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Matthew Cromey,c Nicola Holdend and Adrian C Newtonb*

Abstract

Since the discovery that the plant immune system could be augmented for improved deployment against biotic stressors
through the exogenous application of chemicals that lead to induced resistance (IR), many such IR-eliciting agents have been
identified. Initially it was hoped that these chemical IR agents would be a benign alternative to traditional chemical biocides.
However, owing to low efficacy and/or a realization that their benefits sometimes come at the cost of growth and yield penal-
ties, chemical IR agents fell out of favour and were seldom used as crop protection products. Despite the lack of interest in agri-
cultural use, researchers have continued to explore the efficacy and mechanisms of chemical IR. Moreover, as we move away
from the approach of ‘zero tolerance’ toward plant pests and pathogens toward integrated pest management, chemical IR
agents could have a place in the plant protection product list. In this review, we chart the rise and fall of chemical IR agents,
and then explore a variety of strategies used to improve their efficacy and remediate their negative adverse effects.
© 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
In recent decades, the philosophy behind the control of plant
pests and pathogens has been driven by a ‘zero tolerance’
approach, where elimination of the causal agent is the unstated
aim. As this has rarely, if ever, been achieved, the extreme selec-
tion pressure exerted on the surviving pest and pathogen popula-
tions presents obvious dangers, such as rendering genetic
resistance ineffective or resulting in populations acquiring resis-
tance to biocidal chemical agents. An alternative, however, is to
take advantage of recent advances in our understanding of
plant–microbe interactions and use alternative control strategies
that leverage the plant immune system in a systems context,
namely integrated pest (/crop) management (IPM).
Plants possess a sophisticated innate immune system that pro-

vides the first line of defence against attackers. This is controlled
by a complex network of interconnected signalling pathways that
are directly activated upon recognition of microbe-associated
molecular patterns (PAMPs) and/or damage-associated molecular
patterns (DAMPs). The model of plant–pathogen interactions by
Jones and Dangl (2006),1 also referred to as the ‘zig-zag’ model,
is perhaps the most popular model of the plant innate immune
system which distinguishes three forms of disease resistance.
Effector-triggered immunity (ETI) – commonly known as race-
specific or vertical resistance – is a qualitative form of disease
resistance that relies on the presence of single resistance genes
(R). The associated R proteins enable direct or indirect recognition
of susceptibility-inducing pathogen effectors and activate a rapid
immune response, which is typically associated with hypersensi-
tive cell death. Accordingly, ETI provides high levels of protection

against biotrophic pathogens.2 However, because of its mono-
genic nature, ETI has a narrow range of taxonomic effectiveness
and limited durability due to the evolutionary pressures on path-
ogens to evolve alternative effectors, thereby avoiding recogni-
tion by R proteins.3,4 Pattern-triggered immunity (PTI) is a
quantitative form of disease resistance, which provides high-level
resistance against a broad range of attackers. PTI is triggered by a
multitude of conservedmolecular patterns that are produced dur-
ing infestation or infection by pests and diseases, respectively,
which activate a range of different pathways and defence mech-
anisms that become active at different stages of the interaction.
However, PTI is not sufficiently effective against virulent
pathogens,1,5 which employ effector molecules that subvert PTI-
controlling pathways, a process commonly referred to as
effector-triggered susceptibility (ETS).1,6 In addition to PTI-
suppressing effectors, ETS by biotrophic pathogens also involves
2nd level effectors that suppress ETI-related signalling and hyper-
sensitive cell death-response.1,7,8Within the framework of the zig-
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zag model by Jones and Dangl (2006),1 the residual level of resis-
tance after ETS-mediated repression of PTI and ETI is referred to as
basal resistance (BR).1 Since its inception, the zig-zag model has
been interpreted as a co-evolutionary arm's race, during which
pathogens evolved ETS to suppress PRR-dependent PTI and
plants counter-evolved R-proteins to recognize effector activity
and activate ETI.
Although proven exceedingly useful for the conceptual inter-

pretation of plant innate immunity and evolution, the zig-zag
model is not without limitations.9 Foremost among them is that
the model only represents plant innate immunity against bio-
trophic pathogens. Furthermore, while it is acceptable to portray
ETI, PTI and BR as different types of resistance within an evolution-
ary context, they are remarkably similar from a mechanistic point.
All three types of resistance share similar signalling pathways and
defence mechanisms that become active during different stages
of the interaction with avirulent, nonhost and virulent pathogens,
respectively.10,11 These pathways and mechanisms include rela-
tively early-acting local defences, such as the accumulation of
reactive oxygen species and cell-wall reinforcements.12–15 Also,
there are later-acting defences that are controlled by de novo pro-
duced defence hormones, such as salicylic acid (SA), jasmonic acid
(JA), ethylene (ET) and abscisic acid (ABA),16,17 which all interact
with each other to prioritize and fine-tune an appropriate immune
response.18,19 Hence, from amechanistic point of view, there is no
clear partition between ETI, PTI and BR.
Although the plant innate immune system protects against the

majority of potentially hostile microbes, it cannot prevent infec-
tion and damage by virulent pathogens. To minimize damage
by these attackers, plants have evolved the ability to augment
the level of innate immunity by forming a memory of previous
pathogen encounters, resulting in a faster and/or stronger
deployment of inducible plant defence mechanisms upon subse-
quent encounters. This so-called defence priming results in
induced resistance (IR), which is a form of phenotypic plasticity
and can thus be regarded as plant-acquired immunity.20 IR often
is systemically expressed and has the benefits of being durable
with broad-spectrum effectiveness, while also providing protec-
tion that is stronger than BR.21 Given the ability to augment plant
resistance, many natural and synthetic IR-eliciting agents have
been identified and characterized in detail. However, to date,
these products are not widely employed in crop protection
schemes. In this review, we assess the rise of IR agents, initially
seen by some as silver bullet solutions for benign crop protection,
and their subsequent fall out of favour, owing to low efficacy
and/or a realization that their benefits sometimes come at the
cost of growth and yield penalties. Finally, we explore how we
can use our increased understanding of host–microbe interac-
tions to facilitate a resurrection of IR agents as tailored compo-
nents of plant protection methods that are implemented in a
systems context, namely within IPM.

2 THE RISE AND FALL OF CHEMICAL IR
AGENTS
Six decades ago, Ross (1961)22 observed that localized infection of
tobacco plants with tobacco mosaic virus (TMV) leads to immu-
nity in distal noninfected leaves. This so-called systemic acquired
resistance (SAR) is a form of IR and is dependent on the plant
defence hormone SA and the defence regulatory protein
NPR1.23 Activation of this pathway results in direct activation
and priming of a wide range of different basal defence

mechanisms, including the production pathogenesis related
(PR) proteins. The priming associated with SAR can provide
long-lasting protection against a broad spectrum of (hemi-)bio-
trophic pathogens.20, 22–24 In subsequent studies, it became clear
that there are additional IR responses, which are controlled by
partially different signalling pathways. For instance, induced sys-
temic resistance (ISR), which is triggered by root colonization with
beneficial soil microorganisms, such as plant growth-promoting
rhizobacteria (PGPR), endophytic plant growth-promoting fungi
(PGPF) and arbuscular mycorrhizal fungi (AMF), is under control
by a signalling pathway partially different from SAR. In Arabidop-

sis, ISR is dependent on the defence regulatory protein NPR1
but operates independently of SA;25 instead, ISR typically is based
on a priming of JA- and ET-dependent signalling pathways.26,27

Based on prior discovery of JA as a wound-responsive defence
hormone in plants,28 JA and its methylated derivative methyl-
jasmonic acid (MeJA) often have been used as chemical IR agents
against herbivores and necrotrophic pathogens.29,30 Moreover,
although SAR is predominantly effective against biotrophic path-
ogens, ISR is more effective against necrotrophic pathogens.31,32

Further evidence for the existence of alternative forms of IR came
from the characterization of ⊎-aminobutyric acid-induced resis-
tance (BABA-IR). BABA is a nonprotein amino acid that is produced
in low concentrations by stressed plant tissues.33 Perception of
BABA is dependent on the IBI1 receptor gene, which encodes an
aspartyl-tRNA synthetase and controls BABA-IR against downy
mildew and necrotrophic fungi.34 Furthermore, the underlying
signalling pathways of BABA-IR vary according to the challenging
pathogen and can either be SA-dependent or SA-
independent,35,36 providing broad-range protection against bio-
trophic and necrotrophic pathogens.37 The three classic examples
of SAR, ISR and BABA-IR illustrate how IR is controlled by a variety
of different defence signalling pathways, depending on the elicit-
ing agent, plant species and challenging pathogen. Despite this
diversity, all IR responses share the common characteristic that
they augment the effectiveness of BR through either a direct upre-
gulation or a priming of basal defence mechanisms.20

In order to maximize the benefits of SAR, White, (1979)38

showed that injections of SA, aspirin and benzoic acid, each eli-
cited SAR against TMV in tobacco. This pioneering experiment
showed that SAR can be triggered without having to infect plants
with pathogens and heralded an era of research into chemical IR
agents. Research throughout the 1980s and 1990s led to the
development of several functional SA analogues that act as
potent SAR inducers, of which the best known are
2,6-dichloroisonicotinic acid (INA) and its derivative Acibenzolar-
S-methyl (ASM). INA was shown to provide a high level of protec-
tion in different crops including barley, cucumber and rice.39–41

Likewise, ASM showed high resistance-inducing efficacy in a
range of different crop pathosystems.42–45 Based on these results,
Syngenta launched Actigard®/Bion® as the first commercial IR
agent, which includes ASM as the active ingredient. Other IR
agents, such as BABA33,37 and Chitosan, a polymeric derivative
of chitin,46 yielded similarly high levels of crop protection against
economically devastating plant diseases. Accordingly, IR agents
emerged as an appealing alternative to fungicides, because they
show little or no direct toxicity towards the pathogen or environ-
ment, while providing broad-spectrum protection through aug-
mentation of durable BR.47

However, the initial ambition to employ chemical IR agents as
main-stream crop protection products never materialized, largely
as a consequence of undesirable nontarget effects on plant
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growth and seed. This was first highlighted by Heil et al. (2000),48

who showed that wheat plants treated with ASM had lower
biomass, developed fewer shoots and produced fewer seeds
compared with untreated plants and this was particularly pro-
nounced in plants grownwith a limited nitrogen supply. Although
a direct upregulation of basal defence mechanisms could achieve
high levels of protection, the associated costs made these agents
less attractive for commercial exploitation as crop protection
products. It was argued that the deployment of IR agents is bene-
ficial only under conditions of high disease pressure, where the
associated costs are outweighed by the benefits of disease pro-
tection.48–51 Besides being metabolically costly, IR activators also
could be phytotoxic. INA and its derivatives were deemed too
toxic for agricultural use.52 Likewise, BABAwas found to cause tox-
icity via inhibition of AspRS enzyme activity.34 A third obstacle
associated with chemical IR agents is that their efficacy can be
highly variable between plant genotypes. In both cucumber40

and soybean53 INA efficacy varied by genotype. Efficacy also
may be affected by the pathogen strain. In tomato, disease pro-
tection by BABA not only varied by host genotype but also by Phy-
tophthora infestans isolate.54 Additionally, there is compelling
evidence that environmental conditions affect the outcome of
chemically induced IR.55,56 Furthermore, chemically induced IR is
generally transient lasting at most weeks57–60 which necessitates
multiple applications. This complex interplay of variables affecting
IR efficacy has impeded widespread adoption of chemical IR
agents in agriculture and horticulture.

3 THE RESURRECTION OF CHEMICAL IR
AGENTS
3.1 Plant defence priming

The costs associated with prolonged expression of defences, has
resulted in the evolution of priming as a more cost-efficient strat-
egy for IR, which allows plants to mount a faster and/or stronger
BR response against attackers.61,62 Although priming typically
manifests itself as a long-term consequence of transient defence
induction to biotic stress, chemical IR agents can serve as suitable
priming stimuli when applied in relatively low doses.50 In some
instances, plants receiving such treatments have been shown to
display minimal defence induction before pathogen encounter,
although their effectiveness tends to be lower than chemically
induced IR mediated by direct upregulation of defences.63,64

Furthermore, IR via priming is still associated with a reduction in
plant growth and seed set, albeit minor, which can make it unfa-
vourable in stress-free conditions.20,62,65 However, these costs
are outweighed by the benefits of protection under stressful con-
ditions.51,62,63 Given the significance of priming for plants in their
natural environment, it has strong potential to be developed into
an energetically (and environmentally) benign plant protection
strategy. To this end, it is necessary to ascertain how a given IR
chemical behaves – for instance, at what concentrations do IR
agents switch from priming activity to a more costly direct induc-
tion of basal defences? Regardless of the nature of the priming
stimuli, Martinez-Medina et al. (2016)62 proposed a set of sequen-
tial criteria thatmust be satisfied, namely (i) amemory of the prim-
ing stimulus with a low fitness cost, and (ii) a stress trigger that
induces a faster and/or stronger defence response resulting in
improved disease protection. Indeed, since the potential of prim-
ing was highlighted by Conrath et al. (2006),61 the capacities of
priming chemicals, both natural and synthetic, have been docu-
mented in a variety of plant pathosystems.66 Although it is now

commonly acknowledged that the use of priming chemicals in
agriculture is reduced by their limited efficacy and variable perfor-
mance, optimizing their potential as components of IPM is
becoming appealing.67–69

3.2 Integrating chemical IR agents into IPM

IPM is a strategy for combating plant pests and diseases, using all
available environmentally benign methods whilst minimizing the
applications of chemical pesticides, to keep them below the eco-
nomic injury level (EIL) threshold. Chemical IR agents fit well into
IPM as they can be a replacement for a conventional pesticide
or they could be a means of reducing their dosage. Moreover,
other components commonly used in IPM could be used as
means to improve some of the problems associated with chemi-
cal IR agents and thus make them more efficacious. However,
IPM is applied to multiple crops with multiple pathogens, some
of which are coincidental in time and/or space. Therefore, it is
important to understand the principles whereby IPM components
are combined and how these will impact different host–pathogen
systems. In the remainder of this review, we explore various
approaches to improve the efficacy of chemical IR agents
(Table 1), and discuss how these can be included within IPM
strategies.

3.3 Combining biocontrol and chemical IR

One approach to increase the protection levels of chemical IR agents
is to combine them with other agents. Several studies have shown
that chemical IR agents and biological control agent (BCAs) in combi-
nation results in improved disease control. BCAs are naturally
occurring communities antagonistic to specific plant pests and path-
ogens that haveminimal nontarget effects89 and are a common com-
ponent of IPM. The most investigated BCAs in this regard are the
Trichoderma spp., which grow chemotropically toward the roots of
many crop species. In the roots, they produce various metabolites
that promote plant growth through enhanced nutrient availability.
Furthermore, Trichoderma spp. also induce plant defence pathways
and ultimately inhibit plant pathogens.90 In bread wheat plants (Triti-
cum aestivum L.) receiving combined MeJA and Trichoderma harzia-

num UBSTH-501, spot blotch (Bipolaris sorokiniana) symptoms were
reduced significantly in comparison to plants receiving either treat-
ment alone. The efficacy of this combined treatment corresponded
with enhanced production of the plant development and growth
promoter, indole acetic acid in the plant rhizosphere.70 In another
study, MeJA, SA and T. harzianum treatments individually gave a sim-
ilar level of protection against Fusarium oxysporum wilt disease in
tomato. However, their combination resulted in a synergistic induc-
tion of tomato antioxidant defences against F. oxysporum.71 Likewise,
combining T. harzianum and ASM was significantly better at control-
ling Botrytis fabae disease severity in faba bean plants than either
treatment alone.72 Whilst in most cases the complementary protec-
tion conferred by BCAs and chemical elicitor combinations is not
complete, in some cases it has been possible to give a high level of
protection. A combination of T. harzianum and ASM was shown to
give complete protection in faba bean plants against Botrytis cinerea
infection.72 Other BCAs also have been shown to complement
chemical IR agents. For instance, the saprophytic yeast-like fungus
AureobasidiumpullulansCG163 in combinationwithASMshowed sig-
nificantly reduced leaf spot incidence compared to untreated plants.
The CG163 + ASM combination treatment was more effective than
either treatment alone. Furthermore, in plants receiving both treat-
ments there was significant upregulation in expression of the
defence-related genes PR1, Class IV chitinase and ⊎-1,3-glucosidase.
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Table 1. Strategies used to improve the efficacy of chemical IR agents

Strategy Agent(s) Pathosystem Effect Ref

Combining biocontrol and chemical

IR

MeJA – T. harzianum wheat Bipolaris sorokiniana Reduced symptoms. Combination more effective than either treatment

alone. Increased biomass

70

MeJA – SA – T. harzianum tomato Fusarium oxysporum Synergistic induction of defences. Increased biomass 71

ASM – T. harzianum faba bean Botrytis fabae Combination improved efficacy 72

Botrytis cinerea Combination gave complete protection

ASM – A. pullulans kiwifruit Pseudomonas syringae Combination improved efficacy 73

Combining chemical IR agents ASM – BABA – cis-jasmone barley Ramularia collo-cygni Improved efficacy. Reduced toxicity 74

ASM – BABA grapevine Plasmopara viticola Additive protective effective 75

Combining chemical IR agents and

fungicides

BABA – Mancozeb potato Phytophthora infestans Synergistically increased its fungicide efficacy. 76

tomato

cucumber Pseudoperonospora

cubensis

BABA – Fluazinam potato Phytophthora infestans Full fungicide activity achieved with a 20–25% lower dose 77

ASM – Mancozeb chickpea Didymella rabiei ASM application frequency reduced. Improved grain yields. 78

BABA – Fosetyl-Al grapevine Plasmopara viticola Additive protective effective with half recommended fungicide dose 75

BABA – N-(Trichloromethylthio)

Phthalimide

Rationally designed IR agents

Ionic Pairing

[BABA−] [Cholinium+] tobacco tobacco mosaic virus Reduced phytotoxicity 79

[ASMCOO−] [Cholinium+] Reduced phytotoxicity. Improved disease resistance

[INA−] [Cholinium+] Improved disease resistance

Rationally designed IR agents

Structural analogues

L1-3a and L1-4a novel

benzotriazole

cucumber Botrytis cinerea Efficacy comparable to ASM 80

tomato Phytophthora infestans

RBH new IBI1 ligand Arabidopsis Hyaloperonospora

arabidopsidis

Resistance to both biotrophic and necrotrophic pathogens without growth

retardation

81

Plectosphaerella.

cucumerina

tomato Botrytis cinerea

Multi-action IR agents Strobilurins (Broad-spectrum

fungicides)

wheat Improved plant growth 82

tobacco Pseudomonas syringae The strobilurin pyraclostrobin conferred IR in SAR deficient NahG

transgenic tobacco

83

tobacco mosaic virus

1-isothiocyanato-

4-methylsulfinylbutane

Arabidopsis Hyaloperonospora

arabidopsidis

Induced resistance Direct antimicrobial action 84

Plectosphaerella

cucumerina

Pseudomonas syringae

Transgenerational IR Aescin Arabidopsis Pseudomonas syringae A member of the antimicrobial saponins. Induced resistance 85

BABA Arabidopsis Hyaloperonospora

arabidopsidis

Progeny became more responsive to BABA priming 86

Pseudomonas syringae

BABA common

bean

Pseudomonas syringae Enhanced transgenerational resistance 87

INA

MeJA Arabidopsis Caterpillar Increased resistance in progeny to caterpillar herbivory 88
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This change in gene expression correlated positively with treatment
efficacy and expressionwas highest in plants receiving the combined
CG163 + ASM.73

In addition to improving protective efficacy, BCA–chemical IR
agent combinations have aso been shown to improve growth.
In bread wheat plants, combined MeJA and T. harzianum treat-
ment resulted in significantly higher biomass, both in the pres-
ence and absence of B. sorokiniana infection.70 In tomato,
combiningMeJA or SAwith T. harzianum improved the protection
against F. oxysporum disease incidence more than treatment with
SA or MeJA alone. Furthermore, as a result of the improved pro-
tection, biomass also was significantly higher in plants receiving
the combined treatment.71

3.4 The compatibility of chemical IR agents with
biocontrol organisms

Given the broad-spectrum effectiveness of nonhost immunity,
chemical treatments intended to trigger IR responses against
plant antagonists also could cause deleterious effects on plant
mutualists, and so the combinations of chemical IR agents and
BCAs in IPM needs careful selection. Examining the effects of IR
establishment by ASM application on soybean–rhizobia and
soybean–AMF mutualisms, in vitro the chemical had no direct
effect on the growth of the rhizobia Bradyrhizobium japonicum

and only a slight inhibition at very high doses on the AMF Glomus

mosseae. However, both seed and foliar spray application caused
increased IR biochemical markers, reduced B. japonicum soybean
symbiosis efficiency and reduced G. mosseae mycorrhization in
soybean.91 A similar finding also was reported by de Román
et al. (2011)92 who found foliar treatment of soybean with ASM
led to a significant, but moderate, defence response in the plant
roots which transiently decreased AMF colonization. This defence
induction was not associated with an allocation cost, and so the
negative effects on AMF colonization were likely due to defence
induction rather than changes in resource allocation. Neverthe-
less, chemical IR treatments do not always impact plant mutualists
negatively and it seems that with some chemicals, certain doses
and appropriate application methods, they can be used together
without disadvantage to plantmutualists. In sunflower, the effects
of ASM and BABA on the downymildew Plasmopara helianthi and
the AMF G. mosseae differed by application method. When
applied as a soil drench, the chemicals gave a 50–55% protection
against the downy mildew; although ASM application decreased
G. mosseae colonization, BABA application did not. When applied
as a foliar spray, protection increased to 80% and neither chemical
impacted G. mosseae colonization. In vitro, ASM had an inhibitory
effect on G. mosseae germination, however BABA promoted ger-
mination.93 In other studies, the negative effects of chemical IR
agents on plant mutualists was shown to be dose-dependent. In
soybean, SA root application had no impact at lower doses typi-
cally used to induce resistance and only had a negative impact
at very high doses.94 Likewise, MeJA root application to cucumber
could negatively or positively effect mycorrhizal colonization,
with higher doses reducing growth and lower doses promot-
ing it.95

3.5 Combining chemical IR agents

Combining different chemical IR agents also has shown promise
under field conditions. In barley, Walters et al. (2011)74 found
improved control of powdery mildew using ASM, BABA and JA
combined treatments. Given the growth costs associated with
higher and more protective doses in many chemical IR agents,

using low doses of multiple agents for additive or synergistic IR
effects with minimal growth costs is a potential means of improv-
ing their efficacy. In one study, Reuveni et al. (2001)75 established
that BABA–ASM mix applied at half the recommended dose had
an additive effect, effectively controlling Plasmopara viticola in
grapevines. Despite this early promise, the strategy of combined
chemical IR agents has received little further attention.

3.6 Combining chemical IR agents and fungicides

Likewise, results from chemical IR agent–biocide combinations
show a complementary potential in which any deleterious effects
of both protection products can be reduced. An application of a
mixture of BABA and the fungicide mancozeb was significantly
more effective at controlling potato late blight (P. infestans) as
well as tomato and cucumber mildew (Pseudoperonospora cuben-
sis) than either BABA or mancozeb alone. The inclusion of BABA in
the mancozeb fungicide synergistically increased its efficacy in
plants with 5:1 BABA: mancozeb showing the highest synergy fac-
tor. Application of the BABA and mancozeb mixture did not have
a synergistic interaction in controlling the pathogens in vitro, thus
demonstrating that BABA-induced resistance enhanced manco-
zeb fungicide efficacy, with lower doses required to control dis-
ease.76 In potato, a combination of BABA and the fungicide
Fluazinam resulted in a synergistic action against late blight. Fur-
thermore, full Fluazinam activity was achieved with a 20–25%
lower dose under field conditions.77 Likewise, ASM efficacy
improved in combination with mancozeb. In chickpea plants,
repeated ASM application protected against chickpea blight
(Didymella rabiei) but also resulted in yield penalties. Instead,
when using a ASM–mancozeb mix, with reduced application fre-
quency, grain yields were better than those achieved with ASM
or mancozeb applications alone.78

3.7 Dual-action IR agents

Besides the combination of chemical IR agents with fungicides,
another strategy employed to improve their performance has
been identifying compounds combining biocidal and IR activity.
One group of chemicals with such dual modes of action are the
strobilurins, introduced in the 1990s as broad-spectrum fungi-
cides. It became apparent that they also improved plant health
and yield in the absence of disease pressure and prime plant
defences. In NahG transgenic tobacco deficient in SAR, the strobi-
lurin Pyraclostrobin enhanced resistance to Pseudomonas syrin-

gae and TMV by priming PR-1 gene activation.82,83 In an effort to
find dual-action compounds, Schillheim et al. (2018)84 developed
a high-throughput assay to screen cultured parsley for com-
pounds that prime the secretion of antimicrobial phytoalexins
and found 1-isothiocyanato-4-methylsulfinylbutane (SFN). In Ara-

bidopsis, this compound primed WRKY6 gene expression and
reduced susceptibility to Hyaloperonospora arabidopsidis. Addi-
tionally, SFN showed broad antimicrobial action, directly inhibit-
ing the growth of the oomycete H. arabidopsidis, the fungus
Plectosphaerella cucumerina and the bacterium P. syringae. Also
turning to natural plant antimicrobials to find dual-action mole-
cules, Trdá et al. (2019)85 compared the antifungal activities of
several members of the Saponins, a group of compounds found
in several plant species and considered antimicrobial. Among
the saponins tested, aescin showed the strongest antifungal activ-
ity. In terms of plant defence induction, aescin showed strong
defence induction in Rapeseed against Leptosphaeria maculans

and in Arabidopsis against P. syringae.
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3.8 Rationally designed chemical IR agents

In other approaches, researchers used rational design to develop
a range of new or modified IR molecules. To improve efficacy and
reduce phytotoxicity, Kukawka et al. (2018)79 took the approach of
ionic pairing by combining various IR agents with the cholinium
cation to form ionic liquids (ILs). BABA, ASM and INA ionically
bonded to cholinium – an essential nutrient in the cells of many
organisms and which is nontoxic and biodegradable96 – were
tested on the tobacco–TMV pathosystem. ASM and INA, paired
with cholinium, had improved disease resistance efficacy. BABA
disease efficacy decreased slightly; however, its phytotoxicity,
along with that of ASM, drastically reduced.
Since the development of INA and ASM, improvements in large-

scale chemical screens and computer-aided drug design have
enabled the screening of vast numbers of chemicals for IR proper-
ties at a relatively low cost. Chang et al. (2017)80 virtually screened
the Maybridge database, a collection of over 53 000 organic com-
pounds, using the chemical structures of ASM, MeSA and SA to
identify three benzotriazole lead compounds. From one of these
(L1), which had a 3D structure similar to ASM, two derivatives
(3a and 4a) were potent SAR activators. Both L1-3a and 4a gave
high protection in a several pathosystems including cucumber–
B. cinerea and tomato–P. infestans.
In addition to screening for structural analogues of known IR

molecules, using knowledge of IR receptor structure has been
another approach taken to find novel IR ligands. Buswell et al.
(2018),81 in an attempt to find BABA analogues that induce resis-
tance without stunting plant growth, started with the structure of
the BABA receptor IBI1 and through site-directed mutagenesis,
found that an (l)-aspartic acid-binding domain was critical for
BABA perception. Using ligand-interaction modelling of the bind-
ing domain, they screened a library of ⊎-amino acids and identi-
fied seven resistance-inducing compounds, of which (R)-
⊎-homoserine (RBH) had the strongest activity. RBH, like BABA,
conferred resistance to both biotrophic and necrotrophic patho-
gens in taxonomically unrelated plant species, but without the
growth retardation associated with BABA.

3.9 Selecting optimal pathosystems for priming

Understanding species, cultivar and pathogen-dependent
responses to chemical IR treatments is crucial to selecting patho-
system appropriate treatments. Chemical IR agent efficacy in
some instances is known to be cultivar-dependent. In several cul-
tivars of spring barley, induced resistance to Rhynchosporium

commune (formerly R. secalis) by combined BABA, ASM and MeJA
treatment resulted in infection levels that ranged from high to
nonexistent.97 In other studies, chemical IR treatment efficacy
was shown to be influenced by cultivar resistance levels. In
tobacco infected with Peronospora hyoscyami f.sp. tabacina,
ASM provided effective control in partially resistant, but not sus-
ceptible, cultivars.98 Likewise, in cucumber INA efficacy against
Sphaerotheca fuligenea infection was best in partially resistant cul-
tivars.40 By contrast, both ASM and INA efficacy against Sclerotinia
sclerotiorum in soybean was superior in susceptible cultivars.53

Likewise, the efficacy of chemical IR agents also can depend on
the identity of the attacking pathogen. In tomato, ABA application
led to antagonistic cross-talk between the ABA- and SA-
responsive defense pathways, resulting in increased susceptibility
to B. cinerea,99 while in Arabidopsis pre-treatment with SA caused
cross-talk between the SA- and JA-dependent defence, causing
increased susceptibility to Alternaria brassicicola.100 In barley, sac-
charin, a derivative of probenazole, gave high levels of protection

against the biotrophic fungi Blumeria graminis101 and the hemi-
biotrophic fungus R. commune,102 while in Arabidopsis it pro-
tected against infection by hemibiotrophic P. syringae

DC3000.103 However, saccharin of Arabidopsis also caused
increased susceptibility to the necrotrophic pathogens B. cinerea
and Pectobacterium carotovorum, presumably owing to antago-
nistic signalling cross-talk. Indeed, saccharin treatment of Arabi-
dopsis resulted in the upregulation of SA-responsive genes and
the simultaneous downregulation of JA-responsive genes.103 In
addition to some chemical IR agents resulting in increased sus-
ceptibility to some pathogens, mixtures of chemical IR agents
may lead to undesirable outcomes due to the complex cross-talk
between plant defence pathways. However, apart from consider-
able evidence that SA- and JA-dependent defence pathways are
antagonistic,104 there is evidence of the simultaneous expression
of SA- and JA-mediated defences.105–108Mur et al. (2006)109 found
that co-treatment of tobacco and Arabidopsis with relatively low
concentrations of SA and JA resulted in transient synergistic
effects on the expression of SA- and JA-dependent defence
genes, while higher concentrations of these hormones resulted
in antagonism.109 In wheat, simultaneous application of MeJA
and T. harzianum followed by challenge with B. sorokiniana

resulted in the induction of both JA- and SA-dependent defence
signalling. Plants treated with T. harzianum showed increased
SA levels, enhanced accumulation of total free phenolics and
increased activities of defence-related enzymes, but addition of
MeJA to T. harzianum treatment did not affect SA induction.70

By contrast, in freesia inflorescences, MeJA significantly reduced
B. cinerea disease severity but the addition of ASM to MeJA signif-
icantly reduced its efficacy.110 Likewise, in barley, combined treat-
ment of ASM, BABA and cis-jasmone activated SAR, while
suppressing the JA signalling pathway.74 Treatment resulted in
an upregulation of the SAR marker PR1-b and a substantial down-
regulation of the LOX2 gene involved in JA biosynthesis. Further-
more, plants receiving this combination treatment became
resistant to powdery mildew, which is effectively controlled by
SA-dependent defences. At the same time, plants became more
susceptible to the hemi-necrotrophic leaf spot pathogen Ramu-

laria collo-cygni, which is controlled by JA-dependent defences.74

3.10 Transgenerational IR

Since the first systematic studies by Ross in the 1960s, IR has been
portrayed as a long-lasting resistance response. It is only recently
that this aspect of IR has gained renewed attention in the context
of epigenetic regulation. Seeds or seedlings treated with chemical
IR agents develop a long-lasting priming that can be maintained
for several weeks.58,111 Furthermore, following sporadic early
reports that progeny from biotic stress-exposed plants, such as
tobacco by TMV112 and wild radish by caterpillars,113 there is
now solid evidence from independent studies that priming can
be transmitted epigenetically to following generations. Slaughter
et al. (2012)86 reported that progeny of BABA-treated Arabidopsis

displayed enhanced resistance to H. arabidopsidis and P. syringae,
which was associated with increased responsiveness to priming
treatment by BABA (‘primed to be primed’).86 Walters and Peter-
son (2012)114 showed that barley from acibenzolar-S-methyl-
and saccharin-treated parents exhibited enhanced resistance to
infection by R. commune. Furthermore, treatment of common
bean with both BABA and INA resulted in transgenerational IR
against P. syringae,87 whereas MeJA-treated Arabidopsis was
found to produce progeny primed for JA-dependent defences
against herbivory.88 A suite of recent Arabidopsis-based studies
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have shown that transgenerational IR relies on a complex inter-
play of DNA (de)methylation pathways in the plant.20,115–118

Despite these promising new insights, the potential of IR agents
to exploit transgenerational IR in the field has received limited
attention. The main obstacles come from the relative weakness
of transgenerational IR, as well as costs arising from increased sus-
ceptibly to other (a)biotic stresses.115,119 A potentially more prom-
ising strategy for the exploitation of transgenerational IR comes
from direct manipulation of the epigenetic makeup of the plant.
Furci et al. (2019)118 identified selected hypo-methylated regions
of DNA in the Arabidopsis genome, which provided near com-
plete levels of primed resistance against downy mildew and that
remained stable over at least eight generations of inbreeding.

3.11 Chemical IR in practical crop protection

With the continuing expansion of our understanding of the
mechanistic basis of IR, the characterization of the action of
many chemical IR agents in many pathosystems and the avail-
ability of more effective agents, it is reasonable to hope that
these agents have the potential to become widely used crop
protection products. In the field, prediction of the actions of
applied chemical IR agents is difficult as this is a relatively uncon-
trolled environment where many abiotic and biotic stresses will
trigger plant responses that can lead to complex interactions
with the agents51,120,121 and so their use must be carefully tar-
geted. However, in more controlled environments such as glass-
houses or highly controlled vertical farming chambers, their
potential is high. Under such controlled conditions, it should
be possible to combine IPM measures that include chemical IR
agents in a way that has more predictable outcomes. Also, under
these controlled environments, there is a scope for formulating
bespoke treatments that are highly targeted to the biotic stress
vulnerabilities of the system. Furthermore, for organic growers
that desire natural means of protecting produce, the exploita-
tion of IR agents can fulfil such requirements. Indeed, interest
in ‘natural’ protection products is growing. The global plant bios-
timulants (a term used for commercial products that are mar-
keted as stimulants of natural plant growth and/or protection)
market is forecast to reach US$4.5 billion by 2027 and have an
annual growth rate of 11.2% during the period 2020–2027.122

In order to provide improved products to this growing market,

it is necessary to increase the translation of the growing mecha-
nistic knowledge of IR, into applied research that incorporates
chemical IR into IPM.

4 CONCLUSION
Chemical IR agents that lack biocidal action but instead augment
plant resistance to invaders may be a viable option in the tool kit
for plant pest and pathogen control. These chemical IR agents, ini-
tially billed as cost-free potential alternatives to conventional pes-
ticides, have not been used widely in agriculture, limited by their
insufficient efficacy compared with conventional biocides, vari-
able efficacy and yield penalties. Although achieving levels of dis-
ease control with chemical IR agents that are on par with
conventional pesticides may be ambitious, as we slowly move
away from the philosophy of ‘zero tolerance’ in the control of
plant pests and pathogens, the integration of chemical IR agents
into IPM strategies, in which the aim is to keep pests and patho-
gens below the economic injury level, has merit.
We have outlined potential strategies by which the efficacy of

chemical IR agents as components of IPM might be optimized
(Fig. 1). The efficacy of these chemicals depends on the pathosys-
tem in question and through experimentation, it is possible to
optimize their performance. In the process of optimization, sev-
eral successful approaches have been demonstrated. The combi-
nation of chemical IR agents with plant mutualists and with other
chemical IR agents has resulted in both increased protection and
reduced toxicity. Likewise, chemical IR agents in combinationwith
fungicides can reduce the required dosage of the latter. Further-
more, rational molecule design approaches hold the promise of
a new and more effective generation of chemical IR agents. While
in terms of breeding crops more responsive to these treatments,
the phenomenon of transgenerational IR holds promise. These
approaches must be based on an understanding of not only their
known mechanisms of crop protection, but also the range of
outcomes from experimentation with dose, environment and
pathosystem combination. These are strategies that could result
in considerable progress towards more robust IPM exploiting
a novel range of tools to best effect and drive the development
of new crop protectants designed for high efficacy in IPM
application.

Figure 1. Improving chemical IR efficacy: existing agents or new agents developed in rational design (Chem-IR) are tested in target pathosystems until
effective agent(s) are found. The efficacy can be further improved in combination with other treatments and effective strategies can be further combined.
Efficacious treatments can be tested in transgenerationally-primed plants and the cycle repeated until an optimal treatment that can be integrated in to
an effective IPM strategy.
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