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While we perceive events in our environment through

multiple sensory systems, we nevertheless perceive all

of these events as occupying a single unified timeline.

Time, as we perceive it, is unified. I argue that existing

accounts of the perceived unity of time fail. Instead, the

perceived unity of time must be constructed by inte-

grating our initially fragmented timekeeping capacities.

However, existing accounts of multimodal integration

do not tell us how this might occur. Something new is

needed. I finish the paper by articulating the hurdles

that must be overcome to provide an account of the

perceived unity of time.
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1 | INTRODUCTION

It is the shared duty of the various sensory systems to tell us how events in our environment

are temporally structured. Through vision, audition, taste, touch, smell, and whatever other

sensory systems we possess, we learn about when things occur around us. Yet, despite gathering

this information through various sensory systems, we nevertheless perceive time as unified. The

world appears to consist of a single timeline within which all of the events we perceive occur. It

is in this way that there is a perceived unity to time.

This paper has two goals. First, to show that standard accounts of the perceived unity of

time fail. Second, to articulate the explanatory hurdles that any adequate account of the per-

ceived unity of time must overcome in explaining how temporal information is integrated

across modalities and timescales. Acknowledging these hurdles reveals a host of questions

about temporal perception that have not been directly addressed in the philosophical and scien-

tific literature.
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The paper goes as follows. Section 2 provides a characterization of the perceived unity of

time as a target for explanation. Section 3 lays out the standard accounts of the perceived unity

of time. While they differ in their details, both accounts share a common strategy. They first

provide a general explanation of how perception attributes temporal properties to perceived

events (e.g., perceiving events as having durations or as standing in temporal relations to other

events), and then, from this general attributive story, an explanation of the perceived unity of

time supposedly emerges more or less straightforwardly. Section 4 argues that any account of

the perceived unity of time adopting this strategy is bound to fail. Temporal perception is com-

posed of initially fragmented timekeeping capacities and the explanation of the perceived unity

of time must explain how these fragmented capacities are appropriately coordinated with one

another. Section 5 draws out parallels that emerge between temporal and spatial perception

and argues that the integration of temporal information across modalities must differ in signifi-

cant ways from integration of spatial information. Finally, Section 6 articulates the explanatory

challenges that any account of the perceived unity of time must overcome.

2 | DESCRIBING THE PERCEIVED UNITY OF TIME

When we, conceptually sophisticated adults, reflect on the world, the world appears to contain

a single temporal dimension within which all of the events we perceive occur.1 How do we

explain this appearance? Why does the world seem to contain a single timeline and not multi-

ple timelines associated with different modalities? This is the core of the perceived unity of time

that will be the focus of this paper. In this section, we will do some unpacking to better grasp

this target phenomenon.2

The first thing to notice is that the phenomenon at issue here is not a purely introspective or

phenomenological one. The perceived unity of time concerns how the world appears to be tem-

porally structured, and only in so far as our experiences seem to occur within the world, also

speaks to how experiences seem to be temporally structured. When you leave your house, the

thought that you forgot your keys might pop into mind after you hear the door click behind

you. When we reflect on this episode, our thought coming to mind, that introspectively accessed

event, seems to sit in the same timeline as the other events in the world that we perceive. It is

the appearance of this unified timeline of events in the world that is our focus.

We can break down the target phenomenon into two separate perceptual capacities. First,

there is what I will call temporal localization (or localization). We do not merely perceive events

as having temporal structure, but we perceive events as being located in time relative to the pre-

sent. Attending a musical performance, some things will seem to be occurring now (e.g., the

sound of the sustained guitar), others will seem to have occurred at some point in the past

(e.g., the initial sound of the note being struck), and often enough, we will have expectations

that certain events will occur at some specific moment in the future (e.g., when the chorus will

begin and the movements of the musicians will change). The perceived unity of time involves

more than the appearance of a single timeline, but it involves the perception, across modalities

1Without access to how things appear to infants and non-linguistic creatures, the reflective evidence discussed here is

restricted to language using adults.
2Aspects of the perceived unity of time, notably what I call localization, were described by Dennett and

Kinsbourne (1992). While their primary aim was to debunk a particular theory of consciousness, the multiple drafts

model (MDM) of consciousness they develop bears similarities to an account of the perceived unity of time suggested

towards the end of Section 6.

2 VIERA



and timescales, of events as being located at specific moments in that timeline relative to the

present moment.

Second, there is what I will call comparability. We seem to have no introspectively available

difficulties in comparing temporal properties across timescales and modalities. We can readily

compare the duration of a seen flash of lightning and a heard crash of thunder. This is possible

even though they are perceived through different modalities and at different timescales—

milliseconds through seconds. Furthermore, when we compare these properties, we seem to

understand them as being the same kinds of properties—temporal properties. In part, the taking

of these properties as being of the same kind is a phenomenological datum. These experiences

seem to have something phenomenally in common qua their being temporal experiences.3 This

contrasts with our abilities to make comparisons across magnitude types more generally. When

asked subjects can compare the intensity of a flash of light with the intensity of a sound, and

their responses show at least some intrapersonal stability (Spence, 2011). However, even though

we can make these cross-magnitude-type comparisons, there is a lingering awkwardness to

them. There is a sense that the compared intensities are not of the same type. There seems to be

a phenomenologically difference in the intensity of a sound and the intensity of a light. This lin-

gering awkwardness is missing in the temporal case. We understand in the temporal case that

the magnitudes being compared are all temporal properties regardless of which modality is used

to detect them and over what timescale they occur.

While I have characterized localization and comparability in terms of first-person report,

evidence for similar capacities can be found in the behaviors of human and non-human ani-

mals. Consider localization. To coordinate behaviors with events in the world, we need to

gather information about when events are occurring and we need to be able to predict when

events will occur. Think of what it takes to dance with a partner. You see and feel their move-

ments and hear the music. Your movements have to be coordinated with the temporal informa-

tion gathered through all of these different senses and your expectations of when the music and

your partner's movements will change so that you know when and how to move. Many activi-

ties require similar localization. Consider what it takes for a predator to intercept prey. Some

sharks, for instance, integrate information from their various senses to fix when to attack

(Gardiner, Atema, Hueter, & Motta, 2014). Furthermore, for representations of when events

occur to coordinate behaviors, they must locate events in egocentric temporal orderings, that is,

relative to now. To anthropomorphize the situation, knowing that some event will occur at

noon will not allow you to coordinate your behaviors with that event, unless you know how far

from now noon is.4 So, we have some reason for thinking that humans and non-humans locate

events in time relative to the current moment to control behavior.

Let us consider the behavioral evidence for comparability by first noting an important con-

trast. A general finding on how animals, including humans, represent magnitudes is that there

is a complex pattern of interactions between representations of different magnitude types. These

patterns involve cases where the representation of a particular value for one magnitude-type

distorts the representation of other magnitude-types (Pinel, Piazza, Le Bihan, & Dehaene, 2004;

Walsh, 2003). To give just one example, displays with more objects in them are often perceived

as having longer durations (Javadi & Aichelburg, 2012). While we can quantify the extent to

which these different magnitude representations influence one another, we need not think

these interactions increase the reliability of the representation of either magnitude type.

3Thank you to a referee for emphasizing this point.
4The point is similar to Perry’s in The problem of the essential indexical (1979).
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Instead, the interaction supposedly arises as a quirk of the machinery that underlies magnitude

representation and behavior.5 However, crossmodal temporal representations often do interact

in ways that seem to facilitate reliably representing the world. To take one example, in a study

by De Corte and Matell (2016), rats were trained to expect food at a particular location 10 sec-

onds after a visual cue and 20 seconds after an auditory cue. The rats were then presented with

a combination of the auditory and visual cues. What was observed was that the rats showed an

expectation that the food would appear after 15 seconds. Unlike the pattern of cross modality

type effects, these temporal representations interacted in ways that make sense if the perceptual

system is aiming at integrating them to reliably represent the world—that is, the representa-

tions were treated as providing information about the same type of property in the world. This

is what we would expect from comparability.

It may turn out that the reflective and behavioral evidence point to distinct phenomena.

One's expectation of how that will turn out may trade on general assumptions about the divi-

sion between perception for action and perception for awareness. However, we can remain neu-

tral on this point since the important thing to notice is that humans and non-humans must

have some way of integrating temporal information across modalities and timescales that

allows for comparability and localization.

Two final points of clarification. First, what has been described so far is best understood as a

competence or capacity. We are typically capable of locating events in time and making com-

parisons between instances of temporal properties. However, there are well known cases where

we systematically fail to do so properly. For instance, we typically judge sounds as having lon-

ger durations than visual stimuli with the same objective durations (Wearden, Edwards,

Fakhri, & Percival, 1998). Similarly, at very short interstimulus intervals, we can perceive a pair

of events as being non-simultaneous, but fail to reliably perceive which event came first

(Poppel, 1988).6 In both cases, there is a performance failure—we fail to properly compare or

locate temporal properties—that is revealed through empirical, not introspective, means. How-

ever, we often perform well in similar tasks, and the competence itself requires explanation. It

is this general capacity that will be the focus of this paper.

Second, there are similarities between this paper's target and Molyneux's question. Is time

represented via an amodal format, that is shared by the different modalities and to which no

single modality has a unique claim, or is time represented multimodally, in that each modality

represents time in a modality specific way (Richardson, 2014)? Nothing in the characterization

of the perceived unity of time demands that we make a decision about this at this moment. Sim-

ilarly, nothing in the characterization of the perceived unity of time, as studied in animals or

adults, provides us with an answer to Molyneux's question with regards to time. Will a newly

sighted person, for instance, be able to compare a seen duration with a felt one? In laying out

the target phenomenon, we should remain open that this question may be answered either

way. However, as we shall see in Section 4, I will argue that some temporal properties are repre-

sented amodally while others are represented multimodally. Therefore, we have some reasons

to doubt that Molyneux's question can be given a common answer for all aspects of temporal

experience.7

5For different explanations of this “quirk” see (Pinel et al., 2004; Walsh, 2003). In some cases the quirk might be

beneficial, in others not.
6For another case involving localization failures, see Holcombe (2015).
7This is in contrast to Richardson (2014). Thank you to a referee and Jacob Berger for raising the connection between

the target of this paper and Molyneux’s Problem.
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3 | THE STANDARD APPROACHES

Most accounts of the perceived unity of time adopt one of two general approaches—internal

clock approaches and mirroring approaches. Despite their differences, these approaches share a

common strategy. First, they provide a general explanation for how perception attributes tem-

poral properties to perceived events. Then, from that attributive story, an explanation of the per-

ceived unity of time emerges straightforwardly. Nothing further needs to be posited to account

for the perceived unity of time over and above what is posited in the explanation of how tempo-

ral properties are attributed to events. In this section, we will look at these two approaches.

Since the aim of this paper is to show that any account of the perceived unity of time that

adopts this general strategy is bound to fail, I will not be considering whether these accounts

succeed by their own lights.

3.1 | Internal clock approaches

Our initial sensory responses to the world are largely controlled by external events impacting

our sensory transducers. When you see a flash of light, photons impact the retina and a flurry

of visual processes begin to unfold. When the light disappears those visual processes soon end.

According to internal clock approaches, these initial sensory responses to events in the world

do not themselves represent the temporal properties of those events. Instead, the temporal con-

tents of perception are contributed by an internal clock that monitors the timing of these proxi-

mal sensory processes, and on the basis of the temporal measurements of those processes,

perception as a whole attributes temporal properties to perceived events. While different ver-

sions of the internal clock model have been developed over the years, we will focus on scalar

expectancy theory (SET) (Gibbon, Church, & Meck, 1984) since it is arguably the most influen-

tial internal clock model in the literature.8

The original variant of SET accounted for the perception of time through a three-component

system involving a supramodal pacemaker-accumulator clock, a memory store, and a decision/

comparator mechanism. The pacemaker produces pulses at a regular rate that are tallied by an

accumulator system. Since the pulses are produced at a regular rate the total number of pulses

tallied during some interval provides a measurement of the duration of that interval. It is this

supramodal pacemaker-accumulator mechanism that is used to measure the temporal proper-

ties of the various modality specific sensory processes. These initial measurements, represented

via total number of accumulated pulses, are then compared to stored pulse-based measure-

ments for either particular events or averaged measurements for event types (Jones &

Wearden, 2003). The result of the comparison is a relative duration judgment in which the cur-

rent measured event is determined to be longer than, shorter than, or of equal duration to the

measurement in memory. On the basis of this entire process, temporal properties are attributed

to the events in the world responsible for producing the proximal sensory responses measured

by the internal clock. This system, that primarily represents interval durations, can attribute a

range of temporal properties to events in the world. Temporal order is given in terms of the

interval separating event boundaries. Properties like rhythm, rate, and so forth, are attributed

by applying simple mathematical operations on initial interval representations (Gallistel, 1990).

8Similar arguments could be raised against other internal clock models like the striatal beat frequency model (Matell &

Meck, 2004).
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In this way, we have a general story for how perception attributes various temporal properties

to events across modalities and timescales.

The transition from the attributive story to an explanation of the perceived unity of time can

be summed up in slogan form—the unity of the timekeeping mechanism accounts for the per-

ceived unity of time. Comparability is easily accounted for. Since durations, for instance, are all

encoded via that same pulse-based supramodal timekeeping system, which already includes a

mechanism for comparing pulse-based measurements, there is nothing to distinguish

crossmodal from intramodal comparisons of temporal properties. Only the inputs to the central-

ized timekeeper differ between the crossmodal and intramodal cases. Localization is explained

through the single supramodal clock mechanism that provides a common temporal ordering

for all of the events that we perceive. Events are then located within this temporal ordering by

noting the length of the interval that separates the particular event from the current moment.

Nothing is needed beyond the attributive machinery to explain the perceived unity of time.

Other variants of SET replace the single supramodal pacemaker-accumulator mechanism

with modality specific clock mechanisms as part of the overall timekeeping system (Chen &

Yeh, 2009; Wearden et al., 1998). This move is largely motivated by observed variation in the

precision of temporal perception across modalities. For instance, each sensory modality has a

different minimum ISI needed to reliably perceive two stimuli as non-simultaneous

(Poppel, 1988). Similarly, discrimination thresholds for interval lengths differ depending on the

modality of the stimuli marking interval boundaries (Grondin, 2003). To account for these dif-

ferences, the move is to posit modality specific clocks that pulse at difference rates (see discus-

sion in Chen & Yeh, 2009). From here, the attributive story remains much the same. Initial

measurements produced by pacemaker-accumulator mechanisms are compared to stored mea-

surements, and these comparisons are the basis for the attribution of temporal properties to per-

ceived events.

Once we introduce modality specific clocks with differing pulse rates, we get an explanation

for the variation in timekeeping precision across modalities. More precise modalities, like audi-

tion, have clocks with faster pulse rates. However, this causes a problem for comparability,

since N-pulses from the auditory clock will represent a different duration than N-pulses from a

slower clock, such as vision's. In fact, there is evidence of increased variability in temporal

judgements when subjects are asked to make crossmodal comparisons (Penney, Gibbon, &

Meck, 2000; Zhang & Zhou, 2017). Nevertheless, a simple multiplication operation can allow

for a normalized means of encoding temporal information via a common code. The result is

that despite the differences in the initial pulse-based codes, a common pulse-based code is easily

obtained (we can remain neutral as to whether this is an amodal code). Therefore, the very

same explanation of comparability is given in the modal specific clock version of SET as was

given in the single clock variant.

Localization, however, requires more than just modality specific clocks. Consider what is

required for the attribution of crossmodal temporal relations—such as the temporal interval

separating a flash of lightning and a crash of thunder. Within an internal clock framework, one

would have to introduce a supramodal clock mechanism to make these attributions (for

instance, this is done by Klink, Montijn, & van Wezel, 2011).9

9This section concerns pure internal clock accounts. Pure clock-based accounts of temporal perception must introduce

supramodal clock mechanisms. However, nothing stops an internal clock theorist from introducing the sort of

crossmodal mechanisms described in Section 4.2. Hybrid versions like this are closer to what I endorse, however, the

evidence presented in Section 4 suggests much more variation in timekeeping mechanisms than mere modal specificity.
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So, on this internal clock approach to temporal perception, we attribute temporal properties

to events in the world through a combination of modality specific and supramodal clock mech-

anisms.10 Localization is accounted for by this supramodal clock mechanism in the same way

as it was in the single clock variant of SET. The supramodal clock not only provides a common

temporal order for all of the events that we perceive but also provides a means of locating

events within that ordering. Once again, nothing is needed over and above the attributive

machinery to account for the perceived unity of time.

3.2 | Mirroring approaches

The other approach to explaining the perceived unity of time appeals directly to the temporal

properties of sensory processes themselves. According to mirroring approaches, the temporal con-

tents of perception (or experience) mirror the temporal properties of perceptual (or experiential)

processes themselves.11 To see understand the approach, consider the following example.12

Imagine an approaching thunderstorm. When the storm is far away, the flashes of lightning will

appear to occur prior to the crashes of thunder. As the storm approaches, the apparent gap between

the lightning and thunder shrinks, until the thunder and lightning appear simultaneous. According to

the mirroring approach, perception is able to represent these changing temporal relations in virtue of

the changes in the temporal relations between experiences of the lightning and experiences of the

thunder. As the perceived gap shrinks there will be a corresponding (i.e., mirroring) shrink in the

actual temporal interval between experiences (or the corresponding perceptual states). The account

can then be generalized beyond temporal order to all of the temporal contents in perception.Wemight

perceive the thunder as lingering longer than the short strike of lightning, and this too will mirror the

relative durations of the experiences of thunder and the experiences of lightning. Through this

mirroring, perception latches onto and attributes temporal properties to perceived events.

If we adopt a mirroring approach, then, once again, we have a simple explanation of the

perceived unity of time.13 All that is needed to get this explanation of the perceived unity of

10Maniadakis and Trahanias (2016) develop a similar account inspired by striatal beat frequency models.
11For examples see Arstila (2015), Dainton (2000), Foster (1991), Mellor (1981), Phillips (2014), Rashbrook (2013). These

authors do not maintain that experience having a particular temporal property is sufficient for that property appearing

as part of the experience’s content. Rather, they claim that it is necessary that if experience has a certain temporal

content, then the experience’s temporal structure will mirror this content. Something else makes a certain temporal

property of experience part of its content. Nevertheless, mirroring plays a content enabling role. Without the appropriate

mirroring, experience could not have its temporal contents. Some (Arstila, 2015; Foster, 1991; Mellor, 1981), go further,

suggesting that mirroring plays a content determining role, in that the temporal contents of experience are determined

by some subset of the temporal properties of experience itself (for instance, the duration of an experience may

determine duration content, while the date on which an experience occurs would not be reflected in experience). On

either interpretation, similar accounts of temporal unity are possible, and the same objections raised in the next

section would apply. See Lee (2014) and Watzl (2012) for general criticisms of mirroring views.
12This section’s goal is to assess the mirroring view’s account of the perceived unity of time. I am granting that

consumer systems can utilize information carried by the timing of sensory processes. A referee pointed out that granting

them this may be too generous since a challenge raised in this paper is to provide an account of how temporal

information is transformed into a format usable by consumer systems. Lee (2014) has argued this story ultimately

undermines mirroring accounts.
13While the phenomena might ultimately be related, the perceived unity of time should be distinguished from the

phenomenal unity of consciousness (Bayne & Chalmers, 2003). While some theorists discussed in this section, for

example, Dainton and Rashbrook, argue that mirroring cannot account for the phenomenal unity of consciousness,

they nevertheless appeal to mirroring to account for the perceived unity of time.
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time off the ground is a simple assumption about the metaphysics of time. Since our modality

specific sensory processes themselves occur within the single timeline of events in the world—

that is our metaphysical assumption—then we can explain why the world appears to be tempo-

rally unified by appealing to the unity of time itself. Modality specific perceptual processes

occurring at particular moments in a single worldly timeline. This accounts for localization

since the appearance of events as occupying a common timeline is inherited from our experi-

ences occupying a single timeline. Comparability is also explained by the general mirroring

principle. Any consumer system capable of making use of the temporal contents encoded in

one modality must be able to exploit the temporal properties of those sensory processes, since

these are the proximal physical properties of the perceptual system in virtue of which percep-

tion attributes temporal properties to perceived events. However, it is the very same type of tem-

poral property across perceptual systems that carries this content. Therefore, any consumer

system capable of making use of the temporal information encoded in one modality can, in

principle, utilize the temporal information found in the other modalities (provided it has access

to the relevant sensory processes). Comparing temporal properties of events detected through

different modalities simply involves comparing the temporal properties of more proximal sen-

sory processes. Once again, nothing over and above the machinery needed to account for how

temporal properties are attributed to events in the world is needed to account for the perceived

unity of time.14

At this point, it is useful to notice a common feature to the internal clock and mirroring

accounts of the perceived unity of time. In both cases, temporal perception is conceived as a sin-

gle psychological phenomenon (or at least, a sufficiently homogenous assortment of phenom-

ena). As a result, a general story for how perception attributes temporal properties to perceived

events seems plausible. Once we have this general story, then the perceived unity of time is eas-

ily explained since there will be something like a common code in which perception encodes

temporal information. In some cases, researchers are explicit about why they think this. For

instance, a recent paper (Hartcher-O'Brien, Brighouse, & Levitan, 2016) argues that a good rea-

son for pursuing a unified mechanism/explanation that underpins temporal perception is that

the various temporal properties that we perceive appear so intimately related to one another.

That is, from an observation of the perceived unity of time, it is assumed that temporal percep-

tion is a singular psychological phenomenon, which gives rise to these sorts of approaches for

understanding the perceived unity of time. In the next section, this assumption that temporal

perception is a singular psychological phenomenon will be at issue.

4 | THE FRAGMENTATION OF TEMPORAL PERCEPTION

In the first part of this section, I will argue that “temporal perception” does not pick out a single

psychological capacity. It instead acts as an umbrella term picking out various timekeeping

capacities that are specialized for specific aspects of the temporal structure of the world. Then,

by looking at two specific timekeeping capacities, I will argue that temporal perception employs

mechanisms that represent time in radically different ways. Therefore, no general story about

how perceptual systems attribute temporal properties to perceived events is possible. Therefore,

14How mirroring theorists account for comparability is often unclear. Some, like Phillips (2012), introduce a type of

internal clock to exploit the timing of perceptual processes. Others, like (Arstila, 2015), appeal to a comparator

mechanism.
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the standard accounts of the perceived unity of time fail. Instead, an account of the perceived

unity of time must explain how the unity of time is constructed from initially fragmented time-

keeping capacities.

The situation regarding temporal perception parallels what occurred in the literature on

memory. Memory was initially understood as a single psychological capacity to retain informa-

tion for later use. However, as research progressed, memory was no longer seen as a single

capacity. Instead it was seen as various different psychological phenomena to be studied on

their own terms (Craver, 2007). A general theory of memory was abandoned. Instead, theorists

attempted to understand how specific forms of memory operate and how forms of memory

might interact. The same goes for temporal perception. We cannot generalize from one time-

keeping capacity to another. Instead, we must theorize about each capacity on its own terms

and then uncover how these capacities interact.

This section describes ways in which specific timekeeping capacities can be selectively inter-

vened upon while leaving other timekeeping capacities unaffected. The conclusion is that time-

keeping capacities come apart along at least three different dimensions—timescales, modalities,

and temporal-property-types.15

Pharmacological and mechanical interventions provide evidence for timescale specific divi-

sions among timekeeping capacities. For instance, haloperidol and midazolam both impair tem-

poral discriminations at around the one-second timescale, however, of the two, only haloperidol

also impairs discriminations around 50 ms (Rammsayer, 1999). Similar dissociations are found

through the use of rTMS. Applied to dorsal frontal areas, rTMS selectively impairs discrimina-

tions around one second (Jones, Rosenkranz, Rothwell, & Jahanshahi, 2004), while rTMS applied

to the cerebellum selectively impairs discriminations in the millisecond range (Koch et al., 2007).

Psychophysics experiments show that timekeeping capacities can be selectively intervened

upon along modality and temporal property-type dimensions. Consider first modality specific

cases. It is well known that saccades distort the perception of the temporal properties of visual

stimuli presented at the target location of the saccade during a short temporal window centered

on saccade execution (Burr, Tozzi, & Morrone, 2007). When a single visual target is presented

during this window at the appropriate location, subjects perceive the target as having a com-

pressed duration. When a sequence-pair of stimuli is similarly presented, subjects often perceive

a reversal of their objective temporal order. Importantly, saccades only influence the perception

of visual stimuli. Auditory stimuli, for instance, presented alongside the visual ones do not

undergo corresponding distortions.

Psychophysics also shows the selective manipulability of temporal property-type specific

capacities, for example, capacities to perceive duration versus sequences, rates, and so forth.

Consider the oddball illusion (Tse, Intriligator, Rivest, & Cavanagh, 2004). Subjects are initially

presented with a series of standard stimuli that are identical with regards to their temporal

properties (e.g., duration, ISI, etc.) and are of the same non-temporal type (e.g., if they are fla-

shes of light, then they will be of the same color, intensity, etc.). After the presentation of the

standard sequence, subjects are shown an oddball, which is identical to the standards with

regards to its temporal properties, but differs in some salient non-temporal way (e.g., it might

be a different colored light). Subjects reliably perceive the oddball as having a significantly lon-

ger duration than the standards (up to 50% longer).

An internal clock theorist could try and account for this dilation through an increase in the

clock pulse-rate due to the novel oddball (this is what Tse et al., 2004 propose). However, if that

15For further evidence see Paton and Buonomano (2018).
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were the case, then the other temporal properties of the oddball should be equally distorted, since

the clock distortion would distort measurements of these other properties. To test this, Eagleman

and colleagues conducted a version of the oddball study, reported in Eagleman (2008), in which

the standards and the oddball flickered at a fixed rate. If the dilation resulted from an increase in

the pulse-rate of a general-purpose clock, then the oddball should seem to flicker more slowly

than the standards. However, the study showed that there was no effect of this sort. Only the per-

ceived duration of the oddball was influenced, not its flicker rate. In this way, timekeeping capac-

ities specialized for specific types of temporal properties can be selectively intervened upon.16

At this point, an important dialectical point needs emphasis. Any of these selective interven-

tions could in principle be explained as resulting from some change in the operation of a single

timekeeping mechanism or the inputs to those mechanisms. Perhaps this is most clear in the

cases of selective distortions along modality specific lines. However, that explanatory strategy

loses plausibility when we consider the full range of cases. Unless our goal was to salvage a cen-

tralized clock model, it is unclear why we should think that the inputs to a centralized clock

would differ along timescale, modality, and temporal property type lines in the way these selec-

tive distortions would require. Furthermore, if there were a centralized clock (or clock network),

then we would expect to find cases where subjects undergo a general disruption to their time-

keeping capacities (in the same way the subjects may lose the ability to perceive faces, surface

color, etc.). However, no cases like that exist.17 Of course, nothing here demands that one aban-

don the idea that there is a centralized clock, however, this is not due to anything specific about

temporal perception but rather, concerns the general underdetermination of theory by data. The

resulting theory would become increasingly ad hoc to accommodate this evidence. Our best, least

ad hoc, explanation, then, is one in which we take temporal perception to be fragmented.

This alone, however, does not show that the standard approaches to the perceived unity of

time fail. These capacities could all employ a common code underpinned by SET-like timekeep-

ing mechanisms. In what follows, we will focus on specific timekeeping capacities and show that

the explanatory demands that are placed on models of those capacities give us good reasons for

thinking that these capacities employ distinct types of representational mechanisms. As a result,

no general account of how perceptual systems attribute temporal properties to events is possible,

and therefore, no account of the perceived unity of time that relies on one can be succeed.

4.1 | Specific timekeeping capacities: Case #1 duration

Let us begin by considering duration perception at very short timescales. Classic approaches to

this capacity have appealed to dedicated clock mechanisms, with SET being a prime example.

Yet, emerging models are doing without dedicated clock mechanisms. Instead, they account for

many rudimentary timekeeping capacities as arising from intrinsic properties of neural systems

throughout the brain (Ivry & Schlerf, 2008; Paton & Buonomano, 2018). Intrinsic models have

16Johnston, Arnold, and Nishida (2006) also show selective distortions of modality and temporal property specific

perception.
17Surveying the literature reveals no cases like this. One explanation for their absence, raised by a referee, is that

impairing a centralized clock may result in an elimination of consciousness altogether. However, this would make

temporal content unique amongst perceptual contents, since most, if not all, perceptual contents seem to be capable of

being impaired while preserving consciousness. Without reasons for thinking temporal perception is unique in these

ways, the absence of general “time blindness”, along with the evidence raised in this section, count against centralized

clock approaches.
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the advantage of providing a ready explanation for highly localized distortions in temporal per-

ception and for why all sensory experiences seem to have some temporal content (i.e., because

this content is provided by the same mechanisms that provides non-temporal content to experi-

ence) all while not having to posit any additional machinery over and above what is already in

place for non-temporal capacities.

For the purposes of this paper, I will focus on a single type of intrinsic model, state-

dependent network models (SDN models).18 The choice of SDN models is meant to be illustrative

of the general trend within the timekeeping literature as the same conclusions could be drawn

from other intrinsic timekeeping models (e.g., Eagleman & Pariyadath, 2009; Lebedev,

O'Doherty, & Nicolelis, 2008) or variants of the internal clock models (although, evidence in

favor of the SDN models will be discussed). However time is encoded at short timescales will

contrast sharply with how time is encoded for other timekeeping capacities (e.g., crossmodal

temporal order perception).19 The particular focus on the SDN models is largely due to their

being particularly well-developed variants of these emerging intrinsic models.

According to SDN models, recurrent neural networks (RNNs) underpinning a wide-range of

non-temporal capacities can also underpin rudimentary timekeeping capacities at very short

timescales in the following way: Within each RNN we can distinguish between a system's active

states, which are the different spatial distributions of spiking activity within the network, and

the hidden states, which are the modulatory states of the system that control how the active

states develop over time.20 As a RNN receives input, a particular pattern of active states will

unfold as a function of the incoming signal and the initial hidden states of the network. As time

passes, the system's active states change as a function of the modulatory influence of the hidden

states. As a result, at any given moment there will be a particular subset of neurons within the

RNN that are most active which provides a spatial code for duration without the need for a ded-

icated clock.

Evidence for SDN models comes from a variety of sources. First, as a proof of concept, the

time-dependent activity patterns described by SDN models have been found in artificial RNNs

and with in vitro neural populations (Finnerty, Shadlen, Jazayeri, Nobre, & Buonomano, 2015;

Goel & Buonomano, 2014).

Second, SDN models have accurately predicted a novel pattern of variability in temporal

perception at very short timescales that are only accommodated by other models through the

inclusion of post-hoc assumptions. This variability arises when subjects are presented with a

pair of stimuli and are tested to see how they perceived the duration of the second stimuli

(Buonomano & Karmarkar, 2002; Spencer, Karmarkar, & Ivry, 2009). In one condition, the ISI

between the stimulus pairs was held constant, in the second condition, the ISI varied. Subjects

showed an increased variability in the perceived duration of the second stimuli in the varied-ISI

condition when the stimuli had durations of less than 150 ms. Internal clock accounts did not

predict that variability of this sort would be restricted to these timescales. SDN models did.

Since the particular dynamics of a RNN is not only a function of the incoming sensory signal

but also of the RNN's state when the stimulus arrives, by varying the ISI between the two

18For details of SDN models see Buonomano (2000), Buonomano and Karmarkar (2002), Buonomano and Maass (2009),

Paton and Buonomano (2018).
19Different coding schemes are found in ramping models (Lebedev et al., 2008), oscillation models (Kosem et al., 2014),

and efficiency coding models (Eagleman & Pariyadath, 2009).
20See Buonomano and Maass (2009), Goel and Buonomano (2014) for details of the interaction between active and

hidden states.
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stimuli, the experiment varied this initial state in unpredictable ways resulting in varied percep-

tual performance.

No dedicated clock mechanism is needed. Instead, local networks have the intrinsic ability

to keep track of some temporal properties of perceived events. Furthermore, since each RNN

will have a different internal structure, each RNN will employ a different spatial coding for tem-

poral information. Finally, since the ability of any RNN to carry information about time is due

to its local stimulus history, it follows that there is no common interval that all RNNs encode

information about. Rather, RNNs look backwards different distances depending on their local

stimulation histories.

One criticism that has often been raised against SDN models, and intrinsic timekeeping

models more generally, is that it is unclear how to scale SDN models for longer timescales and

crossmodal timekeeping (Ivry & Schlerf, 2008). However, once we accept that temporal percep-

tion is fragmented, this objection loses its force. All accounts of temporal perception need to

provide a story of cross-timescale and cross-modal integration. This is not unique to intrinsic

models.

4.2 | Specific timekeeping capacities: Case #2 temporal order

Here we will shift focus from duration perception to crossmodal order perception. Models of

this capacity must meet significantly different demands than ones for duration perception. In

particular, any account of temporal order perception must accommodate the perceptual sys-

tem's ability to rapidly recalibrate the perceived temporal order of events. To see what this rec-

alibration is like consider the following two cases.

First, consider a study by Stetson, Cui, Montague, and Eagleman (2006).21 Subjects were

asked to press a button and then after a variable delay, with an average length of 35 ms, a flash

of light would appear on the screen in front of them. Subjects had to respond whether the but-

ton press occurred before or after the flash of light. If the light followed the button press by

approximately 20 ms subjects would be equally likely to report the button press as occurring

earlier than or later than the flash of light. This provided the baseline point of subjective simulta-

neity (PSS) at which the two stimuli appeared simultaneous. A delay was then inserted between

the button press and the flash of light such that the light appeared on average 135 ms after the

button press. After several trials the PSS shifted to where the visual stimulus had to follow the

button press by 44 ms to be perceived as simultaneous. The shifting PSS already showed that

there was some recalibration in perceived temporal order, but the interesting finding came

when the extended delay was abruptly replaced with the original 35 ms delay. Stimulus pairs,

with an ISI of 35 ms, that were originally perceived as involving a flash of light after the button

press were now reliably perceived as though the flash of light occurred before the button press!

Perceived temporal order was reversed despite there being no change in stimulus timing.

For the second case consider a study by (Kösem, Gramfort, & van Wassenhove, 2014). Sub-

jects were presented a pair of stimuli—a pulsing sound and light. Both stimuli pulsed at the

same frequency—1 Hz—but were slightly out of phase with one another. Subjects initially per-

ceived the stimuli as being out of sync, however, subjects quickly began to perceive the two

stimuli as being in phase, despite there being no change in the incoming stimulation.

21For similar findings using other sensory-sensory pairings, see Chen and Vroomen (2013), Navarra, García-Morera, and

Spence (2012), Vroomen and Keetels (2010).
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Two general accounts were proposed to explain these types of effects. In the first, which is

readily accommodated by the internal clock and mirroring approaches, recalibration arises

through a shift in the timing of our sensory processes. The auditory and visual pulses seemed to

synchronize with one another through a synchronizing of the auditory and visual processing of

these stimuli. The second proposal explains these recalibration effects without any shift in the

timing of sensory processes. Instead, a representational mechanism for attributing temporal

relations to the perceived events is recalibrated.

To decide between these accounts, a critical test was performed combining the recalibration

studies with imaging methods to determine whether shifts in perceived temporal order cor-

responded with shifts in the timing of sensory processes. Interestingly, the two cases brought

about conflicting results. In the Stetson et al. study, there was no shift in the latencies of tactile

or visual processing. Instead, there was increased activity in the anterior cingulate cortex and

medial frontal cortex (regions the authors suggest are involved in conflict monitoring).22 In the

Kosem et al. study, however, there was a corresponding shift in the timing of auditory and

visual processes. Prior to calibration, ERP showed that the auditory and visual processes were

oscillating in step with the oscillations of their respective stimuli. However, after calibration,

the oscillations in the visual and auditory processes fell into phase with one another. While the

explanation for the different effects is not clear, it may have to do with the types of sequences

used in both studies. The Stetson et al. study used non-rhythmic sequences, while the Kosem

et al. study used rhythmic sequences. Since there are reasons for thinking that rhythmic and

non-rhythmic sequence perception engage distinct networks (Grahn & Brett, 2009), the differ-

ent imaging results might be the result of the rhythmic/non-rhythmic difference.

Given the results of the Stetson et al. study, there must be an explanation of perceived tem-

poral order, and its recalibration, that does not directly appeal to the timing of sensory stimula-

tion or initial sensory processing. To explain these effects, researchers often posit a decision/

comparator mechanism based on known perceptual opponency mechanisms (Cai, Stetson, &

Eagleman, 2012; McDonald, Teder-Sälejärvi, Russo, & Hillyard, 2005; Roach, Heron,

Whitaker, & McGraw, 2011).

The model from Cai et al. (2012) will serve as a nice example of this sort of mechanism.23 A

series of delay tuned neurons respond to particular temporal asynchronies between motor and

visual processing. Think of these as a series of neurons tuned with Gaussian response profiles

centered on these specific asynchronies, for example, motor-leading-visual by 50 ms, 30 ms,

20 ms, 0 ms, −20 ms, and so forth. These delay tuned neurons feed excitatory and inhibitory sig-

nals to a pair of summation nodes. One node receives primarily excitatory signals from motor-

leading neurons and vice versa. This differential input produces opponent behavior in these

summation nodes. In a calibration neutral state, the differential activity in these nodes simply

reflects asynchronies in motor-visual processing. If the activity in the two nodes is identical,

then the motor and visual events are represented as simultaneous. If there is a difference in

activation, then a sequential order is represented, and the relative activity of the nodes encodes

the length of the separating interval.

In models like this, recalibration can occur in several ways. Adaptation can directly influ-

ence the summation nodes, directly changing the encoding of temporal order, or adaptation

22Similar results were found using MEG and EEG (Simon, Noel, & Wallace, 2017; Stekelenburg, Sugano, &

Vroomen, 2011).
23There are different approaches to explaining these recalibration effects, however, they all distinguish the timing of

perceptual processes with represented temporal content which is all we need (Chen & Vroomen, 2013).
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can influence the delay-tuned neurons, influencing the inputs to the summation nodes. Alter-

natively, recalibration can also result from a change in the timing of initial sensory processes,

which will result in differences in the activation of the summation nodes. The model provides

the resources needed to account for both the Stetson et al. and Kosem et al. studies (although,

we need not insist that a single model accounts for all temporal order perception and

recalibration).

The important thing to notice, however, for our purposes is that the mechanisms proposed

to account for these aspects of temporal order perception latch onto their content in ways that

differ from how SDN or SET models latch onto their content. Furthermore, not only do they

exploit different representational strategies to get at their respective properties in the world,

they exploit different properties of neural systems to encode this information. In both cases tem-

poral information is given a spatial code—the distribution of activity across a population

encodes the relevant information—however, the mappings from spatial patterns to temporal

contents differ. A consumer system capable of using the information concerning an interval

length encoded in one of these timekeeping systems need not be in any position to us the infor-

mation encoded in the other. This is even the case if the consumer system is causally sensitive

to the activity in both networks. Causal sensitivity is not enough to make use of the informa-

tion. Consumer system must be able to decode these causal influences.

At this point we can discharge the argument. Temporal perception is fragmented. It is not a

single capacity, but is instead composed of various specialized timekeeping capacities. When we

try and account for these distinct capacities, not only do the capacities themselves seem to

demand different things of the models that would account for them, but the models of these

capacities that are currently being developed describe mechanisms that latch onto and encode

temporal information in a variety of ways. As a result, the standard approaches to the perceived

unity of time are bound to fail. No general story is forthcoming for how perception attributes

temporal properties to perceived events and existing empirical evidence suggests that no such

story is possible. Another strategy is needed to explain how the perceived unity of time emerges

from our initially fragmented timekeeping capacities.

5 | PARALLELS BETWEEN TIME AND SPACE

One plausible means of making progress on understanding how temporal information is inte-

grated across and within modalities is to look at spatial perception. In both cases, we seem

to perceive the world as consisting in unified or seamless dimensions within which perceived

events and objects are located. Furthermore, these aspects of perception depend on the inte-

gration of information initially encoded in multiple representational mechanisms. In this sec-

tion, I will argue that despite their superficial functional similarities, explanations of how

spatial information is integrated within and across modalities cannot be applied to the tem-

poral case. To show this, we will begin by focusing on the perception of visual space before

turning to the multimodal case.

The visual system parses the incoming retinal signal through a series of specialized filter-

ing mechanisms that preferentially respond to specific stimulus features such as orientation,

direction of motion, depth, color, and so forth. Many of the cortical systems responsible for

processing these features have a map-like retinotopic structure where adjacent locations in

the cortical maps encode information corresponding to adjacent retinal locations (Gardner,

Merriam, Movshon, & Heeger, 2008; Wandell, Dumoulin, & Brewer, 2007). Despite this
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initial feature segregation, we nevertheless perceive these features as being located within a

common space. Visual space appears unified. While there is disagreement over the details,

the general story for how spatial information is integrated in early vision is largely accepted.

The story appeals to two aspects of how spatial information is encoded in retinopic maps

(Robertson, 2003).

First, since each map shares a common retinotopic structure, and therefore represents the

same visual space, the process of integrating spatial information in vision is one of coordinating

the different retinotopic maps. An analogy for thinking about this integration is to think of

coordinating map layers in a computer program. As long as the map layers share a common for-

mat, then integrating them can be accomplished by functionally superimposing one on the

other. All that's needed are common landmarks, or anchor points, across the maps to line up

the layers.

Second, simultaneous activity across these maps guides their coordination. The visual sys-

tem exploits the assumption that simultaneous activity patterns across maps results from co-

instantiation of features by objects. For instance, in a simplified case, if there are simultaneous

spikes of activity in the color map and the motion map, then the visual system will behave as

though there is a common colored and moving object rather than independent instantiations of

color and motion. It is these simultaneity activity patterns, that at least in development, act as

anchor points for coordinating the distinct visual feature maps. In many accounts, this coordi-

nation produces mappings between feature maps and a retinotopic master map in which bound

feature groups (or objects) are constructed (Koch & Ullman, 1985; Robertson, 2003).

Comparability, for visual space, is given by the common retinotopic structure of the visual

maps, and localization is given by the coordination of these maps. Notice, that an account of

how visual features are represented does not provide an account of the unity of visual space.

These representations must be integrated.

However, neither of the structural features of spatial representations exploited by models of

spatial integration have analogs in the temporal case. First, there is no analog to retinotopy

across the different timekeeping mechanisms in perception.24 Second, simultaneity of sensory

processes cannot be used as anchor points to coordinate the different timekeeping mechanisms.

As we saw, in some cases the temporal contents of perception come apart from the temporal

structure of perceptual processes. Sensory processes with identical temporal structure can repre-

sent events as standing in radically different temporal relations. Therefore, the story given for

the integration of spatial information in vision cannot be applied to temporal perception.

The multimodal case is similar. There is a unity to our multimodal perception of space—the

various senses locate objects within a common space around the individual. It cannot be the

case that this integration is entirely accounted for by exploiting a common map-like structure

(let alone retinotopic structure), since different sensory modalities utilize different structured

representations of space. A further complication is that there are multiple systems for integrat-

ing spatial information across modalities.25

Of particular interest to us is the role of the parietal cortex in the representation of peri-

personal space (i.e., the space immediately surrounding the body) (Sereno & Huang, 2014).

24Holcombe (2015) makes similar points. Retinotopic maps carry information about a shared spatial visual space and

retinotopic structure facilitates the utilization of this information. That initial sensory areas may carry temporal

information through resemblance is not enough to establish a parallel to retinotopy.
25Not discussed here are the superior colliculus (King, 2004) and entorhinal cortex (Soman, Muralidharan, &

Chakravarthy, 2018). Both cases exploit map-like spatial representations that have no temporal analogs.
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Despite this system integrating information across modalities, the explanation of this integration

parallels the explanation in the visual case. Neurons in the postcentral gyrus (along with other

areas) integrate multisensory signals where their responses to multisensory signals from a given

location exceed the sum of the activation elicited by single sensory signals. This integration is

thought to occur through a two-stage process. First, individual sensory modalities involve modal-

ity specific map-like representations of space. Then, through an exploitation of simultaneity

across these maps, correspondences are formed between the modality specific maps and the mul-

timodal map in parietal cortex (Bernasconi et al., 2018).26 We have essentially the same story as

we did in the visual case, the only difference is that the initial modality specific spatial maps are

differently structured. However, simultaneity across cortical maps is essential to the process.

The point of this section is not to deny that simultaneity will play a role in the integration of

temporal information. Neural integration is largely a story of the temporal and spatial conver-

gence of neural signals. However, in the temporal case, simultaneity plays a semantical role.

The various maps being integrated represent how the world is now. As a result, simultaneous

activity across these maps can produces a complex representation of the world right now. How-

ever, in the temporal case, there is no clear-cut relationship between the timing of sensory pro-

cesses and their temporal content. Yet, that is what would be needed to exploit simultaneity in

the same way as it is exploited in spatial integration. Some other, content sensitive, explanation

is needed for the integration of temporal information.27

6 | TOWARDS THE PERCEIVED UNITY OF TIME

Standard explanations of the perceived unity of time fail. We also cannot simply import models

of spatial integration to the temporal domain. The empirical evidence described so far also

shows that we cannot account for the perceived unity of time by simply introducing further

clock mechanisms. Internal clocks track the temporal properties of internal mental processes.

Yet, the temporal structure of perceptual processes comes apart from their temporal contents.

Whatever account of the perceived unity of time we give must be sensitive to the temporal con-

tents of perception and not merely the timing of perceptual processes. We need something new.

While it is not clear what allows for the construction of the perceived unity of time, this is for

future interdisciplinary research, what we can do is articulate the hurdles that must be overcome

in accounting for the perceived unity of time from our initially fragmented timekeeping capacities.

6.1 | Temporal localization

Standard approaches attempted to explain localization by appealing to the timing of sensory

processes. The central reason why these approaches failed is that the perceiving temporal loca-

tion of events comes apart from the timing of sensory processes. Simply adding more attributive

machinery will not help either. We may come to know that some event has a certain duration

26The development of the superior colliculus may give insight as to how modality specific maps are manipulated to

establish this correspondence. In that case, retinotopic maps in early development influence the structure of auditory

and haptic maps (Doubell, Skaliora, Baron, & King, 2003).
27Simultaneity might play this role integrating some timekeeping mechanisms, but it cannot do it for the full range

needed to account of the perceived unity of time.
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and that some event stands in certain relations to other events, but none of this specifies when

the event occurs relative to the current moment.28 Something must anchors events, and the

properties attributed to them, to particular moments in time.

Carlos Montemayor (2013) argues that an indexical component contributed by the percep-

tual mechanisms for detecting simultaneity plays this anchoring role.29 Our perceptual system

is capable of representing events, separated by as much as 240 ms, as occurring simultaneously.

Montemayor argues that this temporal window of integration not only represents events as being

simultaneous but indexes them as occurring now. In this way, perceptual timekeeping mecha-

nism possess a referential/indexical function in addition their attributive functions, that locates

events in time relative to now.

Montemayor's proposal is clearly on the right track. Its success does not require a universal

mapping between the temporal contents of perception and the timing of perceptual processes—

there need only be one system that contributes this indexical component. However, it leaves

unexplained why the world appears to have a single temporal dimension as opposed to multi-

ple. We indexically locate ourselves as located here, but the world appears to have three spatial

dimensions. Something beyond a mere indexical is needed to account for the dimensionality of

localization. Providing an explanation of this referential component and the dimensionality of

temporal perception is the first hurdle that must be overcome.

6.2 | Comparability and translation

Comparability requires something other than what is required by localization. An account of

comparability must provide translation procedures by which individual consumer systems can

use the temporal information carried in various formats by different timekeeping mechanisms.

One possibility is that there is a single code, either an amodal code or the coding scheme for

one modality takes priority, into which the distinct temporal representations are translated,

which consumer systems then utilize. Another possibility is that consumer systems might have

their own propriety codes, suited for their particular needs (e.g., motor control vs. lexicalization),

into which they translate various temporal representations. These are open empirical possibilities

for future research required to explain the perceived unity of time. Furthermore, how we account

for this translation might answer the temporal version of Molyneux's question (e.g., whether or

not there is a common code for temporal information and whether or not the capacity to inte-

grate this information is innate or acquired).

Once again, we find an aspect of the perceived unity of time that cannot be solved by intro-

ducing further clock mechanisms. Whatever account of translation we provide must be one that

while operating on the local non-semantic properties of neural systems, must nonetheless

respect their semantic content.

A final point is needed. There are three broad-stroke options we can adopt to explain the

perceived unity of time. Unity might depend on a single unified representation of time that inte-

grates the information encoded in peripheral timekeeping mechanisms. This unitary represen-

tation of time may then play the causal/function role of a unified experience of time that is

utilized by consumer systems, including those involved in introspection. Therefore, despite per-

ceptual processes that underpin temporal perception being fragmented, temporal experience

28The similarities with Perry (1979) are intended.
29Maniadakis and Trahanias (2016) provides a similar account. The same worry applies to their view as well.
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might be unified (under a certain reading of unity). Another option is that fragmentation

extends beyond mere perceptual processing and applies to experience as well. Again, there may

be a single representational system that integrates information in peripheral timekeeping mech-

anisms, but this representation only provides experience with multimodal and cross-timescale

temporal content. Other temporal content may be contributed through the operation of the

peripheral timekeepers. Knocking out this central integrator would result in selectively

knocking out experiences of integrated temporal properties while leaving non-integrated tem-

poral experiences intact.30 Alternatively, there may simply be no single integrated representa-

tion of time and we account for the perceived unity of time without a single place where it all

comes together. The consumer systems that drive time sensitive behaviors may employ various

integrated representations of time. As long as they are coordinated, then reflective and behav-

ioral responses will appear coherent. On this construal, while time may strike us as unified in

the ways that I described, there may not be a single unified representation of time on the basis

of which time strikes us so.31

7 | CONCLUSION

The world appears to have a unified temporal structure. The observation of the world appearing

this way may tempt us to believe that temporal perception, or experience, is unified or unitary.

However, this is not so. Temporal perception is initially fragmented. The perceived unity of

time is constructed from these fragmented capacities. However, at present there is no theory

that explains this unity. Something new is needed. Specifying what this is requires new work.
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