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Mixed-Order Spectral Clustering for Complex Networks
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Abstract

Spectral clustering (SC) is a popular approach for gaining insights from com-

plex networks. Conventional SC focuses on second-order structures (e.g. edges)

without direct consideration of higher-order structures (e.g. triangles). This has

motivated SC extensions that directly consider higher-order structures. How-

ever, both approaches are limited to considering a single order. To address this

issue, this paper proposes a novel Mixed-Order Spectral Clustering (MOSC)

framework to model both second-order and third-order structures simultane-

ously. To model mixed-order structures, we propose two new methods based on

Graph Laplacian (GL) and RandomWalks (RW). MOSC-GL combines edge and

triangle adjacency matrices, with theoretical performance guarantee. MOSC-

RW combines first-order and second-order random walks for a probabilistic in-

terpretation. Moreover, we design mixed-order cut criteria to enable existing

SC methods to preserve mixed-order structures, and develop new mixed-order

evaluation metrics for structure-level evaluation. Experiments on community

detection and superpixel segmentation show 1) the superior performance of the

MOSC methods over existing SC methods, 2) enhanced performance of conven-

tional SC due to mixed-order cut criteria, and 3) new insights of output clusters

offered by the mixed-order evaluation metrics.
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1. Introduction

Networks (a.k.a. graphs) are important data structures that abstract rela-

tions between discrete objects, such as social networks and brain networks [1]. A

network is composed of nodes and edges representing node interactions. Clus-

tering is an important and powerful tool in analysing network data, e.g. for

community detection [2, 3] and image segmentation [4].

Clustering aims to divide the data set into clusters (or communities) such

that the nodes assigned to a particular cluster are similar or well connected in

some predefined sense [5, 6]. It helps us reveal functional groups hidden in data.

As a popular clustering method, conventional spectral clustering (SC) [7, 8]

encodes pairwise similarity into an adjacency matrix. Such encoding inherently

restricts SC to second-order structures [1], such as undirected or directed edges

connecting two nodes.1 However, in many real-world networks, the minimal and

functional structural unit of a network is not a simple edge but a small network

subgraph (a.k.a. motif ) that involves more than two nodes [9], which we call a

higher-order structure.

Higher-order structures consist of at least three nodes (e.g. triangles, 4-

vertex cliques) [1]. It can directly capture interaction among three or more

nodes. When clustering networks, higher-order structures can be regarded as

fundamental units and algorithms can be designed to minimise cutting them

in partitioning. Clustering based on higher-order structures can help us gain

new insights and significantly improve our understanding of underlying net-

works. For example, triangular structures, with three reciprocated edges con-

necting three nodes, play important roles in brain networks [11] and social net-

works [12]. More importantly, higher-order structures allow for more flexible

1Edges are considered as first-order structures in [9] but second-order structures in [10].

We follow the terminologies in the latter [10] so that the “order” here refers to the number of

nodes involved in a particular structure.
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modelling. For instance, considering directions of edges, there exist 13 differ-

ent third-order structures, but only two different second-order structures [13].

Thus, the application can drive which third-order structures to be preserved.

Thus, there are emerging interests in directly modelling higher-order struc-

tures in network clustering. These works can be grouped into four approaches:

1) The first approach constructs an affinity tensor to encode higher-order struc-

tures and then reduces it to a matrix [14], followed by conventional SC [8].

These methods, such as tensor trace maximisation (TTM) [15], are developed in

a closely related problem of hypergraph clustering that considers “hyperedges”

connecting multiple nodes. 2) The second approach develops higher-order SC

by constructing a transition tensor based on random walks model and then

reduces it to a matrix for conventional SC, such as tensor spectral clustering

(TSC) [9]. 3) The third approach uses a counting and reweighting scheme to

capture higher-order structures and reveal clusters [16], such as motif-based SC

(MSC) [1].2 4) The fourth approach is higher-order local clustering aiming to

reduce computation cost [17], such as High-Order Structure Preserving Local

Clustering (HOSPLOC) [10].

However, it should be noted that most networks have both second-order and

higher-order structures, and both can be important. Existing conventional and

third-order SC methods model only either second-order or third-order struc-

tures, but not both. Second-order SC does not take triangles into consideration,

while third-order SC loses information of some edges, in particular, those that

do not belong to any triangle. A simple example is given by the network in Fig.

1(a), which contains both edges and triangles. In Figs. 1(b) and 1(c), which

correspond to the representations used by second-order and third-order SC, re-

spectively, each entry indicates the number of edges and triangles involving two

nodes of Fig. 1(a). As the figures show: second-order SC fails to capture the

importance between nodes 2 and 3, but they participate in more triangles than

any other two adjacent nodes (say 1 and 2), which is not reflected in Fig. 1(b);

2We have verified that TTM and MSC are equivalent, nevertheless.
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(a) A network. (b) Edges. (c) Triangles. (d) Mixed.

Figure 1: Motivation of mixed-order structures: the second and third order structures in (a)

can not be fully captured by edge/triangle adjacency matrix in (b) or (c). A mixed adjacency

matrix in (d) can capture both.

Third-order SC fails to model the importance of the relation between nodes 4

and 5, but there does exist an edge between them (and thus is more important

than any two non-adjacent nodes, say nodes 2 and 5), which was missed in Fig.

1(c).

In this paper, we propose a novel Mixed-Order Spectral Clustering (MOSC)

framework to preserve structures of different orders simultaneously, as in Fig.

1(d). For clear and compact presentation, we focus on two undirected un-

weighted structures: edges (second-order structures) and triangles (third-order

structures). Further extensions can be developed for mixing more than two

orders, and/or orders higher than three.

The MOSC framework can be decomposed into three blocks, and we sum-

marise our contributions based on building blocks as following:

1. Mixed-order structure. We propose two mixed-order structure ap-

proaches: one based on Graph Laplacian (GL) and the other based on

Random Walks (RW). Based on these approaches, we develop two new

algorithms MOSC-GL and MOSC-RW. MOSC-GL combines edge and tri-

angle adjacency matrices to define a mixed-order Laplacian, with its the-

oretical performance guarantee derived by proving a mixed-order Cheeger

inequality. MOSC-RW combines first-order and second-order RW mod-

els for a probabilistic interpretation. Besides, mixing parameter (ranging

from 0 to 1) can be automatically decided based on cut criteria and tri-

angle density. See Sec. 3.1, Sec. 3.2 and Sec. 3.4.
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2. Mixed-order cut criterion. To enable existing single-order SC meth-

ods [18, 1] to preserve mixed-order structures, we consider cut criteria of

different orders from the order used to encode a structure (e.g. second-

order SC with a third-order cut criterion). We then empirically study the

effectiveness of mixed-order cut criterion, finding that this strategy can

enhance the performance of conventional SC methods. See Sec. 3.5 and

4.2.

3. Mixed-order evaluation metric. Given ground truth, existing works

only consider the number of error nodes to evaluate the quality of output

clusters [17, 15]. However, it may fail to reflect the errors in structures. To

address this issue, we propose structure-aware error metrics to evaluate

performance at the level of structures. Additionally, we design mixed-

order evaluation metrics by further utilising proposed metrics of different

orders from the order used to encode a structure (e.g. evaluate second-

order SC with a third-order-aware error metric), which aims to gain new

insights on the quality of structure preservation. See Sec. 3.6 and 4.3.

2. Preliminaries

2.1. Notations

We denote scalars by lowercase letters, e.g. a, vectors by lowercase boldface

letters, e.g. a, matrices by uppercase boldface, e.g. A, and tensors by calli-

graphic letters, e.g. A. Let G = (V,E) be an undirected unweighted graph

(network) with V = {v1, v2, . . . , vn} being the set of n vertices (nodes), i.e. n

= |V|, and E being the set of edges connecting two vertices.

2.2. Normalised Graph Laplacian

Let W ∈ R
n×n be an unweighted adjacency matrix of G where W(i, j) = 1

if (vi, vj) ∈ E, otherwise W(i, j) = 0. The degree matrix D is a diagonal matrix

with diagonal entries D(i, i) =
∑n

j=1 W(i, j), which is the degree of vertex vi.

Let N = D−W denote the Laplacian matrix of G. The normalised Laplacian

of G is defined as L = D− 1
2ND− 1

2 .
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Let WT be triangle adjacency matrix of G with its entry (i, j) being the

number of triangles containing vertices i and j, which leads to a corresponding

weighted graph GT [1]. For implementation, based on [1], we formulate WT =

A · A ◦ A, where A is an edge adjacency matrix, ‘·’ is matrix multiplication,

and ‘◦’ is Hadamard product. Similarly, we can define the triangle Laplacian as

NT = DT −WT and the normalised triangle Laplacian as LT = D
− 1

2

T NTD
− 1

2

T ,

where DT (i, i) =
∑n

j=1 WT (i, j).

2.3. First-Order Random Walks for Second-Order Structures

We define a second-order transition matrix P by normalising the adjacency

matrix W to represent edge structures as [7] P = D−1W. The entry Pij repre-

sents the probability of jumping from vertex vi to vj in one step. The transition

matrix P represents a random walk process on graph G [7]. From random walk

perspective, SC can be interpreted as trying to find a partition of the graph such

that the random walk stays long within the same cluster and seldom jumps be-

tween clusters [19].

2.4. Second-Order Random Walks for Third-Order Structures

Benson et al. [9] extend the above using a three-dimensional transition

tensor to encode triangle structures. They firstly define a symmetric adjacency

tensor T ∈ R
n×n×n such that the connectivity information for three vertices

{vi, vj , vk}∈ V can be represented explicitly in this tensor. All entries in T
with a permutation of indices i, j, k have the same value (hence symmetric).

Thus, T encodes triangle structures in G as:

T (i, j, k) =







1 vi, vj , vk form a triangle,

0 otherwise.
(1)

Next, they form a third-order transition tensor P as:

P(i, j, k) = T (i, j, k)/

n
∑

m=1

T (i,m, k), (2)

where
∑n

m=1 T (i,m, k) 6= 0, and 1 ≤ i, j, k ≤ n. For
∑n

m=1 T (i,m, k) = 0,

Benson et al. [9] set P(i, j, k) to 1
n .
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Algorithm 1 Bi-partitioning Spectral Clustering

1: Matrix B encodes structures of the input graph G.

2: Compute a dominant eigenvector v of B.

3: v← sorted ordering of v or a normalised version of v.

4: {S, S̄} ← sweep cut of v w.r.t. some cut criteria.

Table 1: Edge-based and triangle-based cut criteria.

Edge-based cuts Triangle-based cuts

Conductance (φ) φ2(S) =
cut2(S)

min(vol2(S),vol2(S̄))
[20] φ3(S) =

cut3(S)
min(vol3(S),vol3(S̄))

[9]

Ncut (η) η2(S) =cut2(S)(
1

vol2(S) +
1

vol2(S̄)
) [18] η3(S) = cut3(S)(

1
vol3(S) +

1
vol3(S̄)

) [21]

Nassoc (ξ) ξ2(S) =
assoc2(S)
vol2(S) + assoc2(S̄)

vol2(S̄)
[18] ξ3(S) =

assoc3(S)
vol3(S) + assoc3(S̄)

vol3(S̄)
[15]

Expansion (α) α2(S) =
cut2(S)

min(|S|,|S̄|)
[22] α3(S) =

cut3(S)
min(|S|,|S̄|)

[9]

2.5. Spectral Clustering Basics

Bi-partitioning SC (Algorithm 1) first constructs a matrixB to encode struc-

tures in the input graph G. It then computes a dominant eigenvector v of B,

thus making use of its spectrum. Each entry of v corresponds to a vertex. Next,

we sort vertices by the values v(i) (or appropriately normalised values) and

consider the set Tu consisting of the first u vertices in the sorted list, for each

1 ≤ u ≤ n− 1. Then the algorithm finds S = argminTu
τ(Tu), called the sweep

cut w.r.t. some cut criterion τ . Table 1 lists eight cut criteria, both second

and third orders (edge and triangle based). We omit G in the criterion notation

τ(S;G) in the table for simplicity.

2.6. Cheeger Inequalities and Cut Criteria

Given G = (V,E) and a subset S ⊆ V, let S̄ denote the complement of S. Let

cut2(S;G) denote the edge cut of S, i.e, the number of edges between S and S̄ in

G. Let vol2(S;G) denote the edge volume of S, i.e. the total degrees of vertices

in S, and assoc2(S;G) is the total degrees in the subgrapgh induced by vertices

in S. The edge conductance of S is defined as φ2(S;G) =
cut2(S;G)

min{vol2(S;G),vol2(S̄;G)}
.

Other popular edge-based cut criteria are shown in Table 1 (left column). The
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classical Cheeger inequality below relates the conductance of the sweep cut of

SC to the minimum conductance value of the graph [23].

Lemma 1 (Second-Order Cheeger Inequality [23]). Let v be the second smallest

eigenvector of L. Let T ∗ be the sweep cut of D−1/2v w.r.t. cut criterion φ2(·;G).
It holds that φ2(T

∗;G) ≤ 2
√

φ∗2, where φ
∗
2 = minS⊂V φ2(S;G) is the minimum

conductance over any set of vertices.

Let cut3(S;G) denote the triangle cut of S, i.e. the number of triangles

that have at least one endpoint in S and at least one endpoint in S̄, and let

assoc3(S;G) count the number of vertices in triangles in the subgraph induced

by vertices in S. Let vol3(S;G) denote the triangle volume of S, i.e. the

number of triangle endpoints in S. The triangle conductance [9] of S is defined

as φ3(S;G) = cut3(S;G)
min{vol3(S;G),vol3(S̄;G)}

. It is further proved in [1] that for any

S ⊂ V , φ3(S;G) = φ2(S;GT ), which leads to the following third-order Cheeger

inequality. Other popular triangle-based cut criteria are summarised in Table 1

(right column).

Lemma 2 (Third-order Cheeger Inequality [1]). Let v be the second smallest

eigenvector of LT . Let T ∗ denote the sweep cut of D
−1/2
T v w.r.t. cut criteria

φ2(·;GT ). It holds that φ3(T
∗;G) ≤ 4

√

φ∗3, where φ
∗
3 = minS⊂V φ3(S;G).

3. Proposed Mixed-Order Approach

To model both edge and triangle structures simultaneously, we introduce a

new Mixed-Order SC (MOSC) approach, with two methods based on Graph

Laplacian (GL) and Random Walks (RW). MOSC-GL combines the edge and

triangle adjacency matrices, which leads to a mixed-order Cheeger inequality to

provide a theoretical performance guarantee. MOSC-RW is developed under the

random walks framework to combine the first and second order random walks,

providing a probabilistic interpretation. Moreover, we define new mixed-order

cut criteria to enable existing single-order SC methods to preserve mixed-order

structures, and propose mixed-order evaluation metrics to evaluate clustering
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Figure 2: Illustration of mixed-order structures (i.e. MOSC-GL), cut criteria and evaluation

metrics. The left shows a mixed-order adjacency matrix WX that linearly combines an edge-

based matrix (W) and a triangle-based matrix (WT ). The middle shows output clusters

S ={S, S̄} generated by either a second-order (ω2) or third-order cut criterion (ω3). An

orange line from the left to the middle indicates an instance of a mixed-order cut criterion

where a sorted dominant eigenvector (vX) derived from only triangle-based adjacency matrix

is split by an edge-based cut criterion. The right shows that given the ground-truth, we

evaluate the quality of output clusters S ={S, S̄} by either a second-order (ǫE) or a third-

order structural error metric (ǫT ). A blue line from the left to right indicates an instance of

a mixed-order evaluation metric where output clusters S derived from only a triangle-based

adjacency matrix (WT ) are evaluated by an edge-based error metric (ǫE).

methods at the level of structures. The proposed MOSC framework is illustrated

in Fig. 2.

3.1. MOSC Based on Graph Laplacian (MOSC-GL)

MOSC-GL introduces a mixed-order adjacency matrix WX that linearly

combines the edge adjacency matrix W and the triangle adjacency matrix WT ,

with a mixing parameter λ ∈ [0, 1]. WX can be seen as a weighted adjacency

matrix of a weighted graph GX , on which we can apply conventional SC (Algo-

rithm 1). Specifically, we first construct the matrix WX and the corresponding

diagonal degree matrix DX as WX = (1−λ)WT +λW,DX = (1−λ)DT +λD.

Let GX denote an undirected weighted graph with adjacency matrix WX , as

illustrated in Fig. 2 (the left block). We can define a mixed-order Laplacian NX

and its normalised version LX as NX = DX −WX = (1− λ)NT + λN,LX =

D
− 1

2

X NXD
− 1

2

X . Then, we compute the eigenvector corresponding to the second

9



Algorithm 2 MOSC-GL

Require: G = (V, E), a mixing parameter λ

Ensure: Two node sets {S, S̄}

1: Construct the edge adjacency matrix W ∈ R
n×n.

2: Construct the triangle adjacency matrix WT ∈ R
n×n.

3: Let D be diagonal with D(i, i) =
∑n

i W(i, j).

4: Let DT be diagonal with DT (i, i) =
∑n

i WT (i, j).

5: WX = (1− λ)WT + λW.

6: DX = (1− λ)DT + λD.

7: NX = DX −WX = (1− λ)NT + λN.

8: LX = D
− 1

2

X NXD
− 1

2

X .

9: Compute the second smallest eigenvector vX of LX .

10: vX ← Sort entries of D
− 1

2

X vX .

11: {S, S̄} ← Sweep cut on vX w.r.t. some cut criteria.

smallest eigenvalue of LX and perform the sweep cut to find the partition with

the smallest edge conductance in GX . The MOSC-GL algorithm is summarised

in Algorithm 2.

When λ = 1, MOSC-GL is equivalent to SC by Ng et al. [8] and only

considers second-order structures. When λ = 0, MOSC-GL is equivalent to

motif-based SC [1]. MOSC-GL maintains the advantages of traditional SC:

computational efficiency, ease of implementation and mathematical guarantee

on the near-optimality of resulting clusters, which we formalise and prove in the

following.

Performance guarantee. Given a graph G and a vertex set S, we define

its mixed-order cut and volume as cutX(S;G) = (1−λ)cut3(S;G)+λcut2(S;G),
and volX(S;G) = (1−λ)vol3(S;G)+λvol2(S;G), respectively. Then, we define
the mixed-order conductance of S as: φX(S;G) = cutX(S;G)

min(volX(S;G),volX(S̄;G))
, which

generalises edge and triangle conductance. A partition with small φX(S;G)

corresponds to clusters with rich edge and triangle structures within the same

cluster while few both structures crossing clusters. Finding the exact set of

nodes S with the smallest φX is computationally infeasible. Nevertheless, we

can derive a performance guarantee for MOSC-GL to show that the output set
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obtained from Algorithm 2 is a good approximation. To prove Theorem 1, we

need the following Lemma.

Lemma 3 (Lemma 4 and 1 in [1]). Let G = (V, E) be an undirected, un-

weighted graph and let GT be the weighted graph for the triangle adjacency ma-

trix. Then for any S ⊂ V , it holds that cut3(S;G) =
1
2cut2(S;GT ), vol3(S;G) =

1
2vol2(S;GT ).

Theorem 1 (Mixed-order Cheeger Inequality). Given an undirected graph G,

let T ∗ denote the set outputted by MOSC-GL w.r.t. the cut criterion φ2(·;GX).

Let φ∗X = minS⊆V φX(S;G) be the minimum mixed-order conductance over any

set of vertices. Then it holds that φX(T ∗;G) ≤ 2
√

2φ∗X .

Proof. It suffices for us to prove that for any set S,

1

2
φ2(S;GX) ≤ φX(S;G) ≤ 2φ2(S;GX). (3)

Assume for now that the above inequality (3) holds. By Lemma 1, the set

T ∗ satisfies φ2(T
∗;GX) ≤ 2

√
ψ∗, where ψ∗ = minS⊆V φ2(S;GX). Let R be

the set with φX(R;G) = φ∗X = minS⊆V φX(S;G). Then by inequality (3), we

have φX(T ∗;G) ≤ 2φ2(T
∗;GX) ≤ 2

√
ψ∗ ≤ 2

√

φ2(R;GX) ≤ 2
√

2φX(R;G) =

2
√

2φ∗X . This will then finish the proof. Therefore, we only need to prove the

inequality (3). We will make use of the Lemma 3 from [1].

By Lemma 3, we have cutX(S;G) = (1− λ)cut3(S;G) + λcut2(S;G) = (1−
λ) 12cut2(S;GT ) + λcut2(S;G), volX(S;G) = (1− λ)vol3(S;G) + λvol2(S;G) =

(1− λ) 12vol2(S;GT ) + λvol2(S;G).

Since the adjacency matrix of GX is a linear combination of the adjacency

matrix of GT and the adjacency matrix of G, i.e. WX = (1 − λ)WT +

λW, we have cut2(S;GX) = (1 − λ)cut2(S;GT ) + λcut2(S;G), vol2(S;GX) =

(1 − λ)vol2(S;GT ) + λvol2(S;G). The above equations imply that for any set

S, 1
2cut2(S;GX) ≤ cutX(S;G) ≤ cut2(S;GX), 12vol2(S;GX) ≤ volX(S;G) ≤

vol2(S;GX). The last inequality also implies that for any S, 1
2vol2(S̄;GX) ≤

volX(S̄;G) ≤ vol2(S̄;GX).

11



Therefore, by the definition of φX(S;G), we have

φX(S;G) ≤ cut2(S;GX)

min( 12vol2(S;GX), 12vol2(S̄;GX))

= 2φ2(S;GX),

φX(S;G) ≥
1
2cut2(S;GX)

min(vol2(S;GX), vol2(S̄;GX))

=
1

2
φ2(S;GX).

This completes the proof of the inequality (3).

Complexity analysis. The computational time of MOSC-GL is dominated

by the time to formWX and compute the second eigenvector of LX . The former

requires finding all triangles in the graph, which can be as large as O(n3) for

a complete graph. While most real networks are far from complete so the

actual complexity is much lower than O(n3). In general, for a network with

n nodes and m edges, building a triangle adjacency matrix WT is at least as

hard as the problem of triangle detection (i.e. to check if a network contains

a triangle or not), which in turn is conjectured to require m1+δ+o(1) time, for

some constant δ > 0 [24]. In this paper, we build WT by checking each edge

and then finding all possible common neighbours, which requires O(mn) time.

For the calculation of the second eigenvector of LX , it suffices to use power

iteration to find an approximate eigenvector, with each iteration at Õ(g), where

g denotes the number of non-zero entries in LX .

3.2. MOSC Based on Random Walks (MOSC-RW)

Alternatively, we can develop MOSC under the random walks framework.

Edge/triangle conductance can be viewed as a probability corresponding to the

Markov chain. For a set S with edge volume at most half of the total graph

edge volume, the edge conductance of S is the probability that a random walk

will leave S conditioned upon being inside S, where the transition probabilities

of the walk are defined by edge connections [19]. Similarly, for a set S with

triangle volume at most half of the total graph triangle volume, the triangle

conductance of S is the probability that a random walk will leave S conditioned
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upon being inside S, where the transition probabilities of the walk are defined by

the triangle connections [9]. This motives us to directly combine random walks

from edge and triangle connections to perform MOSC. Therefore, we propose

MOSC-RW to consider both edge and triangle structures via the respective

probability transition matrix and tensor, under the random walks framework.

Specifically, starting with the third-order adjacency tensor T , we define a

third-order transition tensor P as Eq. (2). Each entry of P represents the

transition probability of a random walk such that the probability of jumping to a

state j depends on the last two states i and k [25]. In the case
∑n

m=1 T (i,m, k) =

0, we set P(i, j, k) with 0.

Let Tk ∈ R
n×n denote the kth n × n block of P, i.e. Tk = P(:, :, k).

Next, we average {Tk, k = 1, ..., n} to reduce P to a similarity matrix A:

A = 1
n

∑n
k=1 Tk. Now recall that P = D−1W denotes the probability tran-

sition matrix of random walks on the input graph. We construct a mixed-order

similarity matrix H by a weighted sum of A and P via a mixing parameter

λ ∈ [0, 1] as H = (1 − λ)A + λP. Thus, we obtain the MOSC-RW algorithm

with standard SC steps on H, as summarised in Algorithm 3.

When λ = 1, MOSC-RW is equivalent to conventional SC by Shi and Ma-

lik [18] and considers only second-order structures. MOSC-RW with λ = 0

considers only third-order structures, which is a simplified (unweighted) ver-

sion of tensor SC (TSC) by Benson et al. [9], so we name it as simplified TSC

(STSC). In the intermediate case, λ controls the trade-off.

Interpretation. Now we interpret the model as a mixed-order random

walk process. At every step, the random walker chooses either a first-order

(with probability λ) or a second-order (with probability (1− λ)) random walk.

For the first-order random walk, the walker jumps from the current node i to

a neighbour j with probability P(i, j) = 1
D(i,i) . For the second-order random

walk in A, A(i, j) is the probability of the following random process: supposing

the walker is at vertex i, it first samples a vertex k with probability 1
n , then in

the case that some neighbour k of i is sampled and i, j, k forms a triangle, the

walker jumps from i to j with probability 1/WT (i, k), where WT (i, k) is the

13



Algorithm 3 MOSC-RW

Require: G = (V, E), a mixing parameter λ

Ensure: Two node sets {S, S̄}

1: Construct the adjacency matrix W ∈ R
n×n.

2: Construct the adjacency tensor T ∈ R
n×n×n.

3: for 1 6 i, j, k 6 n do

4: if
∑n

m=1 T (i,m, k) 6= 0 then

5: P(i, j, k) = T (i, j, k) /
∑n

m=1T (i,m, k).

6: else

7: P(i, j, k) = 0.

8: end if

9: end for

10: Tk ← P(:, :, k) for k = 1, · · · , n.

11: Compute the reduced similarity matrix A.

12: Let D be diagonal with Dii =
∑n

i W(i, j).

13: P = D−1W.

14: H = (1− λ)A+ λP.

15: Compute the second largest eigenvector v of H.

16: v← Sorting entries of v.

17: {S, S̄} ← Sweep cut on v w.r.t. some cut criteria.

number of triangles containing both i and k.

Complexity analysis. The running time of MOSC-RW is again dominated

by the time of finding all the triangles and the approximate eigenvector, and

thus asymptotically the same as the running time of MOSC-GL. However, since

MOSC-RW involves tensor construction, normalisation and averaging, it is more

complex than MOSC-GL in implementation.

The computation of the second largest eigenvector of H in step 15 is another

costly procedure, and its complexity depends on the sparsity of T and P. Let

a and p be the number of non-zeros entries in T and P, respectively. In theory,

the number of non-zero entries of H can be O(a + p), and an eigenvector can

be computed via power iterations, with each iteration at O(a+ p).
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3.3. Multiple Clusters and Higher-order Cheeger Inequalities of MOSC

To cluster a network into k > 2 clusters based on MOSC-GL and MOSC-

RW, we follow the conventional SC [19]. Specifically, MOSC-GL treats the first

k row-normalised eigenvectors of LX as the embedding of nodes that can be

clustered by k-means. Similarly, MOSC-RW uses the first k eigenvectors of H

as the node embedding to perform k-means.

Regarding performance guarantee, following [1] and [26], MOSC-GL and

MOSC-RW do not have performance guarantee with respect to higher-order

Cheeger inequalities. However, by replacing k-means with a different clustering

algorithm, MOSC-GL can derive a theoretical performance guarantee [26].

3.4. Automatic Determination of λ

The mixing parameter λ is the only hyperparameter in MOSC. To improve

the usability, we design schemes to automatically determine its optimal value

λ∗ from a set Λ based on the quality of output clusters [27, 28, 29]. For bi-

partitioning networks, the cut criterion used to obtain output clusters can help

to determine the best λ∗ from Λ. For multiple partitioning networks, we can

use the sum of triangle densities of the individual cluster to determine the best

λ∗ from Λ.

Specifically, for each λ′ ∈ Λ, let {Sλ′ , Sλ′} denote the MOSC bi-partitioning

clusters obtained with λ = λ′. For a specific minimisation or maximisation cut

criterion τ (e.g. edge conductance φ2), we choose λ to be the one that optimises

τ , i.e. λ∗ = arg minλ′∈Λ τ(Sλ′) or λ∗ = arg maxλ′∈Λ τ(Sλ′), respectively.

For the case of multiple partitions, we propose a triangle-density-based

scheme to determine λ as follows: λ∗ = arg maxλ′∈Λ

∑k
c=1

∑
vi,vj,vk∈Sc(λ′) T (i,j,k)

6|Sc(λ′)| ,

where Sc(λ
′) denotes the c-th cluster resulted from λ′, and the factor 1/6 is used

to avoid repeated count of triangles in an undirected graph.

3.5. Mixed-order Cut Criteria

A cut criterion measures the quality of output clusters when performing

the sweep cut procedure. However, conventional SC is limited to use edge-

based cut criteria [18, 8], while triangle-based SC is limited to use triangle-based
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cut criteria [1, 9]. Thus, to enable existing single-order SC methods [18, 1] to

preserve mixed-order structures, we consider cut criteria of different orders from

the order used to encode a structure (e.g. second-order SC with a third-order cut

criterion). Therefore, we formally define a mixed-order cut criterion as follows:

Definition 1. (Mixed-order Cut Criterion) Given a graph G = (V,E), a mixed-

order cut criterion performs a triangle-based cut criterion ω3 ∈ {φ3, η3, ξ3, α3}
on a sorted dominant eigenvector ve derived from an edge-based similarity ma-

trix B of G, or performs an edge-based cut criterion ω2 ∈ {φ2, η2, ξ2, α2} on a

sorted dominant eigenvector vt derived from a triangle-based similarity matrix

T.

Mixed-order cut criteria are illustrated in the middle block of Fig.2. In

this paper, we will empirically study the effectiveness of eight cut criteria in-

cluding edge- and triangle-based (Table 1) ones on representative edge- and

triangle-based SC algorithms. Note that maximisation of Nassoc2(S) (ξ2(S))

and minimisation of Ncut2(S) (η2(S)) are equivalent [18], but we theoretically

prove that maximisation of Nassoc3(S) (ξ3(S)) and minimisation of Ncut3(S)

(η3(S)) are not equivalent, see Proposition 1 (omit G for simplicity). Thus, we

have seven different cut criteria from Table 1.

Proposition 1 (Non-equivalent Relation between ξ3(S) and η3(S)). Given G =

(V,E), and a subset S ⊆ V, S̄ denote the complement of S. We have ξ3(S) [15]

and η3(S) [21], then it holds that maximisation of ξ3(S) and minimisation of

η3(S) are not equivalent.

Proof. According to η3(S) [21] and cut3(S, S̄) [21], we have

η3(S) =
2
3 − 1

3 (
assoc3(S)
vol3(S)

+ assoc3(S̄)
vol3(S̄)

) + 1
3 (

vol3(S̄)−assoc3(S̄)
vol3(S)

+ vol3(S)−assoc3(S)
vol3(S̄)

).

Then based on ξ3(S) =
assoc3(S)
vol3(S) + assoc3(S̄)

vol3(S̄)
, we have

η3(S) =
2

3
− 1

3
ξ3(S) +

1

3
(
vol3(S̄)− assoc3(S̄)

vol3(S)
+
vol3(S)− assoc3(S)

vol3(S̄)
).
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3.6. Mixed-order Evaluation Metrics

If we have ground-truth clusters available, we can use them to measure per-

formance of clustering algorithms. Existing works commonly use mis-clustered

nodes [15] or related metrics (e.,g. NMI) [30]. We denote the ground-truth par-

tition of G with k clusters as S∗ = {S∗
1 , S

∗
2 , . . . , S

∗
k} and a candidate partition to

be evaluated as S = {S1, S2, . . . , Sk}. The mis-clustered node metric is defined

as ǫN (S∗, S) = min
σ

∑k
c=1 |S∗c⊕Sσ(c)|, which measures the difference between two

partitions S
∗ and S, where σ indicates all possible permutations of {1, 2, . . . ,

k} and ⊕ denotes the symmetric difference between the two corresponding sets.

A smaller ǫN indicates a more accurate partition.

To break existing rigid evaluation scenarios based on the level of nodes, we

design a flexible way to evaluate the quality of communities by leveraging the

level of structures (e.g. triangles). Depending on diverse application scenarios,

we can flexibly choose one to evaluate communities. For example, if the triangle

structure plays an important role in communities (e.g. in social networks), we

can evaluate communities in terms of triangles to truly reflect the quality of

communities. A limitation of the above metric is that it fails to truly reflect the

errors at the level of structures. Also, our studies show that mis-clustered nodes

do not have amonotonic relationship with mis-clustered edges or triangles. That

is, a smaller number of mis-clusterd nodes does not imply smaller number of

mis-clustered edges or triangles, and vice versa. This motivates us to propose

structure-aware error metrics to measure the quantity of mis-clustered edges

(ǫE) and triangles (ǫT ), respectively. Specifically, we define ǫE as ǫE(S
∗, S) =

∑k
c=1EN (S∗c)−max

σ

∑k
c=1EN (S∗c ∩ Sσ(c)) where EN (S) is the number of edges

in S. We can define ǫT similarly by replacing EN (S) with TN (S), where TN (S)

is the number of triangles in S.

Based on the proposed structure-aware error metrics, we define a mixed-

order evaluation metrics that can give us new insights on the preservation of

edges and triangles for existing single-order SC. It is illustrated in the right

block of Fig. 2.
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Table 2: Statistics of the 2,005 networks. The number in parentheses is the median for each

range.
Network |V| |E| Size Triangle density #Interaction edges #Clusters/network #Network(s)

DBLP 317K 1.05M 14∼303 (22) 7.4∼167.9 (15.4) 1∼278 (15) 2 500

YouTube 1.13M 2.99M 6∼389 (91) 1∼22.9 (3.73) 1 ∼1054 (89) 2 500

Orkut 3.07M 117M 88∼379 (206) 213.7∼1526 (452.6) 37∼10470 (2411) 2 500

LJ 4.00M 34.7M 33∼193 (98) 116.3∼2968 (422.4) 1∼9179 (1489) 2 500

Zachary 34 78 34 1.32 11 2 1

Dolphin 62 159 62 1.53 6 2 1

Polbooks 105 441 105 5.33 70 3 1

Football 115 613 115 7.04 219 12 1

PBlogs 1490 16716 1490 67.8 1576 2 1

Facebook 22,470 170,912 22,470 35.50 19,590 4 1

Definition 2. (Mixed-order Evaluation Metrics) Given a graph G = (V,E) and

ground-truth S
∗, a mixed-order evaluation metric evaluates a candidate partition

S derived from an edge-based similarity matrix B of G by the triangle-aware

error metric ǫT , or evaluates a candidate partition S derived from a triangle-

based similarity matrix T of G by an edge-aware error metric ǫE.

4. Experiments

This section aims to evaluate MOSC against existing SC methods in two

applications: community detection and superpixel segmentation. Furthermore,

we will explicitly study the effect of mixed-order cut criteria, and gain insights

from the newly designed mixed-order evaluation metrics for the community

detection task.

4.1. Experimental Settings on Community Detection

Datasets. The experiments were conducted on two popular groups of net-

works with very different triangle densities: 1) five full real-world networks:

Zachary’s karate club (Zachary) [31], Dolphin social network (Dolphin) [32],

American college football (Football) [33], U.S. politics books (Polbooks) [33],

Political blogs (PBlogs) [34] and Facebook3 [35]; 2) four complex real-world

networks: DBLP, YouTube, Orkut, and LiveJournal (LJ) from the Stanford

3https://archive.ics.uci.edu/ml/datasets/Facebook+Large+Page-Page+Network
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Network Analysis Platform (SNAP) [29].4 All networks have ground-truth com-

munities available. For the four SNAP networks, we extract paired communi-

ties to focus on bi-partitioning problems with the following procedures: 1) For

each network, we select communities with the top 500 highest triangle den-

sities, among those communities having no more than 200 nodes (for DBLP,

YouTube, and Orkut) or 100 nodes (for LJ) because it has high density; 2) For

every community in the top list, we choose another community having the most

connections with it, among all the other communities in the respective network

(without limiting the community node size). These two communities form a

bi-partitioning network. In this way, we extracted 2,000 networks from SNAP.

The statistics of networks are summarised in Table 2.

Compared algorithms. We evaluate MOSC-GL and MOSC-RW against

the following seven state-of-the-art methods, including both edge-based SC and

triangle-based SC, and both global and local methods: 1) SC-Shi [18]: Shi and

Malik developed a method aiming to minimise Ncut2 criterion via a generalised

eigenvalue problem of Eq. (2.3). 2) SC-Ng [8]: Ng et al. designed a method

built upon [18]. Instead of using one dominant eigenvector, it used the first k

eigenvectors of L for performing k partitions and then an additional row nor-

malisation step before k-means. 3) Tensor Spectral Clustering (TSC) [9]: TSC

is a higher-order spectral clustering method developed by Benson et al. They

constructed a transition tensor P as in Eq. (2) and used an expensive multi-

linear PageRank algorithm [36] to produce a vector as the weight for reducing

the tensor to a matrix via weighted average, followed by conventional SC. 4)

Higher-order SVD (HOSVD) [14]: To address the hypergraph clustering prob-

lem, this method used an adjacency tensor T to encode hyperedge, which is

equivalent to the adjacency tensor definition in Eq. (1). T is then reduced to a

matrix via computing a modelwise covariance matrix, followed by conventional

SC. 5) Motif-based SC (MSC) [1] / Tensor Trace Maximisation (TTM) [15]:

MSC is a general higher-order spectral clustering method via re-weighting edges

4https://snap.stanford.edu/data/index.html
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according to the number of motifs containing corresponding edges, followed by

conventional SC. TTM is independently proposed but equivalent to MSC, which

we have verified both analytically and experimentally. 6) HOSPLOC [10]: This

is a higher-order local clustering method aiming for more efficient processing

while taking higher-order network structures into account. 7) DeepWalk [37]:

DeepWalk adopts an unsupervised Skip-Gram [6] neural network model to learn

the embedding of each node. This approach samples random walks from each

node,and then maximises the co-occurrence probability among the nodes that

appear as neighbours. Following [38], we employ the learned embedding of nodes

in a k-means to conduct communities.

We study two versions for each MOSC: MOSC (λ = 0.5): MOSC with a fixed

(recommended) λ value of 0.5; MOSC (Auto-λ): MOSC with automatically

determined λ; Additionally, for MOSC-RW, we study simplified TSC (STSC)

when λ = 0.

Evaluation metrics. We use the proposed structure-aware metrics, mis-

clustered edges (ǫE) and triangles (ǫT ). We also use two popular metrics, mis-

clustered nodes (Eq. (3.6)) and normalised mutual information (NMI) [30, 3].

For the SNAP networks, we show the average results of the 500 bi-partitioning

networks.

To define NMI, we need the Shannon entropy for S that can be defined

as H(S) = −∑k
c=1(nSc

/n) log(nSc
/n), where nSc

is the number of vertices in

community Sc. The mutual information between S and S
∗ can be expressed as

I(S, S∗) =
∑k

c=1

∑k
d=1

nScS
∗

d

n log(
nScS

∗

d
/n

(nSc/n)×(nS∗

d
/n) ), where nScS∗

d
is the number of

vertices shared by communities Sc and S∗
d . The NMI between two partitions

S and S
∗ is defined as NMI(S, S∗) = 2I(S,S∗)

H(S)+H(S∗) . If S and S
∗ are identical,

NMI(S, S∗) = 1. If S and S
∗ are independent, NMI(S, S∗) = 0.

Reproducibility. We implemented compared algorithms using Matlab
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Figure 3: Mixed-order cut criteria analysis on SC-Shi, SC-Ng, HOSVD, MSC, MOSC-

GL(λ = 0.5) and MOSC-RW(λ = 0.5) w.r.t mis-clustered triangles (ǫT ) and nodes (ǫN )

for eight cut criteria: Conduct3(Con-3), Exp3, Nassoc3(Nass-3), Ncut3, Conduct-X(Con-X),

Conduct2(Con-2), Exp2, Nassoc2(Nass-2). In general the cut criteria Nassoc3 is the best

criteria. The correlations between criteria and errors are that triangle-based criteria can lead

to a low number of errors and depend on the properties of networks.

code released by the authors of MSC,5 HOSVD,6 HOSPLOC,7 and TSC via

multilinear PageRank.8 We followed guidance from the original papers to set

their hyperparameters. All experiments were performed on a Linux machine

with one 2.4GHz Intel Core and 16G memory. We have released the Matlab

code for MOSC.9

5https://github.com/arbenson/higher-order-organization-matlab
6http://sml.csa.iisc.ernet.in/SML/code/Feb16TensorTraceMax.zip
7http://www.public.asu.edu/~dzhou23/Code/HOSPLOC.zip
8https://github.com/dgleich/mlpagerank
9https://bitbucket.org/Yan_Sheffield/mosc/
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4.2. Effectiveness of Mixed-order Cut Criteria

Firstly, we study the effect of mixed-order cut criteria on clustering per-

formance. We have seven existing cut criteria from Table 1 and the proposed

mixed-order conductance (φX). We study their effect on SC-Shi, SC-Ng, MSC,

HOSVD, MOSC-GL(λ = 0.5) and MOSC-RW (λ = 0.5) on DBLP, Orkut and

LJ w.r.t ǫT , ǫE , ǫN . Note that we omit experimental results about ǫE on

DBLP, Orkut and LJ since they show the same scenarios with ǫT on these three

datasets. From Fig. 3, we have the following observations:

1. Mixed-order cut criteria have a greater impact on networks with dense

triangles (e.g. Orkut and LJ) than networks with the sparse triangles (e.g.

DBLP). The reason is that one error node in a dense triangle network,

in comparison to in a sparse network, is normally shared by more error

triangles.

2. Some optimised cut criteria do not truly reflect the quality of output

communities w.r.t ǫT when comparing with ground-truth communities.

In particular, in DBLP the optimised Nassoc2 of SC-Shi still has great

quantity of error triangles ǫT when comparing with some other optimised

cut criteria (e.g. Ncut3).

3. Mixed-order cut criteria can improve the performance of SC-Shi and SC-

Ng that are conventional SC. In general, the cut criteria Nassoc3 is the

best criteria. It consistently gives the lowest number of error triangle ǫT

and edge ǫE over three datasets than other seven cut criteria except for ǫE

of MOSC-RW on Orkut. For error nodes, Nassoc3 has the lowest number

on LJ and second lowest on DBLP and Orkut.

4. Triangle-based criteria can lead to the less errors than edge-based criteria.

In particular, Nassoc3 can achieve a very low number of errors. In general

edge-based cut criteria (e.g. Nassoc2) do not show such low number of

errors. From Table 1, Nassoc3 is a only one that considers the number of

triangles within communities. Therefore, the maximisation of the num-

ber of triangle within communities is effective to reduce errors in output
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communities.

5. The correlation between criteria and errors depends on the properties of

datasets. For LJ with small networks and dense triangles, the criterion

Nassoc3 can significantly reduce errors in terms of ǫN , ǫE and ǫT when

comparing with other criteria. By contrast, for DBLP with big networks

and sparse triangles, the performance of criterion Nassoc3 is weakened so

that the performance of criteria Ncut3 is closed to it in terms of ǫE and

ǫT .

Based on the above observations, we recommend the criterion Nassoc3 to

achieve a low number of error edges and triangles. We recommend Ncut3 to

reduce the number of error nodes for big and sparse networks.

4.3. Performance Comparison

We study the results of all algorithms in combination of all eight criteria

and k-means (KM). Fig. 3 shows that cut criteria can affect the performance of

all algorithms. Therefore, for fair comparison, we report the clustering results

conducted by the best criteria for each algorithm. The top two results are in

bold (best) or underlined (second best).

Results on SNAP Networks. We show the performance of all clustering

algorithms with the best cut criteria in terms of NMI, ǫN , ǫE , and ǫT on SNAP

networks in Table 3. The results for some settings of TSC and HOSPLOC are

not available either due to long running time (not finished within 40 hours) or

out of memory. In particular, the multilinear PageRank algorithm in TSC is

very expensive.

We have four observations:

1. MOSC-RW (λ = 0.5) achieves the best in 10 out of 16 settings.

2. MOSC-RW outperforms MOSC-GL, although MOSC-GL achieves top two

results in 4 settings. We will give a detailed discussion about it at Sec. 4.4.

3. Both MOSC-RW(λ = 0.5) and MOSC-GL(λ = 0.5) have better results

than MOSC-RW(Auto-λ) and MOSC-GL(Auto-λ). This demonstrates
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Table 3: Performance of clustering algorithms with the best cut criteria on SNAP networks.

The best is in bold and the second best is underlined. A larger NMI indicates a better result,

while a smaller ǫN/ǫE/ǫT indicates a better result.
Second order Third order MOSC-RW MOSC-GL

Method SC-Shi SC-Ng DeepWalk HOSVD MSC TSC HOSPLOC STSC λ = 0.5 Auto-λ λ = 0.5 Auto-λ

D
B
L
P

NMI 0.650 0.656 0.614 0.550 0.620 0.648 0.286 0.628 0.654 0.646 0.648 0.645

ǫN 4.13 4.56 4.99 5.40 4.65 4.30 17.28 4.24 4.43 4.76 4.82 4.87

ǫE 13.36 14.58 17.46 17.99 15.98 18.72 70.49 18.72 14.27 15.68 15.87 16.67

ǫT 24.81 26.84 35.15 32.18 29.57 37.93 236.65 45.46 29.23 28.46 30.30 32.01

Y
ou

T
u
b
e NMI 0.248 0.270 0.258 0.124 0.184 - - 0.150 0.284 0.260 0.275 0.263

ǫN 22.48 23.31 26.63 25.69 24.41 - - 23.83 22.18 23.46 23.44 23.83

ǫE 44.42 46.46 61.43 50.61 47.18 - - 63.12 44.28 46.74 52.58 47.96

ǫT 27.70 29.49 47.36 30.78 29.1 - - 59.78 28.90 29.29 38.63 29.46

O
rk
u
t NMI 0.397 0.397 0.399 0.3618 0.390 - - 0.387 0.410 0.393 0.397 0.394

ǫN 37.13 37.09 38.06 40.43 38.49 - - 37.60 36.05 37.02 36.72 36.93

ǫE 574.6 574.6 635.5 624.7 582.3 - - 569.2 521.6 571.8 550.4 574.9

ǫT 4557 4557 5703 4937 4575 - - 5104 3949 4541 4405 4614

L
J

NMI 0.226 0.224 0.156 0.218 0.224 0.214 - 0.201 0.229 0.221 0.208 0.212

ǫN 5.58 5.63 23.08 5.79 5.74 5.52 - 5.15 5.49 5.66 5.76 5.64

ǫE 49.83 50.01 1134 55.09 52.54 58.19 - 57.06 47.88 51.01 58.64 54.17

ǫT 546.1 547.6 3404 600.6 574.5 737.7 - 773.0 530.6 556.4 730.3 617.8

that a fixed mixing parameter is effective, but it also shows the automatic

schemes are not effective in these settings.

4. Mixed-order evaluation metrics can give insights on the quality of structure

preservation for single-order SC. Specifically, SC-Shi preserves the most

number of nodes, edges and triangles in DBLP than others. Additionally,

although SC-Shi does not preserve the most number of nodes in YouTube,

it still can preserve the most number of triangles than others.

Results on Full Networks. We show the performance of all clustering

algorithms with the best cut criteria for five full networks in terms of NMI, ǫN ,

ǫE , and ǫT in Table 4, except HOSPLOC, for which we were not able to obtain

comparable results. We have four observations:

1. MOSC-GL (Auto-λ) achieves the best performance in 17 out of 24 settings,

demonstrating that automatic determination of λ is effective in these set-

tings. Specifically, in Dolphin MOSC-GL (Auto-λ) produces perfect re-

sults in all metrics. For networks with multiple clusters (Polbooks, Foot-

ball), MOSC-GL (Auto-λ) is also superior to others. We visualise output

clusters of Polbooks and Football in Fig. 4(a) and 4(b) respectively.
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Table 4: Clustering performance of algorithms with the best cut criteria. The best is in bold

and the second best is underlined. A larger NMI indicates a better result, while a smaller

ǫN/ǫE/ǫT indicates a better result. Note that there are ties.
Second order Third order MOSC-RW MOSC-GL

Method SC-Shi SC-Ng DeepWalk HOSVD MSC TSC STSC λ = 0.5 Auto-λ λ = 0.5 Auto-λ

Z
a
ch
a
ry NMI 0.837 0.837 0.732 0.069 0.732 0.677 0.325 0.837 0.837 0.837 0.837

ǫN 1 1 2 14 2 2 8 1 1 1 1
ǫE 2 2 7 34 3 3 24 2 2 2 2
ǫT 1 1 10 16 1 1 14 1 1 1 1

F
o
o
tb
a
ll NMI 0.883 0.904 0.529 0.896 0.924 0.866 0.862 0.924 0.924 0.9 0.931

ǫN 23 15 65 16 10 26 26 10 10 15 9
ǫE 63 37 291 36 7 70 72 7 7 36 7
ǫT 99 50 584 39 2 110 114 2 2 39 2

P
ol
b
o
o
k
s NMI 0.575 0.542 0.615 0.092 0.542 0.180 0.103 0.575 0.575 0.563 0.589

ǫN 17 18 17 56 18 55 51 17 17 17 17
ǫE 27 33 39 185 34 281 172 27 27 28 21
ǫT 7 10 19 234 8 384 227 7 7 7 1

D
ol
p
h
in NMI 0.889 0.889 0.889 0.081 0.536 0.582 0.631 0.889 0.889 0.889 1

ǫN 1 1 1 19 7 6 5 1 1 1 0
ǫE 1 1 1 43 10 8 6 1 1 1 0
ǫT 0 0 0 29 0 1 0 0 0 0 0

P
B
lo
gs

NMI 0.007 0.007 0.740 0.014 0.023 - 0.430 0.012 0.458 0.098 0.016
ǫN 671 732 54 677 614 - 204 659 230 478 647
ǫE 7,302 7,302 159 7,307 7,260 - 362 7,302 184 7,302 7,301
ǫT 36,401 36,402 423 36,400 36,400 - 631 36,401 456 36,402 36,400

F
ac
eb

o
ok NMI 0.023 0.255 0.163 0.177 0.055 - 0.0228 0.023 0.139 0.032 0.258

ǫN 15,553 11,171 13,062 12,234 14,206 - 15,636 15,553 12,955 15,517 11,166
ǫE 69,789 57,630 64,195 60,853 69,889 - 81,438 69,789 67,973 69,740 57,635
ǫT 244,499 190,424 220,356 182,274 243,998 - 381,685 244,499 244,498 244,487 190,335

2. MOSC-GL (Auto-λ) outperforms MOSC-RW (Auto-λ), although MOSC-

RW (Auto-λ) achieves the best results in 10 settings, which is still better

than all existing SC algorithms (Note that there are ties).

3. Mixed-order evaluation metrics can gain insights on the quality of struc-

ture preservation. In Football MSC achieves the best ǫE and ǫT but not for

ǫN , which also indicates existing mis-clustered node cannot reflect errors

in structures.

4. In Facebook, MOSC-GL (Auto-λ) achieves the best performance w.r.t

NMI and ǫN , and achieves the second best w.r.t ǫE and ǫT . Also, the

results of SC-Ng are closed to the results of MOSC-GL (Auto-λ) since

MOSC-GL(Auto-λ) is the generalisation of SC-Ng.

In Table 3, our auto-learning strategy that is based on cut criteria do not

show superior performance for bi-partitioning and dense networks extracted

from large networks. The reason is that optimised cut criteria do not truly
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(a) Polbooks (b) Football (12 clusters)

Figure 4: Clusters in Polbooks and Football networks discovered by MOSC-GL (Auto-λ).
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Figure 5: Sensitivity analysis of λ on Football, Dolphin and PBlogs w.r.t NMI.

reflect the quality of output communities w.r.t NMI, ǫN , ǫE , ǫT when comparing

with ground-truth communities. However, in Table 4, our auto-learning strategy

that is based on triangle density is effective to multi-cluster networks. Triangle

density of communities can better reflect the quality of communities.

4.4. Sensitivity Analysis on λ

The mixing parameter λ is the only hyperparamter in MOSC. To gain insight

of MOSC, we conduct sensitivity analysis on λ as shown in Fig. 5 w.r.t. NMI.

We can see that the choice of λ can significantly affect the performance while

there are large regions of stable performance as well. This was the motivation of

developing schemes to automatically determine the best λ. For PBlogs, Table

4 shows that MOSC-RW achieves significantly better performance than the
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others. From Fig. 5(c), MOSC-RW does not have good performance for large λ

values (>0.4). Fortunately, benefiting from automatic λ determination scheme,

an outstanding performance has been achieved.

From performance comparison in Section 4.3 and the above sensitivity anal-

ysis, we see that MOSC-GL and MOSC-RW have different performance on

networks with different triangle densities. MOSC-RW tends to be better for

networks with high triangle densities while MOSC-GL tends to be better for

networks with low triangle densities. For MOSC-GL, WT can dominate WX

in WX = (1− λ)WT + λW, especially for dense networks. Each entry of WT

denotes the number of triangles containing the corresponding edge while W is

a binary matrix. Therefore, for most non-zero pairs (i, j), WT (i, j) is much

larger than W(i, j) especially for dense networks. This can be the reason that

MOSC-GL is less sensitive to tuning λ, or finding the appropriate λ is more

difficult. That is, WX tends to encode much less edge information. In contrast,

MOSC-RW does not have such issue since A and P are normalised and thus

they are in similar scales before linear combination. Therefore, MOSC-RW has

a better performance than MOSC-GL in SNAP networks and the dense full

graph PBlogs. Furthermore, based on the above discussion, we can give an ex-

planation that MOSC-RW is quite sensitive to λ on PBlogs. In PBlogs, triangle

information is likely to dominate the mixed-order structure and thus tuning λ

may not change its mixture proportion largely especially for the PBlogs with

dense triangles.

4.5. Computational Time

Fig. 6 compares the computational time of different methods on YouTube,

LJ, PBlogs and Football, using k-means to obtain the final clusters to avoid

the effect of cut criteria. We have the following three observations: 1) Both

HOSVD and MOSC-RW involve tensor construction and operations so they

are both more time consuming, in particular on dense networks such as LJ and

PBlogs, where HOSVD is the slowest and MOSC-RW is the second slowest. The

reason is that HOSVD uses a more complicated dimension reduction method
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Figure 6: Computational time (in log scale) on YouTube, LJ, PBlogs and Football.

than MOSC-RW. 2) MOSC-GL is more efficient than MOSC-RW in all cases

and has similar efficiency as conventional SC methods on the whole. 3) SC-Shi

and SC-Ng are slower than MOSC-RW and MOSC-GL on Football since they

use more time on converging of k-means step. But for PBlogs that is dense and

large, MOSC-RW spends lots of time on constructing the triangle tensor while

MOSC-GL is scalable to construct the triangle matrix.

4.6. Superpixel Segmentation

A superpixel is a group of similar pixels in colour or other low-level proper-

ties [39]. Superpixel segmentation as a preprocessing technique is increasingly

popular in many computer vision tasks such as object tracking [40]. The main

merit of superpixel is to provide a more natural and perceptually meaningful

representation of the input image [41]. Therefore, compared with the traditional

pixel representation of images, the superpixel representation greatly reduces the

number of image primitive and improves the representative efficiency [41].

We perform experiments on the test set of Berkeley Segmentation Dataset10

including two hundred images (size 481 × 321, equivalent to 154,401 nodes

in networks) with human-labelled ground-truth segmentations. We compare

MOSC-GL (λ = 0.5) with four algorithms: 1) simple linear iterative cluster-

ing (SLIC) [42]. It is a state-of-the-art method that is specifically designed to

10https://www2.eecs.Berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Table 5: The best is in bold and the second best is underlined. MOSC-GL uses λ = 0.5.

Comparing with LSC, MOSC-GL achieves competitive results especially for ASA.

SLIC SC-Shi SC-Ng MSC DeepWalk LSC MOSC-GL

UE ↓ 0.123 0.256 0.112 0.110 0.697 0.092±0.046 0.108±0.046

ASA ↑ 0.867 0.767 0.880 0.882 0.438 0.894±0.045 0.883±0.043

superpixel segmentation task, 2) SC-Shi, 3) SC-Ng, 4) MSC, 5) linear spectral

clustering (LSC)[43]. Results of SLIC are generated by the official Matlab im-

plementation11. For LSC, we use the source code from the author with default

settings12. We exclude the comparison with tensor-based method, e.g. MOSC-

RW, HOSVD and TSC due to their large space consumption (still out of mem-

ory using 100G memory to construct the adjacency tensor). For all compared

algorithms, the total number of superpixel is set to 100 for each image.

In order to obtain an objective and intuitive comparison, we quantitatively

evaluate our algorithm by two popular metrics that are 1) undersegmentation

error (UE) [41], 2) achievable segmentation accuracy (ASA) [44]. To compute

the above metrics, we use C = {Cj}Kj=1 to denote the K segmentations of a

ground-truth image, and T = {Ti}Li=1 to represent the L segmentations by the

superpixel algorithm.

4.7. Performance Comparison

For quantitative evaluation, from Table 5, we observe that comparing with

LSC, MOSC-GL achieves competitive results especially for ASA. Although our

MOSC-GL is not motivated to handle superpixel segmentation, superpixel seg-

mentation still turns out to be an application that is worthy to be applied.

Furthermore, LSC is not applicable to the community detection task in net-

works since it cannot form networks.

For qualitative evaluation, Fig. 7 shows two example segmentations gener-

ated by MOSC (λ = 0.5), SC-Ng and SLIC. We observe that the superpixel

11https://www.mathworks.com/help/images/ref/superpixels.html
12https://github.com/neuwangmeng/Linear-Spectral-Clustering-Superpixel-Segmentation-

Algorithm Python
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(a) SLIC (b) SLIC (c) SLIC (d) SLIC

(e) SC-Ng (f) SC-Ng (g) SC-Ng (h) SC-Ng

(i) MOSC (λ=0.5) (j) MOSC (λ=0.5) (k) MOSC (λ=0.5) (l) MOSC (λ=0.5)

Figure 7: Visual comparison among SLIC, SC-Ng and MOSC (λ=0.5). We observe that

superpixels obtained by MOSC (λ = 0.5) can adhere well to boundaries of the head of a bird,

and also can fit to the edges between a man’s neck and head. SLIC generates the irregular

and sharp superpixels.

boundaries obtained by proposed MOSC (λ = 0.5) can fit the object edges bet-

ter than others. For example, MOSC (λ = 0.5) can adhere well to boundaries

of the head of a bird, and also can fit to the edges between a man’s neck and

head. Additionally, compared with graph-based methods, superpixels obtained

by SLIC are irregular and sharp.

5. Conclusion

This paper proposed two mixed-order spectral clustering (MOSC) meth-

ods, MOSC-GL and MOSC-RW, which model both second-order and third-

order structures simultaneously. MOSC-GL combines edge and triangle adja-

cency matrices with theoretical performance guarantee. MOSC-RW combines

30



first-order and second-order random walks with a probabilistic interpretation.

Moreover, we designed mixed-order cut criteria to enable existing single-order

SC to preserve mixed-order structures, and new mixed-order evaluation metrics

for structure evaluation. Experiments on community detection and superpixel

segmentation tasks show that MOSC algorithms outperform existing SC meth-

ods in most cases and the proposed mixed-order approach has produced superior

clustering of networks and superpixel segmentations of images. The future work

can be developed for mixing more than two orders, and/or orders higher than

three.
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