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A B S T R A C T   

Introduction: The Propensity to Cycle Tool (PCT) is a widely used free, open source and publicly 
available tool for modelling cycling uptake and corresponding health and carbon impacts in 
England and Wales. In this paper we present the methods for our new individual-level modelling 
representing all commuters in England and Wales. 
Methods: Scenario commuter cycling potential in the PCT is modelled as a function of route 
distance and hilliness between home and work. Our new individual-level approach has allowed us 
to create an additional “Near Market” scenario where age, gender, ethnicity, car ownership and 
area level deprivation also affect an individual’s likelihood of switching to cycling. For this and 
other scenarios, we calculate the carbon benefits of cycling uptake based on the trip distance and 
previous mode, while health benefits are additionally affected by hilliness and baseline average 
mortality risk. This allows the estimation of how health and carbon benefits differ by de-
mographic group as well as by scenario. 
Results: While cycle commuting in England and Wales is demographically skewed towards men 
and white people, women and people from ethnic minorities have greater cycling potential based 
on route distance and hilliness. Benefits from cycling uptake are distributed differently again. For 
example, while increasing female cycling mode share is good for equity, each additional female 
cyclist generates a smaller average health and carbon benefit than a male cyclist. This is based on 
women’s lower baseline mortality risk, shorter commute travel distances, and lower propensity to 
commute by car than men. 
Conclusion: We have demonstrated a new approach to modelling that allows for more sophisti-
cated and nuanced assessment of cycling uptake and subsequent benefits, under different sce-
narios. Health and carbon are increasingly incorporated into appraisal of active travel schemes, 
valuing important outcomes. However, especially with better representation of demographic 
factors, this can act as a barrier to equity goals.  

* Corresponding author. 
E-mail address: jw745@cam.ac.uk (J. Woodcock).   

1 James Woodcock and Rachel Aldred contributed equally to this manuscript. 

Contents lists available at ScienceDirect 

Journal of Transport & Health 

journal homepage: www.elsevier.com/locate/jth 

https://doi.org/10.1016/j.jth.2021.101066 
Received 27 August 2020; Received in revised form 19 March 2021; Accepted 23 March 2021   

mailto:jw745@cam.ac.uk
www.sciencedirect.com/science/journal/22141405
https://www.elsevier.com/locate/jth
https://doi.org/10.1016/j.jth.2021.101066
https://doi.org/10.1016/j.jth.2021.101066
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jth.2021.101066&domain=pdf
https://doi.org/10.1016/j.jth.2021.101066
http://creativecommons.org/licenses/by/4.0/


Journal of Transport & Health 22 (2021) 101066

2

1. Background 

Recognising the wide-ranging benefits of active transport, many local and national governments have set cycling targets. England’s 
national target (now ‘aim’) is to double the number of cycle journey stages by 2025, compared with 2013 (Department for Transport, 
2017). Mode switch to cycling has multiple benefits. Starting cycling for everyday trips increases physical activity and hence reduces 
risk of non-communicable diseases. 

Despite well-documented benefits, England’s policy makers and planners have failed at the national level to get people cycling, 
with a lack of modelling and planning tools cited alongside funding and political barriers (Aldred et al., 2019). Models and tools have 
been developed over decades that prioritise motorised traffic, often combining walking and cycling within a residual category (Boyce 
and Williams, 2015). While this is starting to change (Singleton et al., 2018), ongoing barriers include a lack of data on active modes. 

While all non-car modes (walking, cycling, public transport) have suffered from this traditional lack of planning tools (Curtis 2011), 
in England, the impact is most severe for cycling. Cycling accounts for 1% of trips, while walking is 26% (Department for Transport, 
2018). Hence, existing pedestrian activity gives planners a relatively diverse and widespread starting point. Meanwhile for cycling, a 
‘vehicular’ approach to provision has helped keep usage both low and dominated by the ‘strong and fearless’ (Dill and McNeil 2013), 
predominantly younger male adults. While cycling poses a relatively low risk to other road users (Aldred et al., 2020), cyclists 
themselves often experience high rates of near misses (Aldred and Goodman, 2018) and relatively high rates of injury. Women, 
children, and older people tend to avoid environments that require mixing with large motor vehicles on busy roads (e.g. Appleyard 
2017). 

In such contexts, looking at where, how, and why people currently cycle may provide limited insight into the characteristics of 
cycling if it were to become a system of mass transit. For example, if cycling is overwhelmingly male, then an approach to planning that 
is based on existing cycling may perpetuate that bias, given documented gender differences in trip patterns (e.g. Susilo et al., 2019), 
with for instance women making more ‘school-run’ trips than men. It might also be the case that those few routes that are more widely 
used by cyclists are popular not because of greater ‘inherent demand’ there, but rather because those are the only routes with cycling 
infrastructure. For these and other reasons, low-cycling contexts cannot simply extrapolate from current cycling patterns when 
planning for cycling growth. 

Where cycling levels are low, active transport planners need a version of the ‘predict and provide’ paradigm that was so effective at 
enabling mode shift to driving during the second half of the 20th Century in high income countries (Naess et al., 2014). Given that 
transport authorities struggle to count and model current cyclists, modelling potential cyclists is a substantial challenge (Lindsey et al., 
2013). However, visualising the suppressed demand represented by potential cyclists and the benefits of achieving ‘cycling potential’ 
might help overcome the political challenges that often prevent the building of new infrastructure in low-cycling contexts (Aldred 
et al., 2019). 

The Propensity to Cycle Tool (PCT) was developed to make this suppressed ‘cycling potential’ visible in planning. Through this, it 
aims to help planners think beyond the very small and skewed amount of cycling currently existing in England and Wales. We see this 
skewing as an equity issue, given that (i) many inequalities (e.g. gender, age) are absent or attenuated in high-cycling settings and (ii) 
groups under-represented in cycling often have reduced access to other modes, such as driving. Our recently developed methodological 
innovations allow us to examine the distributional impacts of the PCT scenarios, in relation to carbon and health impacts of commuter 
cycling uptake, as well as how the distribution of cycling participation itself changes. This paper critically discusses those methods and 
examines what the results can tell us about possible tensions between equity, health, and environmental goals in cycling policy- 
making. 

2. About the Propensity to Cycle Tool 

2.1. Approach 

The PCT approach involves calculating and visualising cycling propensity and potential2 at the origin-destination (OD) level (which 
can scale up to the national and down to the street segment level) across a range of scenarios. The underlying code is open source, and 
results for England and Wales are available via a freely available interactive website and data downloads (see www.pct.bike). The first 
national version was launched for England in 2016, providing estimates of commuter cycling potential at area, route, and network 
levels (Lovelace et al., 2017). 

We subsequently added commuting data in Wales, and travel to school data in England (Goodman et al., 2019). More recently, the 
underlying model was substantially upgraded. The new approach builds on the aspatial microsimulation approach used in the Impacts 
of Cycling Tool www.pct.bike/ict (Woodcock et al., 2019), joining it to the PCT’s spatial approach. Whereas we previously modelled at 
the level of origin-destination pairs (each containing aggregated data about multiple individuals), we now also model the charac-
teristics of each individual commuter. Shifting to this individual-level approach allowed the creation of new scenarios and improved 
estimates of benefits, including the ability to model the distribution of these benefits across different socio-demographic groups. 

2 We define propensity as the modelled likelihood of cycling a trip either currently or based on some scenario. Potential is a normative measure of 
what could be achieved, and we use propensity estimates from e.g. the Netherlands to estimate. For example women currently have lower cycling 
propensity than men in England but applying Dutch propensity to their current trips they have greater cycling potential. 
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2.2. Scenarios 

The original PCT scenarios used a distance and hilliness-based function to model observed cycling, then using this model to create 
scenarios for new uptake.3 Our initial four commuting scenarios were called Government Target, Gender Equality, Go Dutch and E- 
bikes (Lovelace et al., 2017). 

In brief:  

1. ‘Government Target (Equality)’ assumes the aim of doubling cycling overall nationally is achieved. In each origin-destination 
(OD) pair, the number of new cyclists depends on trip distance and hilliness, with cycling increasing more in flat areas with 
relatively short trips. Cycling potential in this scenario assumes that within an OD pair, the likelihood of becoming a cyclist does not 
depend on individual characteristics, hence we have added in the ‘equality’ descriptor. Note that in this as in other scenarios, all 
existing cyclists are assumed to keep cycling, with the demographic biases that entails. Hence while new uptake may be more 
equitable, this will not be the case among those who currently cycle.  

2. ‘Gender Equality’ assumes women become as likely as men are currently to cycle to work within each OD pair. Where more 
women than men currently cycle between a given OD pair, there is no change. Therefore, this scenario results in women having a 
higher cycling mode share than men do.  

3. ‘Go Dutch’ assumes that commuters in England and Wales become as likely to cycle to work (allowing for trip distance and 
hilliness) as commuters in the Netherlands.  

4. ‘E-bikes’ builds on Go Dutch but assumes people may also use electric assist bikes (pedelecs), making hilliness and distance less of a 
barrier. This scenario uses data from Dutch and Swiss travel surveys on electric bicycle (e-bike) usage for such trips. 

We have now added the new ‘Government Target (Near Market)’ scenario. As with the Government Target (Equality) this models a 
doubling in cycling, but also includes new individual-level demographic predictors of cycling potential, skewing new uptake to mirror 
current biases. This scenario therefore differs from Government Target (Equality), Go Dutch and E-bikes scenarios, all of which use the 
same cycling propensity equations (based only on distance and hilliness) across all demographic groups to calculate and assign new 
uptake. 

2.3. Benefits 

Below and in Appendix 1 we discuss how we calculate health and carbon benefits of cycling uptake. In brief, our approach is guided 
by UK government appraisal methods, to which some of us have contributed. The Department for Transport has developed an Active 
Mode Appraisal Toolkit which seeks to calculate, monetise, and value a range of benefits from walking and cycling uptake that have 
previously been ignored in transport appraisal, which has tended to focus narrowly on travel time (dis)benefits to motorists. 

2.4. Usage 

As of July 2020, the PCT was used by over eighty transport authorities in England in cycle planning.4 The PCT underpins many 
Local Cycling and Walking Infrastructure Plans (LCWIPs), in which local transport authorities in England develop plans for future 
active travel routes (Wales has a related process under the Active Travel Act 2013). Government Target (Equality scenario; the Near 
Market scenario not being available until more recently) and Go Dutch are the most used scenarios. 

3. Methods 

3.1. Using Census 2011 data to build an individual-level synthetic population 

To estimate commuter cycling potential, the PCT uses 2011 Census data on main mode of travel to work. These are the best national 
and geographically disaggregated data on travel patterns for England and Wales that we could access.5 They provide OD data on nearly 
24 million commuters living in England and Wales in 2011. The OD dataset reports the number of commuters travelling between usual 
places of residence and main workplace locations at the level of administrative zones. We used data for Lower-layer Super Output Area 
(LSOA) administrative regions designed to contain a population of around 1560 individuals (average 690 commuters). The R package 
stplanr, developed for the PCT project (Lovelace and Ellison, 2018), was used to process the OD data. 

We sought to build a synthetic population covering key demographic, social-economic and area characteristics, selecting these 
characteristics based on a combination of data availability, policy interest, and documented associations with travel behaviour. Our 
starting point of the synthetic population was a safeguarded Census dataset containing information on the age, sex and commute mode 
of each individual in each OD pair. In previous versions of the PCT we did our modelling at the level of the OD pair and largely only 

3 See also Pajarito and Gould, 2018 and Raffler et al., (2019) for alternative approaches to modelling these kinds of trip characteristics in relation 
to cycling potential.  

4 https://npct.github.io/pct-shiny/regions_www/www/static/03d_other_reports/2020-pct-impact-report.pdf.  
5 While Census origin-destination data is generally open access, we had to request safeguarded data (available to researchers) to create the PCT. 
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used information on commute mode share, e.g. one OD pair “A to B” might contain 3 commuters of whom 1 walked and 2 got the bus to 
work. In the 2019 version, we moved to the individual level, assigning to each individual their age, sex and commute mode. For 
example, a separate row would be created for each individual in the “A to B” OD pair (i.e. 3 rows in total), with their individual 
characteristics recorded as: commuter 1 is female, age 16–24, and walks; commuter 2 is female, age 16–24, and uses a bus; commuter 3 
is male, age 50–64, and uses a bus. 

We then enhanced these by imputing individual-level data on car ownership (binary: no car/any household car) and ethnicity 
(binary: white/non-white). These two demographic characteristics are both highly associated with travel behaviour and of consid-
erable policy interest. This imputation was done probabilistically by drawing on two other safeguarded Census 2011 datasets that we 
commissioned specially. Because these characteristics were imputed the resulting dataset is referred to in the microsimulation liter-
ature as a ‘synthetic population’ (e.g. Lovelace and Dumont 2016). These steps are described below and summarised in a diagram in 
Appendix 1. 

For car ownership, safeguarded data were provided indicating the number of commuters who did/did not own a car in each OD 
pair, stratified by mode. This was merged so that the correct total number of commuters owned a car in each OD pair, for each mode. 
Where there was ambiguity, the assignment was done probabilistically based on region of England/Wales, age and sex, using prob-
abilities observed in the 5% individual-level sample released for Census 2011. For example, if in OD pair “A to B” it was known that one 
of the two bus commuters owned a car, car ownership would be more likely to be assigned to the older male commuter than the 
younger female commuter, as male gender and older age are associated with higher car ownership. For ethnicity, an identical process 
was used, except that ethnicity was assigned second and so could be assigned based on region, age, sex and car ownership. 

Finally, based on home and work location, we merged in the following area-level variables:  

• Income Deprivation of the home LSOA, using the Index of Multiple Deprivation data for England and Wales. We ranked LSOAs into 
quintiles for income deprivation for England and Wales separately.  

• Urban-rural status and sparsity of the home LSOA.  
• Estimated distance and gradient of the ‘fastest’ routes between the home LSOA and work LSOA, using CycleStreets.net (see 

Lovelace et al., 2017). 

Income deprivation was selected as a measure of socio-economic position (income information is not available at individual level in 
the Census) and urban/rural status and sparsity as being standard geographic measures of land use available at the LSOA level. 

3.2. Creating scenarios of cycling potential: summary of existing four scenarios 

The original scenarios estimated cycling potential as a function of two variables: route distance and route hilliness (Lovelace et al., 
2017). We used logistic regression applied at the individual level, modelling the relationship between the proportion of commuters 
cycling (the dependent variable) and the fastest-route distance and route gradient (the two explanatory variables). Our equations 
included terms to capture the non-linear impact of distance on the likelihood of cycling, and ‘interaction’ terms, as the impact of trip 
distance varies according by hilliness. We also developed equations to estimate commuting mode share among groups with no fixed 
workplace. This model of baseline propensity to cycle formed the basis of the scenarios Government Target (Equality), Go Dutch and 
E-bikes. 

We focused on distance and hilliness as strong predictors of cycling, and as expressing relationships less amenable to change than, 
for example, gender and cycling, which has very different relationships in high- and low-cycling contexts (Aldred et al., 2016a). We 
focused on the more direct ‘fastest’ routes as these are where the cycling potential is likely to be greatest if appropriate infrastructure is 
constructed. 

3.3. Creating scenarios of cycling potential: Near Market scenario 

Using the new synthetic population, with additional individual characteristics, we created a new ‘Government Target (Near 
Market)’ scenario. Both Government Target (Equality) and Government Target (Near Market) scenarios model doubling of cycling 
trips nationally, corresponding to the national target for 20256 (Department for Transport, 2017). 

Specifically, as in the earlier scenarios, we estimated propensity to cycle among 19 million English and Welsh commuters with a 
CycleStreets fast route distance of <30 km between their home and workplace. We did this by fitting logit regression models using 
predictor variables to capture the effect of distance and gradient. The difference was that in the Near Market scenario we took account 
of a wider range of variables:  

1. Region (11 regions: the 10 standard regions of England and Wales, subdividing London into Inner and Outer London),  
2. Sex (binary),  
3. Age category (16–24; 25 to 34; 35 to 49; 50 to 64; 65 to 74; 75+),  
4. Ethnicity (white, non-white), 

6 The target refers to trip stages rather than trips, but currently in England, these are similar for cycling as a mode. 
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5. Having a household car (binary),  
6. Fifths of income deprivation,  
7. Urban-rural status (Urban major conurbation; Urban minor conurbation; Urban city and town; Rural town and fringe; Rural village 

and dispersed),  
8. A sparsity index, identifying the sparsest 5% of areas in terms of population (binary). 

We did this by (i) stratifying by region, sex, and broad age band (16–49, and 50+) and then (ii) entering the other variables into the 
model as predictors. In total we modelled baseline propensity to cycle through 44 regression models (11 regions * male/female * 2 age 
categories). This process of stratification allowed the predictor variables’ importance to vary according to age, sex, or region. For 
example, the deterrent effect of longer distance is greater in women and in older people than in young men; and car ownership is less 
strongly (negatively) associated with cycling in London than in other regions of England and Wales. Further details can be found in PCT 
User Manual C1,7 which also contains further details and equations related to the previous four scenarios. 

Besides these 19 million commuters, a further 2.1 million had no fixed workplace. Their propensity to cycle was modelled as a 
function of the weighted average for individuals in their OD pair, the same method also used for the other scenarios. A further 2.9 
million individuals lived further than 30 km from their workplace or worked overseas and were assumed to have no increase in cycling. 

Finally, to enhance comparability between the two Government Target scenarios, the overall increase in any region was adjusted 
for Government Target (Near Market) to be equal to the already existing Government Target (Equality) scenario. In other words, the 
regional increase is determined in both versions only by distance and hilliness, while for Government Target (Near Market) the dis-
tribution of cycle commuting uptake within regions is also affected by the demographic variables listed above. 

3.4. Modelling mode shift 

To estimate health and carbon benefits, we needed to estimate which modes switched to cycling. For instance, if trips shift from 
walking to cycling, there is a reduction in physical activity to be included when calculating health impacts of scenarios; while carbon 
reduction benefits stem only from reductions in driving (assuming public transport continues to run). 

For our original scenarios, new cyclists were initially generated for each OD pair, based on distance and hilliness (or for Gender 
Equality, based on the proportion of men already cycling to work). For each OD pair, we then allocated those new cyclists to have come 
from other modes based on the current mode split. So, for instance, if in the 2011 Census 1/3 of all non-cyclist commuters travelling 
between A and B currently walked and 2/3 currently used the bus, then likewise 1/3 of the new cyclists would be ex-walkers and 2/3 
ex-bus users. Where much existing commuting is by walking or public transport (as for commutes within dense city centres), new 
cyclists will often come from those modes; while in OD pairs where car is dominant, many new cyclists will come from the car. 

By contrast, the Near Market scenario estimates how cycling uptake varies between commuters within an OD pair as a function of 
their individual characteristics (sex, age, ethnicity, car ownership, income and other distributional factors). Current commuting mode 
is not directly used to predict cycling uptake. However, to the extent that current commuting mode is associated with these other 
individual characteristics, there are different relative mode shifts for different modes within the same OD pair. For example, people 
without a household car are less likely to commute by car and in the Near Market scenario have a higher cycling potential. 

3.5. Calculating physical activity 

Additional physical activity was calculated for new cyclists based on the average number of cycle commute trips per week * trip 
duration * physical activity energy intensity. In cases where a trip was previously walked, the displaced physical activity was 
calculated using a similar approach. Our units for calculating physical activity were marginal Metabolically Equivalent Tasks (mMETs) 
hours per week. An mMET is a measure of the intensity on activity above resting (Ainsworth et al., 2011; Woodcock et al., 2019). 

Because most cycle commuters do not cycle commute twice a day for every working day of the year, average number of cycle 
commute trips per cyclist per week were estimated, stratified by age and sex, from the English National Travel Survey (Cornick et al. 
2020). 

Going beyond work presented in Lovelace et al. (2017), we modelled speed and intensity (mMET rate per hour) as a function of 
gradient. Below we summarise the method, with further details given in Appendix 1. 

We used the equation from di Prampero et al. (1979) that calculates the power required by a cyclist to move based on road 
resistance, wind resistance, and gravity. We developed a decay function for uphill moving speed with incline, based on published 
studies (Costa et al., 2015; Sperlich et al., 2012). We fitted this decay function using linear regression, with speed as the outcome and 
the square root of incline as the predictor. 

The PCT is currently based on average gradients, i.e. a gradient of 1.5% means an average uphill gradient of 1.5% in one direction, 
and downhill the other. We assumed that energy expenditure and speed when going downhill was equal to energy expenditure and 
speed when travelling on the flat. 

As our primary focus was on cycling, for walking we made the simplifying assumption that the relative effort and speed penalty of 
walking uphill were directly proportional to the relative effort and speed penalty of cycling uphill. We adjusted values to maintain a 

7 https://www.pct.bike/tabs/manual.html. 
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mean walking value of 3.6 mMET. 
We assumed that an e-bike halved the additional effort required uphill, in line with our previous observation that the deterrent 

effect of hills for e-bike-owners was around half that of non-e-bike owners (Lovelace et al., 2017). We further assumed that cycling on 
the flat was 1.8 mMET lower intensity on an e-bike than on a bicycle. Together this approximately generated the average e-biking 
mMET of 3.5 that has been reported in the literature. We assumed the relative speed penalty of travelling on a hill is smaller than for a 
traditional bike. 

Based on the above we calculated average mMET rates and speeds for cycling, walking, and e-biking for routes of different gradient. 
For the average commuter gradient in 2011 of 1.5% this gives a speed of 13.9 km/h and mMET value of 5.39. This is close to the WHO 
Health Economic Assessment Tool (HEAT) average estimates. 

3.6. Modelling health impacts 

Health benefits were calculated as change in premature deaths and Years of Life Lost (YLLs), building on an approach we and others 
had developed for the UK Department for Transport (Department for Transport, 2020). Cycling trip duration was estimated as a 
function of the ‘fastest’ route distance and average cycling speed. 

A relative risk of 0.9 was used for an increase in cycling or walking 8.75 mMETh per week (roughly equivalent to 150 min of 
moderate intensity exercise). The impact fraction was calculated by scaling these relative risks to the power of the modelled weekly 
mMEThs vs 8.75. For example, if an individual is modelled to have an increase of 1.2 mMETh, the relative risk applied would be (0.9^ 
(1.2/8.75)) = 0.986, or a 1.4% decrease. The total possible relative risk was capped at 0.55 (45% decrease) for cycling and 0.70 (30% 
decrease) for walking. 

We assigned a mortality rate to each individual based on their age, sex, and local authority, using background mortality rates for 
each local authority in England and Wales in 2016. 

The net change in the number of deaths avoided for each OD pair was estimated as the number of deaths avoided due to increased 
cycle commuting minus the number of additional deaths incurred due to reduced walking. 

We converted our estimate of the net number of deaths avoided into an estimate of the number of YLLs avoided. We did this by 
using Global Burden of Disease data from 2017 in England and Wales to estimate the average YLL loss per death. This was done 
separately by age group, sex and region. As recommended in UK appraisal methods, future benefits were discounted by 1.5% per year. 
The monetary value of the mortality impact was calculated by multiplying the number of YLLs avoided by £57,965, the value of a 
statistical life year used by Department for Transport, in 2010 prices. Our results are presented for deaths in a single year (noting that 
YLLs saved from a death occur over many years in the future). 

3.7. Sickness absence 

The Department for Transport’s Transport Appraisal Guidance (TAG) on calculating health impacts of transport schemes covers the 
economic impacts of changes in sickness absence alongside health economic benefits from physical activity. Building on this guidance, 
we estimated the economic value of reduced sickness absence using an approach similar to that used to estimate the reduction in 
mortality. We used an identical approach to calculate the change in mMEThs. Based on TAG values we used a 0.25 relative reduction in 
short-term sickness absence associated with an increase in cycling or walking of 8.75 mMETs/week. The relative risk was capped at 
0.50 (50% decrease) for both cycling and walking. 

Average hours of sickness absence are a function of sickness absence rate and total working hours. These both vary by sex, age, and 
region. We therefore calculated age and sex-specific average annual hours of sickness absence for regions in England and for Wales 
(ranging from 8.2 h/year for men aged 16–24 in the East Midlands to 69.9 h/year for men aged 50–64 in Wales). 

As with premature deaths, we calculated the reduction in sickness absence due to increased cycling and then subtracted the in-
crease in sickness absence due to decreased walking. 

Finally, we multiplied the net change in annual sickness hours by mean hourly salary costs. We scaled this figure to vary by region, 
using 2018 median salaries (ranging from £17.16 in the North East to £24.15 in London). 

3.8. Carbon emissions 

When comparing each scenario to baseline, we estimated the reduction in transport carbon dioxide (CO2) emissions as follows: 
Change in CO2-equivalent emissions (in kg) per year = Change in no. car drivers * former distance travelled by former car drivers * 

mean cycle commute trips per cyclist per week * 52.2 * CO2-equivalent emissions (in kg) per kilometre. 
Their average former distance was assumed equal to the new ‘fastest-route’ distance travelled by the cycle commuters. The average 

CO2-equivalent emission per kilometre car driving was taken as 0.182 kg, the 2017 value for an ‘average’ car of ‘unknown’ size in the 
UK government’s carbon conversion factors. Results were monetised using Department for Transport recommended values. 

4. Results 

Below we present selected results focusing on the impact of our methodological innovations used in the new model, specifically 
hilliness and demographic differences in uptake and subsequent benefits. 
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Table 1 
Trip characteristics and baseline mode share by demographic group, all commuters.    

Mean commute trip length (km), 
among trips <30 kma 

Mean commute hilliness gradient (%), 
among trips <30 ma 

% commuters walking 
(baseline) 

% commuters who are car 
driverb (baseline) 

% commuters who are cyclists 
(baseline) 

Whole sample  8.8 1.9% 10.9% 60.7% 3.1% 
Sex Male 9.6 1.8% 8.4% 63.3% 4.4% 

Female 8.1 1.9% 13.7% 57.9% 1.7% 

Age 16 to 24 7.8 1.9% 18.0% 41.1% 2.9% 
25 to 34 9.1 1.8% 11.0% 54.3% 3.7% 
35 to 49 9.1 1.9% 9.0% 66.6% 3.3% 
50 to 64 8.6 1.9% 9.7% 68.4% 2.5% 
65+ 8.0 1.9% 11.2% 65.1% 2.1% 

Ethnicity White 8.8 1.9% 10.8% 63.1% 3.3% 
Non-white 8.6 1.6% 11.5% 42.9% 1.9% 

Household car 1 or more 
cars 

9.1 1.9% 8.7% 68.0% 2.6% 

No car 6.8 1.7% 25.1% 13.3% 6.2% 

Income 
deprivation 

Fifth 1 
(poorest) 

7.4 1.8% 14.1% 48.4% 3.2% 

Fifth 2 8.2 1.8% 12.7% 54.2% 3.4% 
Fifth 3 8.9 1.9% 11.0% 61.4% 3.2% 
Fifth 4 9.6 1.9% 9.0% 67.9% 2.9% 
Fifth 5 
(richest) 

9.9 1.9% 8.4% 69.2% 2.9% 

Urban/rural Rural 11.6 2.1% 7.6% 77.0% 1.9% 
Urban 8.3 1.8% 11.6% 57.3% 3.4%  

a In our model no mode shift to cycling occurred for commutes ≥30 km. 
b Drivers only, i.e. not including car passengers, for whom a switch to cycling entails health but no carbon benefits in our model. 
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Table 2 
Number of new cyclists and total mode share for cycling, per scenario, by demographic group.    

No. comm- 
uters 

Baseline Government target: 
Near market 

Government target: 
Equality 

Gender Equality Go Dutch E-bikes    

N 
cyclists 

% 
cycling 

N new 
cyclists 

% 
cyclinga 

N new 
cyclists 

% 
cyclinga 

N new 
cyclists 

% 
cycling 

N new 
cyclists 

% 
cyclinga 

N new 
cyclists 

% 
cyclinga 

Whole sample  23,903,549 744,459 3.1% 715,619 6.1% 711,673 6.1% 379,881 4.7% 3,774,751 18.9% 5,306,421 25.3% 
Sex Male 12,467,760 544,895 4.4% 521,358 8.6% 325,535 7.0% – 4.4% 1,677,047 17.8% 2,418,273 23.8%  

Female 11,435,789 199,564 1.7% 194,262 3.4% 386,138 5.1% 379,881 5.1% 2,097,703 20.1% 2,888,148 27.0% 
Age 16 to 24 3,237,168 94,487 2.9% 89,632 5.7% 106,856 6.2% 56,566 4.7% 577,862 20.8% 795,611 27.5%  

25 to 34 5,538,697 203,555 3.7% 185,172 7.0% 165,239 6.7% 86,120 5.2% 852,114 19.1% 1,201,813 25.4%  
35 to 49 8,650,594 286,156 3.3% 277,449 6.5% 245,259 6.1% 134,339 4.9% 1,297,370 18.3% 1,837,546 24.5%  
50 to 64 5,804,849 145,953 2.5% 148,982 5.1% 173,152 5.5% 92,688 4.1% 931,783 18.6% 1,310,908 25.1%  
65+ 672,241 14,308 2.1% 14,385 4.3% 21,168 5.3% 10,168 3.6% 115,622 19.3% 160,544 26.0% 

Ethnicity White 21,050,896 689,034 3.3% 660,368 6.4% 613,538 6.2% 341,689 4.9% 3,253,236 18.7% 4,600,125 25.1%  
Non-white 2,852,653 55,425 1.9% 55,251 3.9% 98,135 5.4% 38,192 3.3% 521,514 20.2% 706,296 26.7% 

Household car 1 or more 
cars 

20,703,404 544,801 2.6% 542,414 5.3% 594,789 5.5% 318,352 4.2% 3,150,270 17.8% 4,473,058 24.2%  

No car 3,200,146 199,658 6.2% 173,206 11.7% 116,885 9.9% 61,529 8.2% 624,480 25.8% 833,362 32.3% 
Income Fifth 1 

(poorest) 
4,076,504 130,750 3.2% 132,009 6.4% 143,782 6.7% 64,417 4.8% 795,105 22.7% 1,074,781 29.6% 

Deprivation (area 
level) 

Fifth 2 4,872,476 163,999 3.4% 155,366 6.6% 157,254 6.6% 80,691 5.0% 843,191 20.7% 1,162,164 27.2%  

Fifth 3 5,060,155 162,602 3.2% 152,764 6.2% 149,731 6.2% 83,252 4.9% 787,422 18.8% 1,109,086 25.1%  
Fifth 4 4,996,073 143,772 2.9% 138,149 5.6% 134,491 5.6% 76,691 4.4% 698,810 16.9% 1,010,066 23.1%  
Fifth 5 
(richest) 

4,898,341 143,336 2.9% 137,332 5.7% 126,416 5.5% 74,830 4.5% 650,222 16.2% 950,325 22.3% 

Urban/rural Rural 4,103,067 77,649 1.9% 71,303 3.6% 79,382 3.8% 44,367 3.0% 401,028 11.7% 637,060 17.4%  
Urban 19,800,482 666,810 3.4% 644,316 6.6% 632,291 6.6% 335,515 5.1% 3,373,722 20.4% 4,669,361 26.9%  

a In all cases, mode share for cycling comes from adding the N new cyclists to the N cyclists at baseline, i.e. it is total mode share. 

J. W
oodcock et al.                                                                                                                                                                                                     



Journal of Transport & Health 22 (2021) 101066

9

4.1. Characteristics affecting uptake and benefits, by demographic group 

Table 1 presents the underlying trip characteristics, baseline mode shares for walking, driving, and cycling, by demographic 
group.8 The trip characteristics illustrate the extent to which some demographic groups make more or fewer ‘cyclable’ trips (in terms of 
distance and hilliness), and which groups are most likely to shift from the car versus other modes. For instance, rural trips are sub-
stantially longer and hillier than trips made by urban residents. In terms of mode share, the richer groups are substantially more likely 
to be car commuters at baseline, and less likely to be cycle commuters. Lower income groups both have shorter, more cyclable 
commutes and are more likely to already cycle. By contrast, while women are currently much less likely to cycle to work than are men, 
they tend on average to make significantly shorter (albeit slightly hillier) trips. 

Alongside baseline health data and hourly salary (see Table 3), the trip characteristics and mode share will also determine the 
benefits per group of cycling uptake. For instance, those aged 16–24 are substantially more likely to walk to work than any other group. 
Thus, any switched trip among this group is more likely to come from walking, a switch that results in a net health loss. To give another 
example, white people are relatively likely to drive to work, compared to non-white people. This means that any trips switched among 
the former group are more likely to result in a carbon benefit. 

4.2. Mode share in different scenarios 

The discussion above highlights differences in trip characteristics by demographic group. Building on this, Table 2 shows the 
number of new cyclists and subsequent mode share by demographic group for each scenario. In all scenarios, the number of new 
cyclists is affected by the types of trip made by that type of individual, specifically trip distance and trip hilliness. Hence, under 
Government Target (Equality) and Go Dutch, there are more new female cyclists than new male cyclists because women tend to make 
shorter trips. 

In the case of Go Dutch, this is enough to yield an overall higher mode share for women cycling. By contrast, in Government Target 
(Equality) scenario men’s mode share remains higher because, given our simplifying assumption that all existing cyclists keep cycling, 
new uptake makes up a smaller percentage of total cyclists, and existing cycling (see baseline) is highly gender-skewed. For the 
Government Target (Near Market) scenario, the number of new cyclists is based on cycling propensities related to individual char-
acteristics as well as trip characteristics. As these individual cycling propensities mirror baseline cycling propensities, the gender skew 
remains even among the new cyclists. 

4.3. Health, health economics, and carbon impacts 

Table 3 presents the data on mortality rates, YLLs, and annual hours of sickness absence used in the model. These alongside the trip 
characteristics discussed above feed through into the benefits gained per group. Uptake and benefits may pull in different directions. 
For instance, rural trips are longer and hence less likely to shift to cycling; however, they are also currently relatively car-dependent, so 
per trip switched, carbon benefits are on average higher in rural than in urban areas. Table 3 illustrates how age is the major driver of 
health benefits, given the sharp increase in mortality rate in the older age groups, only partly counteracted by the lower YLLs per death. 
Differences in average ages mainly explain other differences such as the urban/rural comparison (rural populations being older on 
average) or the differences by income deprivation (people in affluent areas being older on average). To illustrate this, Table 3 also 
shows the proportion of commuters in each demographic group aged over 50. 

Table 4 below presents total health, health economic and carbon impacts across all commuters, for the five scenarios compared 
with baseline, and for baseline (compared with a hypothetical no cycling). In broad terms, the scenario benefits largely track the 
change in uptake. The E-bikes scenario produced the largest gains in health, with notably larger reduction in CO2 emissions than the 
other scenarios, due to the longer trips cycled. The Gender Equality scenario produces relatively low health economic benefits, due (i) 
to the relatively low increase in cycling, with just under 400,000 compared to just over 700,000 in the two Government Target 
scenarios, and (ii) all the new cyclists being women. While more women cyclists is good for equity, it leads to comparatively lower 
health and carbon benefits, based on (i) women’s lower baseline mortality risk than men, (ii) women’s lower commute travel distances 
than men, and (iii) women’s lower propensity to commute by car. 

Appendix 2 shows how the results in Table 4 are distributed across demographic groups for all scenarios; with the size of the benefit 
in each group being a function in part of the number of people in that group. To facilitate a comparison of e relative benefits across 
group, Table 5 illustrates the benefits obtained in the Go Dutch scenario per new cyclist (per commuter is provided in Appendix 2). The 
per-commuter benefit in other scenarios was similar. 

In Table 5 we see under the Go Dutch scenario substantial variation based on the factors previously discussed. Although richer areas 
have fewer cyclable trips (average commute distance of 9.9 km for the top income fifth compared to 7.4 km for the poorest), those who 
do switch to cycling on average will each generate more health and carbon benefits, because (i) each trip cycled is longer on average, so 
generates more physical activity energy expenditure, (ii) this group is older on average, so obtains more health benefits from physical 
activity, and (iii) trips are relatively likely to come from the car, hence more likely to generate carbon benefits. 

In poorer areas, although trips are more likely to switch to cycling, these (shorter) trips are less likely to come from the car, reducing 

8 All trip characteristics (distance, hilliness, walking and driving mode shares) are directly taken from the data for all demographic groups. 
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Table 3 
Baseline disease burden measures by demographic group, all commuters.    

Mean annual mortality rate, per 1000 
commuters 

Mean YLL per 
death 

Mean annual YLLs, per 1000 commuters (i.e. 
mortality rate * YLLS) 

Mean annual hours of sickness per 
commuter 

% commuters over age 50 
years 

Whole sample  2.28 33.6 76.6 31.3 27% 
Sex Male 2.82 33.6 94.8 29.6 27% 

Female 1.70 33.7 57.3 33.2 27% 
Age 16 to 24 0.24 43.1 10.3 18.0 0% 

25 to 34 0.51 39.5 20.1 25.2 0% 
35 to 49 1.44 33.2 47.8 30.1 0% 
50 to 64 4.68 25.4 118.9 46.5 100% 
65+ 16.92 16.8 284.3 30.2 100% 

Ethnicity White 2.37 33.4 79.2 32.0 29% 
Non-white 1.64 35.3 57.9 26.6 16% 

Household car 1 or more cars 2.35 33.3 78.3 31.9 28% 
No car 1.83 35.5 65.0 27.5 18% 

Income 
deprivation 

Fifth 1 
(poorest) 

1.98 34.5 68.3 31.1 22% 

Fifth 2 2.10 34.2 71.8 30.3 24% 
Fifth 3 2.28 33.7 76.8 31.0 27% 
Fifth 4 2.46 33.1 81.4 32.1 30% 
Fifth 5 
(richest) 

2.53 32.8 83.0 32.2 31% 

Urban/rural Rural 2.71 32.4 87.8 33.8 34% 
Urban 2.19 33.9 74.2 30.8 26% 

Note that background mortality rate, YLL per death and annual hours of sickness are varied as a function of region, age and gender, but not according to the other demographic characteristics shown here. 
Our model therefore does not capture additional differences by other characteristics such as income. The sickness absence calculation requires mean hourly salary, and we only used a regional figure for 
this; hence it does not capture additional demographic variation; for instance, the large gap between male and female or white and non-white earnings. 
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carbon benefits; and are more likely to come from walking (the baseline mode share of walking is 14.1% for the poorest fifth compared 
to 8.4% for the richest fifth), which generates a net health loss. The result is that the economic benefit per new cyclist is much greater in 
richer areas e.g. 315 deaths and 169 thousand tonnes of CO2 averted per million cyclists for the richest fifth, versus 194 deaths and 96 
tonnes CO2 for the poorest fifth. However, because fewer people switch to cycling in richer areas, the impact per commuter is more 
similar, e.g. 42 deaths and 22 thousand tonnes of CO2 averted per million commuters for the richest fifth, versus 38 deaths and 19 
tonnes CO2 for the poorest fifth. In summary: greater uptake is likely in poorer areas, but each switching cyclist in poorer areas 
generates lower health and carbon benefits, so overall the benefits are similar. 

Comparing by gender and age group, differences in YLLs and deaths averted stem from major differences in background mortality 
risk, which will feed through into other group differences (e.g. rural residents may have older age profiles than urban residents). As 
older people and, to a lesser extent, men have higher background mortality risk than younger people and women, getting the former 
groups cycling generates more health benefits per individual taking up cycling. For men, this is further increased by their higher 
propensity to travel longer distances (9.6 km average commute distance versus 8.1 km for women). 

The difference by age is particularly large for deaths, and somewhat smaller for YLLs because each death corresponds to a larger 
number of YLLs for a younger person. For sickness absence the effect is less marked and peaks in age 50–64, reflecting the fact that this 
group works more hours per year than commuters age 65+. 

Table 4 
Total health, health economic and carbon impacts, across all commuters (N = 23,903,549).   

Baseline (relative to 
no cycling) 

Scenarios (changes relative to baseline) 

Government Target: 
Near Market 

Government Target: 
Equality 

Gender 
Equality 

Go 
Dutch 

E- 
bikes 

Deaths averted per year 198 211 217 74 939 1062 
YLLs averted per year 5,454 5,830 5,624 1,922 24,273 27,520 
Reduction in person-years of sickness 

absenteeism per year 
1,878 1,981 2,107 1,068 9,910 11,869 

Millions of pounds of health economic benefit 
(YLL + sickness absence) per year 

416 442 436 167 1,923 2,211 

Reduction in thousands of tonnes of transport 
CO2 equivalent per year 

104 115 112 43 496 859  

Table 5 
Health, health economic and carbon impacts in the Go Dutch scenario, =per million new cyclists.    

Deaths 
averted per 
year 

YLLs 
averted per 
year 

Reduction in person-years 
of sickness absenteeism per 
year 

Millions of pounds of health 
economic benefit (YLL +
sickness absence) per year 

Reduction in thousands of 
tonnes of transport CO2 

equivalent per year 

Whole 
sample  

249 6430 2625 509 131 

Sex Male 348 9031 2736 665 162  
Female 169 4351 2537 385 107 

Age 16 to 24 21 919 1246 118 81  
25 to 34 52 2058 2087 231 119  
35 to 49 153 5083 2566 428 146  
50 to 64 516 13137 4076 972 153  
65+ 1756 27270 2465 1704 138 

Ethnicity White 259 6640 2684 523 137  
Non-white 184 5127 2261 426 96 

Household 1 or more 
cars 

272 7014 2839 553 153 

car No car 133 3489 1548 290 24 

Income Fifth 1 
(poorest) 

194 5170 2396 425 96 

deprivation Fifth 2 213 5616 2375 452 111  
Fifth 3 248 6423 2572 507 133  
Fifth 4 293 7454 2898 581 159  
Fifth 5 
(richest) 

315 7937 3004 615 169 

Urban/rural Rural 379 9471 3404 718 214  
Urban 233 6069 2533 485 122 

Values, and their distribution across characteristics, are similar in other scenarios. 
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4.4. Hilliness 

Hilliness, as well as distance, affects the likelihood and health benefits of cycling. As described in the Methods section, our previous 
model included the impact of hilliness on uptake, and our new model additionally incorporates the impact of hilliness on the health 
benefits. In England and Wales’ eight hilliest areas (average slope 4% or more), modelled cycling uptake is relatively low, with a 7.6% 
mode share under the Go Dutch scenario. By contrast, this figure is three times higher in the 43 flattest authorities (average slope less 
than 1%). Once hilliness is additionally included in the health impact model, however, the difference between the hillier and the flatter 
areas narrows somewhat in terms of health impact. Specifically, when only cycling uptake is considered (as in the original version of 
the PCT), the overall population health benefits in hilly areas are around a third of that of flat areas. Once the additional health benefits 
of hilliness are factored in, this rises to half as much (Table 6). 

5. Discussion 

5.1. Summary of findings 

Recent updates to the PCT have incorporated an individual-level model of cycling uptake. This enabled calculation of more refined 
outputs for five different scenarios, including the new Near Market scenario. The results estimate cycling uptake, mode share, health 
and carbon impacts for each scenario, at area, route, route network and individual levels. Using this model, we have shown both 
overall differences in impacts between the scenarios, distributional differences by a range of demographic variables, and the impact of 
including hilliness within the calculation of health benefits of cycling. A key finding is that while cycle commuting in England and 
Wales varies substantially by gender and ethnicity, women and non-white people tend to make more ‘cyclable’ commute trips (in terms 
of distance and hilliness). A key finding of this paper is that established appraisal methods (including our own in PCT) assign less value 
to these shorter trips. 

5.2. Meaning of our findings 

The Near Market scenario can be understood as an indication of how commuter cycling in England and Wales might look, 
demographically, if the Government Target of doubling cycling were achieved without significant broadening of cycling’s de-
mographic appeal. Under this scenario, despite the shorter and hence more cyclable trips made by women and non-white people, it 
remains dominated by white men. The Government Target (Equality) scenario is more diverse but still demographically skewed, due to 
the inequalities among existing cyclists, who comprise 50% of all commuter cyclists in both Near Market and Equality Government 
Target scenarios. 

We have assumed that current cyclists (based on 2011 data) continue to cycle and that any increase in cycling is in addition to these 
cyclists. This assumption means that small increases in cycling lead to only a small change in the demographic composition of the 
cycling population. In reality, there is considerable ‘churn’ in cycling. However, it is likely that policies to increase cycling will require 
reducing churn (catering better for existing cyclists) as well as increasing the number of new cyclists. From 2001 to 2011 we did not see 
improvements in the gender and age mix of commuter cycling in those places where cycling levels increased (Aldred et al., 2016). 
Thus, we consider our simplifying assumption is reasonable, and that demographic skew amongst cyclists is unlikely to decrease 
markedly while cycling levels remain relatively low. 

The more ambitious scenarios mean, however, that most cyclists are ‘new’. This allows the ‘naturally’ more cyclable trips to 
dominate, with women and non-white adults having higher mode share, despite starting from a lower baseline. Indeed, it is difficult to 
imagine a high-cycling scenario in which very large demographic inequalities remain, especially among numerically large groups such 
as women and older people (Aldred et al., 2016). Thus, cycle planning should have a strong equity focus, in addition to supporting 
existing cyclists. This would include going beyond focusing on the simple commute, given the dominance of women in the school run 
(often as part of a trip chain), and the different distribution of schools compared to workplaces (Goodman et al., 2019). As women show 
particularly strong preferences for cycling environments separated from motor traffic (Aldred et al., 2016b) routes to such destinations 
need to involve high quality cycleways. 

By contrast, the under-representation of cyclists among commuters living in the wealthier areas and (more so) car owners persists in 
all scenarios. These groups are likely to make longer and less cyclable commutes. Yet although longer trips are less likely to be switched 
to cycling, they do generate greater health benefits and (if switched from driving) higher carbon benefits. Hence groups such as men, 
who make longer trips and are more likely than women to drive, generate relatively high carbon benefits per commuter switched. 
Because of their higher baseline mortality risk and those longer trip distances, alongside their low walking at baseline compared to 
women, a man switching to cycling experiences greater health benefits on average than would a woman. At population level, this 
implies greater societal health economic benefit from getting 1,000 men cycling, compared to 1,000 women. 

Returning to hilliness, this too has interesting implications (including for hillier countries). Where national allocation of resources 
to cycling is considered, it would be easy to ignore or marginalise hilly areas that have lower cycling potential. However, while 
hilliness suppresses uptake, it also increases health benefits from uptake. Finally, the urban/rural divide narrows in the more ambitious 
scenarios, highlighting the greater suppression of cycling demand in rural areas. 
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5.3. Strengths and limitations 

Strengths of this work include the individual-level modelling that enables analysis of demographic variation in uptake and benefits 
obtained. The analysis of hilliness allows quantification of the extra health benefits obtained by getting more people cycling in hillier 
areas, supplementing our existing work showing the possible impact of e-bikes on uptake in such areas. The sophisticated propensity 
modelling developed here at a national scale for areas, routes, and networks goes beyond most work in the area. The most comparable 
work we know of has been done by Transport for London (TfL 2016), who have created a similar active travel potential model for all 
trip purposes using the more advanced data available to planners in that city-region (but not more widely or nationally available). 

A major strength of the PCT approach is that the tool, the data, and the code are freely available to the public, consultancies, and 
local authority transport planners, reducing the information gap between diverse stakeholders in the decision-making process. This 
‘open access’ approach transport modelling goes beyond the highly technical approach of transport modelling software products such 
as SUMO and MATSim that are open but only accessible to experts working in the field (Lovelace et al. 2020). The open source nature 
of the tool means that the model outlined in this paper could be extended, e.g. by alternative ‘impedance functions’ (Martínez and 
Viegas 2013; Levinson and King 2020) and inclusion of additional explanatory variables in the scenarios of change (e.g. Larsen et al., 
2013). 

The outputs of the PCT are provided as open access datasets, and can be combined at the local level with other data such as 
infrastructure, obesity, public transport, new developments. One national example of this combination is the Department for Transport 
and Sustrans funded Rapid Cycleway Prioritisation Tool (freely available, at https://www.cyipt.bike/rapid/). This has been used to 
prioritise the location of ‘pop-up’ cycleways where there is both sufficient road width and high cycling potential in the context of 
COVID-19 (Lovelace et al., 2020). Furthermore, users can use the pct R package to download data and reproduce the findings (see 
https://cran.r-project.org/package=pct). 

As with all models ours has many limitations and we can only highlight some of them. We only use a subset of demographic factors 
to calculate health and absenteeism benefits. This means that absenteeism benefits cannot be meaningfully disaggregated according to 
other demographic characteristics (e.g. ethnicity), and that we are for instance underestimating the physical activity benefits from 
take-up of cycling among lower income groups within a given local authority. 

Health benefits covered here are those modelled in the PCT; physical activity and sickness absence. Other health impacts might 
relate for instance to air pollution, noise pollution, and injury risk. Health impacts of mode shifts to cycling are in countries such as the 
UK dominated by change in physical activity (Woodcock et al., 2013; Muller et al., 2015). Changes in injury risk depend not just on 
mode shift but local factors, notably on the kind of infrastructure is built, and this is not specified in the PCT. Over the longer term and a 
bigger geography, reductions in carbon emissions will also benefit health, although the reductions here are small. 

Our health model (following UK appraisal methods) is relatively naïve, e.g. not accounting for longer term health benefits and only 
including mortality (Mytton et al., 2017). However, we have included several aspects not typically captured in UK appraisal notably, 
hilliness, local authority specific mortality, and detailed age and sex information. 

We have assumed that travel distances are fixed. While reducing travel distances can play a major role in reducing transport related 
emissions, our results show that substantial mode shift can be achieved with current travel distances. The infrastructure and supporting 
interventions required to achieve this are likely quicker than changes in land use (Ahmad et al. 2019). 

We are limited by our main dataset, from 2011 and only including commuter trips, which excludes many older adults, those out of 
work, and biases towards men. 

5.4. Research and policy recommendations 

Our study highlights the extent of England and Wales’ cycling potential and the large corresponding health and carbon benefits 
from achieving some or all of this potential uptake. 

This paper highlights that many of the groups currently under-represented in cycling in England and Wales make commute trips 
that are relatively conducive to cycling. All else being equal, one might expect women to cycle more than do men. In environments 
where cycling is culturally normalised and experienced as safe, such as the Netherlands, women currently cycle more than men; and 
within England there is a strong correlation between levels of cycling and gender equity in cycling (Aldred et al., 2016). The analysis 
here suggests that in England and Wales too, women may be more ‘natural’ cyclists than men based on trip distances (McQuaid 2009). 
Our analysis provides further evidence on how cycling can help realise multiple co-benefits, but goes beyond previous work by 

Table 6 
Effect of calculating impacts of hilliness on health benefits, for the Go Dutch scenarioa.  

Average Local 
Authority slope % 

Number of local 
authorities 

Commuting 
population 

Percentage 
cycling 

YLLs gained per 1000 population of 
commuters, not factoring in hilliness 

YLLs gained per 1000 population of 
commuters, factoring in hilliness 

0 to 0.99 43 2,854,898 21% 1.41 1.25 
1 to 1.99 162 11,724,801 17.3% 1.12 1.10 
2 to 2.99 100 6,393,307 13.3% 0.82 0.89 
3 to 3.99 35 2,454,319 10.5% 0.65 0.77 
4 to 4.84 (max) 8 476,224 7.6% 0.45 0.57  

a Average calculated for trips <10 km. 
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showing that different policy goals (carbon, health, equity, efficiency, etc.) may imply differing priorities in terms of where (and who) 
to target resources. Finally, hilly areas should not automatically be overlooked for investment based on their lower uptake, particularly 
where health benefits of cycling are prioritised, and/or e-bike usage is growing. 

Our findings have implications for ‘active mode appraisal’. Traditionally, transport appraisal relied on time savings for motorists to 
drive decision-making, and inclusion of health and carbon impacts are seen as redressing the balance and creating fairer appraisal 
methods. However, especially with more sophisticated demographic representation, this has the potential to act as a barrier to equity 
goals, and, more sophisticated demographic representation could make this worse. Sickness absence calculations rely on earnings, and 
carbon reduction benefits stem from trip switching from driving: both will tend to place more value on cycling uptake that perpetuates 
existing demographic skews in England and Wales.9 

Perhaps more surprisingly, calculations of health benefits from physical activity (accounting here for most health economic 
benefits) can also be anti-equity, assigning here more value to trip switching by men, white people, and people in more affluent areas 
(the latter two effects largely reflecting the fact that these groups are older). 

While the inequitable metrics reflect real differences in life expectancy and carbon emissions, they are also a result of which trips 
and which outcomes are considered by the PCT and English appraisal methods. For example, someone without a car will not generate 
carbon savings but might get a transformed ability to access a wide range of locations, while a young woman might not get as many YLL 
savings but still might experience other benefits of exercise e.g. mental health. 

Cycling may also be seen as a good in itself that should be accessible to all and this is likely to be increasingly true as cycling rates 
increase. 

For both these reasons, there is an argument to include equity in commuter cycling levels as an independent criterion, to ensure that 
the inclusion of health and carbon benefits does not encourage inequitable policy-making. Practical steps to increase equity might 
include ensuring that cycling network plans cover school as well as commute trips, better meeting women’s and children’s journey 
needs, and conducting spatial equity assessments of planned bike networks to ensure that different community needs are served. We 
have not included the potential for cycling to open up new commuting opportunities (most notably for those without a car), which 
should be accounted for in specific appraisal of schemes, and which could increase equity. 

6. Conclusion 

We have shown the potential of new methods to improve tools for modelling cycling potential and subsequent impacts at multiple 
scales. Presented in a publicly available web application and supported by the UK’s Department for Transport, we have also 
demonstrated how cycling uptake models can inform policies and prioritise interventions on local, regional and national scales. Using 
individual-level modelling allows the identification of differential impacts, as well as changes to mode split for different demographic 
groups under different scenarios. We found that many people in under-represented groups have high cycling potential based on trip 
characteristics but, due to the focus of appraisal methods on distance cycled, their trips are ‘worth less’ on average than trips by white 
males who tend to cycle further to work. While inclusion of health and carbon benefits in appraisal helps redress the balance in 
transport planning away from motorists’ travel time, without incorporating an equity focus this may risk prioritising access to cycling 
for already privileged demographic groups. 

Funding statement 

The Propensity to Cycle Tool project has been funded by the UK Department for Transport. Dr Woodcock and Dr Goodman have 
received funding from the European Research Council (ERC) under the Horizon 2020 research and innovation programme (grant 
agreement No 817754). This material reflects only the author’s views and the Commission is not liable for any use that may be made of 
the information contained therein. 

Dr Woodcock and Dr Goodman were also supported by the METAHIT Project (MRC Methodology Panel) (MR/P02663X/1). 

CRediT authorship contribution statement 

James Woodcock: Conceptualization, Methodology, Writing – original draft, Supervision, Project administration, Funding 
acquisition. Rachel Aldred: Conceptualization, Methodology, Writing – review & editing, Funding acquisition. Robin Lovelace: 
Conceptualization, Methodology, Software, Writing – review & editing, Funding acquisition. Tessa Strain: Methodology, Writing – 
review & editing. Anna Goodman: Conceptualization, Methodology, Formal analysis, Writing – review & editing, Funding 
acquisition. 

Declaration of competing interest 

None. 

9 Currently the carbon prices used by the Department for Transport results in only a small economic value relative to health or time savings but 
new higher values are being introduced in sensitivity analysis, and even higher prices may be appropriate for authorities with more ambitious 
targets. https://www.gov.uk/government/publications/tag-forthcoming-changes-to-carbon-values. 

J. Woodcock et al.                                                                                                                                                                                                     

https://www.gov.uk/government/publications/tag-forthcoming-changes-to-carbon-values


Journal of Transport & Health 22 (2021) 101066

15

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jth.2021.101066. 

Appendix 1. additional methods information 

Fig. A1. Flow diagram illustrating the input data and processing steps used to create the synthetic population of commuters from Census 2011) 
data, and then process it to generate PCT scenarios 
LSOA =
Lower-layer Super Output Area, OD pair =
origin-destination pair, MSOA =
Middle-layer Super Output Area, TAG =
Transport Appraisal Guidance  
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Additional information on calculation of health benefits by hilliness 

We sought to estimate the marginal MET (mMET) rate, and the associated average speed, involved in cycling on routes of different 
average gradient. In doing this, we were attempting to generate a plausible distribution of mMET values by hilliness, while not making 
large changes to the population average values for mMETs and speeds that are recommended by HEAT and TAG, and that the PCT had 
been using so far. In other words, we were seeking to refine the PCT approach to be more sensitive to differential effects across areas 
according to their hilliness, while retaining broadly similar overall estimates of health impact. It is for this reason that some of our 
assumptions were made with a view to back-fitting the output values to ultimately be consistent with the TAG and HEAT assumptions 
previously used in PCT. 

Below we outline our methods for doing this, and the associated assumptions. These are also captured in the spreadsheet posted on 
GitHub at https://github.com/npct/pct-inputs/blob/master/02_intermediate/03_hilliness_calculations/EngWales_mmetspeed_ 
hilliness.xlsx. 

Target range of hilliness values 

In the 2011 Census, 99.9% of all commute routes had an average gradient of ≤7%. We therefore focused on estimating mMETs in 
this range, applying the 7% incline values to the small proportion of commuters who report travelling on steeper slopes. 

Power required in cycling 

We used the equation from di Prampero et al. (Prampero et al., 1979) that calculates the power (in Watts) required by a cyclist to 
move. The equation can be broken up into three parts that we have termed road resistance, wind resistance, and gravity. These are then 
summed.  

1. Road resistance = CoefficientofRollingResistance * Weight * GroundSpeed  
2. Wind resistance = CoefficientofAirResistance * BodySurfaceArea * 

(BarometricPressure/AirTemp) * AirVelocity2 * GroundSpeed  
3. Gravity = Gravity *Weight * SineofAngleofIncline * GroundSpeed 

Power (watts) = Road resistance + Wind Resistance + Gravity. 

Speed assumptions 

Uphill moving speed by gradient 
We used the data points in Table A1 to develop a decay function for uphill moving speed with incline. We fit this decay function 

using linear regression, with speed as the outcome and the square root of incline as the predictor.  

Table A1 
Input or assumed speeds for uphill movement, used to develop decay function  

Incline 
(%) 

Speed (km/hr) 
based on data 

Speed (km/hr) based on 
our decay function 

Comments on data source 

0 20 20 In 2015, the average moving speed of rides designated as commutes on Strava was 23.7 km/h10 

but these are likely to be those going faster, with better bikes, over longer distances than for the 
typical commute. Strava data from cities outside the UK also gave average speeds of 20–25 km/ 
h11 but the same biases likely apply. We took 20 km/h to be conservative, and this made it easier 
for us to match the observed NTS data. 

0.75 16 16.3 0.75% is the average 2-way gradient for Cambridge. Average total journey speed when cycling 
for transport in Cambridge has been reported to be 16.1 km/h (Costa et al., 2015). 16 km/h is 
approximately the uphill moving speed one needs to assume to get this overall journey average 
if a) downhill speed is 20 km/h and b) 15% of the journey spent stationary (slightly lower than 
the assumed national average of 20%). 

2.8 12.6 12.9 A study of 8 sedentary women averaged a speed of 12.6 km/h on a 3% short gradient (Sperlich 
et al., 2012). As these were sedentary women, we expect this slightly to underestimate the 
average commuter on this gradient. 

5.0 9.9 10.4 A study of 8 sedentary women averaged a speed of 9.9 km/h on a 5% short gradient (Sperlich 
et al., 2012). As these were sedentary women, we expect this slightly to underestimate the 
average commuter on this gradient. 

7.0 8 8.6 The lowest possible speed for a bike is in the range of 7.2 km/h12 but given many cycle up slopes 
of 10–15%, we expect the speed at 7% gradient to be higher than this minimum and set it as 8 
km/h. 

10 https://bikmo.com/magazine/results-are-in-strava-reveals-average-british-cycle-commute-length/. 
11 https://www.vox.com/2015/10/8/9480951/bike-commute-data-strava. 
12 https://www.cyclist.co.uk/in-depth/682/how-steep-is-too-steep-when-cycling-uphill. 
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From these data points we used the following formula for our assumption of uphill moving speed as average gradient (as a per-
centage) increased:  

Speed = 20–4.3 * (gradient ^ 0.5)                                                                                                                                                      

As shown in the third column of Table A1, this provided a relatively good fit to our input data. 

Stationary time in each journey 
We further assumed there was a proportion of each journey spent stationary (e.g. waiting for traffic lights and stuck in traffic) and 

so speed when moving would be different from total journey speed.  

Total journey speed = speed when moving * proportion of time spent moving                                                                                          

In practice this is a simplification of the reality in which a cyclist spends some time stationary, some time travelling slowly e.g. 
because of traffic, and some time travelling at a steady-state speed. 

We assumed the MET value of stationary time was equal to the MET value for steady-speed cycling. We made this simplifying 
assumption to balance out the low energy requirements of waiting stationary at a traffic light (plausibly around 2–3 MET) versus the 
higher energy requirements involved in the start-stop nature of cycling when interacting with other road users. 

Accelerating requires more energy than holding a constant speed. However, we do not have the data to model in detail acceleration 
and waiting. Thus we assumed that on average the lost time was at the average MMET rate as for the whole journey, rather than at a 
resting rate. This also provided a much better fit with observed objective data e.g. Costa than assuming the time was spent resting. 

We assumed 20% of total journey time could be spent stationary, based on numbers discussed in various London cycling blogs of 
10–30%.10 We selected 20% within this range as a value that gave a fairly close match between average speed in this new method and 
the average previously used of 14 km/h. 

It is likely that better cycling infrastructure e.g. under a Go Dutch scenario would reduce this time but we lack data to include this in 
the quantitative model. 

Other assumptions 

Ground Resistance Coefficient 
We assumed this to be 0.007 because 0.005 is typical for standard road surface with clincher tyres11; we assumed a worse road 

surface and poorly maintained tyres on commuter cyclists. 

Weight of rider 
We assumed this to be 76.9 kg as an average between the English average male (83.6 kg) and female (70.2 kg).12 

Weight of bike and bags 
We assumed this to be 16 kg as a good commuter bike can weigh approximately 11–12 kg13 and we added on 3–4 kg for a bag and 

other bike accessories. 

Wind Resistance Coefficient 
We assumed this to be 0.5, which indicates no head or tailwind.14 

Frontal Area 
We assumed this to be 0.8 m2 as 0.63 is typical for “tops” position15; we estimate a bit higher for upright commuters with non- 

aerodynamic bags and clothing. This is fractionally higher than the value given in theclimbingcyclist blog16 (0.6 m2) but commuter 
cyclists are more likely to sit very upright even when on “tops” and so this rounding up is probably warranted. 

Air density and gravity 
These were set at 1.225 kg/m2 (roughly sea level and 15◦ temperature) and 9.8 m/s.2 Air density is pressure/air temperature. 

10 https://www.londoncyclist.co.uk/how-much-time-do-you-waste-waiting-at-a-traffic-light/and http://www.croydoncyclist.co.uk/time-spent-at- 
traffic-lights/.  
11 http://theclimbingcyclist.com/gradients-and-cycling-how-much-harder-are-steeper-climbs/.  
12 https://www.ons.gov.uk/aboutus/transparencyandgovernance/freedomofinformationfoi/theaveragebriton.  
13 https://inews.co.uk/ibuys/sports-and-fitness/best-bikes-commuting-london-electric-road-hybrid-folding-under-1000/.  
14 http://theclimbingcyclist.com/gradients-and-cycling-how-much-harder-are-steeper-climbs/.  
15 https://www.cyclingpowerlab.com/CyclingAerodynamics.aspx.  
16 http://theclimbingcyclist.com/gradients-and-cycling-how-much-harder-are-steeper-climbs/. 
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Efficiency 
Not all power generated will be transferred to the bike. A well-maintained bike is thought to be about 95% efficient.17 The lower 

end of the range (where we expect commuters to be) is around 93%18; this was the value we used. 

Conversion from Watts to mMETs 

We used the equation from the Hawley and Noakes (1992) paper showing a very high correlation between Max power output 
(Wmax) and VO2 max to convert Watts to L/min of O2 (Hawley and Noakes 1992).  

VO2 max = 0.01141 x Wmax +0.435                                                                                                                                                 

We then converted from L/min to kcal/min by multiplying by 5.19 This was then divided by bodyweight and multiplied the time 
spent moving in hours. 

Marginal METs were calculated by subtracting 1 MET. 

Calculating average METs and speeds for two-way trips 
The PCT is based on average gradients, i.e. a gradient of 1.5% means an average uphill gradient of 1.5% in one direction, and 

average downhill gradient of 1.5% in the other direction. We assumed that energy expenditure and speed when going downhill was 
equal to energy expenditure and speed when travelling on the flat. 

Estimating energy expenditure for walking and e-biking 
We assumed the relative effort of walking on a hill was directly proportional to the relative effort of cycling on a hill. We therefore 

multiplied all our cycling mMET values by 0.663, the ratio that gave an overall average walking mMET value of 3.6. This is the value 
that has been reported in the literature, and that we have been using so far in PCT (Costa et al., 2015). 

We assumed that having an e-bike halved the additional effort required when going uphill, which is in line with our previous 
observation that the deterrent effect of hills for e-bike-owners was around half the size as non-e-bike owners (Lovelace et al., 2017). We 
further assumed that cycling on the flat was 1.8 mMET less effort on an e-bike than on a bicycle. Together this approximately generated 
the average e-biking mMET of 3.5 that has been reported in the literature, and that we have been using so far in PCT (Sperlich et al., 
2012). 

Estimating speeds for walking and e-biking 
We assumed the relative speed penalty of walking on a hill was directly proportional to the relative speed penalty of cycling on a 

hill. Thus far in PCT we have been assuming cycling speeds of 14 km/h and walking speeds of 4.8 km/h, based on HEAT guidance 
(Kahlmeier et al., 2014, page 16).20 We multiplied all our newly-calculated cycling speeds values by 4.8/14 = 0.34 to give an updated 
estimate of walking speed by gradient. 

For e-biking, we thought it plausible that the relative speed penalty of travelling on a hill would be smaller than for a traditional 
bike. We had previously been assuming that e-biking speed was 1.17 times faster than cycling speed. This was based on the Dutch NTS 
2013–2016, in which mean cycling speed was 15.0 km/h for bicycle commute trips and 17.5 km/h for e-bike commute trips (17.5/ 
15.0 = 1.17). We have also estimated that the average route gradient in the Netherlands is 0.78%. We therefore applied this ratio of 
1.17 to routes with an average gradient of 0.75%. For lower and higher gradients, we scaled this such that the hilliness effect was half 
that observed for cycling. 
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Singleton, P.A., Totten, J.C., Orrego-Oñate, J.P., Schneider, R.J., Clifton, K.J., 2018. Making strides: state of the practice of pedestrian forecasting in regional travel 

models. Transport. Res. Rec. 2672 (35), 58–68. https://doi.org/10.1177/0361198118773555. 
Sperlich, B., et al., 2012. Biomechanical, cardiorespiratory, metabolic and perceived responses to electrically assisted cycling. Eur. J. Appl. Physiol. 112 (12), 

4015–4025. 
Susilo, Y.O., Liu, C., Börjesson, M., 2019. The changes of activity-travel participation across gender, life-cycle, and generations in Sweden over 30 years. 

Transportation 46, 793–818. 
TfL, 2016. http://content.tfl.gov.uk/analysis-of-walking-potential-2016.pdf. 
Woodcock, J., Givoni, M., Morgan, A.S., 2013. Health impact modelling of active travel visions for England and Wales using an integrated transport and health impact 

modelling tool (ITHIM). PloS One 8 (1), e51462. https://doi.org/10.1371/journal.pone.0051462. 
Woodcock, J., Abbas, A., Ullrich, A., Tainio, M., Lovelace, R., Sá, T.H., Westgate, K., Goodman, A., 2019. Development of the Impacts of Cycling Tool (ICT): a 

modelling study and web tool for evaluating health and environmental impacts of cycling uptake. PLoS Med. 15 (7) https://doi.org/10.1371/journal. 
pmed.1002622. 

J. Woodcock et al.                                                                                                                                                                                                     

https://doi.org/10.1016/j.jth.2016.08.002
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref9
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/906853/nts-2019-technical-report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/906853/nts-2019-technical-report.pdf
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref11
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref11
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref12
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref12
https://www.gov.uk/government/publications/cycling-and-walking-investment-strategy
https://www.gov.uk/government/publications/cycling-and-walking-investment-strategy
https://www.gov.uk/government/statistics/transport-statistics-great-britain-2018
https://www.gov.uk/government/publications/tag-unit-a5-1-active-mode-appraisal
https://www.gov.uk/government/publications/tag-unit-a5-1-active-mode-appraisal
https://doi.org/10.3141/2387-15
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref17
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref17
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref18
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref19
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref19
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref20
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref20
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref21
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref22
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref22
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref23
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref24
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref25
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref25
https://doi.org/10.1016/j.tranpol.2020.06.015
https://doi.org/10.1016/j.tranpol.2020.06.015
https://doi.org/10.32866/001c.13421
https://doi.org/10.32866/001c.13421
https://doi.org/10.1016/j.jtrangeo.2012.08.018
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref29
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref30
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref30
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref31
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref31
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref32
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref32
https://doi.org/10.3390/ijgi7100396
https://doi.org/10.3390/ijgi7100396
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref34
https://doi.org/10.1016/j.tra.2019.01.019
https://doi.org/10.1177/0361198118773555
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref37
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref37
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref38
http://refhub.elsevier.com/S2214-1405(21)00096-7/sref38
http://content.tfl.gov.uk/analysis-of-walking-potential-2016.pdf
https://doi.org/10.1371/journal.pone.0051462
https://doi.org/10.1371/journal.pmed.1002622
https://doi.org/10.1371/journal.pmed.1002622

	Health, environmental and distributional impacts of cycling uptake: The model underlying the Propensity to Cycle tool for E ...
	1 Background
	2 About the Propensity to Cycle Tool
	2.1 Approach
	2.2 Scenarios
	2.3 Benefits
	2.4 Usage

	3 Methods
	3.1 Using Census 2011 data to build an individual-level synthetic population
	3.2 Creating scenarios of cycling potential: summary of existing four scenarios
	3.3 Creating scenarios of cycling potential: Near Market scenario
	3.4 Modelling mode shift
	3.5 Calculating physical activity
	3.6 Modelling health impacts
	3.7 Sickness absence
	3.8 Carbon emissions

	4 Results
	4.1 Characteristics affecting uptake and benefits, by demographic group
	4.2 Mode share in different scenarios
	4.3 Health, health economics, and carbon impacts
	4.4 Hilliness

	5 Discussion
	5.1 Summary of findings
	5.2 Meaning of our findings
	5.3 Strengths and limitations
	5.4 Research and policy recommendations

	6 Conclusion
	Funding statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Supplementary data
	Appendix 1 additional methods information
	Additional information on calculation of health benefits by hilliness
	Target range of hilliness values
	Power required in cycling
	Speed assumptions
	Uphill moving speed by gradient
	Stationary time in each journey

	Other assumptions
	Ground Resistance Coefficient
	Weight of rider
	Weight of bike and bags
	Wind Resistance Coefficient
	Frontal Area
	Air density and gravity
	Efficiency

	Conversion from Watts to mMETs
	Calculating average METs and speeds for two-way trips
	Estimating energy expenditure for walking and e-biking
	Estimating speeds for walking and e-biking


	References


