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Recent experiments involving the interaction of optical vortices with atoms in quadrupole transitions have

shown it to be accompanied by the exchange of orbital angular momentum (OAM) between the electronic states

of the atom and the optical vortex field. Earlier work, both theoretical and experimental, had ruled out the

transfer of a vortex OAM to the electronic degrees of freedom in an electric dipole atomic transition and it has

been confirmed that the lowest multipolar order involving an OAM transfer to the electronic motion is indeed

the electric quadrupole. Hitherto, the quadrupole transition involving optical vortices has not been quantified

and we thus set out to evaluate the absorption rate accompanied by an OAM transfer with reference to the

6 2S1/2 → 5 2D5/2 in Cs when cesium atoms are subject to the field of a linearly polarized optical vortex. Our

results assuming typical experimentally accessible parameters indicate that the absorption rate for moderate light

intensities is lower than the quadrupole spontaneous emission rate but should still be within the measurement

capabilities of modern spectroscopic techniques.

DOI: 10.1103/PhysRevA.102.063706

I. INTRODUCTION

Twisted light beams or optical vortices have been the sub-

ject of much investigation over the last three decades or so

and this area has found applications in a number of diverse

fields [1–3]. The absorption or emission of any type of light

by atoms is accompanied by the transfer of linear momentum

between the light and the atoms, and this effect has been ex-

ploited in the cooling and trapping of atoms [4–6]. It has also

been established that the application of vortex light to atoms

affects the center-of-mass motion [6,7] via the dipole force,

but the quadrupole force too can influence atomic motion

attracting the atoms to high- or low-intensity regions of the

light field [8–10].

The possibility of the exchange of orbital angular momen-

tum (OAM) between light and the internal motion of atoms,

as opposed to their gross, or center-of-mass, motion, has in-

terested researchers since the early 1990s [11,12]. The first

treatments to tackle the problem of transfer [13] concluded

that while the center of mass of atoms engages with an optical

vortex, the internal ‘electronic-type’ degrees of freedom of the

atom do not take part in any OAM exchange in an electric

dipole transition and that only in a quadrupole interaction

can an exchange involving the electronic (internal) degrees of

freedom take place. This result was subsequently confirmed

experimentally by a number of researchers, first by Araoka

et al. [14], who showed that optical vortex light is not specific

in the interaction with chiral matter, and then by Löffler et al.

[15,16], whose experimental work did not detect any influence

*sbougouffa@imamu.edu.sa; sbougouffa@hotmail.com
†m.babiker@york.ac.uk

of the OAM of circular dichroism in cholesteric polymers. The

recent experimental work by Giammanco et al. [17] confirmed

categorically the lack of influence of the OAM on electric

dipole transitions, in agreement with theory [13,14]. The ex-

perimental work by Schmiegelow et al. [18] has shown that

an atom or an ion can exchange two units of optical angular

momentum, one unit from optical spin and another from its

OAM. Most previous studies have dealt primarily with the

case in which the optical vortex light is linearly polarized and

so optical spin has no role to play in the transfer process.

Research has also dealt with the study of the mechanical

forces on atoms due to the coupling of optical vortices, such as

the Laguerre-Gaussian (LG) and Bessel-Gaussian modes, to

quadrupole-active atomic transitions [6,10,19] and the results

displayed a considerable enhancement in the case of twisted

beams due to the gradient coupling, which increases with

increasing winding number. Quadrupole transitions have also

been observed in the case of Rb atoms by evanescent light

when Rb is localized in the vicinity of an optical nanofiber [9].

As potentially measurable effects the absorption of linearly

polarized vortex light and the rate of absorption by atoms have

not been evaluated as far as the authors are aware. We have

therefore set out to evaluate the rate of absorption, which in

the case of an optical vortex is also interpretable as the rate of

OAM transfer from the vortex light to the atoms. The general

treatment is then applied to the particular case involving the

6 2S1/2 → 5 2D5/2 quadrupole transition in Cs when cesium

atoms are subject to the field of an optical vortex. The Cs

transition in question is well known as a dipole-forbidden but

quadrupole-allowed transition.

This paper is organized as follow. The basic theory is

outlined in Sec. II, while Sec. III presents the theory of the

quadrupole atomic absorption rate when the atom engages
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with the optical vortex field at near-resonance. The evaluation

involves a direct application of the Fermi Golden Rule, where

the usual selection rules are applicable to quadrupole transi-

tions, but absorption requires a treatment involving the density

of the continuum states as a Lorentzian function representing

the upper atomic level as an energy band of width h̄γ , where

γ −1 is the lifetime of the upper state. Section IV deals with the

case where the applied vortex beam is a Laguerre-Gaussian

beam. The results are illustrated in Sec. V for the quadrupole

atomic transition 6 2S1/2 → 5 2D5/2 in Cs. A summary of our

results and brief comments on their significance are given in

Sec. VI.

II. QUADRUPOLE RABI FREQUENCY

The quantum system consists of a two-level atom inter-

acting with a single optical vortex beam propagating along

the +z axis. The ground and excited states of the two-level

atom are {|g〉 , |e〉}, with level energies E1 and E2, respec-

tively, which correspond to a transition frequency ωa = (E2 −
E1)/h̄. The interaction Hamiltonian is written as a multipolar

series expansion about the center-of-mass coordinate R as

[6,8,10,19]

Ĥint = Ĥdp + Ĥqp + . . . , (1)

where the first term Ĥdp = −μ̂ · Ê(R) stands for the electric

dipole interaction between the atom and the electric field, μ̂ =
er, with r the internal position vector, is the electric dipole

moment vector, and Ê(R) is the electric field vector. The

optical transition in question is taken here to be dipole forbid-

den but quadrupole allowed, so it is the second (quadrupole)

interaction term in Eq. (1) that is of relevance here. We have

Ĥqp = −
1

2

∑

i j

Q̂i j∇iÊ j . (2)

Here xi are the components of the internal position vec-

tor r = (x, y, z) and ∇i are the components of the gradient

operator which act only on the spatial coordinates of the

transverse electric field vector E as a function of the center-of-

mass position vector variable R = (X,Y, Z ). The quadrupole

tensor operator Q̂i j can be written in terms of ladder oper-

ators as Q̂i j = Qi j (π̂ + π̂†), where Qi j = 〈i| Q̂i j | j〉 are the

quadrupole matrix elements between the two atomic levels,

and π̂ (π̂†) are the atomic level lowering (raising) operators.

Without loss of generality, we assume that the electric field

is plane polarized along the x direction, so optical spin plays

no role here, in which case we have the following form of the

quadrupole interaction Hamiltonian:

Ĥqp = −
1

2

∑

i

Q̂ix

∂Êx

∂Ri

. (3)

The quantized electric field can conveniently be written in

terms of the center-of-mass position vector in cylindrical polar

coordinates R = (ρ, φ, Z ) as

Ê(R) = îu{k}(R)â{k}e
iθ{k}(R) + H.c., (4)

where u{k}(R) and θ{k}(R) are, respectively, the amplitude

function and the phase function of the LG vortex electric field.

Here the subscript {k} denotes a group of indices that specify

the optical mode in terms of its axial wave vector k, winding

number ℓ, and radial number p. The operators â{k} and â
†
{k} are

the annihilation and creation operators of the field mode {k}.
Finally, H.c. stands for Hermitian conjugate. Using this form

of the electric field, we obtain the desired expression for the

quadrupole interaction Hamiltonian,

Ĥqp = h̄

Q

{k}(R)eiθ{k}(R)â{k}(π̂
† + π̂ ) + H.c., (5)

where 

Q

{k}(R) is the quadrupole Rabi frequency, which can

be written as



Q

{k}(R) = −
1

2h̄

∑

i

Qixu{k}

(

1

u{k}

∂u{k}

∂Ri

+ i
∂θ{k}

∂Ri

)

. (6)

It is convenient to proceed as we show below by assuming a

general LG mode LGℓp of winding number ℓ and radial num-

ber p. The values of ℓ and p applicable to a given quadrupole

transition are decided by application of the selection rules of

the specific atomic transition.

III. FERMI GOLDEN RULE FOR ABSORPTION RATE

The vortex field is endowed with an orbital angular mo-

mentum ±ℓh̄ per photon with ℓ positive. Thus, the transition

matrix element [20], including only the quadrupole coupling,

is given by

T
{k}
i f

= 〈 f | Ĥqp |i〉 , (7)

where |i〉 and | f 〉 are, respectively, the initial and final states

of the overall quantum system (atom plus optical vortex). We

assume that the system has as an initial state |i〉 with the atom

in its the ground state and there is one vortex photon. The final

state | f 〉 consists of the excited state of the atom and there is

no field mode. Thus |i〉 = |g{1}{k}〉 and | f 〉 = |e{0}〉:

T
{k}
i f

= −
1

2

∑

i j

〈e| Q̂i j |g〉 〈{0}|
∂Ê j

∂Ri

|{1}{k}〉 . (8)

We have taken the electric field to be polarized along the x

direction, and using the relations 〈{0}| â+
{k′} |{1}{k}〉 = 0 and

〈{0}| â{k′} |{1}{k}〉 = δ{k′}{k} we obtain

T
{k}
i f

= −
1

2

∑

i

〈e| Q̂ix |g〉 〈{0}|
∂Êx

∂Ri

|{1}{k}〉

= h̄

Q

{k}(R)eiθ{k}(R), (9)

where 

Q

{k}(R) is the quadrupole Rabi frequency. The final

state of the system in the absorption process consists of a

continuous band of energy of width h̄γ , where γ is the spon-

taneous emission rate in free space. In this case the absorption

rate is given in the form of Fermi’s Golden Rule [21–24] with

a density of states

Ŵi f =
2π

h̄2

∣

∣T
{k}
i f

∣

∣

2
Fωa

(ω)

= 2π
∣

∣

Q

{k}(R)
∣

∣

2
Fωa

(ω), (10)

where the density of states is such that Fωa
(ω)dω is the

number of upper atomic states that fall within the frequency

range ωa to ωa + dω. The density of final states is a function

063706-2
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that peaks at the line center defined by h̄ωa = E2 − E1 and is

normalized so that
∫ ∞

−∞
Fωa

(ω)dω = 1. (11)

The density of states is represented well by a Lorentzian

distribution of states with a width (FWHM) coinciding with

the spontaneous quadrupole emission rate, thus

Fωa
(ω) =

1

π

γ /2

(ω − ωa)2 + (γ /2)2
. (12)

This function representing the density of states provides a

limit to the validity of using Fermi’s Golden Rule to evaluate

the absorption rate, since this rate is valid only if the frequency

width of the upper state |e〉 is higher than the excitation rate;

i.e., the spontaneous emission rate is higher than the Rabi fre-

quency. For high intensities, the Rabi frequency may exceed

the spontaneous emission rate, in which case the perturbative

approach culminating in the Fermi Golden Rule is no longer

valid and the strong-coupling regime is applicable to Rabi

oscillations. The maximum value of the density of states as a

function of ω is 2
πγ

, located at ω = ωa. Substituting Eq. (12)

in Eq. (10) we find for the quadrupole absorption rate

Ŵi f =
γ

(ω − ωa)2 + (γ /2)2

∣

∣

Q

{k}(R)
∣

∣

2
. (13)

We can now proceed to evaluate the absorption rate when the

optical vortex is an LG mode.

IV. ABSORPTION OF A LAGUERRE-GAUSSIAN MODE

In the paraxial regime the quadrupole Rabi frequency asso-

ciated with the LGℓp of frequency ω, which is plane polarized

along the x direction, can be written as [6,25–30]



Q

kℓp
(ρ) =

(

uℓ
p(ρ)/h̄

)

(U (R)Qxx + V (R)Qyx + ikQzx ), (14)

where the functions U (R) and V (R) are

U (R) =

(

|ℓ|X
ρ2

−
2X

w
2
0

−
iℓY

ρ2
+

1

L
|ℓ|
p

∂L|ℓ|
p

∂X

)

, (15)

V (R) =

(

|ℓ|Y
ρ2

−
2Y

w
2
0

+
iℓX

ρ2
+

1

L
|ℓ|
p

∂L|ℓ|
p

∂Y

)

, (16)

and

u{k}(ρ) = ukℓp(ρ) = Ek00 fℓ,p(ρ), (17)

with

fℓ,p(ρ) =

√

p!

(|ℓ| + p)!

(

ρ
√

2

w0

)|ℓ|
L|ℓ|

p (
2ρ2

w
2
0

)e−ρ2/w2
0 , (18)

where L|ℓ|
p is the associated Laguerre polynomial and w0 is

the radius at the beam waist (at Z = 0). The overall factor

Ek00 is the constant amplitude of the corresponding plane

electromagnetic wave. The phase function of the LG mode

in the paraxial regime is as follows:

θkl p(ρ, Z, t ) ≈ kZ + lφ − ωt . (19)

Substituting in Eq. (13) we have the quadrupole absorption

rate for an atom interacting with the LGℓ,p light mode that is

polarized along the x direction and the atom is characterized

by the three quadrupole matrix elements Qxx, Qxy, and Qxz:

Ŵi f =
γ

(ω − ωa)2 + (γ /2)2
|(U (R)Qxx + V (R)Qyx

+ ikQzx )|2 ×
∣

∣uℓ
p(ρ)/h̄

∣

∣

2
. (20)

So far the treatment has been general and Eq. (20) is the main

result of this paper. This result applies to any atom with a

dipole-forbidden but quadrupole-allowed transition which is

at near-resonance with a linearly polarized Laguerre-Gaussian

light mode LG ℓ,p. The main requirement is that the interac-

tion must conform with the OAM selection rules involving

the quantum number m between the ground and the excited

atomic states |g〉 and |e〉, and we have for a quadrupole

transition

�m = 0, ±1, ±2. (21)

The requirement for OAM conservation then means that the

optical vortex absorption process in a quadrupole transition

can only occur for optical vortices with winding numbers ℓ =
0, +1, +2. The case ℓ = 0 is possible, but then no transfer

of OAM occurs in the absorption process, while each of the

cases ℓ = 1 and ℓ = 2 is accompanied by a transfer of OAM

of magnitudes h̄ and 2h̄, respectively. The details will depend

on the specific atom and its specific quadrupole transition.

Note that although the radial quantum number p is important

for the amplitude distribution function of the LGℓ,p mode, the

magnitude of the OAM transferred is determined solely by the

value of the winding number ℓ � 2.

In order to illustrate the main result with practical exam-

ples, we focus on a case that has recently been discussed

[6,8,10,19], namely, an LG mode of winding number ℓ =
0, 1, 2 and radial number p. In the simplest case, where the

mode is a doughnut mode p = 0, we find that the last terms

involving the derivatives in U (R) and V (R) given by Eqs. (15)

and (16) vanish, as L
|ℓ|
0 are constants for all ℓ. However, the

case where p 
= 0 is also of interest since the value of p is

important for the intensity distribution. A specific atomic tran-

sition we consider to illustrate the results is that of the neutral

cesium atom, namely, the 6 2S1/2 → 5 2D5/2 transition. How-

ever, in order to proceed with evaluations, we need the values

of the quadrupole matrix elements Qxx, Qxy, and Qxz applica-

ble in the transition, depending on the OAM selection rules.

V. VORTEX ABSORPTION IN CESIUM

The quadrupole matrix elements Qxx, Qxy, and Qxz can be

discussed with reference to the normalized hydrogenlike wave

function ψnLm [31,32],

ψnLm(r, θ, φ) =
{(

2Za

naμ

)3
(n − L − 1)!

2n(n + L)!

}1/2

× e−ρ(r)/2ρ(r)lL2L+1
n−L−1(ρ(r))Y m

L (θ, φ), (22)

where aμ = 4πǫ0 h̄2

μe2 = a0
me

μ
is the reduced Bohr radius,

L2L+1
n−L−1(ρ(r)) are the associated Laguerre polynomials, and

ρ(r) = 2Zar
naμ

. The valence electron of the Cs atom sees an ef-

fective nuclear charge of Za = 8.56 [9,31–35]. Using Eq. (22),
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we have for the electric quadrupole matrix element

Qαβ = e 〈ψ f | xαxβ |ψi〉 , (23)

where xα = (x, y, z). Straightforward evaluations yield the

following:

(i) for the case �m = 0, we find that Qxx = 70.2
Z2

a
ea2

μ and

Qxy = Qxz = 0;

(ii) for the case �m = ±1, we have Qzx = i 86
Z2

a
ea2

μ and

Qxx = Qyx = 0; and

(iii) for �m = ±2, we have Qxx = ±iQyx = 86
Z2

a
ea2

μ and

Qzx = 0.

We consider a quadrupole transition with the selection rule

�m = 1 applicable to the (6 2S1/2 → 5 2D5/2) quadrupole

transition in Cs. In this case, the quadrupole moments are

Qxx = Qxy = 0 and Qxz 
= 0 and the Rabi frequency, Eq. (14),

is as follows:



Q

kℓ0(ρ) = ikQzx

(

u
|ℓ|
0 (ρ)/h̄

)

. (24)

The absorption rate is then given by

Ŵi f =
γ

(ω − ωa)2 + (γ /2)2

∣

∣

Q

{k}(R)
∣

∣

2
(25)

=
2πw

2
0

c2
|
0|2F (ω,ωa)| fℓ,0(ρ)|2, (26)

where fℓ,0 is given by Eq. (18) with p = 0, 
0 is a scaling

factor for the Rabi frequency,


0 =
1

h̄

Ek00Qzx

w0

, (27)

and the modified density function F (ω,ωa) is given by

F (ω,ωa) =
γ /2

π

ω2

(ω − ωa)2 + (γ /2)2
, (28)

where the maximum value of this function is 1
π

(
ω2

a

γ /2
+ γ /2),

located at ω = ωa + (γ /2)2

ωa
. It is clear that the dependence of

the Rabi frequency on the light frequency affects the transition

rate. However, the maximum of the function Fωa
(ω) is greater

than that of the density of states and its position is shifted away

from ωa. In Fig. 1, we present the shape of the normalized

density of state Fωa
(ω) in terms of the ratio ω/ωa for different

values of γ /ωa.

Typical parameters in this case are [36] λ = 685 nm, Qzx ≃
10ea2

0, and the spontaneous decay rate is ŴS = 3.34 × 107 s−1

[37,38]. The beam parameters are chosen such that the beam

waist w0 = λd , where d is a real number, and the intensity

I = ǫ0cE2
k00/2. Introducing the dimensionless magnitude of

the intensity I = I/I0, where I0 = 1 W m−2, the scaling factor

of the Rabi frequency can be written as


0 =
1

h̄

(

2I

ǫ0c

)1/2
Qzx

w0

= 5.14 × 10−5 (I )1/2

d
ŴS. (29)

We must make an appropriate choice of the beam waist and the

magnitude of the intensity of the field and ensure that 
0 ≪
ŴS , which is the condition for the validity of the Fermi Golden

Rule.

It is clear that for a weak intensity, we can obtain an

absorption rate Ŵi f lower than the spontaneous transition ŴS .

On the other hand, the Lorentzian density of states is chosen

FIG. 1. The normalized modified density function F (ω,ωa)

(unit, ωa) as a function of the ratio ω/ωa. The solid red curve

represents γ /ωa = 0.1; the dashed blue curve, γ /ωa = 0.05; and

the dash-dotted black curve, γ /ωa = 0.01. Note the tendency of

F (ω,ωa) to become a function proportional to a delta function as

the value of γ /ωa decreases.

with a width given by the spontaneous emission rate γ = ŴS ,

where ŴS ≪ ωa; thus the transition rate can be written as

Ŵi f = 9.64 × 10−23
I

(

ŴS

2π

)

ω2

(ω − ωa)2 + (ŴS/2)2
| fℓ,0(ρ)|2.

(30)

We assume a moderate laser intensity, I = 40 ×
104 W m−2 [36], and substituting for the relevant parameter

values we have for the absorption rate at ω = ωa

Ŵi f = 1.67 × 10−1ŴS| fℓ,0(ρ)|2, (31)

which suggests that the absorption rate is much lower than

the spontaneous rate, depending on the relative position of the

atom. In Fig. 2, we present the variation of the absorption rate

Ŵi f /ŴS as a function of the radial position of the atom ρ/λ for

different values of the beam waist, w0/λ = 2, 5, and 10. It is

clear that the maximum of the rate shifts away from the origin

with increasing beam waist w0, but the value of the maximum

is the same and is independent of w0. This observation can

be confirmed analytically as follows. Equation (26) shows

that Ŵi f is proportional to w
2
0 and to 
2

0, but 
2
0 is inversely

proportional to w
2
0 as shown by Eq. (28). Thus, apart from

constant factors, the relevant dependence of Ŵi f on w0 resides

essentially in the function | fℓ,p(ρ)|2 given by Eq. (18), which,

apart from constant factors for ℓ = 1 and p = 0, is as follows:

| f1,0(ρ/w0)|2 =
2ρ2

w
2
0

e−2ρ2/w2
0 . (32)

It is easy to show that the maximum of this function occurs at

the radial position ρ = w0/
√

2 and the value of the maximum

rate is 1/e, which is independent of wo, as shown in Fig. 2(a).
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FIG. 2. The variation with radial position of the quadrupole ab-

sorption rate Ŵi f /ŴS for �m = +1, (a) ℓ = 1, p = 0, and (b) ℓ = 1,

p = 1, and an atom in a Laguerre-Gaussian mode LGℓ,p. The solid

red line represents the case w0/λ = 2; the dashed blue line, w0/λ =
5; and the dash-dotted line, w0/λ = 10. Insets: The cylindrically

symmetric quadrupole rate for the case w0/λ = 5. Note that in (a) the

maxima of the absorption rates for plots with different w0’s have

the same value independent of w0. See the text for the derivation

confirming this observation.

However, for the case ℓ = 1 and p = 1, we have

| f1,1(ρ/w0)|2 = 2
ρ2

w
2
0

(

1 −
ρ2

w
2
0

)

e−2ρ2/w2
0 . (33)

There are two maxima of this function in this case as

in Fig. 2(b). These occur at the radial positions ρ =
w0

2

√

5 ±
√

17 and the maximum rates at these positions are,

once more, independent of wo.

VI. CONCLUSION

This paper has focused on the interaction of atoms with

light endowed with orbital angular momentum, where our

main aim was to evaluate the rate of transfer of OAM from

the light to the atoms in a dipole-forbidden but quadrupole-

allowed transition. Our work follows two significant develop-

ments. The first development concerns the latest experimental

confirmation by Giammanco et al. [17] following earlier ex-

periments [14–16] that OAM cannot be transferred to the

internal (electronic-type) degrees of freedom of the atom in

an electric dipole transition, though a transfer to the internal

degrees of freedom of atoms was predicted theoretically to

occur in the normally much weaker quadrupole transition [6].

The second development concerns the very recent consider-

able advances in the ability to carry out delicate measurements

in experiments targeted specifically at quadrupole transitions

involving light carrying OAM [37,39,40]. However, although

such experiments have demonstrated the involvement of op-

tical vortices with atoms in quadrupole transitions, the rate

of OAM transfer in a quadrupole transition has not, as far as

we know, been evaluated, so our task in this work involved

setting up the theory of optical vortex photon absorption by

an atom in a quadrupole-allowed transition. Our theory is

general and applies to any atom with a quadrupole transition,

as, for example, in Na and Rb atoms, both of which have

been the subject of investigations in connection with optical

vortex interaction with atoms. However, we proceeded to ap-

ply the theory to the well-known case of the Cs 6 2S1/2 →
5 2D5/2 quadrupole transition, which conforms with the re-

quirements for OAM conservation consistent with the rules

�m = 0,±1,±2.

Absorption for the case �m = +1 required an optical vor-

tex in the form of a Laguerre-Gaussian mode with ℓ = 1

and we have considered two modes, one with p = 0 and

the second with p = 1. We have found that the absorption

rate as a function of the radial position mirrors the intensity

distribution of the beam. For the doughnut mode the rates peak

at the atomic location of ρ = w0

√
ℓ/2, while for the case p =

1 the maxima are located at ρ/w0 = 1
2

√

2ℓ + 3 ±
√

8ℓ + 9.

Note that the maximum rate is a constant, i.e., inde-

pendent of w0, and merely shifts its position as w0

increases.

The maximum magnitude of the absorption rate in the

example we have considered for Cs quadrupole transitions,

assuming an intensity of about 105 W m−2, is of the order

of 6% of the quadrupole spontaneous emission rate. Such

a magnitude should not be beyond the capability of current

spectroscopic techniques.
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