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Abstract 1 

Large datasets increasingly provide critical insights into crustal and surface processes on Earth. 2 

These data come in the form of published and contributed observations, which often include 3 

associated metadata. Even in the best-case scenario of a carefully curated dataset, it may be non-4 

trivial to extract meaningful analyses from such compilations, and choices made with respect to 5 

filtering, resampling, and averaging can affect the resulting trends and any interpretation(s) 6 

thereof. As a result, a thorough understanding is required of how to digest, process, and analyze 7 

large data compilations. Here, we present a generalizable workflow developed using the 8 

Sedimentary Geochemistry and Paleoenvironments Project database. We demonstrate the effects 9 

of filtering and weighted resampling using Al2O3 and U, two representative geochemical 10 

components of interest in sedimentary geochemistry (one major and one trace element, 11 

respectively). Through our analyses, we highlight several methodological challenges in a “bigger 12 

data” approach to Earth Science. We suggest that, with slight modifications to our workflow, 13 



researchers can confidently use large collections of observations to gain new insights into 14 

processes that have shaped Earth's crustal and surface environments. 15 

Introduction 16 

The study of Earth’s past relies on a record that is spatially and temporally variable and, by some 17 

metrics, woefully undersampled. Through every geochemical analysis, fossil identification, and 18 

measured stratigraphic section, Earth scientists continuously add to this historical record. 19 

Compilations of such observations can illuminate global trends through time, providing 20 

researchers with crucial insights into our planet’s geological and biological evolution. These 21 

compilations can vary in size and scope, from hundreds of manually curated entries in a 22 

spreadsheet to millions of records stored in software databases. The latter form is exemplified by 23 

databases such as The Paleobiology Database (PBDB; Peters and McClennen 2016), Macrostrat 24 

(Peters et al. 2018), EarthChem (Walker et al. 2005), Georoc (Sarbas 2008), and the Sedimentary 25 

Geochemistry and Paleoenvironments Project (SGP, this study). 26 

 Of course, large amounts of data are not new to the Earth Sciences, and, with respect to volume, 27 

many Earth history and geochemistry compilations are small in comparison to the datasets used 28 

in other subdisciplines, including seismology (e.g., Nolet 2012), climate science (e.g., Faghmous 29 

and Kumar 2014), and hydrology (e.g., Chen and Wang 2018). As a result, many Earth history 30 

compilations likely do not meet the criteria to be called “big data”, which is a term that describes 31 

very large amounts of information that accumulate rapidly and which are heterogeneous and 32 

unstructured in form (Gandomi and Haider 2015; or, “if it fits in memory, it is small data”). That 33 

said, the tens of thousands to millions of entries present in such datasets do represent a new 34 

frontier for those interested in our planet’s past. For many Earth historians, however, and 35 



especially for geochemists (where most of the field’s efforts traditionally have focused on 36 

analytical measurements rather than data analysis; see Sperling et al. 2019), this frontier requires 37 

new outlooks and toolkits. 38 

When using compilations to extract global trends through time, it is important to recognize that 39 

large datasets can have several inherent issues. Observations may be unevenly distributed 40 

temporally and/or spatially, with large stretches of time (e.g., parts of the Archean Eon) or space 41 

(e.g., much of Africa; Fig. S1) lacking data. There may also be errors with entries—mislabeled 42 

values, transposition issues, and missing metadata can occur in even the most carefully curated 43 

compilations. Even if data are pristine, they may span decades of acquisition with evolving 44 

techniques, such that both analytical precision and measurement uncertainty are non-uniform 45 

across the dataset (Fig. S2). Careful examination may demonstrate that contemporaneous and co-46 

located observations do not agree. Additionally, data often are not targeted, such that not every 47 

entry may be necessary for (or even useful to) answering a particular question. 48 

Luckily, these (and other) issues can be addressed through careful processing and analysis, using 49 

well-established statistical and computational techniques. Although such techniques have 50 

complications of their own (e.g., a high degree of comfort with programming often is required to 51 

run code efficiently), they do provide a way to extract meaningful trends from large datasets. No 52 

one lab can generate enough data to cover Earth’s history densely enough (i.e., in time and 53 

space), but by leveraging compilations of accumulated knowledge, and using a well-developed 54 

computational pipeline, researchers can begin to ascertain a clearer picture of Earth’s past.  55 

A Proposed Workflow 56 



The process of transforming entries in a dataset into meaningful trends requires a series of steps, 57 

many with some degree of user decision-making. Our proposed workflow is designed with the 58 

express intent of removing unfit data while appropriately propagating uncertainties. First, a 59 

compiled dataset is made or sourced (Fig. S3, i.). Next, a researcher chooses between in-database 60 

analysis and extracting data into another format, such as a text file (Fig. S3, ii.). This choice does 61 

nothing to the underlying data—its sole function is to recast information into a digital format that 62 

the researcher is most comfortable with. Then, a decision must be made about whether to remove 63 

entries that are not pertinent to the question at hand (Fig. S3, iii.). Using one or more metadata 64 

parameters (e.g., in the case of rocks, lithological descriptions), researchers can turn large 65 

compilations into targeted datasets, which then can be used to answer specific questions without 66 

the influence of irrelevant data. Following this gross filtering, researchers must decide between 67 

removing outliers or keeping them in the dataset (Fig. S3, iv.). Outliers have the potential to 68 

drastically skew results in misleading ways. Ascertaining which values are outliers is a non-69 

trivial task and all choices about outlier exclusion must be clearly described when presenting 70 

results. Finally, samples are drawn from the filtered dataset (i.e., “resampling”), using a 71 

weighting scheme that seeks to address the spatial and temporal heterogeneities—as well as 72 

analytical uncertainties—of the data (Fig. S3, vi.). To calculate statistics from the data, multiple 73 

iterations of resampling are required. 74 

Case Study: The Sedimentary Geochemistry and Paleoenvironments Project Data 75 

The SGP project seeks to compile sedimentary geochemical data, made up of various analytes 76 

(i.e., components that have been analyzed), from throughout geologic time. We applied our 77 

workflow to the SGP database to extract coherent temporal trends in Al2O3 and U from 78 

siliciclastic mudstones. Al2O3 is relatively immobile and thus useful for constraining both the 79 



provenance and chemical weathering history of ancient sedimentary deposits (Young and Nesbitt 80 

1998). Conversely, U is highly sensitive to redox processes. In marine mudstones, U serves as 81 

both a local proxy for reducing conditions in the overlying water column (i.e., authigenic U 82 

enrichments only occur under low-oxygen or anoxic conditions and/or very low sedimentation 83 

rates; see Algeo and Li 2020) and a global proxy for the areal extent of reducing conditions (i.e., 84 

the magnitude of authigenic enrichments scales in part with the global redox landscape; see 85 

Partin et al. 2013). 86 

SGP data are stored in a PostgreSQL relational database that currently comprises a total of 87 

82,579 samples (Fig. 1). The SGP database was created by merging sample data and geological 88 

context information from three separate sources, each with different foci and methods for 89 

obtaining the “best guess” age of a sample (i.e., the interpreted age as well as potential maximum 90 

and minimum ages). The first source is direct entry by SGP team members, which focuses 91 

primarily on Neoproterozoic-Paleozoic shale samples and has global coverage. Due to the direct 92 

involvement of researchers intimately familiar with their sample sets, these data have the most 93 

precise (Fig. 1 a)—and likely also most accurate—age constraints. Second, the SGP database has 94 

incorporated sedimentary geochemical data from the United States Geological Survey (USGS) 95 

National Geochemical Database (NGDB), comprising data from projects completed between the 96 

1960s and 1990s. These samples, which cover all lithologies and are almost entirely from 97 

Phanerozoic sedimentary deposits of the United States, are associated with the continuous-time 98 

age model from Macrostrat (Peters et al. 2018). Finally, the SGP database includes data from the 99 

USGS Global Geochemical Database for Critical Metals in Black Shales project (CMIBS; 100 

Granitto et al. 2017), culled to remove ore-deposit related samples. The CMIBS samples 101 

predominantly are shales, have global coverage, and span the entirety of Earth’s sedimentary 102 



record. When possible, the USGS data are associated with Macrostrat continuous-time age 103 

models; otherwise, the data are assigned age information by SGP team members (albeit without 104 

detailed knowledge of regional geology or geologic units). 105 

Cleaning and Filtering 106 

We exported SGP data into a comma-separated values (.csv) text file, using a custom structured 107 

query language (SQL) query. In the case of geochemical analytes, this query included unit 108 

conversions from both weight percent (wt%) and parts per billion (ppb) to parts per million 109 

(ppm). After export, we parsed the .csv file and screened the data through a series of steps. First, 110 

if multiple values were reported for an analyte in a sample, we calculated and stored the mean (or 111 

weighted mean, if there were enough values) and standard deviation of the analyte. Then, we 112 

redefined empty values—which are the result of abundance being above or below detection—as 113 

“not a number” (NaN, a special value defined by Institute of Electrical and Electronics Engineers 114 

(IEEE) floating-point number standard that always returns false on comparison; see IEEE 2019). 115 

Next, we converted major elements (e.g., those that together comprise >95% of Earth’s crust or 116 

individually >1 wt% of a sample) into their corresponding oxides; if an oxide field did not 117 

already exist, or if there was no measurement for a given oxide, the converted value was inserted 118 

into the data structure. Then, we assigned both age and measurement uncertainties to the parsed 119 

data. In the case of the parsed SGP data, 5,935 samples (i.e., 7.1% of the original dataset) lacked 120 

an interpreted age and so no uncertainty could be assigned. For the remainder, we calculated an 121 

initial absolute age uncertainty by either using the reported maximum and minimum ages: 122 

𝜎 = |age𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − age𝑚𝑖𝑛𝑖𝑚𝑢𝑚|2 , 123 



or, if there were no maximum and minimum age values available, by defaulting to a two-sigma 124 

value of 6% of the interpreted age: 125 

𝜎 = 0.03 ∗ age𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑑 . 126 

The choice of a 6% default value was based on a conservative estimate of the precision of 127 

common in situ dating techniques (see, for example, Schoene 2014). Additionally, we enforced a 128 

minimum 𝜎 of 25 million years: 129 

𝜎 = 𝑚𝑎𝑥𝜎, 25 130 

Effectively, each datum can be thought of as a Gaussian distribution along the time axis with a 𝜎 131 

of at least 25 million years (the minimum value of which may be thought of as a kernel 132 

bandwidth, rather than an analytical uncertainty). The selection of this 𝜎 value should correspond 133 

to an estimate of the processes that are being investigated (e.g., tectonic changes in provenance). 134 

We did not impose a minimum relative age uncertainty. 135 

With respect to measurement uncertainties, we assigned an absolute uncertainty to every analyte 136 

that lacked one by multiplying the reported analyte value by a relative error. In future database 137 

projects, there is considerable scope to go beyond this coarse uncertainty quantification strategy. 138 

For example, given the detailed metadata associated with each sample in the SGP database, it 139 

would be straightforward to develop correction factors or uncertainty estimates for different 140 

geochemical methodologies (e.g., ICP-MS versus ICP-OES, benchtop versus handheld XRF, 141 

etc.). Correcting data for biases introduced during measurement is common in large Earth 142 

Science datasets (Chan et al. 2019). However, such corrections previously have not been 143 

attempted in sedimentary geochemistry datasets. 144 



Next, we processed the data through a simple lithology filter because, in the general case of rock-145 

based datasets, only lithologies relevant to the question at hand provide meaningful information. 146 

The choice of valid lithologies (or, for that matter, any other filterable metadata) are dependent 147 

on the researchers’ question(s). As highlighted in the Discussion, lithology filtering has 148 

significant implications for redox-sensitive and/or mobile/immobile elements. In this case study, 149 

our aim was to only sample data generated from siliciclastic mudstones. To decide which values 150 

to screen by, we manually examined a list made up of all unique lithologies in the dataset. We 151 

excluded samples that did not match our list of chosen lithologies (removing ∼63.5% of the data; 152 

Table S1; Fig. S4). Our strategy ensured that we only included mudstones sensu lato (see Potter 153 

et al. 2005 for a general description) where the lithology was coded. Alternative methods—such 154 

as choosing samples based on an Al cutoff value (e.g., Reinhard et al. 2017)—likely would result 155 

in a set comprising both mudstone and non-mudstone coded lithologies. In the future, improved 156 

machine learning algorithms, designed to classify unknown samples based on their elemental 157 

composition, may provide a more sophisticated means by which to generate the largest possible 158 

dataset of lithology-appropriate samples. 159 

We then completed a preliminary screening of the lithology filtered samples by checking if 160 

extant analyte values were outside of physically possible bounds (e.g., individual oxides with 161 

wt% less than 0 or greater than 100), and, if so, setting them to NaN. Next, to reduce the number 162 

of mudstone samples with detrital or authigenic carbonate and phosphatic mineral phases, we 163 

excluded samples with greater than 10 wt% Ca and/or more than 1 wt% P2O5 (removing ∼ 164 

66.9% of the remaining data; Fig. S4). Additionally, in order to ensure that our mudstone 165 

samples were not subject to secondary enrichment processes, such as ore mineralization, we 166 

queried the USGS NGDB to extract the recorded characteristics of every sample with an 167 



associated USGS NGDB identifier. We examined these characteristics for the presence of 168 

selected strings (i.e., “mineralized”, “mineralization present”, “unknown mineralization”, and 169 

“radioactive”) and excluded any sample exhibiting one or more strings. Finally, as there were 170 

still several apparent outliers in the dataset, we manually examined the log histograms of each 171 

element and oxide of interest. On each histogram, we demarcated the 0.5th and 99.5th percentile 172 

bounds of the data, then visually studied those histograms to exclude “outlier populations”, or 173 

samples located both well outside those percentile bounds and not part of a continuum of values 174 

(removing ∼5.7% of the remaining data; Fig. S4). Following these filtering steps, we saved the 175 

data in a .csv text file. 176 

Data Resampling 177 

We implemented resampling based on inverse distance weighting (after Keller and Schoene 178 

2012), in which samples closer together—that is, with respect to a metric such as age or spatial 179 

distance—are considered to be more alike than samples that are further apart. The inverse 180 

weighting of an individual point, x, is based on the basic form: 181 

𝑦(𝑥) = 1𝑑(𝑥, 𝑥𝑖)𝑝, 182 

where 𝑑 is a distance function, 𝑥𝑖 is a second sample, and 𝑝, which is greater than 0, is a power 183 

parameter. In the case of the SGP data, we used two distance functions, spatial (𝑠) and temporal 184 

(𝑡): 185 

𝑠 = 𝑎𝑟𝑐𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑥𝑖)𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ,
𝑡 = |𝑎𝑔𝑒(𝑥 − 𝑥𝑖)|𝑠𝑐𝑎𝑙𝑒𝑎𝑔𝑒 ,  186 



where 𝑎𝑟𝑐𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 refers to the distance between two points on a sphere, 𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎𝑡𝑖𝑎𝑙 refers to 187 

a preselected arc distance value (in degrees; Fig. S5, inset), and 𝑠𝑐𝑎𝑙𝑒𝑎𝑔𝑒 is a preselected age 188 

value (in million years, Ma). In this case study, we chose a 𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎𝑡𝑖𝑎𝑙 of 0.5 degrees and a 189 𝑠𝑐𝑎𝑙𝑒𝑎𝑔𝑒 of 10 Ma (see below for a discussion about parameter values). 190 

For 𝑛 samples, the proximity value 𝑤 assigned to each sample 𝑥 is: 191 

𝑤(𝑥) = ∑ 1(𝑠2 + 1)𝑖=𝑛
𝑖=1 + 1(𝑡2 + 1). 192 

Essentially, the proximity value is a summation of the reciprocals of the distance measures made 193 

for each pair of the sample and a single other datum from the dataset. Accordingly, samples that 194 

are closer to other data in both time and space will have larger 𝑤 values than those that are 195 

farther away. Note that the additive term of 1 in the denominator defines a maximum value of 1 196 

for each reciprocal distance measure. 197 

We normalized the generated proximity values (Fig. S6) to produce a probability value 𝑃. This 198 

normalization was done such that the median proximity value corresponded to a 𝑃 of ∼0.20 (i.e., 199 

a 1 in 5 chance of being chosen): 200 

𝑃(𝑥) = 1(𝑤(𝑥) ∗ 𝑚𝑒𝑑𝑖𝑎𝑛 (0.20𝑤 )) + 1. 201 

This normalization results in an “inverse proximity weighting”, such that samples that are closer 202 

to other data (which have large 𝑤 values) end up with a smaller 𝑃 value than those that are far 203 

away from other samples. Next, we assigned both analytical and temporal uncertainties to each 204 

analyte to be resampled. Then, we culled the dataset into an 𝑚 by 𝑛 matrix, where each row 205 



corresponded to a sample and each column to an analyte. We resampled this culled dataset 206 

10,000 times using a three-step process: (1) we drew samples, using calculated 𝑃 values, with 207 

replacement (i.e., each draw considered all available samples, regardless of whether a sample 208 

had already been drawn); (2) we multiplied the assigned uncertainties discussed above by a 209 

random draw from a normal distribution (μ = 0;  σ = 1) to produce an error value; and (3) we 210 

added these newly calculated errors to the drawn temporal and analytical values. Finally, we 211 

binned and plotted the resampled data. 212 

Naturally, the reader may ask how we chose the values for 𝑠𝑐𝑎𝑙𝑒𝑎𝑔𝑒 and 𝑠𝑐𝑎𝑙𝑒𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 and 213 

what, if any, impact those choices had on the final results? Nominally, the values of 𝑠𝑐𝑎𝑙𝑒𝑎𝑔𝑒 214 

and 𝑠𝑐𝑎𝑙𝑒𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 are controlled by the size and age, respectively, of the features that are being 215 

sampled. So, in the case of sedimentary rocks, those values should reflect the length scale and 216 

duration of a typical sedimentary basin, such that many samples from the same “spatiotemporal” 217 

basin have lower 𝑃 values than few samples from distinct basins. Of course, it is debatable what 218 

“typical” means in the context of sedimentary basins, as both size and age can vary over orders 219 

of magnitude (Woodcock 2004). Given this uncertainty, we subjected the SGP data to a series of 220 

sensitivity tests, where we varied both 𝑠𝑐𝑎𝑙𝑒𝑎𝑔𝑒 and 𝑠𝑐𝑎𝑙𝑒𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, using logarithmically spaced 221 

values of each (Fig. S5). While the uncertainty associated with results varied based on the choice 222 

of the two parameters, the overall mean values were not appreciably different (Fig. S7). 223 

Results 224 

To study the impact of our methodology, we present results for two geochemical components, U 225 

and Al2O3 (Fig. 2). Contents-wise, the U and Al2O3 data in the SGP database contain extreme 226 

outliers. Many of these outliers were removed using the lithology and Ca or P2O5 screening (Fig. 227 



2 a, c); the final outlier filtering strategy discussed above handled any remaining values of 228 

concern. In the case of U, our multi-step filtering reduced the range of concentrations by two 229 

orders of magnitude, from 0 to 500,000 ppm to 0 to 500 ppm. 230 

Discussion 231 

The illustrative examples we have presented have implications for understanding Earth history. 232 

Al2O3 contents of ancient mudstones appear relatively stable over the last ∼1500 Ma (the time 233 

interval for which appreciable data exist in our dataset), suggesting little first-order change in 234 

Al2O3 delivery to sedimentary basins over time. The U content of mudstones shows a substantial 235 

increase between the Proterozoic and Phanerozoic. Although we have not accounted for the 236 

redox state of the overlying water column, these results broadly recapitulate the trends seen in a 237 

previous much smaller, and non-weighted, dataset (Partin et al. 2013) and generally may indicate 238 

oxygenation of the oceans within the Phanerozoic. 239 

Moving forward, there is no reason to believe that the compilation and collection of published 240 

data, whether in a semi-automated (e.g., SGP) or automated (e.g., GeoDeepDive; Peters et al. 241 

2014) manner, will slow and/or stop (Bai et al. 2017). Those interested in Earth’s history—as 242 

collected in large compilations—should understand how to extract meaningful trends from these 243 

ever-evolving datasets. By presenting a workflow that is purposefully general and must be 244 

adapted before use, we hope to elucidate the various aspects that must be considered when 245 

processing large volumes of data. 246 

Foremost to any interpretation of a quantitative dataset is an assessment of uncertainty. In truth, a 247 

datum representing a physical quantity is not a single scalar point, but rather, an entire 248 

distribution. In many cases, such as in our workflow, this distribution is implicitly assumed to be 249 



Gaussian, an assumption which may or may not be accurate (Rock et al. 1987)—although a 250 

simplified distribution certainly is better than none. The quantification of uncertainty in Earth 251 

Sciences especially is critical when averaging and binning by a selected independent variable, 252 

since neglecting the uncertainty of the independent variable will lead to interpretational failures 253 

that may not be mitigated by adding more data. As time perhaps is the most common 254 

independent variable (and one with a unique relationship to the assessment of causality), 255 

incorporating its uncertainty especially is critical for the purposes of Earth history studies (Ogg 256 

et al. 2016). An age without an uncertainty is not meaningful data. Indeed, such a value is even 257 

worse than an absence of data, for it is actively misleading. Consequently, assessment of age 258 

uncertainty is one of the most important, yet underappreciated, components of building accurate 259 

temporal trends from large datasets. 260 

Of course, age is not the only uncertain aspect of samples in compiled datasets, and researchers 261 

should seek to account for as many inherent uncertainties as possible. Here, we propagate 262 

uncertainty by using a resampling methodology that incorporates information about space, time, 263 

and measurement error. Our chosen methodology—which is by no means the only option 264 

available to researchers studying large datasets—has the benefit of preventing one location or 265 

time range from dominating the resulting trend. For example, although the Archean records of 266 

Al2O3 and U especially are sparse (Fig. 2), resampling prevents the appearance of artificial 267 

“steps” when transitioning from times with little data to instances of (relatively) robust sampling 268 

(e.g., see the resampled record of Al2O3 between 4000 and 3000 Ma). Therefore, researchers 269 

should examine their selected methodologies to ensure that: 1) uncertainties are accounted for, 270 

and 2) that spatiotemporal heterogeneities are addressed appropriately. 271 



Even with careful uncertainty propagation, datasets must also be filtered to keep outliers from 272 

affecting the results. It is important to note that the act of filtering does not mean that the filtered 273 

data are necessarily “bad”, just that they do not meaningfully contribute to the question at hand. 274 

For example, while our lithology and outlier filtering methods removed most U data because 275 

they were inappropriate for reconstructing trends in mudstone geochemistry through time, that 276 

same data would be especially useful for other questions, such as determining the variability of 277 

heat production within shales. This sort of filtering is a fixture of scientific research—e.g., 278 

geochemists will consider whether samples are diagenetically altered when measuring them for 279 

isotopic data—and, likewise, should be viewed as a necessary step in the analysis of large 280 

datasets. 281 

As our workflow demonstrates, filtering often requires multiple steps, some automatic (e.g., 282 

cutoffs that exclude vast amounts of data in one fell swoop or algorithms to determine the 283 

“outlierness” of data, see Ptáček et al. 2020) and others manual (e.g., examining source literature 284 

to determine whether an anomalous value is, in fact, meaningful). Each procedure, along with 285 

any assumptions and/or justifications, must be documented clearly (and code included and/or 286 

stored in a publicly-accessible repository) by researchers so that others may reproduce their 287 

results and/or build upon their conclusions with increasingly larger datasets. 288 

Along with documentation of data processing, filtering, and sampling, it is important for 289 

researchers also to leverage sensitivity analyses to understand how parameter choices may 290 

impact resulting trends. Here, through the analysis of various spatial and temporal parameter 291 

values, we demonstrate that, while the spread of data varies based on the prescribed values of 292 𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and 𝑠𝑐𝑎𝑙𝑒𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, the averaged resampled trend does not (Fig. S7). At the same 293 

time, we see that trends are directly influenced by the use (or lack thereof) of Ca and P2O5 and 294 



outlier filtering. For example, the record of U in mudstones becomes overprinted by anomalously 295 

large values when carbonate samples are not excluded (Fig. S7 b). 296 

Conclusion 297 

Large datasets can provide increasingly valuable insights into the ancient Earth system. 298 

However, to extract meaningful trends, these datasets must be cultivated, curated, and processed 299 

with an emphasis on data quality, uncertainty propagation, and transparency. Charles Darwin 300 

once noted that the “natural geological record [is] a history of the world imperfectly kept” 301 

(Darwin 1859), a reality which is the result of both geological and sociological causes. But while 302 

the data are biased, they are also tractable. As we have demonstrated here, the challenges of 303 

dealing with this imperfect record—and, by extension, the large datasets that document it—304 

certainly are surmountable. 305 
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Figure Captions 369 

Figure 1: Visualizations of data in the SGP database. A. Relative age uncertainty (i.e., the 370 

reported age sigma divided by the reported interpreted age) versus Sample ID. The large gap in 371 

Sample ID values results from the deletion of entries during the initial database compilation. 372 

This gap has no impact on analyses. B. Box plot showing the distribution of relative ages with 373 

respect to the sources of data. 374 

Figure 2: Filtering and resampling of Al2O3 and U. A and C. Al2O3 and U data through time, 375 

respectively. Each datum is color coded by the filtering step at which it was separated from the 376 

dataset. In blue is the final filtered data, which was used to generate the resampled trends in B 377 

and D. B and D. Plots depicting Al2O3 and U filtered data, along with a histogram of resampled 378 

data density and the resulting resampled mean and 2 𝜎 error. Note the log-scale y axis in C. 379 


