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RAFT dispersion polymerization of N,N-
dimethylacrylamide in a series of n-alkanes using
a thermoresponsive poly(tert-octyl acrylamide)
steric stabilizer†

R. R. Gibson,a A. Fernyhough,b O. M. Musac and S. P. Armes *a

Herein we report the reversible addition–fragmentation chain transfer (RAFT) solution polymerization of

tert-octyl acrylamide (OAA) in 1,4-dioxane using a trithiocarbonate-based RAFT agent. POAA homopoly-

mers were synthesized with good control (Mw/Mn < 1.22) within 1 h at 70 °C when targeting mean degrees

of polymerization (DP) of up to 100. Differential scanning calorimetry studies conducted on a series of five

POAA homopolymers indicated a weak molecular weight dependence for the glass transition temperature

(Tg), which varied from 67 to 83 °C for POAA DPs ranging from 22 to 99. High blocking efficiencies were

observed when chain-extending such homopolymers with OAA, suggesting that most of the RAFT end-

groups remain intact. Subsequently, we employed POAA as a steric stabilizer block for the PISA syntheses

of spherical nanoparticles in n-heptane via RAFT dispersion polymerization of N,N-dimethylacrylamide

(DMAC) at 70 °C. Targeting PDMAC DPs between 50 and 250 resulted in reasonably good control (Mw/Mn

≤ 1.42) and produced well-defined spherical diblock copolymer nanoparticles (z-average diameters

ranging from 23 nm to 91 nm, with DLS polydispersities remaining below 0.10) within 5 h. A facile one-

pot synthesis route to near-monodisperse 36 nm diameter POAA82-PDMAC100 nanoparticles was devel-

oped in n-heptane that provided similar control over the molecular weight distribution (Mw/Mn = 1.19).

Unfortunately, POAA85-PDMACx diblock copolymer nanoparticles tended to deform and undergo film

formation prior to transmission electron microscopy (TEM) studies. To overcome this problem, ethylene

glycol diacrylate (EGDA) was introduced towards the end of the DMAC polymerization. The resulting

core-crosslinked POAA85-PDMAC195-PEGDA20 triblock copolymer nano-objects exhibited a relatively

well-defined spherical morphology. Interestingly, the colloidal stability of POAA85-PDMACx diblock copo-

lymer dispersions depends on the type of n-alkane. Spherical nanoparticles produced in n-heptane or

n-octane remained colloidally stable on cooling to 20 °C. However, the colloidally stable POAA-PDMAC

nanoparticles prepared at 70 °C in higher n-alkanes became flocculated on cooling. This is because the

POAA steric stabilizer chains exhibit upper critical solution temperature (UCST)-type behavior in such sol-

vents. Nanoparticle aggregation was characterized by variable temperature turbidimetry and dynamic

light scattering experiments.

Introduction

Highly hydrophobic polymers are widely used for various

applications, including self-cleaning surfaces,1 anti-icing for-

mulations,2 anti-biofouling substrates3–5 and the separation of

oil and water.6,7 tert-Octyl acrylamide (OAA) is a highly hydro-

phobic monomer that has been used as a comonomer in com-

mercial formulations (e.g. hair-styling products).8–10 However,

there are surprisingly few reports of the homopolymer or its

physical properties in the academic literature.11–16

Remarkably, there appears to be only a single report of the

reversible addition–fragmentation chain transfer (RAFT) solu-

tion polymerization of OAA.17 This involved using tin-based

RAFT agents, which enabled 119Sn nuclear magnetic resonance

(NMR) spectroscopy to be used to monitor chain-end fidelity

during RAFT polymerization. Chain extension experiments

involving polymerization of OAA using a POAA precursor led to

around 80% conversion within 13 h at 60 °C, while gel per-

meation chromatography (GPC) analysis indicated reasonably
†Electronic supplementary information (ESI) available. See DOI: 10.1039/

d1py00045d
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narrow molecular weight distributions. However, relatively

long induction periods of up to 4.5 h were reported for such

tin-based RAFT agents. In principle, using more conventional

(i.e. metal-free) RAFT agents should enable the reaction con-

ditions to be further optimized for the synthesis of POAA

homopolymers, and perhaps also POAA-based block copoly-

mers. This hypothesis is explored in the current study.

Polymerization-induced self-assembly (PISA) has been

examined by many research groups over the past decade or

so.18–24 It enables the rational design of diblock copolymer

nano-objects such as spheres, worms or vesicles at up to 50%

w/w solids in a range of polar and non-polar solvents by sys-

tematic variation of the relative volume fraction of each

block.25,26 PISA requires the use of a controlled living radical

polymerization technique such as RAFT polymerization.27–30

In 2013 Fielding et al. reported the first example of a well-con-

trolled RAFT dispersion polymerization in non-polar media.31

Poly(lauryl methacrylate)-poly(benzyl methacrylate) [PLMA-PBzMA]

spheres, worms or vesicles were prepared in n-heptane using a

PLMA17 precursor, with BzMA monomer conversions of more

than 97% being achieved within 5 h at 90 °C. Subsequently,

PLMA-PBzMA diblock copolymer nano-objects were also pre-

pared in n-dodecane, with this higher boiling point solvent

enabling the thermoresponsive behavior of PLMA-PBzMA

worms to be studied.32

Herein we report the synthesis of a series of well-defined

homopolymers via RAFT solution polymerization of OAA in

1,4-dioxane and the subsequent synthesis of POAA-based diblock

copolymer nanoparticles via RAFT dispersion polymerization

of N,N′-dimethyl acrylamide (DMAC) in various non-polar sol-

vents (n-heptane, n-octane, n-decane, n-dodecane, n-tetrade-

cane or n-hexadecane). Turbidimetry studies indicated interest-

ing differences in the temperature-dependent colloidal stabi-

lity of such dispersions. An atom-efficient one-pot PISA proto-

col is demonstrated for the synthesis of POAA82-PDMAC100

nanoparticles prepared in n-heptane.

Experimental
Materials

tert-Octyl acrylamide (OAA; 98% purity) was kindly provided by

Ashland Inc. (Delaware, USA) and was used without further

purification. N,N-Dimethylacrylamide (DMAC), 2,2′-azobis(2-

methylpropionitrile) (AIBN), 1,4-dioxane, n-octane, n-tetrade-

cane, n-hexadecane, CDCl3 and 2-(dodecylthiocarbo-

nothioylthio)-2-methylpropionic acid (DDMAT) were purchased

from Sigma Aldrich UK. n-Heptane, n-decane and n-dodecane

were purchased from Alfa Aesar (Heysham, UK). Ethylene

glycol diacrylate (EGDA) was purchased from Santa Cruz

Biotechnology (Dallas, USA).

Synthesis of a POAA85 macro-CTA by RAFT solution polymeriza-

tion of OAA in 1,4-dioxane

The protocol for the preparation of a POAA85 macro-CTA is

described below. OAA (20.11 g, 0.11 mol), DDMAT RAFT agent

(0.40 g, 1.10 mmol; target DP = 100), AIBN (18.0 mg,

0.11 mmol; DDMAT/AIBN molar ratio = 10) and 1,4-dioxane

(30.79 g, 40% w/w) were weighed into a 100 mL round-bottom

flask and degassed under N2 with continuous magnetic stir-

ring for 20 min. The OAA polymerization was allowed to

proceed for 60 min in an oil bath set to 70 °C, before quench-

ing by exposing the hot reaction solution to air while cooling

to 20 °C. 1H NMR spectroscopy studies indicated a final

monomer conversion of 82%. The crude homopolymer was

precipitated into excess methanol to remove residual OAA

monomer before placing in a vacuum oven at 30 °C for three

days to afford a dry yellow powder. The mean DP was calcu-

lated to be 85 by end-group analysis using UV spectroscopy

(λ = 308 nm). Chloroform GPC analysis indicated an Mn of

9900 g mol−1 and an Mw/Mn of 1.18 using a series of ten near-

monodisperse poly(methyl methacrylate) (PMMA) calibration

standards.

Synthesis of POAA85-PDMACx diblock copolymer nanoparticles

via RAFT dispersion polymerization of DMAC in various n-alkanes

A typical protocol for the synthesis of POAA85-PDMAC100

diblock copolymer nanoparticles in n-heptane was conducted

as follows: POAA85 macro-CTA (0.30 g, 18.8 µmol), DMAC

(0.19 g, 1.88 mmol; target DP = 100) and AIBN (0.30 mg,

1.88 µmol; 0.03 g of a 10 mg g−1 stock solution of AIBN dis-

solved in DMAC; POAA85/AIBN molar ratio = 10) were dissolved

in n-heptane (1.95 g; targeting 20% w/w solids). The glass

vial was sealed and degassed via N2 gas for 15 min at 20 °C

before being immersed in a pre-heated oil bath for 5 h at

70 °C. The DMAC polymerization was quenched by exposing

the hot reaction solution to air while cooling to 20 °C. The

resulting diblock copolymer nanoparticles were characterized

by 1H NMR spectroscopy in CDCl3, while 0.1% w/w dispersions

were prepared by dilution with n-heptane for DLS and TEM

studies. Chloroform GPC analysis indicated an Mn of 19 900

g mol−1 and an Mw/Mn of 1.19 (vs. a series of ten PMMA stan-

dards). Other diblock compositions were prepared by adjusting

the amount of DMAC monomer to target the desired DP. For

these additional syntheses, the volume of the continuous

phase was adjusted to maintain an overall copolymer concen-

tration of 20% w/w solids. 1H NMR analysis indicated that at

least 98% DMAC conversion was achieved in all cases. POAA85-

PDMACx diblock copolymer nanoparticles were also prepared

in n-octane, n-decane, n-dodecane, n-tetradecane and n-hexa-

decane. All synthetic parameters except for the volume of

solvent were unchanged. Owing to the differing densities of

these n-alkanes, the overall solution volume varied for these

formulations.

One-pot synthesis of POAA82-PDMAC100 diblock copolymer

nanoparticles via RAFT dispersion polymerization of DMAC in

n-heptane

OAA (0.40 g, 2.18 mmol), DDMAT RAFT agent (9.9 mg,

27.3 µmol; target DP = 80) and AIBN (0.40 mg, 2.7 µmol;

DDMAT/AIBN molar ratio = 10) were dissolved in n-heptane

(0.62 g; targeting 40% w/w solids) in a glass vial. The resulting
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solution was then degassed for 20 min at 20 °C using a N2

sparge before immersing the reaction vial in a pre-heated oil

bath set at 70 °C. After 150 min, 1H NMR studies indicated

98% OAA conversion and a mean DP of 82. Chloroform GPC

analysis indicated an Mn of 8100 g mol−1 and an Mw/Mn of

1.16. Next, deoxygenated n-heptane (3.00 mL; targeting 20%

w/w solids) was added to dilute the reaction solution contain-

ing the POAA82 macro-CTA and then deoxygenated DMAC

(0.27 mL, 2.66 mmol; target DP = 100) was also added.

The DMAC polymerization was allowed to proceed for 5 h at

70 °C, resulting in a 20% w/w dispersion of POAA82-PDMAC100

diblock copolymer nanoparticles (Mn = 18 500 g mol−1 and

Mw/Mn = 1.19 by chloroform GPC analysis using PMMA cali-

bration standards).

Synthesis of core-crosslinked POAA85-PDMAC100-PEGDA20 tri-

block copolymer nanoparticles via sequential RAFT dispersion

polymerization of DMAC and EGDA in n-heptane

A typical protocol for the synthesis of core-crosslinked POAA85-

PDMAC100-PEGDA20 nanoparticles was conducted as follows:

POAA85 macro-CTA (0.40 g, 25.1 µmol), DMAC (0.25 g,

2.51 mmol; target DP = 100) and AIBN (0.40 mg, 2.51 µmol;

0.04 g of a 10 mg g−1 stock solution of AIBN dissolved in

DMAC; POAA85/AIBN molar ratio = 10) were dissolved in

n-heptane (2.94 g; targeting 20% w/w solids). The glass vial

was sealed and degassed under N2 for 15 min at 20 °C before

being placed in a pre-heated oil bath set at 70 °C for 195 min.

EGDA (0.09 g, 0.50 mmol; target DP = 20; previously degassed

with N2 gas at 20 °C) was then added using a deoxygenated

syringe/needle. EGDA polymerization was allowed to proceed

for 4 h before quenching by exposure of the hot reaction

mixture to air while cooling to 20 °C. The resulting core-cross-

linked triblock copolymer nanoparticles were diluted with

n-heptane to afford a 0.1% w/w dispersion prior to characteriz-

ation by DLS and TEM.

Copolymer characterization

1H NMR spectroscopy. Spectra were recorded for both POAAx
homopolymers and POAA85-PDMACx diblock copolymers dis-

solved in CDCl3 using a 400 MHz Bruker Avance 400 spectro-

meter with 64 scans being averaged per spectrum.

UV spectroscopy. UV absorption spectra were recorded

between 200 and 800 nm using a PC-controlled UV-1800

spectrophotometer at 25 °C equipped with a 1 cm path length

cell. A Beer–Lambert curve was constructed using a series of

fourteen DDMAT solutions of known concentration in chloro-

form. The absorption maximum at 308 nm assigned to the

trithiocarbonate end-group was used for this calibration plot,

and DDMAT concentrations were selected such that the absor-

bance at this wavelength always remained below unity.48

Subsequently, the mean DP for each of the five POAA homopo-

lymers was determined using the molar extinction coefficient

(ε) determined for DDMAT alone, for which ε = 15 210 ±

170 mol−1 dm3 cm−1.

Gel permeation chromatography (GPC). Molecular weight

data for the five POAAx homopolymer precursors and the

corresponding series of POAA85-PDMACx diblock copolymers

were obtained using chloroform GPC at 35 °C, with the eluent

containing 0.25% TEA by volume. Two Polymer Laboratories

PL gel 5 µm Mixed C columns were connected in series to a

Varian 390 multidetector suite (only the refractive index detec-

tor was used) and a Varian 290 LC pump injection module at a

flow rate of 1.0 mL min−1. Ten near-monodisperse PMMA stan-

dards (Mn = 625–618 000 g mol−1) were used for calibration

and data were analyzed using Varian Cirrus GPC software sup-

plied by the instrument manufacturer.

Dynamic light scattering (DLS). A Malvern Zetasizer NanoZS

instrument was used to determine the intensity-average hydro-

dynamic diameter of the copolymer nanoparticles at 20 °C at a

fixed scattering angle of 173°. As-synthesized dispersions were

diluted to 0.1% w/w using n-heptane and analyzed using a

1.0 cm path length glass cuvette. Data were averaged over three

consecutive measurements (with 10 sub-runs per run) for

each sample. Sphere-equivalent intensity-average diameters were

calculated for nanoparticles using the Stokes–Einstein equation,

which assumes perfectly monodisperse, non-interacting spheres.

Transmission electron microscopy (TEM). Copper/palladium

grids were surface-coated in-house to produce a thin film of

amorphous carbon. A 15 µL droplet of a 0.1% w/w copolymer

dispersion (prepared by serial dilution using n-heptane) was

placed on a grid using a micropipet, allowed to dry, and then

stained by exposed to ruthenium(IV) oxide vapour for 7 min at

20 °C prior to analysis. A FEI Tecnai Spirit microscope operat-

ing at 80 kV and equipped with a Gatan 1kMS600CW CCD

camera was used to image the nanoparticles.

Differential scanning calorimetry (DSC). Glass transition

temperatures (Tg) for the five POAAx homopolymers were deter-

mined using a TA Instruments Discovery DSC 25 instrument

operating from −50 °C to 120 °C at a heating/cooling rate of

10 °C min−1. Each homopolymer (10 mg) was dried for at least

24 h in a vacuum oven at 30 °C prior to analysis. Dried

samples were placed in a vented aluminium pan, and the

instrument was calibrated for heat flow and temperature using

both indium and zinc standards. Samples were annealed at

100 °C for 5 min before cooling to −50 °C, with this latter

temperature being maintained for 1 min. The Tg was then

determined by heating the homopolymer up to 120 °C and

determining the mid-point value. Heat flow was also moni-

tored for n-dodecane alone, a 20% w/w solution of a POAA85
homopolymer in n-dodecane and a 20% w/w dispersion of

POAA85-PDMAC150 diblock copolymer nanoparticles in

n-dodecane on cooling from 120 °C to −50 °C at 10 °C min−1.

Turbidimetry studies. These experiments were undertaken

for POAA85-PDMAC100 diblock copolymer nanoparticles pre-

pared directly in various n-alkanes. The corresponding

n-alkane was used as a diluent to afford a 1.0% w/w dispersion

in each case. A Varian Cary 300 Bio UV-visible spectrometer

was used to record transmittance vs. temperature plots at a

fixed wavelength of 600 nm. Each 1.0% w/w dispersion was

equilibrated for 5 min at 90 °C and then cooled to 2 °C at a

rate of 1.0 °C per min, with the transmittance being recorded

at 1.0 °C intervals.
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Results and discussion
Synthesis of POAA homopolymers by RAFT solution

polymerization

A POAA85 homopolymer was prepared by RAFT solution

polymerization of OAA in 1,4-dioxane at 70 °C using a DDMAT

RAFT agent, see Scheme 1. 1H NMR spectroscopy studies indi-

cated that 82% OAA monomer conversion was achieved within

60 min and the mean DP was estimated to be 85 by end-group

analysis using unique proton signals assigned to the RAFT

chain-ends (Fig. S1†). This approximate DP was confirmed by

UV spectroscopy studies in chloroform. For this calculation

(see Fig. S2†), it is assumed that all chains contain a trithiocar-

bonate end-group and that the molar extinction coefficient, ε,

for this chain-end is identical to that of DDMAT, for which

ε = 15 210 ± 170 mol−1 dm3 cm−1 at 308 nm. In practice, the

wavelengths observed for the absorption maxima of these two

species differ by just 2 nm (310 nm vs. 308 nm, respectively).

This suggests that the corresponding molar extinction coeffi-

cients should be very similar.33

Aliquots were periodically extracted during the RAFT

homopolymerization of OAA when targeting a DP of 70, with

monomer conversions being determined by 1H NMR spec-

troscopy (Fig. 1a) and molecular weight data being obtained by

GPC analysis using chloroform as an eluent. DDMAT/AIBN

molar ratios of either 5 or 10 were explored, with a marginally

faster rate of polymerization being achieved when using more

initiator (Fig. 1). However, the final dispersities and conver-

sions were very similar. Thus, using a DDMAT/AIBN molar

ratio of 5.0 afforded 97% conversion, an Mn of 8700 g mol−1

and an Mw/Mn of 1.18 (Fig. S3†), whereas using a DDMAT/

AIBN molar ratio of 10 produced 98% conversion, an Mn of

8500 g mol−1 and an Mw/Mn of 1.16, see Fig. 1b. For such

homopolymerizations there was either little or no induction

period (e.g. just 10 min when using a DDMAT/AIBN molar

ratio of 10). In contrast, relatively long induction periods (up

to 4.5 h) were reported for the only other literature example of

the RAFT homopolymerization of OAA.17 Klumperman and co-

workers have attributed similar observations to a so-called

initialization process.34 This problem may well be related to

the use of an organotin-based RAFT agent by Kulai and co-

workers,17 whereas a more conventional trithiocarbonate-

based reagent was employed in the present study.

The Tg of each of the five POAAx homopolymers (Table S1†)

was determined using differential scanning calorimetry (DSC).

The shortest homopolymer (POAA22) had a Tg of 67 °C while

the longest (POAA99) had a Tg of 83 °C, indicating the expected

weak molecular weight dependence (Fig. 2). OAA monomer is

a solid at room temperature, with DSC studies indicating a

melting point of around 64 °C (see Fig. S4†). Preliminary

attempts to polymerize OAA by RAFT aqueous emulsion

Scheme 1 Synthesis of a POAA85 homopolymer by RAFT solution

polymerization of tert-octyl acrylamide (OAA) in 1,4-dioxane at 70 °C

targeting 40% w/w solids.

Fig. 1 (a) Conversion vs. time curves obtained for the RAFT solution

polymerization of OAA at 70 °C in 1,4-dioxane using a DDMAT RAFT

agent and AIBN initiator targeting a POAA DP of 70 at 40% w/w solids

using a DDMAT/AIBN molar ratio of either 5 or 10. (b) Evolution of Mn

and Mw/Mn with conversion observed during the RAFT solution

polymerization of OAA at 70 °C in 1,4-dioxane when targeting a POAA

DP of 70 at 40% w/w solids using a DDMAT/AIBN molar ratio of 10. The

dashed line indicates the theoretical Mn data. The experimental Mn data

set falls below this theoretical line owing to a systematic GPC calibration

error.
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polymerization at 70 °C (i.e. above its melting point) using a

water-soluble homopolymer precursor, poly(N-(2-acryloyloxy)

ethyl pyrrolidone),35 were unsuccessful: there was either no

polymerization at all or OAA underwent conventional free

radical polymerization, with no RAFT control being achieved.

This failure was attributed to the highly hydrophobic nature of

OAA, which has five pendent methyl groups. Presumably, this

means that its aqueous solubility is simply too low to enable

its emulsion homopolymerization. Similar problems are well-

documented for other highly hydrophobic monomers such as

lauryl methacrylate or stearyl methacrylate.36

Self-blocking studies were conducted to examine the fidelity of

the RAFT end-groups on the POAA85 homopolymer. Accordingly,

chain extension experiments targeting POAA DPs of 50, 100 or

150 were performed at 40% w/w solids in 1,4-dioxane. In each

case, more than 97% OAA conversion was achieved within 3 h at

70 °C while GPC analysis indicated that the whole molecular

weight distribution (MWD) was shifted to higher molecular

weight relative to that for the POAA85 precursor (see Fig. 3). Such

high RAFT chain-end fidelity augurs well for the synthesis of

POAA-based diblock copolymers when using alternative acryl-

amides for the second-stage polymerization. The observed

increase in Mw/Mn after chain extension is comparable to that

reported by Kulai and co-workers when performing self-blocking

experiments.17

RAFT dispersion polymerization of DMAC in n-alkanes using

POAA85 as a steric stabilizer block

To prepare sterically-stabilized diblock copolymer nano-

particles, the POAA85 precursor was subsequently chain-

extended via RAFT dispersion polymerization of DMAC in

n-heptane at 70 °C targeting 20% w/w solids (see Scheme 2).
Fig. 2 (a) Differential scanning calorimetry (DSC) traces recorded at a

heating rate of 10 °C min−1 for a series of five POAAx homopolymers: x =

22 (black), 39 (red), 72 (blue), 85 (green) and 99 (purple). (b) Relationship

between Tg and POAA DP plotted for the data shown in (a).

Fig. 3 Chloroform GPC curves recorded for a POAA85 precursor and

the corresponding chain-extended POAA85-POAAx homopolymers pre-

pared by RAFT solution polymerization of OAA at 70 °C in 1,4-dioxane,

where x = 50 (red), 100 (blue) and 150 (green). The unimodal nature of

the latter three traces indicates a relatively high blocking efficiency in

each case.

Scheme 2 Synthesis of a series of POAA85-PDMACx diblock copolymer

nanoparticles by RAFT dispersion polymerization of DMAC in n-heptane

at 70 °C targeting 20% w/w solids.
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The polymerization kinetics for this chain extension were

monitored using 1H NMR spectroscopy (Fig. 4a) while chloro-

form GPC was used to monitor the evolution in Mn and Mw/Mn

(Fig. 4b). Essentially full DMAC conversion was achieved

within 5 h and a linear increase in Mn was observed.

The final POAA85-PDMAC100 diblock copolymer had an Mn of

21 900 g mol−1 and an Mw/Mn of 1.20. These data are consist-

ent with a well-controlled RAFT polymerization.

A series of POAA85-PDMACx diblock copolymer nano-

particles were prepared in n-heptane (Fig. 5a) with a linear

increase in Mn being observed when targeting higher PDMAC

DPs. Reasonably good RAFT control was achieved, although a

gradual increase in Mw/Mn is discernible when targeting

higher PDMAC DPs (see Table S2†). In all cases, high DMAC

conversions (≥98%) were achieved as indicated by 1H NMR

analysis. A linear relationship was obtained between the

z-average nanoparticle diameter determined by dynamic light

scattering (DLS) and the target PDMAC DP up to a core DP

of 175. Above a target PDMAC DP of 200, somewhat larger

nanoparticles were obtained with slightly higher DLS poly-

dispersities (Fig. 5b). For such PISA syntheses, an increase in

both nanoparticle diameter and polydispersity can indicate

a (partial) change in copolymer morphology, e.g. the pres-

ence of some worms rather than just pure spheres.31,37–40

However, close inspection of the corresponding trans-

mission electron microscopy (TEM) images (Fig. S5†) did

not provide any evidence for the presence of anisotropic

nano-objects.

Unfortunately, nanoparticle deformation tended to occur

during TEM grid preparation. This problem was not foreseen

because the Tg of PDMAC homopolymer has been reported to

be 120 °C.41 To address this issue, ethylene glycol diacrylate

(EGDA) was added towards the end of the DMAC polymeriz-

ation when targeting a POAA85-PDMAC195 diblock copolymer.

The resulting core-crosslinked POAA85-PDMAC195-PEGDA20 tri-

block copolymer nano-objects were much more resistant to

deformation during TEM grid preparation and exhibited a rela-

tively well-defined spherical morphology (Fig. 6). Moreover, the

z-average diameter indicated by DLS studies of these cross-

linked nanoparticles was close to that observed for the com-

parable linear nanoparticles (65 nm vs. 62 nm respectively),

see Table S3.† The DLS diameter for the core-crosslinked

POAA85-PDMAC195-PEGDA20 spheres was also determined in

Fig. 4 (a) Conversion vs. time curve with the corresponding semi-log-

arithmic plot obtained for the RAFT dispersion polymerization of DMAC

at 70 °C in n-heptane using a POAA85 precursor and targeting a PDMAC

DP of 100 at 20% w/w solids (POAA85/AIBN molar ratio = 10). (b)

Evolution of Mn and Mw/Mn with DMAC conversion for the same RAFT

dispersion polymerization. The dashed line indicates the theoretical Mn

data. The experimental Mn data set falls below this theoretical line owing

to a systematic GPC calibration error.

Fig. 5 (a) Evolution in Mn and Mw/Mn with target PDMAC DP for a

series of POAA85-PDMACx diblock copolymers (refractive index detector

with calibration using a series of near-monodisperse PMMA standards).

The Mn value for the corresponding POAA85 precursor is also shown as

a y-intercept. The dashed line indicated the theoretical Mn data. The

experimental Mn data set falls below this theoretical line owing to a sys-

tematic GPC calibration error. (b) Evolution in z-average diameter and

DLS polydispersity with target PDMAC DP for a series of POAA85-

PDMACx nano-objects. Each diblock copolymer dispersion was initially

prepared at 20% w/w solids and then diluted to 0.1% w/w solids using

n-heptane prior to analysis.
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chloroform. This is a good solvent for both blocks, so nanogel

swelling was anticipated under such conditions. Indeed, a sig-

nificantly larger diameter (90 nm) was observed for such nano-

particles (Table S3†).

To demonstrate the potential industrial relevance of such

PISA formulations, a one-pot synthetic protocol was devel-

oped to produce POAA82-PDMAC100 diblock copolymer nano-

objects directly in n-heptane (Table S2†). First a POAA82 pre-

cursor was prepared by RAFT solution polymerization of

OAA in n-heptane when targeting a DP of 80. An OAA conver-

sion of 98% was achieved within 150 min with an Mn of

8100 g mol−1 and an Mw/Mn of 1.16 being indicated by

chloroform GPC analysis (Fig. 7). A deoxygenated solution

containing DMAC and n-heptane was added to this reaction

solution to target POAA82-PDMAC100 nano-objects at 20%

w/w solids. The DMAC polymerization was allowed to

proceed for 5 h at 70 °C. A final monomer conversion of

more than 99% was determined by 1H NMR analysis and

chloroform GPC analysis indicated an Mn of 18 500 g mol−1

and an Mw/Mn of 1.19 for the final POAA82-PDMAC100 diblock

copolymer chains (see Fig. 7). The Mn and Mw/Mn data were

comparable to the diblock copolymer nano-objects prepared

by a two-step protocol. Similarly, the resulting spherical

nanoparticles had a z-average diameter of 36 nm (DLS poly-

dispersity = 0.05) which is consistent with the z-average dia-

meter of 32 nm (DLS polydispersity = 0.03) obtained for the

two-pot synthesis, see Fig. 5.

The PISA synthesis of POAA85-PDMAC150 nanoparticles was

also conducted in n-dodecane at 70 °C. As expected, a free-

flowing turbid dispersion was observed at this reaction temp-

erature. However, an opaque, free-standing paste was formed

on cooling this 20% w/w dispersion to 20 °C (Fig. S6†).

To further examine this unexpected behavior, DLS particle

size distributions were determined for POAA85-PDMAC150

nano-objects prepared in either n-heptane or n-dodecane at

temperatures ranging from 80 °C to 20 °C (Fig. 8). On cooling

a dispersion of POAA85-PDMAC150 nanoparticles prepared in

n-heptane, both the z-average diameter (∼46 nm) and DLS

polydispersity (∼0.05) remained essentially constant across the

whole temperature range. In contrast, for the same nano-

particles prepared in n-dodecane, the apparent particle dia-

meter increased dramatically from 52 nm (40–80 °C) up to

276 nm (20 °C), indicating that aggregation occurs on cooling.

Such aggregation was accompanied by a substantial increase

in DLS polydispersity (from less than 0.10 to more than 0.57).

However, this aggregation proved to be reversible on heating,

indicating weak flocculation and minimal hysteresis.

In principle, such thermoresponsive behavior might be an

example of crystallization-driven aggregation, whereby an

initially stable colloidal dispersion becomes aggregated owing

to crystallization between neighbouring steric stabilizer

chains.42 However, DSC studies indicated no crystallization

event when cooling either a 20% w/w dispersion of POAA85-

PDMAC150 nanoparticles in n-dodecane or a 20% w/w solution

of POAA85 homopolymer in n-dodecane from 120 °C to −50 °C

(see Fig. S7†). This suggests that the thermoreversible floccula-

tion observed for the POAA85-PDMAC150 nanoparticles in

n-dodecane is simply due to the upper critical solution temp-

erature (UCST)-like behavior of the POAA stabilizer chains,

which become less solvated at lower temperature. If this is the

case, then POAA85 homopolymer should exhibit UCST behav-

Fig. 6 Representative TEM images recorded for linear POAA85-

PDMAC200 and core-crosslinked POAA85-PDMAC195-PEGDA20 nano-

objects. The latter nanoparticles exhibit a relatively well-defined spherical

morphology, whereas the former nanoparticles tend to undergo film

formation during TEM grid preparation.

Fig. 7 Chloroform GPC curves recorded for the initial POAA82 precur-

sor (98% conversion) and the final POAA82-PDMAC100 diblock copoly-

mer (more than 99% conversion after 5 h at 70 °C) prepared by a one-

pot protocol targeting 20% w/w solids via RAFT dispersion polymer-

ization of DMAC in n-heptane.
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ior, i.e. it should be soluble in n-dodecane at 80 °C but precipi-

tate on cooling to 20 °C.

Perhaps surprisingly, turbidimetry studies conducted on

POAA85 homopolymer in various n-alkanes did not provide any

evidence for UCST-type behavior. More specifically, this homo-

polymer remained soluble between 20 and 90 °C when dis-

solved in n-heptane, n-octane, n-decane and n-dodecane.

However, visual inspection confirms that this homopolymer is

indeed insoluble in n-tetradecane and n-hexadecane at 20 °C

(see Fig. S8†). Unfortunately, we have been unable to deter-

mine the critical flocculation temperature for such phase sep-

aration via turbidimetry. Moreover, DSC analysis of a 50% w/w

solution of POAA85 homopolymer in either n-tetradecane or

n-hexadecane indicated no UCST behavior (Fig. S9†) when

heating from −60 °C to 100 °C. Instead, only a strong

endothermic peak corresponding to the melting point of the

solvent is observed at 7 °C for n-tetradecane and 18 °C for

n-hexadecane, respectively.

Many polymers exhibit temperature-dependent solubility in

various solvents.43–49 For example, UCST behavior is typically

observed for polymers in organic solvents, with relatively few

examples being reported in aqueous solution.43 A well-docu-

mented example of a UCST system is polystyrene/cyclohexane;

this polymer is soluble in hot cyclohexane but becomes

insoluble on cooling below 35 °C.45–47 According to Imre and

co-workers, styrene oligomers exhibit UCST behavior in

n-alkanes.48 Similarly, poly(ethylene oxide) exhibits UCST be-

havior in ethanol.49

POAA85-PDMACx nanoparticles prepared in n-dodecane,

n-tetradecane or n-hexadecane invariably formed waxy pastes

on cooling, indicating UCST-like thermoreversible flocculation.

To further investigate this phenomenon, POAA85-PDMAC150

nanoparticles were prepared directly in turn in each of the six

n-alkanes via PISA (Table S2†).

Relatively good RAFT control (high blocking efficiencies,

similar Mn values, unimodal MWDs and relatively low Mw/Mn

values) was achieved during the RAFT dispersion polymeriz-

ation of DMAC at 70 °C using a POAA85 macro-CTA in n-heptane,

n-octane, n-decane, n-dodecane or n-tetradecane (Fig. 9a). In

Fig. 8 Temperature dependence of the z-average diameter and corres-

ponding DLS polydispersity determined for the following 0.1% w/w

copolymer dispersions: (a) POAA85-PDMAC150 nanoparticles prepared in

n-heptane cooled from 80 to 20 °C and then heated from 20 to 80 °C;

(b) POAA85-PDMAC150 nanoparticles prepared in n-dodecane cooled

from 80 °C to 20 °C then heated from 20 °C to 80 °C. These DLS experi-

ments confirm that these nanoparticles exhibit thermoreversible floccu-

lation with minimal hysteresis in n-dodecane but no such aggregation

occurs in n-heptane.

Fig. 9 (a) Chloroform GPC curves recorded for a series of POAA85-

PDMAC150 diblock copolymers prepared by RAFT dispersion polymeriz-

ation of DMAC using a POAA85 precursor at 70 °C in n-heptane (red),

n-octane (orange), n-decane (black), n-dodecane (green), n-tetradecane

(blue) or n-hexadecane (purple). The GPC curve for the POAA85 precur-

sor (dashed black line) is also included as a reference. (b) Normalized

transmittance (λ = 600 nm) against temperature curves recorded for

1.0% w/w dispersions of POAA85-PDMAC150 nanoparticles on cooling

from 90 °C to 2 °C.
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marked contrast, only poor RAFT control (inefficient chain

extension, a bimodal MWD and a relatively high Mw/Mn of 1.58)

was observed when the same synthetic protocol was conducted

in n-hexadecane. Initially, the DMAC monomer acts as a co-

solvent and ensures solubility of the POAA85 precursor in

n-hexadecane. However, as the DMAC polymerization proceeds,

the monomer concentration falls and the solvency gradually

worsens, which leads to nanoparticle flocculation as well as

loss of RAFT control. To address this problem, the PISA syn-

thesis of POAA85-PDMAC150 nanoparticles in n-hexadecane was

also attempted at 90 °C, which is well above the UCST of 55 °C

exhibited by the same (target) nanoparticles in this solvent

when cooling at 5 °C min−1 (see Fig. 9b). This latter protocol

produced a slightly higher Mn of 20 000 g mol−1 but the MWD

remained bimodal and relatively broad (Mw/Mn = 1.76).

The turbidity of this series of six POAA85-PDMAC150 disper-

sions was evaluated in turn at an arbitrary wavelength of

600 nm on cooling from 90 to 20 °C (Fig. 9b). Initially, each of

these 1.0% w/w dispersions exhibited high transmittance,

indicating minimal light scattering and good colloidal stabi-

lity. In the case of n-hexadecane, when cooling at 1 °C min−1

the dispersion became relatively opaque below 67 °C owing to

the onset of aggregation (see Fig. S10† for the effect of varying

the cooling rate on the transmittance vs. temperature plot

obtained for this copolymer dispersion). On cooling the dis-

persion further, the nanoparticles sedimented to the bottom

of the cuvette, resulting in a final non-zero transmittance (see

inset in Fig. S10†). Thus the data shown in Fig. 9b was

recorded at a faster cooling rate of 5 °C min−1. In contrast, the

critical flocculation temperature observed for such POAA85-

PDMAC150 nanoparticles is approximately 35 °C in n-tetrade-

cane and 27 °C in n-dodecane. (N.B. In all cases, nanoparticle

light scattering means that such dispersions never become

fully transparent even at 90 °C, hence the turbidity data were

normalized with respect to the highest transmittance value).

Bearing in mind the difference in nanoparticle concentration

and cooling rate, the increase in turbidity observed at around

27 °C for n-dodecane is reasonably consistent with the onset

of flocculation below 25 °C indicated by DLS studies con-

ducted in the same solvent (see Fig. 8). The onset of nano-

particle aggregation in n-decane was observed below 5 °C,

which is close to the minimum temperature for our instru-

ment set-up. Accordingly, an ice bath was used to lower the

temperature of this 1.0% w/w nanoparticle dispersion to

−1 °C, which resulted in macroscopic precipitation (see

Fig. S11†). In contrast, only minimal changes in turbidity were

observed for POAA85-PDMAC150 nanoparticles prepared in

n-octane and n-heptane, suggesting that colloidal stability is

retained in these lower n-alkanes at sub-ambient temperatures.

Conclusions

RAFT solution homopolymerization of a highly hydrophobic

acrylamide-based monomer, OAA, has been conducted in 1,4-

dioxane. GPC studies confirm that good control over the mole-

cular weight distribution can be achieved when using a suit-

able trithiocarbonate-based RAFT agent. Five well-defined

POAAx homopolymers were prepared by systematically varying

the [OAA]/[DDMAT agent] molar ratio and their respective

mean DPs were calculated by end-group analysis using UV

spectroscopy. DSC studies indicate a modest increase in Tg
when targeting higher POAA DPs. A POAA85 precursor was sub-

sequently employed for the RAFT dispersion polymerization of

DMAC in n-heptane. A series of sterically-stabilized POAA85-

PDMACx diblock copolymer spheres was produced with high

DMAC conversions being achieved in all cases (≥98% within

5 h at 70 °C). An increase in both z-average diameter and mole-

cular weight was observed when targeting higher PDMAC DPs,

albeit at the expense of reduced RAFT control. TEM studies of

the linear diblock nanoparticles proved to be problematic

owing to nanoparticle deformation during sample preparation.

Thus, EGDA was employed as a bifunctional crosslinker and

added towards the end of the DMAC polymerization to produce

covalently-stabilized nanoparticles. This strategy enabled a well-

defined spherical morphology to be confirmed by TEM while

also producing nanogels that swelled when dispersed in chloro-

form, which is a good solvent for both blocks. Moreover, well-

defined POAA82-PDMAC100 nanoparticles could be prepared

using an atom-efficient one-pot protocol that augurs well for

potential industrial scale-up for such PISA formulations.

The temperature-dependent colloidal stability of a series

of POAA85-PDMAC150 nanoparticles prepared in n-heptane,

n-octane, n-decane, n-dodecane, n-tetradecane or n-hexadecane

at 70 °C was investigated using turbidimetry. When prepared

in either n-heptane or n-octane, the nanoparticles remained

well-dispersed at all temperatures. However, thermoreversible

flocculation of the nanoparticles was observed on cooling from

70 °C to 20 °C for the four higher n-alkanes, with progressively

higher critical flocculation temperatures being observed when

increasing the n-alkyl chain length. This UCST-like behavior is

attributed to poor solvation of the POAA85 stabilizer block at

lower temperature, which is consistent with the insolubility of

this precursor in n-tetradecane and n-hexadecane at 20 °C.
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