

cloned resistance genes also harbour the selectable cat marker intrinsically present on 147 

pSK5487M (and are therefore additionally resistant to chloramphenicol). For the most part, 148 

expression of cloned resistance determinants in the CRP is driven from a low/moderate 149 

strength, constitutive promoter (PqacR). This approach sought to address the fact that a 150 

number of staphylococcal resistance determinants (e.g. bla, erm, mec) ordinarily require 151 

induction for the resistance phenotype to manifest, and failure to induce resistance in test 152 

would prevent detection of cross-resistance. However, for a small number of resistance genes 153 

(strains AJUL5, AJUL10, AJUL14 and AJUL20), the level of resistance observed following 154 

expression from PqacR was only modest or negligible, and in such cases, the determinant was 155 

re-cloned with its native expression signals. 156 

 157 

The resistance genotypes and phenotypes of the CRP are given in Table 1. In some cases (e.g. 158 

for determinants already known to mediate cross-resistance to more than one antibacterial 159 

drug class), susceptibility data for several antibacterial agents are shown. All CRP members 160 

exhibited at minimum a 4-fold decrease in susceptibility to at least one corresponding 161 

antibacterial agent. 162 

 163 

To illustrate the potential utility of the CRP for the evaluation of antibacterial drug candidates, 164 

we describe its use to test two antistaphylococcal agents that may have therapeutic potential; 165 

γ-actinorhodin 16 and batumin. 17 For the former compound, all members of the CRP showed 166 



the same level of susceptibility as the parent strain (2 mg γ-actinorhodin/ L), indicating an 167 

absence of cross-resistance in this panel of strains. Whilst this result does not exclude the 168 

possibility that cross-resistance to γ-actinorhodin exists and/or could arise in clinical isolates, 169 

it does provide some reassurance that the antibacterial activity of this compound will not be 170 

abrogated by a common resistance determinant. For batumin, a single strain in the CRP 171 

exhibited a reduction in susceptibility to the compound relative to SH1000; the triclosan-172 

resistant strain, AJUL28, showed a 32-fold decrease in susceptibility (8 mg/L versus 0.25 173 

mg/L). Thus, a resistance phenotype that already exists in the clinic 13 provides cross-174 

resistance to batumin. We corroborated this observation by demonstrating that several 175 

triclosan-resistant clinical isolates and laboratory-generated mutants all exhibited substantial 176 

reductions in susceptibility to batumin (data not shown). Whether evidence of pre-existing 177 

cross-resistance should preclude further development of an antibacterial drug candidate will 178 

warrant careful consideration on a case-by-case basis, considering - amongst other aspects - 179 

the level and clinical prevalence of the resistance in question. In the case of batumin, existing 180 

triclosan resistance mediates a profound reduction in susceptibility to the compound and is 181 

not uncommon amongst clinical isolates; 18 on this basis, batumin is probably not a promising 182 

antistaphylococcal drug candidate.  183 

 184 

Beyond its use to rule antibacterial drug candidates from further consideration, detection of 185 

cross-resistance using the CRP can also provide additional insight into antibacterial agents 186 

undergoing evaluation. Until recently, the mode of action of batumin remained poorly 187 

characterized, though limited evidence suggested that it involves inhibition of fatty acid 188 

biosynthesis (FAB). 19, 20 The finding that promoter mutations causing increased expression of 189 

the FAB gene, fabI, 13 confer reduced susceptibility to batumin further reinforces the idea that 190 

this compound acts on FAB, and indeed implicates FabI as a plausible target. Whilst the 191 

present work was being readied for publication, Masschelein and colleagues confirmed that 192 

FabI is indeed the target of batumin. 21 193 

 194 

Concluding remarks. Engineered antibiotic resistant bacteria are already in use in drug 195 

discovery projects to achieve dereplication of natural products (i.e. deselection of known 196 

chemical scaffolds). 22, 23 The purpose of the CRP is somewhat distinct, aimed instead at 197 

deselecting compounds whose activity is impaired by known resistance mechanisms; in other 198 



words, the CRP seeks to effect dereplication at the biological level, rather than the chemical. 199 

Accordingly, the types of resistance determinant used in these two approaches differ, with 200 

the former focussing on those that reduce susceptibility to common natural product 201 

antibiotics, and the CRP employing resistance genes or mutations commonly found in clinical 202 

isolates. Nevertheless, the two approaches are complementary, and one could envisage a 203 

future platform comprising a far more extensive/ near-comprehensive set of known antibiotic 204 

resistance determinants to achieve both ends simultaneously. 205 

 206 

We consider that the CRP represents a useful addition to the antibacterial drug discovery 207 

toolbox, and have therefore made it available to researchers through BEI Resources 208 

(https://www.beiresources.org). We welcome additions to the platform that follow the same 209 

basic design principles, ideally employing the same cloning vehicle/ host to ensure uniformity. 210 

 211 

 212 
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Table 1. Nature of the strains constituting the cross-resistance platform described in this study. 289 

Antibacterial class to which resistance is 

mediated 
Strain and resistance genotype 

Reference accession 

number for resistance 

determinant 

Resistance phenotype 

Agents tested MIC (mg/L) 
SH1000 MIC 

(mg/L) 

Protein synthesis inhibitors  

phenicols AJUL1 
SH1000 (pSK5487M)  

[empty vector] 
 chloramphenicol 64 4 

aminoglycosides 

AJUL2 

SH1000 (pSK5487M: 

aacA_aphD)  

[aph(2'')-bifunctional] 

  WP_001028144.1 

gentamicin 8 0.5 

kanamycin 32 0.5 

neomycin 0.5 0.5 

tobramycin 8 0.5 

 

AJUL3 

 

SH1000 (pSK5487M: aadD)  WP_137075613.1 

gentamicin 0.5 0.5 

kanamycin >512 0.5 

neomycin 8 0.5 

tobramycin 256 0.5 

AJUL4 SH1000 (pSK5487M: ant(9)-Ia) WP_000067268.1 spectinomycin >512 64 

AJUL5 
SH1000 (pSK5487M: aph(3’)-
IIIa) 

EGQ1519538.1 
kanamycin 64 0.5 

neomycin 32 1 

AJUL6 SH1000 (pSK5487M: str) AYK28244.1 streptomycin 16 1 

phenicols, 

lincosamides, 

oxazolidinones, 

pleuromutilins, 

streptogramins (A) 

 

AJUL7 SH1000 (pSK5487M: cfr) ARQ19305.1 

florfenicol 128 8 

linezolid 8 2 

lincomycin >512 0.5 

retapamulin 16 0.0625 

macrolides, 

lincosamides, 

streptogramins (A) 

AJUL8 SH1000 (pSK5487M: ermB) QCY67633.1 erythromycin >512 0.5 

AJUL9 SH1000 (pSK5487M: ermC) AIU96746.1 erythromycin >512 0.5 

AJUL10 SH1000 (pSK5487M: msrA)  WP_002447408 erythromycin 16 0.5 

fusidic acid AJUL11 SH1000 (pSK5487M: fusB) WP_000855537.1 fusidic acid 4 0.016 

mupirocin AJUL12 SH1000 (pSK5487M: mupA) WP_000163435.1 mupirocin 16 0.125 

oxazolidinones and 

phenicols 
AJUL13 SH1000 (pSK5487M: optrA) AON96416 

linezolid 4 2 

tedizolid 4 0.5 

florfenicol 32 4 

tetracyclines 

 

AJUL14 SH1000 (pSK5487M: tetK) WP_031903778 tetracycline 64 0.5 

AJUL15 SH1000 (pSK5487M: tetM) QGQ78162.1 tetracycline 32 1 

pleuromutilins AJUL16 SH1000 (pSK5487M: vga(A)LC) AQY75653.1 retapamulin 1 0.0625 



290 

streptogramins (A, 

B) 
AJUL17 

SH1000 (pSK5487M: vga(A), 

ermC) 

vga(A): WP_032489639 

ermC: AIU96746.1 

quinipristin/ 

dalfopristin 
1 0.125 

Peptidoglycan synthesis 

inhibitors 

bacitracin AJUL18 SH1000 (pSK5487M: bcrABD) CP030662.1 bacitracin >512 64 

-lactams 

(penicillinase-

susceptible)  

AJUL19 SH1000 (pSK5487M: blaZ) QGQ78449.1 penicillin G 32 0.031 

-lactams 

(penicillinase-

stable)  

AJUL20 SH1000 (pSK5487M: mecA) 
QIE05029.1 

 
oxacillin 512 0.125 

fosfomycin AJUL21 SH1000 (pSK5487M: fosB) WP_011276918 fosfomycin >512 16 

Membrane active agents daptomycin AJUL22 SH1000 [MprFS295L] - daptomycin 8 2 

RNA polymerase inhibitors rifamycins AJUL23 SH1000 [RpoBH481Y] - rifampicin >512 2 

Folate synthesis inhibitors 
diaminopyrimidines AJUL24 SH1000 (pSK5487: dfrK) WP_012779617.1 trimethoprim 512 2 

sulfonamides AJUL25 SH1000 [DHPSF17L, E208K] - sulfamethoxazole 512 64 

DNA replication inhibitors 
fluoroquinolones AJUL26 SH1000 [GrlAS80Y, GyrAS84L] - norfloxacin 32 4 

aminocoumarins AJUL27 SH1000 [GyrBG85S,D89G] - novobiocin 32 1 

Fatty acid biosynthesis 

inhibitors  
triclosan AJUL28 

SH1000 [-T109G and -C34T in the 

fabI promoter region,  

FabID101G] 

- triclosan 2 0.0625 
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