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ABSTRACT Direction of arrival (DOA) estimation is an important topic in array signal processing.

Currently, most research activities are focused on the single signal transmission (SST) type of signals,

i.e. only one physical signal is used to carry the information from a transmitter to a receiver with a given

polarisation setting. However, to make full use of the degrees of freedom in spatial domain, signals based

on the dual signal transmission (DST) model are more and more widely used, i.e., two signals with different

polarisations carrying different information are employed for communication between the transmitter and

the receiver. But there is rarely any work on DOA estimation of DST signals. Motivated by such a problem,

the paper proposes two methods for DOA estimation of signals based on a mixed signal transmission (MST)

model, i.e., a mixture of SST and DST signals. The first method provides a two-step solution and estimate

the DOA of the SST signals first and then the DST signals second. The second method estimates the DOA of

all signals in one step. Moreover, CRB (Cramér-Rao Bound) for the estimation model is derived to evaluate

the performance the proposed methods.

INDEX TERMS DOA estimation, linear tripole array, MUSIC algorithm, single signal transmission, dual

signal transmission.

I. INTRODUCTION

Direction of arrival (DOA) estimation has been widely stud-

ied in recent years [1]–[6], and many algorithms have been

introduced to solve the DOA estimation problem, such as

multiple signal classification (MUSIC) [7]–[10], estimation

of signal parameters via rotational invariance techniques (ES-

PRIT) [11]–[14] and those based on sparsity or compressive

sensing (CS) [15]–[19]. In its early time, most research on

DOA estimation was based on omnidirectional antennas,

ignoring the polarisation information of impinging signals.

To consider the polarisation information, electromagnetic

(EM) vector sensor arrays were proposed to jointly estimate

the DOA and polarisation information [20]–[25]. The MU-

SIC, ESPRIT and CS-based algorithms can be extended to

solve the joint DOA and polarisation estimation problem

[26]–[36]. However, in their models, for each direction, it

is assumed either explicitly or implicitly that there is only

one signal impinging upon the array; in other words, each

source only emits one single signal with specific direction

and polarisation and we refer to such a system as a single

signal transmission (SST) system.

The SST signals have a fixed polarisation state, which will

not change with time. Sometimes they are also referred to as

fully-polarised (FP) signals [37]–[40]. However, due to re-

flection or some other channel effects, signals may have their

polarisation states varying with time, which can be referred

to as partially-polarised (PP) signals [37], [38]. In [39], [40],

it is pointed out that the DOA estimation algorithms for FP

signals are not applicable to PP signals and new algorithms

are proposed to solve the problem in mixed signal scenario

where source signals include both FP and PP signals. As

introduced in [41], a PP signal can be viewed as a sum of

unpolarised and fully polarised components. A similar case

in wireless communications is the dual signal transmission

(DST) model [42]–[48], where two separate SST/FP sig-

nals are transmitted simultaneously from each source, which

makes full use of the degrees of freedom (DOFs) provided

by a vector sensor array. For a DST signal, the two sub-
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signals have the same DOA but different polarisations and

carry different information. One DST signal example is to

use two orthogonal linearly polarized signals with amplitude

or phase modulation [43], [44], [46], [47]. However, there has

rarely been any research reported on estimating the DOAs of

DST signals. Instinctively, we could consider a DST signal as

two independent SST signals and estimate their DOAs one by

one. However, as we will see later, a direct application of the

traditional DOA estimation methods such as the subspace-

based ones may not work as expected for DST signals and a

new approach is needed.

In this work, based on a uniform linear tripole sensor

array, we first try to extend the classic MUSIC algorithm

straightforwardly to the four-dimensional (4-D) case to find

the parameters of a mixture of impinging SST and DST

signals, i.e., a mixed signal transmission (MST) model. As

analysed later, due to inherent physical property of signal

polarisation and array structure, we can only find the DOA

and polarisation parameters of SST signals and for the DST

signals, it fails completely for both DOA and polarisation

parameters due to an ambiguity problem with their estima-

tion. The ambiguity problem associated with the polarisation

parameters of DST signals cannot be solved by any estimator

due to limitation of the DOFs available in the polarisation

domain. However, it is possible to obtain only the DOA

information of DST signals (not polarisation information).

As a solution and also to reduce the complexity of the 4-

D searching process of the extended MUSIC algorithm and

exploit the additional information provided by DST signals,

i.e. the two sub-signals of a DST signal share the same DOA,

a two-step algorithm is proposed first, which was published

in our earlier conference paper and report [25], [49]. In

this solution, the DOA and polarisation information of SST

signals are found first by a rank-reduction algorithm (referred

to as the SST estimator) and then the DOA information of the

DST signals is estimated by a specifically designed estimator

(referred to as the DST estimator). Then, a general estimator

(referred to as the MST estimator) is proposed which can

obtain the DOA parameters of the SST and DST signals in

one single step, while the polarisation information of SST

signals can be obtained by a separate two-dimensional (2-

D) search if needed. A new complete detailed proof for the

proposed method is provided which is not available in [25].

Moreover, the CRB (Cramér-Rao Bound) is derived to eval-

uate the performance of the proposed estimation algorithms.

As demonstrated by simulation results, for SST signals, the

two proposed estimators (the two-step estimator and the

general MST estimator) have a similar performance, while

the general estimator has a higher accuracy in estimating the

direction of DST signals.

This paper is structured as follows. The MST signal model

is introduced in Section II. In Section III, the traditional

subspace based estimator is extended to the 4-D case, fol-

lowed by the two-step method associated with SST and DST

estimators and the unified one-step MST estimator. The CRB

is derived in Section IV. Simulation results are provided in

Section V, with conclusions drawn in Section VI.

II. SIGNAL MODELS
In our mixed signal transmission model, there are M1 SST

and M2 DST narrowband non-linearly polarized sources

impinging on a uniform linear array (ULA) with N tripole

sensors from the far field as shown in Fig. 1. Each SST

source emits only one signal sm(t),m = 1, 2, · · · ,M1, and

each DST source emits two sub-signals sM1+2m−1(t) and

sM1+2m(t),m = 1, 2, · · · ,M2, with the same elevation-

azimuth angle (θ, φ) but different polarisation (γ, η), where

γ, η denote the polarisation auxiliary angle and the polar-

isation phase difference, respectively. For convenience, the

parameters of the DST signal sM1+2m−1 and sM1+2m are de-

noted by (θM1+2m−1, φM1+2m−1, γM1+2m−1, ηM1+2m−1)
and (θM1+2m, φM1+2m, γM1+2m, ηM1+2m) with

{

θM1+2m−1 = θM1+2m

φM1+2m−1 = φM1+2m

(1)

Moreover, a basic assumption is that the SST and DST

signals come from different elevation-azimuth cone, where

sin θ1 sinφ1 6= sin θ2 sinφ2...

6= sin θM1+2m−1 sinφM1+2m−1

6= sin θM1+2m+1 sinφM1+2m+1 (2)

In discrete form, the received SST signals of a single

tripole sensor at the k-th time instant is denoted by a 3 × 1
vector xs[k] (noise-free)

xs[k] =

M1
∑

m=1

pmsm[k] (3)

where pm is the SST angular-polarisation vector given by

pm =





cos θm cosφm − sinφm

cos θm sinφm cosφm

− sin θm 0





[

sin γmejηm

cos γm

]

= Ωm · gm (4)

In the above equation, Ωm denotes the angular matrix associ-

ated with DOA parameters θ and φ, and gm is the polarisation

vector including polarisation parameters γ and η, given by

Ωm =





cos θm cosφm − sinφm

cos θm sinφm cosφm

− sin θm 0



 (5)

gm =

[

sin γmejηm

cos γm

]

(6)

The DST signals collected by a single tripole sensor can

be considered as the sum of all 2M2 sub-signals, where
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each sub-signal can be viewed as an SST signal. Hence, the

received DST signals are in the form

xd[k] =

M1+2M2
∑

m=M1

pmsm[k] (7)

Considering a pair of sub-signals as a single composite DST

signal, we can use a 2× 1 vector sm to denote the m-th DST

signal corresponding to the pair of sub-signals sM1+2m−1

and sM1+2m, defined by

sm[k] =

[

sM1+2m−1[k]
sM1+2m[k]

]

(8)

Then, (7) can be transformed to

xd[k] =

M2
∑

m=1

[pM1+2m−1 pM1+2m−1]

[

sM1+2m−1[k]
sM1+2m[k]

]

=

M2
∑

m=1

Pmsm[k] (9)

where Pm is the angular-polarisation matrix for DST signals,

Pm = [pM1+2m−1 pM1+2m−1]

= [ΩM1+2m−1gM1+2m−1 ΩM1+2mgM1+2m] (10)

Note that the two sub-signals of the same DST signal share

the same angular matrix, and here we use Ξm to represent

the common angular matrix of the m-th DST signal, i.e.

Ξm = ΩM1+2m−1 = ΩM1+2m (11)

We use Gm to denote the polarisation matrix of the m-th DST

signal, defined as

Gm = [gM1+2m−1 gM1+2m] (12)

Then, Pm is the product of Ξm and Gm,

Pm = ΞmGm (13)

The total received signal x[k] is the sum of SST and DST

signals, which is given by

x[k] = xs[k] + xd[k]

=

M1
∑

m=1

pmsm[k] +

M2
∑

m=1

Pmsm[k] (14)

Now we consider the whole array system. The steering

vector am is given by

am = [1, e−jτ sin θm sinφm , ...e−j(N−1)τ sin θm sinφm ]T (15)

where τ = 2πd
λ

with d being the adjacent sensor spacing.

Firstly, consider each-sub signal as a separate SST signal.

With the Gaussian white noise n[k] of variance σ2
n, the array

output snapshot at the k-th time instant y[k] is given by [36]

y[k] =

M1+2M2
∑

m=1

am ⊗ pm · sm[k] + n[k] (16)

x

y

z

d

s

FIGURE 1. Geometry of a uniform linear tripole array, where a signal arrives

from elevation angle θ and azimuth angle φ.

where ‘⊗’ is the Kronecker product. Consider each pair of

sub-signals as a DST signal, (16) will be transformed to

y[k] =

M1
∑

m=1

am ⊗ pm · sm[k]

+

M2
∑

m=1

aM1+2m−1 ⊗Pm · sm[k] + n[k] (17)

In the DST signal part, as each pair of sub-signals comes

from the same direction, the two steering vectors are equal

to each other, i.e.

aM1+2m−1 = aM1+2m (18)

Then, aM1+2m−1 in (17) can also be replaced by aM1+2m.

To further simplify (17), qm is used to denote the

direction-polarisation joint steering vector for SST signals,

qm = am ⊗ pm (19)

and Qm is the DST joint steering matrix, given by

Qm = aM1+2m−1 ⊗Pm

= aM1+2m−1 ⊗ [pM1+2m−1 pM1+2m−1]

= [qM1+2m−1 qM1+2m] (20)

With the above notation, (17) is further changed to

y[k] =

M1
∑

m=1

qm · sm[k] +

M2
∑

m=1

Qm · sm[k] + n[k] (21)

The covariance matrix of the received signals is given by

R = E{y[k]y[k]H} (22)

For the general MST model, assume M1+2M2 < 3N . After

eigendecomposition, R can be expressed by

R =
3N
∑

n=1

λnunu
H
n (23)

where λn is the n-th eigenvalue and un is the associated

eigenvector. After sorting the 3N eigenvalues in descending

order, the eigenvectors u1,u2, ...,uM1+2M2
form the signal

subspace Us, while uM1+2M2+1,uM1+2M2+2, ...,u3N form

the noise subspace Un.

VOLUME 4, 2016 3
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III. PROPOSED ESTIMATORS
As mentioned in Introduction, it seems that the traditional

subspace-based DOA estimation algorithms could be used

to find the DOA of both SST and DST signals. Therefore,

to show its limitation in DOA estimation for a mixture of

SST and DST signals,we will first try to extend the classic

MUSIC algorithm to the 4-D case. To overcome its limitation

and also exploit the additional information carried by DST

signals, a two-step algorithm is then proposed, consisting of

two estimators, one for SST signals and one for DST signals.

After that the one-step general MST estimator is proposed.

A. EXTENSION OF THE TRADITIONAL MUSIC

ESTIMATOR TO 4-D

A traditional DOA estimator considers all incoming signals

as separate SST signals, i.e. the given M1 SST signals and

M2 DST signals will be considered as M1+2M2 SST signals

in the algorithm. Since the joint steering vectors qm are

orthogonal to the noise subspace, then

UH
n am ⊗ (Ωmgm) = 0 (24)

The DOA and polarisation parameters are estimated by

finding the peaks of the following cost function through a

4-D search.

F (θ, φ, γ, η) =
1

qH
mUnUH

n qm

(25)

However, as shown in the following, there is an ambiguity

problem with both DOA and polarisation of DST signals,

which can not be obtained by the method in (25).

Firstly, the ambiguity problem associated with the polar-

isation parameters is analysed. Suppose that the two sub-

signals of the DST signal come from (θ, φ, γ1, η1) and

(θ, φ, γ2, η2), and they are also considered as two separate

SST signals. a is used to denote the common steering vector

of the two sub-signals. p1 and p2 are used to denote their

angular-polarisation vectors based on distinct polarisation

parameters. According to (4), it can be obtained that

p1 = Ωg1,p2 = Ωg2 (26)

Consider a non-existing signal from the same DOA (θ, φ) of

the sub-signals above with an arbitrary polarisation (γ3, η3)
different from (γ1, η1) and (γ2, η2). The angular-polarisation

vector p3 can be denoted as

p3 = Ωg3 (27)

From (4), it can be learned that gm,m ∈ [1, 3], is a col-

umn vector with two elements and Ω is a matrix with two

columns. Then, (26) and (27) can be changed to

pm = gm1ω1 + gm2ω2 (28)

where ω1 and ω2 denote the first and second column vectors

of Ω. gm1 and gm2 are the first and second elements in gm,

respectively. As ω1 is not in parallel with ω2 from (4), (28)

indicates that p1, p2 and p3 are three vectors in the same 2-D

space determined by ω1 and ω2. That means there exists a

linear relationship among p1, p2 and p3,

p3 = λ1p1 + λ2p2 ⇒ q3 = λ1q1 + λ2q2 (29)

where λ1 and λ2 are constants.

When the estimator is applied to a DST signal, the noise

subspace will be orthogonal to the joint steering vectors of

both sub-signals, where

UH
n a⊗ p1 = 0,UH

n a⊗ p2 = 0 (30)

Then, we have

UH
n a⊗ p3 = UH

n a⊗ (λ1p1 + λ2p2) = 0 (31)

As a result, F (θ,φ,γ3, η3) will be recognised as a peak

in the spectrum and wrongly identified as the parameters of

a non-existing source. This means the algorithm fails when

trying to estimate the polarisation of DST signals. Note that

this is an inherent limitation for DST signals and there is no

way to identify their polarisation parameters.

Next, we give an analysis to the ambiguity problem asso-

ciated with the DOA of DST signals. (29) shows that by 4-D

MUSIC, the DST signal’s direction with arbitrary polarisa-

tion will be recognised as a false peak. The ‘arbitrary polari-

sation’ includes a special polarisation: the linear polarisation.

As introduced in [50], there is an infinite number of ambigu-

ity steering vectors in parallel with a linearly polarised signal,

where the ambiguity directions are in linear polarisation as

well. From (4), the angular-polarisation vector pm can be

viewed as an arbitrary vector in a 2-D space constructed by

the two column vectors of Ωm, where the elements in gm

denote the weights of the vectors to indicate how these two

column vectors form pm. If a signal s1 is linearly polarised, it

means that the angular-polarisation vector p1 is real-valued.

As the two column vectors in Ω1 are both real-valued, the

intersection vector between Ω1 and another different 2-D

space Ω2 is also real-valued. Consequently, it is possible to

locate the angular-polarisation vector p1 as the intersection

between Ω1 and Ω2. This means that in the 2-D space Ω2,

there exists another angular-polarisation vector p2 in parallel

with p1. If a1 is also in parallel with a2, for example,

sin θ1 sinφ1 = sin θ2 sinφ2 while θ1 6= θ2, φ1 6= φ2, q2

will be in parallel with q1 and the parameters in q2 will be

recognised as a false peak.

For the scenario with mixed signals, although the 4-D

search algorithm cannot identify the DST signals, it works

for SST signals. However, an obvious problem is the sig-

nificantly high computational complexity of the 4-D peak

search process. In the next subsection, a two-step algorithm is

proposed, which estimates the DOAs of SST and DST signals

separately with a much lower complexity.

B. THE PROPOSED TWO-STEP METHOD

As indicated by the name, there are two steps for the pro-

posed method. The first step is to apply a newly proposed
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SST estimator to obtain the DOA and polarisation of SST

signals, while the second step is to apply a specifically

designed DST estimator to find the DOA of DST signals.

By exploiting the orthogonality between the joint steering

vector qm and the noise subspace Un, we have

0 = UH
n [am ⊗ (Ωmgm)]

= UH
n [(am ⊗Ωm)gm] = [UH

n Cm]gm (32)

where Cm = am ⊗Ωm.

For SST signals, there is only one polarisation vector gm

from a specific direction (θm, φm) satisfying [UH
n Cm]gm =

0 and (32) indicates that the column rank of UH
n Cm equals

1. Notice that UH
n Cm is a (3N − M1 − 2M2) × 2 matrix.

By multiplying its Hermitian transpose on the right side, the

product matrix is a 2× 2 matrix with rank 1, i.e.,

rank{CH
mUnU

H
n Cm} = 1 (33)

As the matrix is not of full rank, we have

det{CH
mUnU

H
n Cm} = 0 (34)

where det{} represents the determinant of the matrix. Taking

its inverse, a DOA estimator for SST signals is given by

F1(θm, φm) =
1

det{CH
mUnUH

n Cm} (35)

With the DOA information obtained, the polarisation pa-

rameters can then be estimated through another 2-D search

using (32). Besides, the first step will also detect the desired

DOA angles of DST signals but with an infinite number

of ambiguity directions. In the next step, the DOA of DST

signals will be extracted from these results.

Since a DST signal sm consists of two sub-signals

sM1+2m−1 and sM1+2m with different polarisations, we have

[UH
n CM1+2m−1]gM1+2m−1 = 0

[UH
n CM1+2m]gM1+2m = 0 (36)

Since CM1+2m−1 = CM1+2m, gM1+2m−1 and gM1+2m are

two distinct null vectors for UH
n CM1+2m−1, UH

n CM1+2m−1

is a zero matrix. Hence, the following cost function can be

used to estimate directions of DST signals

F2(θn, φn) =
1

||CH
mUnUH

n Cm||2
(37)

where || · ||2 denotes the l2-norm of the vector.

When the above DST estimator is applied to a mixture of

SST and DST signals, it only selects directions with

rank{CH
mUnU

H
n Cm} = 0 (38)

However, for SST signals, (33) indicates that the rank of

CH
mUnU

H
n Cm is 1 and therefore, as desired, the DST es-

timator in (37) will miss the SST signals.

A summary to the proposed two-step algorithm:

• Calculate the noise subspace Un by applying eigenvalue

decomposition to the estimated covariance matrix R̂.

• Apply the SST estimator (35) and find the DOAs of SST

signals by 2-D search.

• Find the polarisation parameters of SST signals using

(32) by 2-D search if needed.

• Apply (37) to estimate the DOAs of DST signals.

Note that a special case, if the source signals are only SST

signals, the DOAs can be all obtained by (35) and there is no

need to continue with the second step (37). In this scenario,

the two-step method is degraded to the same as an existing

low-complexity 2-D MUSIC algorithm.

C. THE PROPOSED GENERAL MST ESTIMATOR

Instead of employing separate estimators for SST and DST

signals, a single general estimator for MST signals is pro-

posed in this section.

Before introducing the general estimator, we first inves-

tigate the rank and determinant of the two matrices (am ⊗
I3)

HUnU
H
n (am⊗I3) and CH

mUnU
H
n Cm. For convenience

we drop the subscript m and denote the two matrices as

A = (a⊗ I3)
HUnU

H
n (a⊗ I3)

B = CHUnU
H
n C (39)

where A is always a matrix with non-zero diagonal elements

(proof in Appendix A). In the scenario with a mixture of

SST and DST signals, we can divide the direction range

into four regions: the SST signal direction region, the DST

signal direction region, the DST ambiguity direction region

and the remaining uninterested direction region. Table 1 gives

a summary of the ranks of A and B and the their associated

direction regions (see more details in Appendix B).

TABLE 1. rank A and B for different direction regions

Rank{A} Rank{B}

SST Signal 2 1

DST Signal 1 0

DST Ambiguity 1 1

Uninterested 3 2

As discussed before, the SST estimator selects the direc-

tion with the condition rank{B} < 2 and the DST estimator

selects the direction with rank{B} = 0. From Table 1,

we can see that the SST estimator can find the SST signal

directions, DST signal directions and the DST ambiguity

directions, while the DST estimator only estimates the DST

signal directions. As a solution, we propose a general MST

estimator which can work in all cases of signals and its cost

function is given by

F3(θ, φ) =

∣

∣

∣

∣

∣

det{A3,3}
det{B}

∣

∣

∣

∣

∣

(40)

where A3,3 is the 2× 2 cofactor matrix of A by removing its

third row and third column. The estimator is able to estimate

DOA information for all signals without determining its type,

i.e. SST or DST. After obtaining all the DOAs, if needed, we
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can then use (32) to find the polarisation parameters of SST

signals through 2-D search. For DST signals, we can distin-

guish them from the SST ones by checking whether there is

polarisation ambiguity problem or not when performing the

search using (32).

The reason why the above cost function works can be

explained as follows. First, matrix A is a 3 × 3 matrix and

its cofactor matrix is of 2 × 2. For the SST signal direction

region, since every two column vectors in UH
n (a ⊗ I3) are

linearly independent (Appendix B, case 1) and the cofactor

A3,3 can be viewed as the product of the first and the second

column vectors of UH
n (a ⊗ I3), the rank of A3,3 should be

2 and the numerator det{A3,3} in (40) is nonzero. However,

matrix B has a rank of 1 and its determinant is zero; as a

result, the cost function at the directions of SST signals will

have a peak (infinitely large in theory).

For the DST direction region, the rank of matrix A is 1

and then its cofactor matrix must have a rank of 1 and non-

zero-valued (Appendix A). Although its determinant is zero,

it approaches zero at those directions at the first order, while

the 2× 2 matrix B has a rank of 0 and its determinant is zero

and approaches zero at those directions at the second order

(a 2 × 2 zero matrix); as a result, the cost function at the

directions of DST signals will have a peak too (an infinitely

large value in theory).

For the DST ambiguity region, the rank of matrix A is 1

and similar to the case of DST direction region, the numerator

of (40) is zero, but it approaches zero at those ambiguity

directions at the first order, while the 2 × 2 matrix B has

a rank of 1 and its determinant is zero and approaches zero at

those directions at the first order (a 2×2 nonzero matrix); as a

result, the cost function at the DST ambiguity region will be a

nonzero finite value, but not a peak representing an infinitely

large value.

For the uninterested region, both matrices A and B have

full rank and neither of the numerator and denominator of the

cost function is zero-valued; as a result, the cost function at

this region will have a nonzero finite value, but not a peak

representing an infinitely large value.

A detailed proof can be found in Appendix C.

A summary for the unified general MST estimator is given

below:

• Calculate the noise space Un by applying eigenvalue

decomposition to the estimated covariance matrix R̂.

• Apply the MST estimator (40) to obtain the DOA of all

signals by 2-D search.

• Find the polarisation parameters of SST signals by (32)

if needed.

D. COMPLEXITY COMPARISON BETWEEN THE TWO

PROPOSED METHODS

For the two-step method, the computation can be divided

into two parts: the first is about working out the noise space

(the eigenvectors of covariance matrix R). For a symmetric

matrix, the complexity is O(n3), where n is the dimension

of the matrix. Here we take QR decomposition with House-

holder transform as an example. Since the dimension of R

is 3N (N is the sensor number), 2/3 ∗ (3N)3 = 18N3

multiplications are needed in one iteration. Hence, 18kN3

multiplications are needed in total with k iterations. (Note

that the multiplications here are all complex-valued.)

The second part is spectrum searching. In the first step

of the method, estimator (35) requires 24N ∗ (3N − M1 −
2M2) + 2 multiplications in one search. If there are L
searches in one direction, the total number of searches will

be L2. Hence, the searching complexity of the first step is

[24N ∗ (3N −M1 − 2M2) + 2] ∗ L2. Similarly, the second

step needs [24N ∗(3N−M1−2M2)+4]∗L2 multiplications.

Overall, the two-step method’s complexity is 18kN3 +
[48N ∗ (3N −M1 − 2M2) + 6] ∗L2. Since the conventional

MUSIC algorithm is the special case of the two-step method

when source signals are all of SST, in this situation, we only

need to apply the first step to estimate all DOAs of SST

signals. The complexity is then 18kN3+[24N ∗(3N−M1−
2M2) + 2] ∗ L2.

For the one-step method, the computation can also be

divided into the eigenvector part and search part. The com-

putation of eigenvectors is the same as the two-step method.

The complexity of this part is also 18kN3. From (39),

24N ∗ (3N − M1 − 2M2) multiplications are needed to

calculate matrix A. As B = ΩH
mAΩm, it requires ex-

tra 30 multiplications to calculate matrix B. Besides, four

multiplications are needed to work out the determinant in

estimator (40). The total complexity of the one-step method

is 18kN3 + [24N ∗ (3N −M1 − 2M2) + 34] ∗ L2.

In conclusion, the complexity of two proposed methods

mainly depend on the sensor number N and the search

number L2. If N is large enough and L2 is not a very large

number, the complexity of the two methods is both of O(N3).
They may have the same performance in operating time.

However, in more practical scenarios, usually the sensor

number N is rather limited and L2 is very large to achieve

a higher estimation accuracy; in this situation, the one-step

method saves about half of the computation compared to the

two-step method.

IV. CRAMÉR-RAO BOUND FOR MST SIGNALS
Now we derive the CRB for DOA estimation of a mixture

of one SST signal and one DST signal to evaluate the perfor-

mance of the proposed algorithms. A basic assumption is that

all source signals are unconditional [51], [52], which means

the source signals are random in all realizations. The SST

signal and the two DST sub-signals have the same power σ2
s .

Here we use the symbol α to denote the parameters to be

estimated,

α = (θ1, θ2, φ1, φ2) (41)

where (θ1, φ1) is the DOA parameters for the SST signal and

(θ2, φ2) is the parameters for the DST signal. Note that in the

DOA estimation process, the polarisation parameters can be
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considered as irrelevant parameters. From (16), the received

signals can be changed to

y[k] =

M1+2M2
∑

m=1

am ⊗Ωmgm · sm[k] + n[k]

= (

M1+2M2
∑

m=1

Cm · sm[k] + n[k]gH
m)gm (42)

The equation holds because

gH
mgm = 1 (43)

Define a matrix of the received signals Z[k], where

Z[k] =

M1+2M2
∑

m=1

Cm · sm[k] + n[k]gH
m (44)

For each snapshot, the probability density function is given

by [1]

pz|(α) =
1

det[πVZ(α)]
e{−[Z−m(α)]HV

−1

Z
(α)[Z−m(α)]} (45)

where VZ(α) is the variance of Z and m(α) its mean value.

The joint probability density function with K snapshots

can be denoted as

pZ1,Z2,...,ZK
|(α) =

K
∏

k=1

1

det[πVZ(α)]

· e{−[Zk−m(α)]HV
−1

Z
(α)[Zk−m(α)]}

(46)

which leads to the following log-likelihood function

Lx(α) = ln pZ1,Z2,...,ZK
|(α)

=−K ln det[VZ(α)]−KN lnπ

−
K
∑

k=1

[Zk −m(α)]HV−1
Z

(α)[Zk −m(α)]

(47)

The elements in the Fisher information matrix (FIM) can be

found as

Fαi,αj
=E[

∂LZ(α)

∂αi

· ∂LZ(α)

∂αj

]

=− E[
∂2LZ(α)

∂αi∂αj

] (48)

where i, j are integers and i, j ∈ [1, 8].
According to (8.32) in [1], (48) can be simplified to

Fαi,αj
=tr{V−1

Z
(α)

∂VZ(α)

αi

V−1
Z

(α)
∂VZ(α)

αj

}

+ 2Re{∂m
H(α)

αi

V−1
Z

(α)
∂m(α)

αj

} (49)

Since the source signals are unconditional, we have

m(α) = 0 (50)

FIGURE 2. DOA spectrum of the SST estimator with stepsize 0.25◦.

and

VZ =σ2
sC1C

H
1 + σ2

sC2C
H
2 + σ2

sC3C
H
3 + σ2

nI

=σ2
sC1C

H
1 + 2σ2

sC2C
H
2 + σ2

nI (51)

The FIM elements are transformed to

Fαi,αj
= tr{V−1

Z
(α)

∂VZ(α)

αi

V−1
Z

(α)
∂VZ(α)

αj

} (52)

The FIM is a 4 × 4 matrix. The CRB for DOA information

can be obtained as

CRB(θ1) = [F−1(α)]1,1

CRB(θ2) = [F−1(α)]2,2

CRB(φ1) = [F−1(α)]3,3

CRB(φ2) = [F−1(α)]4,4 (53)

The CRB for SST signals only and DST signals only can

be obtained by simply removing the DST or SST signal part

in (44), and the FIM will be reduced to a 2× 2 matrix.

V. SIMULATION RESULTS
In this section, simulations are performed based on a scenario

with one SST signal and one DST signal impinging on the

array from the far field.

A. DOA SPECTRUM

Consider a uniform linear tripole array with M = 5 sensors

and d = λ/2. The SST signal and each sub-signal of the DST

signal have the same power σ2
s with SNR = 10 dB. The SST

signal comes from (θ1, φ1, γ1, η1) = (20◦, 20◦, 50◦, 10◦),
while the DST signal comes from (θ2, φ2, γ2, η2, γ3, η3) =
(30◦, 80◦, 20◦, 50◦, 70◦,−40◦). The total number of snap-

shots is 1000 and the searching stepsize is set to 0.25◦. The

spatial spectrum results obtained by applying our proposed

two-step method and the one-step general method are shown

in Figs. 2, 3 and 4.

The SST estimator result is shown in Fig. 2, where the peak

corresponding to the SST signal appears around the aimed

direction (20◦, 20◦); however, the DST signal direction is
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FIGURE 3. DOA spectrum of the DST estimator with stepsize 0.25◦.

FIGURE 4. DOA spectrum of the MST estimator with stepsize 0.25◦.

shown among a band of peak points instead of a single peak.

On the other hand, the second step focuses on locating DST

signals and as shown in Fig. 3, only a single peak appears

around the aimed DST signal direction (30◦, 80◦) while the

SST signal direction is lost in the spectrum.

For the one-step general estimator or the so-called MST

estimator, the spectrum has two peaks at around (θ, φ) =
(20◦, 20◦) and (30◦, 80◦), indicating both directions have

been identified successfully.

B. RMSE RESULT

In this part, the estimation accuracy of the two proposed

solutions is compared in three scenarios: one SST signal only,

one DST signal only, and a mixture of one SST signal and one

DST signal. The directions of SST and DST signals are the

same as in Section V-A, and the power of SST signal is equal

to that of one DST sub-signal. We calculate the RMSE (root

mean square error) of the azimuth-elevation angle (θ, φ) by

200 Monte-Carlo trials. The number of snapshots K = 100
and the searching step size is 0.05°.

In the first scenario, only one SST signal impinges on the

array. As shown in Figs. 5 and 6, the two methods have

almost the same estimating accuracy and the RMSE of both
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FIGURE 5. RMSE of elevation angle θ versus SNR, SST signal only.
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FIGURE 6. RMSE of azimuth angle φ versus SNR, SST signal only.

estimators decreases gradually with the increasing SNR.

In the second scenario with DST signals, the results are

presented in Figs. 7 and 8. Compared to the SST case,

the DST case has lower average estimation errors, and the

general one-step method has a higher accuracy than the two-

step method.

In the last scenario, it has one SST signal s1 from

(20◦, 20◦) and one DST signal s2 from (30◦, 80◦), and the

RMSE results are shown in Figs. 9 and 10. Compared to

Figs. 5 and 6, the estimation error increases a little due to

the additional DST signal. Figs. 11 and 12 also indicates the

same difference versus Figs. 7 and 8. In this scenario, the

two proposed methods still have a very similar performance
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FIGURE 7. RMSE of elevation angle θ versus SNR, DST signal only.
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FIGURE 8. RMSE of azimuth angle φ versus SNR, DST signal only.
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FIGURE 9. RMSE for SST signal elevation angle θ1 versus SNR, mixed

signals.

in estimating the SST signal direction. However, the general

one-step method has a lower RMSE than the two-step method

with the DST signals.

VI. CONCLUSION
In this paper, the DOA estimation problem for a mixture of

SST and DST signals has been studied based on a tripole

linear array. Two subspace based DOA estimation methods

were proposed and the CRB was derived to evaluate their

performance. The two-step method estimates the SST and

DST signals’ directions separately with two corresponding

estimators, one for the SST signals and one for the DST ones.

The second method is a general one-step method which es-
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FIGURE 10. RMSE of SST azimuth angle φ1 versus SNR, mixed signals.
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FIGURE 11. RMSE of DST elevation angle θ2 versus SNR, mixed signals.
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FIGURE 12. RMSE of DST azimuth angle φ2 versus SNR, mixed signals.

timates the signal directions together without distinguishing

the different types of signals. Simulation results showed that

the two proposed methods have a very similar performance

for SST signals, but the one-step method has some advan-

tages in dealing with DST signals.

.

APPENDIX A PROOF OF NON-ZERO DIAGONAL
ELEMENTS IN MATRIX A
For both SST and DST signals, based on (4), (19), (24) and

(32), it can be obtained that

UH
n qm = UH

n (am ⊗ I3)Ωmgm = 0 (54)

which means that the noise subspace is orthogonal to the

3M × 1 column vector qm. As there are more than one

impinging signals, the noise subspace should be only or-

thogonal to those column vectors that are related to each

SST signal or DST sub-signal or linear combination of these

column vectors.

Consider a direction (θt, φt, γt, ηt) that is in the same

elevation-azimuth angle cone with one impinging signal

(θ1, φ1, γ1, η1) while the four parameters are different. There

must be no impinging signals from the assuming direction

according to (2), where

sin θt sinφt = sin θ1 sinφ1

θt 6= θ1, φt 6= φ1, γt 6= γ1, ηt 6= η1 (55)
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The column vector qt can be denoted as a linear combina-

tion of the three column vectors of matrix at ⊗ I3. Similarly,

q1 can also be considered as a linear combination of the

vectors in a1 ⊗ I3. As a is only dependent on sin θ sinφ,

at = a1. With variation of (θt, φt, γt, ηt), it can always be

found that at least one (in fact an infinite number) direction

(θt, φt, γt, ηt) that satisfies qt ∦ q1. Then, we draw a con-

clusion that there exists at least one direction (θt, φt, γt, ηt)
that

UH
n qt 6= 0 (56)

and every elements in UH
n qt is non-zero valued. Further,

UH
n (at ⊗ I3) = UH

n (a1 ⊗ I3) 6= 0 (57)

where every column in UH
n (a1 ⊗ I3) must be a non-zero

vector.

From (39), firstly we expand matrix A by

A = AH
p Ap (58)

where

Ap = UH
n (a⊗ I3) (59)

Dividing Ap into column vectors,

Ap = [ap1 ap2 ap3] (60)

The diagonal elements of matrix A is the squared l2 norm of

each column vector in Ap, which can be denoted as

Am,m = aHpmapm (61)

As discussed in (57), for impinging signals Ap is a non-zero

matrix and the inside column vectors are non-zero as well.

It can be concluded that the diagonal elements Am,m is real-

valued and positive.

APPENDIX B RANK ANALYSIS OF TABLE I
Here we divide the spatial spectrum into four regions: 1. the

SST direction region; 2. the DST direction region; 3. the DST

ambiguity direction region; 4. the uninterested region. We

will analyse the listed regions with four cases.

Case 1: Assuming an SST signal comes from

(θ1, φ1, γ1, η1), we have

UH
n q1 = UH

n C1g1 = UH
n (a1 ⊗ I3)p1 = 0 (62)

A new direction (θ1, φ1, γ2, η2) can be obtained by changing

the polarisation parameters. Obviously, if γ1 6= γ2 or η1 6=
η2, q1 will not be in parallel with q2, where

UH
n q2 = UH

n C1g2 6= 0 (63)

This means UH
n C1 6= 0, but the two inner column vectors

are linearly dependent. Thus, for the SST direction region,

rank(B) = 1. Another new direction (θ1, φ3, γ3, η3) can

be obtained by only keeping the elevation angle unchanged,

as introduced in Appendix A, and there exist more than one

direction which makes q1 not in parallel with q3. Then

UH
n q3 = UH

n (a1 ⊗ I3)p3 6= 0 (64)

which means UH
n (a1⊗I3) is not a zero-matrix. Besides, (62)

indicates the column vectors in UH
n (a1 ⊗ I3) are linearly

dependent. However, as p is always a vector with non-zero

elements (non-linearly polarised and θ 6= 0), the rank of the

matrix UH
n (a1 ⊗ I3) equals 2 and every two column vectors

are linearly independent. Thus, it can be obtained that for the

SST direction region, rank(A) = 2.

Cases 2 and 3: In this case, the matrix rank of DST

direction region and DST ambiguity region will be discussed

together.

In a DST direction region, assume the two sub-signals are

from (θ1, φ1, γ1, η1) and (θ1, φ1, γ2, η2). By (38), we have

rank(B) = 0 and

UH
n (a1 ⊗ I3)Ω1 = 0 (65)

As mentioned, in the spectrum, the DST ambiguity direc-

tions, which are in the same elevation-azimuth zone with

DST signals, may also produce peaks. The ambiguity di-

rection can be denoted as (θ3, φ3, γ3, η3). However, there is

only one pair of linearly polarised (γ3, η3) with the direction

(θ3, φ3). Thus, the direction (θ3, φ3) with non-linear polar-

isation or other linear polarisation parameters will not be

recognised as peaks, which means in this situation, we have

UH
n (a1 ⊗ I3)Ω3 6= 0 (66)

Considering (65) and (66) together, it can be obtained that

UH
n (a1 ⊗ I3) is not a zero matrix and all the row vectors in

this matrix must be orthogonal to both column vectors in Ω1.

As the two column vectors are two 3×1 vectors which are not

in parallel with each other, the only explanation is that all the

row vectors in UH
n (a1 ⊗ I3) are in parallel with each other.

As a result, the row rank of UH
n (a1 ⊗ I3) equals 1. Then we

know that for the DST direction region, rank(A) = 1.

Since the DST ambiguity direction has the same elevation

angle as the DST direction, they have exactly the same matrix

A. Thus, for DST ambiguity direction, rank(A) = 1. As

discussed above, with the direction (θ3, φ3), there is only

one pair of linearly polarised (γ3, η3) which may produce the

false peak, where

UH
n (a1 ⊗Ω3)g3 = 0 (67)

With the same direction (θ3, φ3), the ambiguity will not

occur with another pair of polarisation (γ3, η3), which means

UH
n (a1 ⊗Ω3)g4 6= 0 (68)

Considering the two equations, it can be concluded that the

row rank of UH
n (a1 ⊗ Ω3) equals 1. Thus, for the DST

ambiguity region, rank(B) = 1.

Case 4: For the remaining region (θ, φ, γ, η) in the spec-

trum, the noise subspace is not orthogonal to the related joint

steering vector. In this situation, matrices A and B both have

a full rank, where rank(A) = 3 and rank(B) = 2.
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APPENDIX C PROOF OF THE ONE-STEP ESTIMATOR
For convenience, we use x to denote sin θ and y to denote

sinφ. Then, the steering vector a becomes

a = [1, e−jτxy, ..., e−j(N−1)τxy]T

= [1, Cxy, C2xy, ..., C(N−1)xy]T (69)

where C = e−jτ is a constant. The angular matrix Ω

becomes

Ω =





√
1− x2 ·

√

1− y2 −y√
1− x2 · y

√

1− y2

−x 0



 (70)

Adding an infinitely small value ∆x → 0 and ∆y → 0 to x

and y, respectively, the new steering vector â becomes

â = [1, C2(xy+x∆y+y∆x+∆x∆y),

..., C(N−1)(xy+x∆y+y∆x+∆x∆y)]T (71)

We use ā to denote the difference between the two vectors

ā = â− a (72)

Its n-th element ān, n ∈ [1, N ] is expressed as

ān = C(n−1)xy[C(n−1)(x∆y+y∆x+∆x∆y) − 1] (73)

Similarly, the difference between the original and the new

angular matrix Ω̄ can also be calculated by

Ω̄ = Ω̂−Ω (74)

where

Ω̄11 =
√

1− (x+∆x)2 ·
√

1− (y +∆y)2

−
√

1− x2 ·
√

1− y2

Ω̄12 = −∆y

Ω̄21 =
√

1− (x+∆x)2 · (y +∆y)−
√

1− x2 · y
Ω̄22 =

√

1− (y +∆y)2 −
√

1− y2

Ω̄31 = −∆x

Ω̄32 = 0 (75)

The differences ā and Ω̄ lead to changes of matrices A and

B. The changed matrices are

Â = [(a+ ā)⊗ I3]
HUnU

H
n [(a+ ā)⊗ I3]

B̂ = Ω̂HÂΩ̂ = (Ω+ Ω̄)HÂ(Ω+ Ω̄) (76)

Replacing A, B by Â, B̂ in (40), we have

F3(x+∆x, y +∆y) =

∣

∣

∣

∣

∣

det{Â3,3}
det{B̂}

∣

∣

∣

∣

∣

=
|det{A3,3}+ v|
|det{B}+ w| (77)

where v and w are the determinant differences between the

original and the changed matrices. When ∆x,∆y → 0, v and

w also approach 0.

Now we consider the four cases listed in Table 1.

Case 1: For SST signal directions, rank{A} = 2
and rank{B} = 1. As discussed in Section III-C,

rank{A3,3} = 2, which means the determinant det{A3,3}
must be non-zero. As v → 0, the numerator of the estimator

approaches a non-zero constant. Since rank{B} = 1, we

have det{B} = 0. As w → 0, the denominator of the

estimator approaches 0. Hence for SST signal directions, the

estimator will have an infinitely large value and the directions

will be detected by the estimator as peaks.

Case 2: Expanding (76), we have

Â = (a⊗ I3)
HTn(a⊗ I3) + (ā⊗ I3)

HTn(a⊗ I3)

+ (a⊗ I3)
HTn(ā⊗ I3) + (ā⊗ I3)

HTn(ā⊗ I3)(78)

where

Tn = UnU
H
n (79)

For DST signals, a and T are vector and matrix with constant

value elements. Then, we have the difference matrix Ā as

Ā = (ā⊗ I3)
HTn(a⊗ I3) + (a⊗ I3)

HTn(ā⊗ I3)

+ (ā⊗ I3)
HTn(ā⊗ I3) (80)

Define D = Cy∆x+x∆y+∆x∆y . As ∆x,∆y → 0, we have

D → 1. By (73), the elements Āij , i, j ∈ [1, 3] can be

expressed in the following form (ignoring the constant factor

determined by i, j)

Āij ↔
N−1
∑

m=1

N−1
∑

n=1

(Dm − 1)∗(Dn − 1)

+
N−1
∑

m=1

(Dm − 1)H +
N−1
∑

n=1

(Dn − 1)

↔ O(D − 1) +O(D − 1)∗(D − 1)

= O(E) +O(E∗E) (81)

where the symbol ‘↔’ denotes the equation of the same

infinitesimal order. The symbol ‘O’ denotes the infinitesimal

order and E is defined as E = D−1. Ignoring the high order

infinitesimal, we have

Āij = O(E) (82)

Comparing the infinitesimal order between E and y∆x +
x∆y, then

lim
∆x,∆y→0

E
∆x

= lim
∆x,∆y→0

Cy∆x+x∆y+∆x∆y − 1

y∆x+ x∆y

= lim
∆x,∆y→0

Cy∆x+x∆y+∆x∆y − 1

y∆x+ x∆y +∆x∆y

·y∆x+ x∆y +∆x∆y

y∆x+ x∆y
= lnC · 1 = lnC (83)

The equation shows E and y∆x + x∆y (x,y are constants)

have the same infinitesimal order, and thus,

Āij = O(y∆x+ x∆y) (84)
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Assume the original matrix A is in the form

A =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 (85)

Here we take the first cofactor of A as an example, i.e.,

A3,3 =

[

A11 A12

A21 A22

]

(86)

By adding the cofactor of difference matrix Ā3,3, we have

Â3,3 =

[

A11 + Ā11 A12 + Ā12

A21 + Ā21 A22 + Ā22

]

(87)

The determinant is given by

det{Â3,3} = Ā11Ā22 − Ā12Ā21 +A11Ā22

+A22Ā11 −A12Ā21 −A21Ā12

= O(y∆x+ x∆y) (88)

where the components A11A22 − A12A21 = 0 because

rank{A3,3} = 1 in the DST region.

From (76), the relationship between Â and B̂ can be

denoted as

B̂ = Ω̂HÂΩ̂

= ΩHAΩ+ Ω̄HAΩ+ΩHAΩ̄+ Ω̄HAΩ̄

+ ΩHĀΩ+ Ω̄HĀΩ+ΩHĀΩ̄+ Ω̄HĀΩ̄

= B+ B̄ (89)

where

B̄ = Ω̄HAΩ+ΩHAΩ̄+ Ω̄HAΩ̄+ΩHĀΩ

+ Ω̄HĀΩ+ΩHĀΩ̄+ Ω̄HĀΩ̄ (90)

It can be obtained that the elements in B̄ consist of the linear

combination of infinitesimals Ω̄H
ij , Ω̄ij , Ω̄H

ij Ω̄ij , Āij Ω̄
H
ij Āij ,

ĀijΩ̄ij and Ω̄H
ij ĀijΩ̄ij . Ignoring the high order infinitesimals

and the constant factors determined by i, j, the order of the

elements is calculated by

B̄ij ↔ Ω̄ij (91)

The infinitesimal order of B̄ij is determined by Ω̄ij . Taking

Ω̄11 in (75) as an example, the order of this infinitesimal can

be calculated by

Ω̄11 =
√

1− (x+∆x)2 ·
√

1− (y +∆y)2

−
√

1− x2 ·
√

1− y2

= [(1− x2 − 2x∆x−∆x2)(1− y2 − 2y∆y −∆y2)

− (1− x2)(1− y2)]/(
√

1− (x+∆x)2

·
√

1− (y +∆y)2 +
√

1− x2 ·
√

1− y2) (92)

The denominator is non-zero and can be ignored, and then,

the equation becomes

Ω̄11 ↔ [(1− x2 − 2x∆x−∆x2)(1− y2 − 2y∆y −∆y2)

−(1− x2)(1− y2)]

= 4xy∆x∆y + 2x∆x∆y2 + 2y∆y∆x2 +∆x2∆y2

−2x(1− y2)∆x− 2y(1− x2)∆y

−(1− y2)∆x2 − (1− x2)∆y2 (93)

By ignoring the high order components above, we have

Ω̄11 ↔ 2x(1− y2)∆x+ 2y(1− x2)∆y (94)

Similarly, the order of Ω̄12, Ω̄21, Ω̄22 and Ω̄31 is given by

Ω̄12 ↔ ∆y

Ω̄21 ↔ 2y(1− x)2∆y − 2xy2∆x

Ω̄22 ↔ ∆y

Ω̄31 ↔ ∆x (95)

By (91), we have

B̄ij ↔ k1∆x+ k2∆y (96)

where k1, k2 are non-zero constants. Then, comparing the

order between B̄ij and det{Â3,3}, we have

lim
∆x,∆y→0

B̄ij

det{Â3,3}
= lim

∆x,∆y→0

k1∆x+ k2∆y

y∆x+ x∆y
(97)

Obviously, the infinitesimal order of both denominator and

numerator is determined by the infinitesimal with lower order

between ∆x and ∆y. Besides, the limit in (97) does not

exist because the nearby limits approach different constant

values, which means B̄ij has the same infinitesimal order

with det{Â3,3}, where

O(B̄ij) = O(det{Â3,3}) = O(E) (98)

As DST signals have rank{B} = 0, B = 0. The

determinant of B̂ is denoted by

det{B̂} = B̄11B̄22 − B̄12B̄21 (99)

The infinitesimal order is

det{B̂} = O(E2) (100)

The estimator is calculated as

lim
∆x,∆y→0

F3(x+∆x, y +∆y) = lim
∆x,∆y→0

det{Â3,3}
det{B̂}

=
O(E)

O(E2)
→ ∞ (101)

The infinity value indicates peaks in the DOA spectrum

and the estimator can also find the DST signal directions

successfully.

Case 3: For DST ambiguity directions, rank{A} = 1 and

rank{B} = 1. The numerator of the estimator is the same as

in the DST signal direction case, which is denoted by

det{Â3,3} = O(E) (102)
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However, the rank of matrix B is one, which means B is not

a zero matrix and cannot be ignored. Then, we have

B̂ = B+ B̄

=

[

B11 B12

B21 B22

]

+

[

B̄11 B̄12

B̄21 B̄22

]

=

[

B̄11 +B11 B̄12 +B12

B̄21 +B21 B̄22 +B22

]

(103)

where B11, B12, B21, B22 are constants which cannot be

equal to zero simultaneously. The denominator of the esti-

mator can be calculated as

det{B̂} = B̄11B̄22 − B̄12B̄21 +B22B̄11

+B11B̄22 −B21B̄12 −B12B̄21

= O(E) (104)

In this case, the estimator is in the form of

lim
∆x,∆y→0

F3(x+∆x, y +∆y) =
O(E)

O(E)
(105)

The final results will approach an undetermined constants

instead of infinity. As a result, in the DOA spectrum, the DST

ambiguity directions will not appear as a peak.

Case 4: For the uninterested directions, rank{A} = 3 and

rank{B} = 2, which means these two matrices are of full-

rank. The numerator of the estimator det{Â3,3} will be a

non-zero constant, and so is the denominator det{B̂}. The

results of the estimator are finite values and these directions

will not appear as peaks in the DOA spectrum.
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