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Abstract
A special recurrent neural network (RNN), that is the zeroing neural network (ZNN), is
adopted to find solutions to time‐varying quadratic programming (TVQP) problems with
equality and inequality constraints. However, there are some weaknesses in activation
functions of traditional ZNN models, including convex restriction and redundant
formulation. With the aid of different activation functions, modified ZNN models are
obtained to overcome the drawbacks for solving TVQP problems. Theoretical and
experimental research indicate that the proposed models are better and more effective at
solving such TVQP problems.

1 | INTRODUCTION

As a kind of common and basic optimisation problem [1], the
quadratic programming (QP) problem is extensively available in
various scientific and technological fields [2,3], such as pattern
recognition [4], signal processing [5,6] and robotics [7–10]. In

order to deal with such problems, numerous target approaches
are put forward, most of which require numerical calculations.
However, the complexity and costs of numerically solving QP
problems are rather high, which is proportional to the cube of
the dimension of its associated Hessian matrix [11–13]. There-
fore, when dealing with relatively complex problems, most
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arithmeticalmethods are time‐consuming and even fail to get the
results. For these reasons, more efficient and accurate methods
are needed.

As advancements in artificial intelligence are racing ahead
[14,15], recurrent neural network (RNN), as a significant
branch, is also evolving rapidly and increasing in popularity
[16–19]. Owing to its highly suitable nature of easy hardware
implementation, parallel computing and adaptive self‐learning,
this intelligent method can be used to deal with scientific and
engineering problems with strong real‐time requirements and
large calculation scale [20,21]. Typically, RNN models used
for the solution of these QP problems are based on gradient
methods [22,23], instead of one with a time‐variant coeffi-
cient. However, these traditional static approaches lack time‐
derivative information and therefore they can only solve QP
problems with time‐invariant coefficients. Both theories and
practice show that, if parameters in the given system change
over time, there will be time‐lag errors. For this reason,
Zhang et al. presented and discussed a new kind of RNN
method to solve time‐varying quadratic programming
(TVQP) problems utilising the matrix‐valued error function,
which is called the zeroing neural network (ZNN) [24]. The
ZNN approach differs from the traditional gradient neural
network (GNN) whose energy function is scalar valued [25].
On account of the involvement of time‐derivative informa-
tion of the parameters, the large time‐lag errors could be
drastically reduced and the solution to the TVQP problem is
well tracked [26]. It has been shown to be powerful when
dealing with some time‐variant problems including the online
matrix inversion.

As research continues, scientists have made some vital
new discoveries in the study of ZNN. For example, they
have found that the activation function is a highly essential
factor influencing the convergence performance of the ZNN
model. Also, many variants of ZNN appear with different
activation functions. In [27], an improved ZNN model aided
with the sign‐bi‐power (SBP) function was presented and
investigated, attracting a great deal of attention due to its
finite‐time convergent performance. For clarity and brevity,
this finite‐time convergent model is referred to here as the
sign‐bi‐power ZNN model (SBPZNN) according to its
activation function. Although many achievements have been
made in the existing ZNN models in solving TVQP prob-
lems [28], there remains much scope for improvement due to
some common limitations to be resolved. Two shortcomings
in the existing ZNN models are specifically described and
adequate solutions to overcome them are also provided
herein. On one hand, the projection of the activation func-
tion of ZNN models must be convex, differentiable and
monotonic, which is somewhat unnecessary and may even
block the development progress of ZNN. On the other
hand, the redundant expression of the SBP activation func-
tion leads to a slow converging rate [29], which similarly
affects the performance of the SBPZNN model. To solve
the first limitation, a ZNN model allowing non‐convex
projection on activation functions (i.e. NPZNN model) so as
to remove the convex restriction is proposed. To solve the

second limitation, a ZNN model aided with a simpler SBP
function (i.e. SSZNN model), a combined function‐activated
ZNN model (i.e. CZNN model) and a ZNN model activated
with saturation function (i.e. SZNN model) are adopted
separately, thereby accelerating the convergence speed. In
short, the newly proposed models have disparate pro-
pensities, all of which are of great significance to ZNN for
solving TVQP problems. Finally, the concluding section
provides a summary on the authors’ work and gives some
suggestions for future research on ZNN models and their
real‐world applications.

In Section 2, the authors introduce the definition and
transformation process of the TVQP problem, as well as the
corresponding ZNN model and its design process. In Sec-
tion 3, several modified ZNN models are proposed aimed at
remedying the weaknesses of the traditional ZNN models
stated earlier, and then their convergence is proven through the
related theoretical analysis. In Section 4, several numerical
simulations are conducted and the results are analyzed for
further validating the effectiveness of the proposed ZNN
models for solving TVQP problems.

2 | PROBLEM FORMULATION AND
ZNN SOLVERS

A TVQP problem constrained by equalities and inequalities
and its transformation process are elaborated on in detail early
in this section. The SBPZNN model and its design process are
also provided to establish the foundation for further research
and improvement. In addition, limitations to existing ZNN
models are presented.

2.1 | Problem formulation

The intended target is to construct some appropriate ZNN
models for better solving TVQP problems, especially those
with equality and inequality constraints. The standard form is
described as follows:

min
1
2
xTðtÞV ðtÞxðtÞ þ vTðtÞxðtÞ;

s:t: A1ðtÞxðtÞ ¼ b1ðtÞ;

A2ðtÞxðtÞ ≤ b2ðtÞ:

ð1Þ

In (1), V ðtÞ ∈ Rn�n is a positive‐definite and time‐dependent
Hessian matrix; vectors v ðtÞ ∈ Rn, b1ðtÞ ∈ Rm, b2ðtÞ ∈ Rp

are given vectors, full rank matrix A1ðtÞ ∈ Rm�n and matrix
A2ðtÞ ∈ Rp�n are with time‐variant entries; vector xðtÞ ∈ Rn is
solved at any time t so that the objective function reaches its
minimum; symbol T shows the transpose of the vector.

To solve TVQP problem (1), a Lagrangian function is first
constructed, as shown in the following, so as to transform the
TVQP problem into the problem of finding the extreme value
of the Lagrangian function:
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LðxðtÞ; ϱðtÞ; ςðtÞÞ¼
1
2
xTðtÞV ðtÞxðtÞ þ vTðtÞx ðtÞ

þϱTðtÞðA1ðtÞxðtÞ − b1ðtÞÞ

þςTðtÞðA2ðtÞx ðtÞ − b2ðtÞÞ;

where vector ϱðtÞ ∈ Rm represents the Lagrangian multiplier
constrained by equality and vector ςðtÞ ∈ Rp represents the
one constrained by inequality. Then the following lemma is
obtained to get the solution to the above problem:

Lemma 1 ( [5,30]). If unique vectors x*(t), ϱ*(t) and ς*
(t) simultaneously meet KKT conditions shown in
the following, x *ðtÞ ∈ Rn will be the minimum of
TVQP (1):

AT
1 ðtÞϱ

*ðtÞ þ AT
2 ðtÞς

*ðtÞ þ V ðtÞx *ðtÞ þ vðtÞ ¼ 0;

A1ðtÞx *ðtÞ − b1ðtÞ ¼ 0;

ς*TðtÞðb2ðtÞ − A2ðtÞx *ðtÞÞ ¼ 0

b2ðtÞ − A2ðtÞx *ðtÞ ≥ 0; ς*ðtÞ ≥ 0:

8

>

>

>

<

>

>

>

:

Through Lemma 1 we know that the TVQP problem
(1) can be solved by converting it into a time‐varying non‐
linear equation. To achieve this transformation, the
following theories are utilised. Firstly, the definition of the
non‐linear complementary problem (NCP) is given as
follows.

Definition 1 ([30]). A function ϕða1; a2Þ;Rn � Rn→

R
n can be termed NCP if the following condition is

satisfied:

ϕða1; a2Þ ¼ 0 ⇔ a1 ≥ 0; a2 ≥ 0; a1 ◦ a2 ¼ 0;

where ◦ is the symbol of Hadamard product. A commonly
used NCP function is the Fischer‐Burmeister (FB) function,
which is identified as

φFBða1; a2Þ ¼ a1 þ a2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 þ a22
q

:

In this case, finding the solution to the NCP problem can
be turned into solving the equations:

ϕða1; a2Þ ¼
φFBða11; a21Þ

⋮
φFBða1p; a2pÞ

2

4

3

5¼ 0;

Since the function φ(⋅) is non‐differentiable at the point
(0, 0) in the case of scalars, smooth parameters are introduced
to obtain the following smooth continuous and differentiable
PFB function:

φε
FBða1; a2Þ ¼ a1 þ a2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 þ a22 þ ε

q

; ε → 0þ:

ɛ is a tiny value close to zero. For PFB function, we have

φε
FBða1; a2Þ ¼ 0 ⇔ a1 ≥ 0; a2 ≥ 0; a1a2 ¼ ε

�

2;

This PFB function is smooth for a1 and a2. Moreover, we
can see that lim

ε→0þ
φε
FBða1; a2Þ ¼ φFBða1; a2Þ.

Lemma 2 ([31]). For the TVQP problem (1), a vector
y �ðtÞ ¼ ½x �T ðtÞ; ϱ�T ðtÞ; ς�T ðtÞ�T meets the equations

AT
1 ðtÞϱ

*ðtÞ þ AT
2 ðtÞς

*ðtÞ þ V ðtÞx *ðtÞ þ v ðtÞ ¼ 0;

A1ðtÞx *ðtÞ − b1ðtÞ ¼ 0;

ϕε
FBðb2ðtÞ − A2ðtÞx *ðtÞ; ς*ðtÞÞ ¼ 0:

8

>

<

>

:

if and only if x*(t) is the KKT point.
According to theorems in [32], conversion from the above

equations to an equivalent time‐varying equation is necessary,
which means that the optimal solution to (1) will be worked
out only if the result of the following non‐linear matrix
equation is satisfied:

f ðy ðtÞ; tÞ ¼ JðtÞy ðtÞ þ cðtÞ ¼ 0; ð2Þ

where

JðtÞ ¼

V ðtÞ AT
1 ðtÞ AT

2 ðtÞ

A1ðtÞ 0 0

−A2ðtÞ 0 I

2

6

6

4

3

7

7

5

; yðtÞ ¼ ½xðtÞ; ϱðtÞ; ςðtÞ�T;

cðtÞ ¼ ½vðtÞ;−b1ðtÞ;b2ðtÞ − zðtÞ�T;

with I denoting an identity matrix, d(t) = b2(t) − A2(t)x(t),
and zðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðtÞ ◦ dðtÞ þ ςðtÞ ◦ ςðtÞ þ ε
p

. In later sections,
this non‐linear equation, as a deformation of the TVQP
problem, will be a major object of solving.

2.2 | ZNN solvers

In general, when solving time‐varying problems with the ZNN
method, an error function associated with the problem to be
solved is firstly defined. By substituting it into the ZNN design
formula, a ZNN model with a given activation function is thus
designed. The error function is regulated to zero and then the
solution is obtained.

To track the solving process, firstly define the following
error function which is vector‐valued indefinite:

ZHANG ET AL. - 3



eðtÞ ¼ f ðy ðtÞ; tÞ; ð3Þ

where each element can be positive, zero or negative. The
design formula of ZNN is then adopted as follows:

_eðtÞ ¼
df ðyðtÞ; tÞ

dt
¼ − γψðf ðyðtÞ; tÞÞ; ð4Þ

where the design parameter γ > 0 ∈ R is a crucial factor in
determining the converging speed of the neural network.
Moreover, given certain hardware conditions, the value of γ

should be appropriately selected according to the simulation
and experimental requirement or as large as possible; ψ(⋅)
represents an array of activation function which is also
essential in constructing ZNN and is typically mono-
tonically increasing odd. Through a combination of the
error in (3) and the design formula (4), the ZNN model
designed for finding solutions to Equation (2) is naturally
derived, and is depicted by the implicit dynamic equation in
the following:

_JðtÞyðtÞ þ JðtÞ _y ðtÞ þ _cðtÞ ¼ −γψðJðtÞy ðtÞ þ cðtÞÞ; ð5Þ

where

_cðtÞ ¼ ½ _v ðtÞ;− _b1ðtÞ; _sðtÞ�T;

with

_sðtÞ¼ _b2ðtÞ − D1ðtÞð _b2ðtÞ − _A2ðtÞxðtÞ − A2ðtÞ _xðtÞÞ
−D2ðtÞ _ςðtÞ;

and D1(t) = ∧(d(t) ⊘z(t)) and D2(t) = ∧(ς(t) ⊘z(t)), where ∧
(⋅) and ⊘ separately denote diagonal matrices as well as the
Hadamard division [32]. For convenience of calculation and
implementation, the ZNN model (5) is thus equivalently
converted into the formulation displayed as

GðtÞ _y ðtÞ ¼ −HðtÞy ðtÞ − uðtÞ − γψðJðtÞyðtÞ þ cðtÞÞ; ð6Þ

where

GðtÞ ¼
V ðtÞ AT

1 ðtÞ AT
2 ðtÞ

A1ðtÞ 0 0
ðD1ðtÞ − IÞA2ðtÞ 0 I − D2ðtÞ

2

6

4

3

7

5
;

HðtÞ ¼
_V ðtÞ _A1

T
ðtÞ _A2

T
ðtÞ

_A1ðtÞ 0 0
ðD1ðtÞ − IÞ _A2ðtÞ 0 0

2

4

3

5;

and

uðtÞ ¼ ½ _qðtÞ;− _b2ðtÞ; ðI − D1ðtÞÞ _b2ðtÞ�T:

To realize finite‐time convergence, the SBP function is
commonly employed in the construction of ZNN models, and
the formulation is shown as

ψðeiÞ ¼
1
2
LfτðeiÞ þ

1
2
Lf1=τðeiÞ; ð7Þ

where ei is the i‐th element of error e(t) and τ represents a
design parameter in range (0, 1). The definition of Lfτ(⋅) is
given as follows:

LfτðeiÞ ¼
−|ei|τ; if ei < 0;

0; if ei ¼ 0;
|ei|τ; if ei > 0;

8

<

:

ð8Þ

where |⋅| is a symbol presenting the absolute value of an
element. The introduction to the SBPZNN model (6) is thus
completed.

When solving TVQP problems, two common limitations
appear in the existing ZNN models. The first limitation is that
non‐convex projection sets cannot exist in the activation
function, and the second limitation is about SBPZNN, whose
convergence rate is not satisfactory due to its redundant
formulation. ZNN models with non‐convex set and fast finite‐
time convergence speed remain to be explored.

3 | MODIFIED ZNN SOLVERS

In consideration of the limitations of the traditional ZNN
models described in the previous section, four modified ZNN
models based on different kinds of activation functions are
developed and analysed in this section.

3.1 | Non‐convex projection activated ZNN

Firstly, a projection is defined, that is, PΩðζÞ ¼ argminω∈Ω
‖ω − ζ‖2 with 0 ∈Ω where Ω is a set of n‐dimensional vec-
tors. Thus the design formula (4) is rewritten as:

_eðtÞ ¼ −PΩðeðtÞÞ: ð9Þ

Through a combination ofEquations (6) and (9), a newNPZNN
model with non‐convex projection is conveniently derived as

GðtÞ _y ðtÞ ¼ −HðtÞy ðtÞ − uðtÞ − PΩðJðtÞy ðtÞ þ cðtÞÞ: ð10Þ

Note that the NPZNN model (10) is extended by its design
formula. Therefore, it later can be directly applied to prove the
theorem presented in the following part.

Theorem 1 NPZNN model (10) globally converges to
the time‐varying theoretical solution y*(t) of Equa‐
tion (2) whose first n members are the optimal solution
to the TVQP problem (1).

4 - ZHANG ET AL.



Proof. Firstly, define a Lyapunov function candidate as

pðtÞ ¼
1
2
eTðtÞeðtÞ:

Clearly we know that if e(t)≠0, p(t) > 0 is obtained and
that p(t) = 0 only when situation e(t) = 0 is satisfied, indicating
the positive definiteness of p(t). Then, taking the time deriv-
ative of given function p(t) leads to

_pðtÞ ¼ −eTðtÞPΩðeðtÞÞ:

Based on the definition of PΩ(e(t)), that is mapping from
the set of e(t) to set Ω, the following inequation can be
obviously derived:

‖PΩðeðtÞÞ − eðtÞ‖2
2 ≤ ‖ω − eðtÞ‖2

2; ∀ω ∈ Ω:

Then, by letting ω = 0, the following equation is obtained:

‖PΩðeðtÞÞ − eðtÞ‖2
2 ≤ ‖eðtÞ‖2

2:

Reformulating the above inequation and performing an
equivalent transformation, it is simple to obtain:

2PT
ΩðeðtÞÞeðtÞ ≥ PT

ΩðeðtÞÞPΩðeðtÞÞ ≥ 0:

Then, the following result is easily obtained

_pðtÞ ≤ −
1
2
PT
ΩðeðtÞÞPΩðeðtÞÞ ≤ 0:

Based on the Lyapunov stability theorem, it can be deduced
that (3) converges to zero globally, from which the conclusion
that NPZNN model (10) converges globally to the theoretical
solution to Equation (2) can be further drawn. The proof of
global convergence of model (10) is thus complete.

Theorem 1 demonstrates that activation functions in the
existing ZNN models, such as linear function and SBP func-
tion, are subcases of PΩ(⋅). In addition to these common
activation functions, the following special sets are also able to
serve as activation functions for NPZNN models to deal with
the exceptional conditions.

� Bound situation. Ω¼ fζ ∈ Rmþnþp; η− ≤ ζi ≤ ηþg, where
η− < 0 and η+ > 0. In this case,

PΩðζiÞ ¼

ηþi ; ζi > ηþi ;

ζi; η−
i ≤ ζi ≤ ηþi ;

η−
i ; ζi < η−

i :

8

>

<

>

:

� Ball situation. Ω¼ fζ ∈ Rmþnþp; ‖ζ‖2 ≤ R0g, where R0 >
0. In this case,

PΩðζÞ ¼

ζ; ‖ζ‖2 ≤ R0;

R0
ζ

‖ζ‖2
; ‖ζ‖2 > R0:

8

<

:

� Non‐convex situation. Ω¼ ζ ∈ Rmþnþpf ;−m1 ≤ ζi ≤ m1
or ζi ¼ ±m2g, where m1 < m2.

3.2 | ZNN model with simplified SBP
activation function

Considering that the formulation of SBP function is too
redundant for SBPZNN model (6) to converge at a fast rate, a
simplified SBP function is thus adopted:

SiðeiÞ ¼ LfτðeiÞ: ð11Þ

Therefore, based on this new activation function, a modified
ZNN model which is termed the SSZNN model is provided:

GðtÞ _yðtÞ ¼ −HðtÞyðtÞ − uðtÞ − γSðJðtÞyðtÞ þ cðtÞÞ: ð12Þ

Then, the following theorems on SSZNN model (12) are
presented for the study of the convergence.

Theorem 2 SSZNN model (12) globally converges to
the theoretical solution y*(t) of Equation (2) whose
first n members are the optimal solution to the TVQP
problem (1).

Proof. As a subcase of NPZNN model (10), SSZNN model
(12) also applies to Theorem 1. Thus extra proof can be omitted
here.

Theorem 3 SSZNN model (12) converges to the theo‐
retical solution y*(t) of Equation (2) in finite time tc
and the first n members of y*(t) are the optimal so‐
lution to TVQP problem (1) with tc = jemax(0)j1−τ/(γ
(1 − τ)), where emax(0) is the one possessing the
maximum absolute value among all elements of the
initial vector e(0) = J(0)y(0) þ c(0).

Proof. Rewriting SSZNN model (12) generates
_eðtÞ ¼ −γSðeðtÞÞ, and then it can be decoupled to get
m + n + p decoupled differential equations whose i‐th element
is shown as follows

_eiðtÞ ¼ −γSiðeiðtÞÞ;

with i = 1, 2, …, m + n + p . Three distinct situations are
given according to the sign of emax(0).

� For emax(0) > 0, note that for any given i, emax(0) ≥ ei(0).
Thus it is easy to get ei(t) ≤emax(t) and − emax(t) ≤ ei(t), ∀i.
Then it can be concluded that − emax(t) ≤ ei(t) ≤ emax(t) for
∀i, from which it is ensured that as emax(t) approaches 0, ei(t)
also comes to 0 for ∀i. Thus, it is concluded that the
maximum convergence time depends on the value of emax(t).
In other words, tc ≤ tmax where tmax is the time it takes for
emax(t) to converge to zero. According to Equations (8) and
(11), the following equation is derived to get tmax:

_emaxðtÞ ¼ −γðeτ
maxðtÞÞ:

ZHANG ET AL. - 5



Thus it has

dt¼ −
1
γ
e−τ
maxðtÞdemaxðtÞ:

By integrating both sides with respect to t, the following
equation is derived:

∫ tmax

0 dt ¼ −
1
γ
∫ 0
emaxð0Þ

e−τ
maxðtÞdemaxðtÞ: ð13Þ

Solving Equation (13) generates

tmax ¼ |emaxð0Þ|ð1−τÞ
�

γð1 − τÞ:

� For emax(0) < 0, it is similarly deduced that

tmax ¼ |emaxð0Þ|ð1−τÞ
�

γð1 − τÞ:

� For emax(0) = 0, the result is easy to be acquired as

tmax ¼ 0¼ |emaxð0Þ|ð1−τÞ
�

γð1 − τÞ:

3.3 | ZNN model with combined activation
function

Although SSZNN model (12) converges faster than SBPZNN
model (6) and is able to be convergent in finite time, its
convergence time is too heavily influenced by |emax(0)|. That
is, the convergence time would be dramatically extended in the
case of a large difference between theoretical solutions of the
problem and neural states of SSZNN model (12) at the
beginning. For this unsatisfactory factor, we have the following
combined activation function:

A iðeiÞ ¼ κ1LfτðeiÞ þ κ2ei;

which is generated through linearly combining activation
function (11) with coefficient κ1 and the linear activation
function with coefficient κ2. So the following modified ZNN
model named the CZNN model is derived by exploiting the
activation function above:

GðtÞ _yðtÞ ¼ −HðtÞyðtÞ − uðtÞ − γA ðJðtÞy ðtÞ

þ cðtÞÞ: ð14Þ

γκ1 and γκ2 are replaced with ν1 and ν2, respectively. For
studying the convergence of CZNN model (14), the following
theorem is thus presented.

Theorem 4 CZNN model (14) converges to the theo‐
retical solution y*(t) of Equation (2) in finite time tc,
and the first n members of y*(t) are the optimal so‐
lution to TVQP problem (1) with

tc ¼
1

ðν2ð1 − τÞÞ
ln
ðν2|emaxð0Þ|1−τ þ ν1Þ

ν1
;

where emax(0) is the one possessing the maximum absolute
value among all elements of the vector e(0) = J(0)y(0) + c(0).

Proof. Rewriting CZNN model (14) leads to
_eðtÞ ¼ −γA ðeðtÞÞ, then it can be decoupled to get m + n + p
decoupled differential equations whose i‐th element is shown
as follows:

_eiðtÞ ¼ −γA iðeiðtÞÞ;

with i = 1, 2, …, m + n + p . Similarly, three distinguishing
situations are analysed in detail in the following part.

� For emax(0) > 0, we have

_emaxðtÞ ¼ −γðκ1eτ
maxðtÞ þ κ2emaxðtÞÞ: ð15Þ

Reformulating (15) forms

e−τ
maxðtÞ

demaxðtÞ
dðtÞ

þ ν2e1−τ
maxðtÞ ¼ −ν1:

Letting y(t) = emax(t)1−τ, then we easily obtain

dyðtÞ
dt

¼ ð1 − τÞe−τ
maxðtÞ

demaxðtÞ
dt

:

Combining the above two equations generates

dyðtÞ
dt

þ ð1 − τÞν2yðtÞ ¼ ðτ − 1Þν1: ð16Þ

Further, solving Equation (16) yields

yðtÞ ¼ ð
ν1

ν2
þ yð0ÞÞexpððτ − 1Þν2tÞ −

ν1

ν2
:

By setting the value of y(tmax) to 0 at time t = tmax, we can
obtain

ð
ν1

ν2
þ yð0ÞÞexpððτ − 1Þν2tmaxÞ ¼

ν1

ν2
:

Therefore, the result is achieved as

tmax ¼
1

ν2ð1 − τÞ
ln

ν2|emaxð0Þ|1−τ

ν1
:
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� For emax(0) < 0, similarly to the situation of emax(0) > 0, the
result is also generalised as

tmax ¼
1

ν2ð1 − τÞ
ln

ν2|emaxð0Þ|1−τ

ν1
:

� For emax(0) = 0, the value of tmax can be calculated as

tmax ¼ 0¼
1

ν2ð1 − τÞ
ln

ν2|emaxð0Þ|1−τ

ν1
:

At this point, the whole proof on its finite‐time convergent
performance of CZNN model (14) in solving TVQP problems
is completely done.

3.4 | ZNN model with saturation activation
function

Note that most of the existing ZNN models are not saturated,
a saturation function is offered, which is displayed as follows:

C iðeiÞ ¼
ηþi ; γLfτðeiÞ > ηþi ;

γLfτ; η−
i ≤ γLfτðeiÞ ≤ ηþi ;

η−
i ; γLfτðeiÞ < η−

i :

8

>

<

>

:

Furthermore, the corresponding SZNN model is established
and shown as

GðtÞ _yðtÞ ¼ −HðtÞyðtÞ − uðtÞ − γC ðJðtÞyðtÞ

þ cðtÞÞ: ð17Þ

To simplify the proof process of the theorem, for all ele-
ments of the bound, the values are set to be the same as η1 with
η1 > 0, and then analysing the convergence property of SZNN
model (17) can be done by investigating the following theorem.

Theorem 5 SZNN model (17) converges to the theo‐
retical solution y*(t) of Equation (2) in finite time tc,
and the first n members of y*(t) are the optimal so‐
lution to TVQP problem (1) with

tc ≤

|emaxð0Þ|
η1

− 1þ
η1−τ
1

γð1 − τÞ
; γLf1−τðemaxð0ÞÞ > η1;

|emaxð0Þ|1−τ

γð1 − τÞ
; γLf1−τðemaxð0ÞÞ ≤ η1;

8

>

>

>

>

<

>

>

>

>

:

where emax(0) is the one possessing the maximum absolute
value among all elements of the initial vector e(0) = J(0)y
(0) + c(0).

Proof. Rewriting SZNN model (17) leads to
_eðtÞ ¼ −γC ðeðtÞÞ, then we can decouple it to get m + n + p
decoupled differential equations whose i‐th element is shown
as follows:

_eiðtÞ ¼ −γC iðeiðtÞÞ;

with i = 1, 2, …, m + n + p . There are three divided cases to
discuss, which are given below.

1) For γRτ(emax(0)) > η1 Specifically, this situation can be
further broken down into two subcases to compute tmax
according to the definition of C iðeiÞ.

2) The situation of converging from emax(0) to η1. By refor-
mulating the i‐th subsystem of SZNN model (17) as the
equation ei(t) = −η1, it can be simply deduced that it takes
emax(0)/η1 − 1 to converge from emax(0) to η1.

3) The situation of converging from η1 to 0. As indicated in
Theorem 3, it takes no more than η1−τ

1 =ðγð1 − τÞÞ to
converge from η1 to 0.

By adding up the two values of time t obtained above, the
following is found

tmax ¼ |emaxð0Þ|
�

η1 − 1þ |η1|
1−τðγð1 − τÞÞ:

� For γLfτ(emax(0)) ≤ η1, it can similarly be derived that

tmax ¼
|emaxð0Þ|1−τ

γð1 − τÞ
:

Therefore, the proof on SZNN model (17) for finding the
solution to the TVQP problem is completed.

4 | NUMERICAL SIMULATIONS

To enable the ZNN method to better solve TVQP problems,
four modified ZNN models are proposed, that is, NPZNN
model (10), SSZNN model (12), CZNN model (14) and
SZNN model (17), respectively. In this section, computer
simulations of these four ZNN models for solving TVQP
problems are presented to make comparisons among these
diverse models and to verify their effectiveness.

Consider the following benchmark TVQP problem with
equality and inequality constraints investigated in [32]:

min ð
1
8
sinðtÞ þ

1
2
Þx21ðtÞ þ ð

1
8
cosðtÞ þ

1
2
Þx22ðtÞ;

þ
1
2
cosðtÞx1ðtÞx2ðtÞ þ sinð3tÞx1ðtÞ þ cosð3tÞx2ðtÞ;

s:t: sinð4tÞx1ðtÞcosð4tÞx2ðtÞ ¼ cosð2tÞ;

−1:3 ≤ x1ðtÞ; x2ðtÞ ≤ 1:3:
ð18Þ
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Reformulate (18) as the standard form of TVQP problem
shown in (1), and then coefficient matrices are obtained as

xðtÞ ¼ ½x1ðtÞ; x2ðtÞ�T;V ðtÞ ¼

1
4
sinðtÞ þ 1

1
2
cosðtÞ

1
2
cosðtÞ

1
4
cosðtÞ þ 1

2

6

6

6

4

3

7

7

7

5

;

v ðtÞ ¼ ½sinð3tÞ; cosð3tÞ�T;A1ðtÞ ¼ sinð4tÞ; cosð4tÞ½ �;

A2ðtÞ ¼ ½I;−I �T;b1ðtÞ ¼ cosð2tÞ½ �;b2ðtÞ ¼ ½1:3; 1:3; 1:3; 1:3�T:

Through the observation, the proposed ZNN models are
all designed as ordinary differential equations (ODEs). For the
solutions to these special equations, the ODE solver in Matlab
is utilised in the simulation experiment.

4.1 | ZNN with accelerated finite‐time
convergence

In this section, the convergence properties of SBPZNN
model (6), SSZNN model (12) and CZNN model (14) are
studied. The original ZNN model in [24] and GNN model in
[30] are also used for comparative analysis and verification.
Simulative results are illustrated in Figure 1 with the param-
eters chosen as γ = 2 and the initial values set as zero. The
processes of neural states converging to the theoretical so-
lutions are shown in Figure 1a,b, respectively, from which it
can be seen that, under similar conditions, the state trajec-
tories of ZNN models begin to overlap soon (less than 6 s),
while that of the GNN model always lags behind. Such a
result preliminarily shows that both modified ZNN models
and the original ZNN model [24] are more accurate and
effective in solving TVQP problems compared with the
GNN model in [30]. In Figure 1c, in addition to the ZNN
model [24], the residual errors of ZNN models are able to
converge to zero within 3 s, substantiating the properties of
finite‐time convergent previously proved. Moreover, it is

revealed in Figure 1c that proposed SSZNN models (12) and
CZNN models (14) converge faster than the traditional
SBPZNN model (6), with the CZNN model (14) being the
fastest, which is also consistent with the previous theorems
and reflects the superiority of the new models. Furthermore,
comparisons among these diverse models are summarised in
Table 1.

4.2 | ZNN with non‐convex functions

4.2.1 | Convergence with bound constraints

In this simulation, η− and η+ are set as 1 and –1, respec-
tively, and the initial state consists of m + n + p random
numbers. The corresponding results are displayed in
Figure 2. As can be seen from Figure 2a, the residual error
of NPZNN model (10) approaches 0 over time, verifying the
global convergence of this model. Besides, as visualised in
Figure 2b, _eiðtÞ ¼ 1 is obtained in the case ei(t) > 1 and
_eiðtÞ ¼ −1 is obtained in the case that ei(t) < − 1, from
which it can be deduced that NPZNN model (10) satisfies
the bound constraint.

4.2.2 | Convergence with ball constraints

With R = 1 selected and initial states randomly generated, the
simulation result in this case is displayed in Figure 3. It is
evident that the residual error ‖e(t)‖2 is of global convergence,
which indicates that NPZNN model (10) with ball constraint
on activation functions is also feasible to solve TVQP
problems.

4.2.3 | Convergence with non‐convex constraints

The following non‐convex set is adopted for the simulation to
verify the effectiveness of NPZNN model (10) with non‐

(a) (b) (c)

F I GURE 1 Comparisons of GNN [30], ZNN [24], SBPZNN model (6), SSZNN model (12) and CZNN model (14) for solving a TVQP problem (18) [:
(a) neural state x1(t); (b) neural state x2(t); (c) residual error ‖e(t)‖2. GNN, gradient neural network; SBPZNN, sign‐bi‐power ZNN model; TVPQ, time‐variant
quadratic programming; ZNN, zeroing neural network
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convex constraint on activation functions for solving TVQP
problems:

Ω¼ fδ ¼ ½δi� ∈ Rmþnþp;−0:1 ≤ δi ≤ 0:1; or δi ¼ ±1g:

By using set Ω, simulation results are acquired in
Figure 4. As indicated in Figure 4a, the residual error
gradually converges to zero over time. Also, Figure 4b
shows that since the initial residual error is large, the ele-
ments of _eðtÞ are either 1 or –1. Over time, the elements of
_eðtÞ decreased in a limited range [−0.1, 0.1] and remain
thereafter, indicating that the non‐convex sets can also serve
as the activation functions to increase the converging rate of
NPZNN model (10).

4.3 | ZNN with saturation functions

With η1 = 2 selected, the simulation results of the ZNN model
with saturation function are displayed in Figure 5. It is illus-
trated in Figure 5a that the residual error ‖e(t)‖2 converges to
zero within 2 s. Also, as revealed in Figure 5b, the element
values in the change rate vector _eðtÞ are within the range [–
2,2]. The two results substantiate the finite‐time convergent

TABLE 1 Comparisons among different models

Models Convergent Finite‐time convergent Convergence time

ZNN [24] No No 6.0

GNN [30] No No NAa

Model (6) Yes No 2.5

Model (12) Yes Yes 1.8

Model (14) Yes Yes 1

Abbreviations: GNN, gradient neural network; ZNN, zeroing neural network.
aNA means that the issue is not suitable.

(a) (b)

F I GURE 2 Convergence of NPZNN model (10) with bound constraint for solving problem (18): (a) residual error ‖e(t)‖2; (b) error derivative vector _eðtÞ

(a) (b)

F I GURE 3 Convergence of the NPZNN model (10) with ball constraint for solving problem (18): (a) residual error ‖e(t)‖2; (b) error derivative vector _eðtÞ
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property and saturation property of SZNN model (17)
separately.

5 | CONCLUSION

The authors have investigated the existing ZNN models for
solving TVQP problems at the start and then discovered two
limitations, that is, the low convergence speed resulting from
redundant formulation of activation function and unnecessary
convex restriction on activation function, respectively. By
proposing NPZNN model (10) with non‐convex‐allowed
activation functions, the first limitation is overcome. Mean-
while, SSZNN model (12) and CZNN model (14) with
accelerated finite‐time convergence properties have been
proposed to overcome the second limitation. It is indicated in
the theoretical derivations and simulation results that the
modified ZNN models are able to solve TVQP problems

better and accurately. In addition, new ZNN models with
improved performance for solving TVQP problems as well as
their practical applications are expected to be further
investigated.
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