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A Minimum Distance Lack-of-fit Test in a

Markovian Multiplicative Error Model1

Hira L. Koul and Indeewara Perera

Michigan State University and University of Sheffield

Abstract

This paper proposes a lack-of-fit test for a parametric specification of the conditional mean

function in a Markovian multiplicative error time series model. The proposed test is based

on a minimized distance obtained using an integral of the square of a certain marked residual

process. The asymptotic null distribution of the proposed test is model dependent and is not free

from the underlying nuisance parameters. We propose a bootstrap method to implement the

test, and establish that the proposed bootstrap method is asymptotically valid. A finite sample

simulation study that evaluates the empirical level and power is included. It compares the finite

sample performance of the proposed test with several competing tests from the literature.

1 Introduction

Multiplicative error models (MEMs) of Engle [6] provide a general framework for modeling non-

negative dynamic processes. This family of models generalizes the autoregressive conditional dura-

tion models introduced by Engle and Russell [8] to more general non–negative time series. These

models show good performance in capturing the stylized facts of various non-negative valued time

series, including, autoregressive financial duration processes in Engle and Russell [8], trading vol-

ume of orders in Manganelli [22], high-low range of asset prices in Chou [5], and realized volatility

in Engle and Gallo [7]. See Engle [6], Pacurar [24] and Hautsch [14] for several other applications

and some key methods of statistical inference in these models.

Proceeding a bit more precisely, let Yi, i ∈ Z := {0,±1, · · · } be a time series of non-negative ran-

dom variables (r.v.’s) having finite expectation and Hi−1 denote the information available through

time i − 1 for forecasting Yi. In the MEM of interest here the non-negative stationary time series

Yi, i ∈ Z obeys the model

Yi = E(Yi|Hi−1)εi, i ∈ Z,(1.1)

where εi, i ∈ Z are independent and identically distributed (i.i.d.) non-negative r.v.’s, E(ε0) = 1,

0 < Var(ε0) = σ2 <∞ and for each i ∈ Z, εi is independent of Hi−1.

In this paper we develop a minimum distance (m.d.) lack-of-fit test for fitting a Markovian

parametric model to the conditional mean function E(Yi|Hi−1) in the model (1.1). More specifically,

let Zi−1 be a known positive function of Yi−1, · · · , Yi−p, i ∈ Z, where p ≥ 1 is a given positive integer.

Let q be a given positive integer and ψ(z, ϑ), z ≥ 0, ϑ ∈ Θ ⊂ R
q be a family of positive functions.
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Our goal here is to test the lack of fit of the parametric specification ψ(Zi−1, θ) for the conditional

mean E(Yi|Hi−1) in (1.1), i ∈ Z; i.e, to test the hypothesis

(1.2) H0 : E[Yi | Hi−1] = ψ(Zi−1, θ), ∀ i ∈ Z, for some θ ∈ Θ, a.s.,

against the alternativeH1 : H0 is not true, based on Y−p, Y1−p, · · · , Yn obtained from an observable

stationary process {Yi} obeying (1.1).

It is implicitly assumed that the parameter space Θ is such that when θ ∈ Θ is true under

H0, the above time series Yi, i ∈ Z obeying (1.1)–(1.2) is stationary. An example of this model,

with Zi−1’s different from Yi−1’s, is provided in Example 2 of Perera and Koul [25], where the time

series {Yi} consists of daily annualized realized volatility measures, constructed from a series of

intraday spot price data for the S&P500 index. More precisely, they modelled the series {Yi} in the

form (1.1)–(1.2) by taking Zi−1 =
∑p

t=1wtYi−t, a weighted sum of past realized volatilities with

known {wi} and p. Other examples of this model, with Zi−1 = Yi−1, are discussed in Koul, Perera

and Silvaphulle [19] and Guo and Li [12], amongst others.

Koul, Perera and Balakrishna [18] (KPB) proposed m.d. estimators for θ in the model (1.1)–

(1.2) based on the integrated square of the marked residual empirical process

Un(z, ϑ) := n−1/2
n∑

i=1

( Yi
ψ(Zi−1, ϑ)

− 1
)
I(Zi−1 ≤ z), z ≥ 0, ϑ ∈ Θ,

where I is the indicator function. A motivation for basing inference in the above MEM on an

analog of the process Un(z, ϑ), z ≥ 0, ϑ ∈ Θ appears in Koul et al. [19], where the authors proposed

tests for testing H0 against H1, for the case Zi−1 = Yi−1, i ∈ Z, based on supz≥0 |Un(z, θ̂)| with
θ̂ being a n1/2-consistent estimator of θ, under H0. In a simulation study, the performance of

this test in terms of the empirical level and power was found to be significantly superior to that of

Box–Pierce–Ljung’s Portmanteau test (Ljung and Box [20]), Lagrange Multiplier (LM) tests (Meitz

and Teräsvirta [23]), and a generalized moment M test (Chen and Hsieh [4]). In this simulation

study, θ̂ was taken to be the quasi maximum likelihood estimator based on the standard exponential

error distribution. The approach of Koul et al. [19] has its roots in Stute [27], Stute, Thies and

Zhu [28] and Koul and Stute [17].

In the current paper, we propose an alternative method for testing H0 against H1, based on a

particular minimized distance with its large values being significant. To introduce this test statistic,

let Gn(z) := n−1
∑n

i=1 I(Zi−1 ≤ z), denote the empirical d.f. of Zi−1, 1 ≤ i ≤ n. Define

(1.3) Mn(ϑ) :=

∫
U2
n(z, ϑ)dGn(z), θ̂n := argminϑMn(ϑ), ϑ ∈ Θ.

The m.d. test statistic of our interest is given by Mn(θ̂n). The m.d. estimator θ̂n in (1.3) was

proposed in KPB. This estimator was shown to have desirable finite sample properties, in particular,

in comparison with the quasi maximum likelihood estimator for the standard exponential errors.

Furthermore, θ̂n is also root-n consistent and asymptotically normal under fairly general conditions,

provided that the innovation has unit mean and a finite second moment, even if the true innovation

distribution is unknown.
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In this paper we derive the limiting null distribution of Mn(θ̂n), which turns out to be model

dependent and not free from the underlying nuisance parameters. Hence critical values to implement

the test even for the large samples cannot be tabulated for general use. As an alternative, we propose

a bootstrap method to implement the test. The paper contains the proof of the asymptotic validity

of the proposed bootstrap testing procedure. In a finite sample comparison, the new test dominates

some of the competing tests, both in terms of empirical level and power, and complements the test

proposed by Koul et al. [19] for model validation in Markovian MEMs.

The rest of this paper is structured as follows. Section 2 presents the regularity conditions

needed for deriving the asymptotic null distribution of the test statistic and outlines the bootstrap

algorithm for implementing the lack-of-fit test. A proof of the asymptotic validity of the bootstrap

test and the needed additional regularity conditions are presented in Section 4. Section 3 contains

the findings of a simulation study, where we evaluate the empirical level and power of the proposed

test in comparison with several competing tests from the literature. Section 5 concludes the paper.

2 Asymptotic null distribution of the test statistic

In this section we describe some sufficient conditions under which the asymptotic null distribution

of the m.d. test statistic Mn(θ̂n) is obtained. Let ‖ · ‖ denote the Euclidean norm and Nn(b) :=

{ϑ ∈ Θ, n1/2‖ϑ− θ‖ ≤ b}, 0 < b <∞. The following assumptions are needed for deriving the large

sample null distribution of Mn(θ̂n). They are the same as used in KPB for deriving the asymptotic

distribution of θ̂n.

C.1. There exists a positive constant C <∞ such that infz≥0,ϑ∈Θ ψ(z, ϑ) ≥ C > 0.

C.2. There exists a q-vector ψ̇(z, ϑ) such that E‖ψ̇(Z0, θ)‖2 <∞ and for every 0 < b <∞,

sup
1≤i≤n, ‖t‖≤b

√
n|ψ(Zi−1, θ + n−1/2t)− ψ(Zi−1, θ)− n−1/2t′ψ̇(Zi−1, θ)| = op(1).

C.3. ∀ ǫ > 0, 0 < η <∞, ∃Nǫ,η, 0 < b ≡ bǫ,η <∞, such that ∀n > Nǫ,η,

P
(

inf
‖t‖>b

Mn(θ + n−1/2t) ≥ η
)
≥ 1− ǫ.

The assumptions (C.1) and (C.2) are used to show that the defining dispersion Mn(ϑ) is AULQ

(asymptotically uniformly locally quadratic) in n1/2(ϑ − θ) for ϑ ∈ Nn(b), for every 0 < b < ∞,

while assumption (C.3) is used to show that ‖n1/2(θ̂n − θ)‖ = Op(1).

Recall that for given 0 < b < ∞, any ‖ϑ‖ > b can be written as ϑ = re, for some unit vector

e ∈ R
q, ‖e‖ = 1 and a real number r such that |r| > b. Lemma 2.1 of KPB shows that (C.1), (C.2)

and the following condition (2.1) imply (C.3).

ψ(z, θ + n−1/2re) is monotonic in r, ∀ z ≥ 0 and ∀ e ∈ R
q, ‖e‖ = 1.(2.1)

Let ϕ(z) := ψ̇(z, θ)/ψ(z, θ). Assumptions (C.1) and (C.2) imply that

E
(‖ψ̇(Z0, θ)‖2
ψj(Z0, ϑ)

)
≤ C−jE‖ψ̇(Z0, θ)‖2 <∞, ∀ j ≥ 1,(2.2)

E‖ϕ(Z0)‖2 < C−2E‖ψ̇(Z0, θ)‖2 <∞.
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To proceed further, we need some more notation as in KPB. We write Un(z) for Un(z, θ), where

θ is as in H0. Let G denote the d.f. of Z0 and let

Ψn(z) := n−1
n∑

i=1

ϕ(Zi−1) I(Zi−1 ≤ z), Ψ(z) := E
(
ϕ(Z0)I(Z0 ≤ z)

)
,

M̃n(θ) :=

∫
U2
ndG, Vn :=

∫
Un(z)Ψ(z)dG(z), G :=

∫
Ψ(z)Ψ(z)′dG(z),

Qn(t) :=

∫ (
Un(z)− t′Ψ(z)

)2
dG(z) = M̃n(θ)− 2t′Vn + t′Gt,

t̃n := argmintQn(t), ξ(x) :=

∫

z≥x
Ψ(z)dG(z), x ≥ 0.

From KPB we obtain the following. Let Z01, Z02 denote independent copies of Z0. Then, by

the Fubini Theorem,

G =

∫
E
(
ϕ(Z0)I(Z0 ≤ z)

)
E
(
ϕ(Z01)

′I(Z01 ≤ z)
)
dG(z) = E

(
ϕ(Z0)ϕ(Z01)

′
[
1−G

(
(Z0 ∨ Z01)−

)])
.

The Fubini Theorem, G being a d.f. and (2.2) imply

ξ(x) =

∫

z≥x
E
(
ϕ(Z0)I(Z0 ≤ z)

)
dG(z) = E

(
ϕ(Z0)

[
1−G

(
(Z0 ∨ x)−

)])
,

sup
x≥0

‖ξ(x)‖2 ≤ E
(
‖ϕ(Z0)‖2

)
<∞.

Hence, Σ := E(ξ(Z0)ξ(Z0)
′) is well defined and one can rewrite

Σ = E
{
E
(
ϕ(Z0)ϕ(Z01)

′[1−G((Z0 ∨ Z02)−)][1−G((Z01 ∨ Z02)−)]
∣∣Z02

)}
.

Moreover,

Vn := n−1/2
n∑

i=1

(εi − 1)

∫
I(Zi−1 ≤ z)Ψ(z)dG(z) = n−1/2

n∑

i=1

(εi − 1)ξ(Zi−1),

EVn ≡ 0, E(VnV
′
n) ≡ σ2E(ξ(Z0)ξ(Z0)

′) = σ2Σ.

The following lemma describes the AULQ property of Mn(θ + n−1/2t) in ‖t‖ ≤ b and obtains

that n1/2(θ̂n − θ) is bounded in probability under H0, which is used to derive the limiting null

distribution of Mn(θ̂n). It appears as Theorem 2.1 in KPB.

Lemma 2.1. Suppose that H0 holds, and the assumptions (C.1) and (C.2) are satisfied. Then, the

following AULQ result holds.

sup
‖t‖≤b

∣∣Mn(θ + n−1/2t)−Qn(t)
∣∣ = op(1), ∀ 0 < b <∞.(2.3)

If, in addition, the condition (C.3) holds, then ‖n1/2(θ̂n − θ)‖ = Op(1). If, further G is positive

definite, then t̃n = G−1Vn and ‖n1/2(θ̂n − θ)− t̃n‖ = op(1).

We also need the following lemma, where B denotes the standard Brownian motion on [0,∞).
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Lemma 2.2. Suppose that H0 holds. Then, under the above set up, Un converges weakly to σB ◦G,
in Skorokhod space D[0,∞] and uniform metric.

The proof of this lemma is similar to that of Lemma 2.2 in Balakrishna, Koul, Sakhanenko and

Ossiander [1], and hence is omitted. In particular it implies Mn(θ) ≤ supz≥0 U
2
n(z) = Op(1).

The following theorem gives the asymptotic null distribution of the test statistic Mn(θ̂n).

Theorem 2.1. Suppose that H0 holds, and assumptions (C.1), (C.2), and (C.3) are satisfied.

Further assume that G is positive definite. Then, Mn(θ̂n) →D σ2Z, where the r.v.

Z :=

∫ 1

0
B2(u)du−

∫ 1

0
B(u)Ψ(G−1(u))′du G−1

2

∫ 1

0
B(u)Ψ(G−1(u))du.

Proof. Under H0 and the assumptions (C.1) and (C.2), by using (2.3) of Lemma 2.1, we obtain

|Mn(θ̂n)−Qn(t̃n)| = op(1). But t̃n = G−1Vn implies that

Qn(t̃n) = M̃n(θ)− 2V ′
nG−1Vn + V ′

nG−1GG−1Vn

=

∫
U2
ndG−

∫
UnΨ

′dG G−1

∫
UnΨdG.

Hence, by Lemma 2.2, the continuous mapping theorem and G being continuous, we obtain

Mn(θ̂n) →D σ2
[ ∫

B2(G(z))dG(z)−
∫
B(G(z))Ψ(z)′dG(z) G−1

∫
B(G(z))Ψ(z)dG(z)

]
= σ2Z. �

A consistent estimator of σ2, under H0, is given by

s2n := n−1
n∑

i=1

({
n−1

n∑

t=1

ε̂t

}−1
ε̂i − 1

)2
, ε̂i = Yi/ψ(Zi−1, θ̂n), i = 1, · · · , n.

Let Tn := s−2
n Mn(θ̂n). For a given 0 < α < 1, let zα := inf{z ≥ 0 : P (Z ≤ z) ≥ 1 − α}. Then

the asymptotic level of the test that rejects H0, in favor of H1, whenever Tn > zα, is α. However,

the distribution of Z is model dependent and is not free from the underlying nuisance parameters

(G, θ). Therefore, we cannot compute zα for general use (0 < α < 1). To implement the test for

the large samples, we propose the following bootstrap testing procedure.

2.1 The bootstrap algorithm for implementing the Mn(θ̂n)-test

To carry out the resampling under the null hypothesis we need to first scale the residuals as

(2.4) ε̃i =
{
n−1

n∑

t=1

ε̂t

}−1
ε̂i, ε̂i = Yi/ψ(Zi−1, θ̂n), i = 1, · · · , n,

so that the empirical distribution of {ε̃i}ni=1 has mean 1.

The bootstrap algorithm for implementing the lack-of-fit test based on Mn(θ̂n) is as follows:

Step 1: Compute {θ̂n, Tn} for the realized sample Y−p, Y1−p, · · · , Yn.
Step 2: Compute ε̃i, i = 1, · · · , n as in (2.4). Then draw a random sample (with replacement) of
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size n+p+1, say {ε∗−p, ε
∗
1−p, · · · , ε∗n}, from {ε̃i; 1 ≤ i ≤ n}. This ensures that n+p+1 independent

observations are generated from the empirical distribution function F̃n(·) := n−1
∑n

i=1 I(ε̃i ≤ ·).
Step 3: Generate the bootstrap sample {Y ∗

−p, Y
∗
1−p, · · · , Y ∗

n } at (θ̂n, F̃n) recursively, by using the

model equation

Y ∗
i = ψ∗

i (Z
∗
i−1, θ̂n)ε

∗
i , i = −p, 1− p, · · · , n,

conditional on starting values, e.g., Y ∗
−p−t = Ȳ , t = 1, 2, · · · , p, where Ȳ := n−1

∑n
i=1 Yi. Recall

that Z∗
i−1 can be computed as the known positive function of Y ∗

i−1, · · · , Y ∗
i−p, i = −p, 1− p, · · · , n.

Step 4: Based on {Y ∗
−p, Y

∗
1−p, · · · , Y ∗

n }, compute θ̂∗n the bootstrap analog of θ̂n.

Step 5: Compute the bootstrap test statistic T ∗
n := (s∗n)

−2M∗
n(θ̂

∗
n), where s

∗
n and M∗

n(ϑ) are the

bootstrap analogs of sn and Mn(ϑ), respectively.

Let P ∗
n denote the probability measure induced by the above bootstrap, conditional on Y =

(Y−p, Y1−p, · · · , Yn)′ and z∗α denote the α-level critical value of T ∗
n under P ∗

n , i.e.,

(2.5) z∗α := inf{z ≥ 0 : P ∗
n(T

∗
n ≤ z) ≥ 1− α}, 0 < α < 1.

Since the distribution of T ∗
n is not available, to approximate z∗α, repeat steps 2–5 a large number

of times, say for k = 1, · · · ,K, and compute the bootstrap statistic, say T
∗(k)
n , for each k. Then,

approximate z∗α by the value z∗Kα that satisfies

(2.6)
K∑

k=1

I
(
T ∗(k)
n > z∗Kα

)
= [αK],

where [αK] denotes the integer part of αK. The bootstrap test rejects H0 at level α if Tn > z∗Kα .

By the Glivenko–Cantelli theorem supz
∣∣K−1

∑K
k=1 I

(
T
∗(k)
n > z

)
− P ∗

n(T
∗
n > z)

∣∣ → 0, P ∗
n -a.s., and

hence z∗α can be approximated by z∗Kα , as accurately as desired, by selecting K large enough.

3 Simulation study

In this section we present the findings of a Monte Carlo simulation study that evaluates the finite

sample performance of the above proposed bootstrap lack-of-fit test and compare it with several

competing tests, namely, the test proposed by Koul et al. [19], which we denote by KPS, the

Ljung-Box Q test (Ljung and Box [20]), a LM test (Meitz and Teräsvirta [23]), and the generalized

moment M test of Chen and Hsieh [4]. The Ljung-Box Q test, although not originally designed for

MEMs, is routinely applied for evaluating MEMs; see, Pacurar [24] and Hautsch [14]. This test

evaluates the lack-of-fit of a given MEM by testing the significance of the serial dependence of

the residuals estimated from the fitted model. The other three aforementioned tests are designed

specifically for MEMs.

Computational formula. Here we provide a computational formula for Mn(θ̂n) as given in

KPB. We use this in the computation of the test statistic Tn := s−2
n Mn(θ̂n). Order Zi−1, 1 ≤ i ≤ n

as Z(0) ≤ Z(1) ≤ · · · ≤ Z(n−1). Let Y
†
i denote the Yi corresponding to Z(i−1), for 1 ≤ i ≤ n. Then,

using the fact Gn

(
Z(i−1) −

)
= (i− 1)/n, for all 1 ≤ i ≤ n, we obtain

6



Mn(ϑ) = n−2
n∑

i=1

(
n− i+ 1

)( Y †
i

ψ(Z(i−1), ϑ)
− 1

)2

+ 2n−2
n∑

i=1

n∑

j=i+1

(
n− j + 1

)( Y †
i

ψ(Z(i−1), ϑ)
− 1

)( Y †
j

ψ(Z(j−1), ϑ)
− 1

)
.

Design of the simulation study. In this simulation study, we use q = 2 and Zi−1 = Yi−1,

and test the null hupothesis

H0 : ψ(Zi−1; θ) = θ1 + θ2Zi−1, for some θ1 > 0, 0 ≤ θ2 < 1, θ = (θ1, θ2)
′,(3.1)

against the alternative H1 : Not H0. Since θ ∈ Θ := (0,∞) × [0, 1) in (3.1), the process under

H0 is stationary. Similar specifications for the conditional mean have been previously considered

in Koul et al. [19], Guo and Li [12] and KPB in the MEM setting. Also note that the model

ψ(z, ϑ) = ϑ1 + ϑ2z satisfies the assumptions (C.1), (C.2) and (2.1) trivially.

For the data generating processes to evaluate the level performances of the tests, we consider

(3.2) MEM(1, 0) : Yi = τiεi, τi = ψ(Yi−1, θ) = 0.2 + 0.1Yi−1,

For the error distribution, we consider the following families of densities.

1. Exponential [E]: f(x) := e−x, x > 0.

2. Gamma [G]: f(x) := aaΓ(a)−1xa−1e−ax, x > 0, a > 0.

3. Weibull [W]: f(x) = (κ/c)(x/c)κ−1 exp{−(x/c)κ}, κ > 0, c = [Γ(1 + κ−1)]
−1

.

4. Generalized gamma [GG]:

f(x) = c{σΓ(a)}−1(x/σ)ac−1 exp{−(x/σ)c}, a, c > 0, σ = {Γ(a+ c−1)}−1Γ(a).

5. Burr [B]: f(x) = (a/σ)(x/σ)a−1[1 + b(x/σ)a]−(1+b−1), a > b > 0, and

σ = {Γ(1 + a−1)Γ(b−1 − a−1)}−1b(1+a−1)Γ(1 + b−1).

Note that the above exponential and gamma distributions a priori satisfy the model assumption

that E(ε) = 1. The restriction imposed on the parameters in the other three families of the above

distributions ensure the satisfaction of this requirement.

Some important theoretical properties and applications of these families of error distributions,

in the context of MEMs,are discussed in Engle and Russell [8], Grammig and Maurer [11], Lunde

[21] and Engle and Gallo [7].

To evaluate the empirical powers of the tests, we consider data generating processes based on

the following Markov MEM as considered in Koul et al. [19]:

(3.3) M(ω, β, γ) : Yi = τiεi, τi = ω + βYi−1 + γ
√
Yi−1.

The data are generated from M(0.1, 0.2, 0.3), M(0.1, 0.2, 0.5) and M(0.1, 0.2, 0.7) models while

considering standard exponential [E] and generalized gamma [GG] as the error distribution.
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For the sample sizes, n = 200, 500 and 1000 are considered. To ensure that the effect of

initialization is negligible, in each Monte Carlo replication, we generate (n+ℓ+1) observations with

ℓ = 300, discard the first ℓ observations and use the remaining n+1 observations as Y0, Y1, · · · , Yn.
For each replication and data generating process, we first compute the m.d. estimator θ̂n and

Mn(θ̂n). The optimization procedure to implement the constrained minimization problem in (1.3)

is carried out by using the fmincon function in Matlab. To implement the proposed m.d. test we

use the bootstrap algorithm outlined in Section 2.1, while adopting the ‘Warp-Speed’ Monte Carlo

method of Giacomini, Politis and White [10] to reduce the computational burden. More precisely,

as formally proved by Giacomini et al. [10], since the test statistic satisfies (4.1) below, it is sufficient

to generate only one bootstrap sample in each Monte Carlo replication, say r = 1, . . . , R, and then

evaluate the test against the empirical distribution of the R bootstrap statistics T
∗(1)
n , . . . , T

∗(R)
n .

To this end, at any given level α, 0 < α < 1, the empirical rejection rate of the null hypothesis, say

αn,R, is computed as

αn,R ≡ R−1
∑R

r=1 I
{
T
(r)
n > z

(n,R)
α

}
, z

(n,R)
α ≡ inf

{
z ≥ 0 : R−1

∑R
r=1 I(T

(∗r)
n ≤ z) ≥ 1− α

}
,

where T
(r)
n denotes the test statistic at the rth Monte Carlo replication, r = 1, . . . , R.

Note that, in the standard Monte Carlo bootstrap, at each Monte Carlo replication, one gen-

erates K bootstrap samples and compute the α-level bootstrap critical value satisfying (2.6), say

z
∗(K,r)
α , r = 1, . . . , R, and then compute the empirical rejection rate of the null hypothesis as

α
(K)
n,R ≡ R−1

∑R
r=1 I

{
T
(r)
n > z

∗(K,r)
α

}
.

Clearly one can compute αn,R much more efficiently than computing α
(K)
n,R , because in the compu-

tation of αn,R the bootstrap statistic is only computed R times.

It is also of interest to give an explanation as to why it is reasonable to use αn,R in place of α
(K)
n,R .

To this end, for the rth Monte Carlo replication, r = 1, . . . , R, let z
∗(r)
α denote the α-level critical

value (2.5) from the bootstrap distribution of T
(∗r)
n . Then, as outlined in Section 2.1, the critical

value z
∗(r)
α can be approximated by z

∗(K,r)
α , as accurately as desired, by selecting K large enough,

r = 1, . . . , R. By this fact and Theorem 1 and Corollary 2 in Giacomini et al. [10], |αn,R − α
(K)
n,R |

can be made arbitrarily small with large probability for all large enough n,R and K.

The Ljung-Box Q statistic of a lag length λ is LBQ(λ) = n(n + 2)
∑λ

k=1 (n− k)−1ρ2k, where

ρ2k is the squared sample autocorrelation of the residuals at lag k. As in Engle and Russell [8] we

use the χ2
λ distribution to obtain the critical values for LBQ(λ). The other three aforementioned

tests are implemented as in Koul et al. [19] by using the critical values given by their respective

asymptotic null distributions. To evaluate the empirical level and power of the tests we compute

the frequency of times the null hypothesis is rejected by each test over the R = 2000 Monte Carlo

replications, when the data generating process (DGP) is given by H0 and when DGP is given by

the chosen three alternatives, respectively.

Summary of the results. The simulation findings are given in Tables 1 and 2. In these

tables, KPS, MDT, LBQ(λ), LM and M denote, respectively, the Koul et al. [19] test, the proposed
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m.d. test of this paper, the Ljung-Box Q test with lag length λ, the Lagrange Multiplier test and the

generalized moment test. Also, F denotes the d.f. of ε. Note that, the DGP based on MEM(1,0)

in (3.2) is under the null hypothesis, whereas the DGP’s based on M(ω, β, γ) in (3.3) are under

the alternative hypothesis.

From Table 1 we see that the proposed MDT test entails the best overall performance in terms

of the empirical level among all the competing tests considered in the simulation study. Although

the empirical level of the KPS test is significantly better than that of LBQ(λ), LM and M tests

for all the sample sizes, its performance is not as good as that of the MDT test. In particular,

the empirical level of the MDT test is closer to the nominal level than that of the KPS test for a

majority of the chosen error distributions and for both chosen sample sizes.

From Table 2 we see that for the standard exponential error distribution, the empirical power

of the MDT test is significantly higher than that of the other six tests, for each DGP and sample

sizes, while for the generalized-gamma error distribution, the KPS test performs significantly better

than the MDT test, for all sample sizes considered. But, the MDT test outperform each of the

LBQ(λ), LM and M tests for both exponential and generalized-gamma error distributions.

Table 1: Empirical level: Percentage of times H0 is rejected when the DGP is MEM(1,0) of (3.2), the model

under H0.

α(%) F KPS MDT LBQ(5) LBQ(10) LBQ(15) LM M

DGP: MEM(1,0), n: 200

5 E 2.5 4.4 1.4 2.8 4.1 2.4 21.8

W 3.0 4.3 2.8 3.4 3.7 22.0 22.8

G 3.6 3.1 2.0 2.2 3.2 0.4 22.1

GG 2.9 4.4 2.8 3.6 3.3 7.7 22.1

B 2.6 3.9 2.5 3.3 3.8 6.1 19.9

10 E 6.5 9.2 4.0 5.5 7.5 7.5 27.2

W 6.4 8.7 4.9 6.2 5.8 30.7 26.6

G 6.4 6.6 4.8 6.3 7.6 1.4 28.5

GG 5.9 9.0 4.7 6.4 7.5 14.3 26.6

B 5.6 8.7 4.6 5.8 6.4 11.5 24.6

DGP: MEM(1,0), n: 500

5 E 4.9 4.4 2.9 2.9 2.9 5.1 8.2

W 4.4 5.3 4.1 4.2 4.3 21.9 9.6

G 4.5 3.8 2.3 4.2 3.7 0.3 10.9

GG 3.7 3.4 2.6 3.5 3.7 8.6 9.9

B 3.9 4.3 2.6 3.5 3.5 7.4 9.4

10 E 8.4 9.4 5.0 7.8 7.0 9.2 13.2

W 8.1 10.8 7.0 7.8 7.5 29.6 13.8

G 10.2 8.1 5.7 7.0 8.0 1.6 17.2

GG 7.3 8.4 5.0 6.0 6.7 15.5 14.7

B 6.6 9.2 4.5 5.5 6.9 14.0 13.7
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Table 2: Empirical power: Percentage of times H0 is rejected when the DGP’s are under the alternative

M(ω, β, γ) in (3.3).

n α(%) F KPS MDT LBQ(5) LBQ(10) LBQ(15) LM M

DGP: M(0.1, 0.2, 0.3)

500 5 E 15.5 18.1 3.4 4.1 5.0 0.0 4.4

10 E 26.3 28.1 6.5 7.9 8.6 0.3 10.7

1000 5 E 28.2 37.0 3.1 4.4 4.4 0.1 8.8

10 E 42.2 47.1 5.0 7.6 9.2 0.3 14.7

500 5 GG 33.0 14.4 0.2 2.8 3.4 3.4 9.8

10 GG 45.0 20.8 1.0 6.6 5.0 6.0 16.6

1000 5 GG 54.4 24.2 0.6 4.8 4.8 5.2 12.4

10 GG 68.0 33.8 3.6 10.8 8.4 9.6 19.4

DGP: M(0.1, 0.2, 0.5)

500 5 E 26.7 39.2 3.3 3.7 4.8 0.1 7.6

10 E 43.8 50.2 6.5 7.5 9.0 0.4 13.2

1000 5 E 55.1 72.7 5.4 6.4 6.2 0.1 8.2

10 E 70.1 79.3 9.8 11.4 11.8 1.2 14.8

500 5 GG 45.6 22.5 1.0 2.8 3.4 3.6 10.8

10 GG 59.6 31.2 2.2 6.8 5.0 6.6 16.8

1000 5 GG 75.2 48.6 3.6 6.0 5.4 6.2 12.6

10 GG 85.2 58.5 7.2 12.0 10.6 10.8 19.8

DGP: M(0.1, 0.2, 0.7)

500 5 E 40.4 48.9 4.6 5.8 5.7 0.2 7.5

10 E 56.4 60.4 10.3 11.3 10.9 0.5 13.1

1000 5 E 76.5 85.6 7.6 7.3 6.3 0.3 8.9

10 E 86.8 90.2 14.1 13.2 14.0 2.1 16.0

500 5 GG 53.0 24.6 1.6 2.4 3.4 3.6 11.0

10 GG 69.8 39.2 3.6 6.8 5.2 6.6 16.2

1000 5 GG 84.0 60.1 6.0 7.6 6.6 6.6 11.6

10 GG 91.0 72.1 15.4 14.0 12.6 11.8 18.4
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4 Asymptotic validity of the bootstrap test

In this section we establish the asymptotic validity of the above proposed bootstrap test. To this

end, let Op∗(1), in probability, op∗(1), in probability, and E∗ denote the usual stochastic orders of

magnitude and expectation, respectively, with respect to the bootstrap probability measure P ∗
n .

To establish the asymptotic validity of bootstrap we need to show that the conditional distri-

bution, given Y = (Y−p, Y1−p, · · · , Yn)′, of the bootstrap statistic T ∗
n , consistently estimates the

distribution of Z under H0. That is, T
∗
n →D∗ Z, in probability, under H0, where “→D∗” denotes

(4.1) P ∗
n [T

∗
n ≤ z | Y] →p T (z) as n→ ∞,

at each continuity point z of T (z) := Pr(Z ≤ z). Moreover, under the alternative H1, T
∗
n should

be of order Op∗(1), in probability, to have good asymptotic power properties.

First, we introduce some additional notation and assumptions. Let M∗
n(ϑ), θ̂

∗
n, G

∗
n(z), U

∗
n(z, ϑ)

denote the bootstrap analogs of Mn(ϑ), θ̂n, Gn(z), Un(z, ϑ), z ≥ 0, ϑ ∈ Θ defined by

M∗
n(ϑ) :=

∫
{U∗

n(z, ϑ)}2dG∗
n(z), θ̂∗n := argminϑM

∗
n(ϑ), ϑ ∈ Θ,(4.2)

G∗
n(z) := n−1

n∑

i=1

I(Z∗
i−1 ≤ z), z ≥ 0,

U∗
n(z, ϑ) := n−1/2

n∑

i=1

( Y ∗
i

ψ(Z∗
i−1, ϑ)

− 1
)
I(Z∗

i−1 ≤ z), z ≥ 0, ϑ ∈ Θ.

Consider the following additional assumptions.

B.1. ∃N ∈ N such that supn≥N E∗‖ψ̇(Z∗
0 , θ̂n)‖2 <∞, a.s. and

sup1≤i≤n, ‖t‖≤b

√
n|ψ(Z∗

i−1, θ̂n + n−1/2t)− ψ(Z∗
i−1, θ̂n)− n−1/2t′ψ̇(Z∗

i−1, θ̂n)| = op∗(1),

in probability, for every 0 < b <∞.

B.2. Under the null hypothesis H0, E
∗[G∗

n(z)] = Gn(z) + op(1), z ≥ 0, and for every relatively

compact set U ⊂ D[0,∞], supy≥0,α∈U

∣∣ ∫ y
0 α(x)[dG

∗
n(x)− dGn(x)]

∣∣ = op∗(1), in probability.

B.3. ∀ ǫ > 0, 0 < η <∞, ∃Nǫ,η, 0 < b ≡ bǫ,η <∞, such that ∀n > Nǫ,η,

Pr

[
P ∗
n

(
inf

‖t‖>b
M∗

n(θ̂n + n−1/2t) ≥ η
)
≥ 1− ǫ

]
≥ 1− ǫ,

The assumptions (B.1) and (B.3) are the bootstrap analogs of (C.2) and (C.3), respectively.

Let T ∗
n(t) :=M∗

n(θ̂n + n−1/2t), t ∈ R
q. We shall write U∗

n(z) for U
∗
n(z, θ̂n). Note that

U∗
n(z) = n−1/2

n∑

i=1

(ε∗i − 1)I(Z∗
i−1 ≤ z), E∗U∗

n(z) ≡ 0, E∗
(
U∗
n(z)

)2 ≡ s2nE
∗
(
G∗

n(z)
)
.

Because s2n = σ2 + op(1), E
∗[G∗

n(z)] = Gn(z) + op(1), and supz≥o |Gn(z) − G(z)| = op(1), the

continuity of B implies that analogous to Lemma 2.2, that conditionally, given the original sample,

(4.3) U∗
n converges weakly to σB(G), in probability,
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in Skorokhod space and uniform metric. Hence

T ∗
n(0) =M∗

n(θ̂n) ≤ sup
z≥0

(
U∗
n(z)

)2
= Op∗(1), in probability.(4.4)

This fact is useful in showing that ∆∗
n := n1/2(θ̂∗n − θ̂n) = Op∗(1), in probability, which in turn is

needed for deriving the asymptotic distribution of T ∗
n .

Let ϕ(z, ϑ) := ψ̇(z, ϑ)/ψ(z, ϑ), ϑ ∈ Θ. Then as in Section 2, by (C.1) and (B.1),

sup
n≥N

E∗
(‖ψ̇(Z∗

0 , θ̂n)‖2
ψj(Z∗

0 , ϑ)

)
<∞, j ≥ 1, sup

n≥N
E∗‖ϕ(Z∗

0 , θ̂n)‖2 <∞, a.s.(4.5)

To proceed further, let

Ψ∗
n(z) := n−1

n∑

i=1

ϕ(Z∗
i−1, θ̂n) I(Z

∗
i−1 ≤ z), Ψ∗(z) := E∗

(
ϕ(Z∗

0 , θ̂n)I(Z
∗
0 ≤ z)

)
,

M̃∗
n(θ̂n) :=

∫ (
U∗
n

)2
dG, V ∗

n :=

∫
U∗
n(z)Ψ

∗(z)dG(z), G∗ :=

∫
Ψ∗(z)Ψ∗(z)′dG(z),

Q∗
n(t) :=

∫ (
U∗
n(z)− t′Ψ∗(z)

)2
dG(z) = M̃∗

n(θ̂n)− 2t′V ∗
n + t′G∗t,

t̃∗n := argmintQ
∗
n(t), ξ∗(x) :=

∫

z≥x
Ψ∗(z)dG(z), x ≥ 0.

The Fubini Theorem, G being a d.f. and (4.5) imply

ξ∗(x) =

∫

z≥x
E∗

(
ϕ(Z∗

0 , θ̂n)I(Z
∗
0 ≤ z)

)
dG(z) = E∗

(
ϕ(Z∗

0 , θ̂n)
[
1−G

(
(Z∗

0 ∨ x)−
)])

,

sup
x≥0, n≥N

‖ξ∗(x)‖2 ≤ sup
n≥N

E∗
(
‖ϕ(Z∗

0 , θ̂n)‖2
)
<∞, a.s.

Hence Σ∗ := E∗(ξ∗(Z∗
0 )ξ2(Z

∗
0 )

′) is well defined. Further, for two independent copies of Z∗
0 , say Z

∗
01

and Z∗
02, one can rewrite

Σ∗ = E∗
{
E∗

(
ϕ(Z∗

0 , θ̂n)ϕ(Z
∗
01, θ̂n)

′
[
1−G

(
(Z∗

0 ∨ Z∗
02)−

)][
1−G

(
(Z∗

01 ∨ Z∗
02)−

)]∣∣∣Z∗
02

)}
.

Moreover,

V ∗
n := n−1/2

∑n
i=1(ε

∗
i − 1)

∫
I(Z∗

i−1 ≤ z)Ψ∗(z)dG(z) = n−1/2
∑n

i=1(ε
∗
i − 1)ξ∗(Z∗

i−1),(4.6)

E∗V ∗
n ≡ 0, E[V ∗

n (V
∗
n )

′] ≡ s2nE
∗(ξ∗(Z∗

0 )ξ
∗(Z∗

0 )
′) = s2nΣ

∗.

Proposition 4.1. Suppose that H0 holds, and (C.1) and (B.1) are satisfied. Then,

sup
‖t‖≤b

∣∣M∗
n(θ̂n + n−1/2t)−Q∗

n(t)
∣∣ = op∗(1), in probability, ∀ 0 < b <∞.(4.7)

If, in addition, (B.3) also holds, then ‖n1/2(θ̂∗n − θ̂n)‖ = Op∗(1), in probability. If, further G∗ is

positive definite, then t̃∗n = (G∗)−1V ∗
n and ‖n1/2(θ̂∗n − θ̂n)− t̃∗n‖ = op∗(1), in probability.

In the proof of Proposition 4.1 we make use of the following preliminary result given in KPB.
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Lemma 4.1. Let U be a relatively compact subset of D[0,∞]. Let µn, µ be a sequence of random

nondecreasing right continuous functions on [0,∞) having left limits and such that µn(∞)+µ(∞) <

∞, a.s., and supx≥0

∣∣µn(x)− µ(x)
∣∣ → 0, a.s.. Then

sup
y≥0,α∈U

∣∣∣
∫ y

0
α(x)[dµn(x)− dµ(x)]

∣∣∣ →p 0.

Proof of Proposition 4.1. The proof of (4.7) is given below. Since V ∗
n is a vector of the sums

of martingale difference arrays satisfying (4.6), by extending the arguments in the proof of The-

orem 5.4.1 of Koul [15] to a triangular array setup, one verifies that (4.4), (B.3) and (4.7) imply

‖n1/2(θ̂∗n − θ̂n)‖ = Op∗(1), and that ‖n1/2(θ̂∗n − θ̂n) − t̃∗n‖ = op∗(1), in probability. By the positive

definiteness of G∗ we clearly have t̃∗n = (G∗)−1V ∗
n . We prove (4.7) by making use of some arguments

from the proofs of Theorems 2.1 and 2.2 in KPB adapted to the current bootstrap setup. The

details are given below.

Proof of (4.7). Let θnt := θ̂n + n−1/2t, t ∈ R
q. Define, for z ≥ 0, t ∈ R

q,

W ∗
n(z, t) := n−1/2

n∑

i=1

[ ψ(Z∗
i−1, θ̂n)

ψ(Z∗
i−1, θnt)

− 1
]
ε∗i I(Z

∗
i−1 ≤ z),(4.8)

S∗
n(z) := n−1

n∑

i=1

ϕ(Z∗
i−1, θ̂n) (ε

∗
i − 1) I(Z∗

i−1 ≤ z),

Ṽ ∗
n :=

∫
U∗
n(z)Ψ

∗(z)dG∗
n(z), G∗

n :=

∫
Ψ∗(z)Ψ∗(z)′dG∗

n(z),

Q̃∗
n(t) :=

∫ (
U∗
n(z)− t′Ψ∗(z)

)2
dG∗

n(z) =M∗
n(θ̂n)− 2t′Ṽ ∗

n + t′G∗
nt,

T ∗
n(t) :=M∗

n(θnt), T ∗
n1(t) :=

∫
(W ∗

n(z, t) + t′Ψ∗(z))2dG∗
n(z),

T ∗
n2(t) :=

∫
(W ∗

n(z, t) + t′Ψ∗(z))(U∗
n(z)− t′Ψ∗(z))dG∗

n(z).

Use the model assumption ε∗i = Y ∗
i /ψ(Z

∗
i−1, θ̂n) to obtain

U∗
n(z, θnt) = n−1/2

n∑

i=1

[ Y ∗
i

ψ(Z∗
i−1, θnt)

− 1
]
I(Z∗

i−1 ≤ z)(4.9)

= n−1/2
n∑

i=1

[ Y ∗
i

ψ(Z∗
i−1, θnt)

− Y ∗
i

ψ(Z∗
i−1, θ̂n)

+
Y ∗
i

ψ(Z∗
i−1, θ̂n)

− 1
]
I(Z∗

i−1 ≤ z)

= n−1/2
n∑

i=1

[ ψ(Z∗
i−1, θ̂n)

ψ(Z∗
i−1, θnt)

− 1
]
ε∗i I(Z

∗
i−1 ≤ z) + n−1/2

n∑

i=1

(ε∗i − 1)I(Z∗
i−1 ≤ z)

=W ∗
n(z, t) + U∗

n(z), ∀ z ≥ 0, t ∈ R.

Hence, one can write

T ∗
n(t) =

∫
{U∗

n(z, θnt)}2dG∗
n(z) =

∫ (
W ∗

n(z, t) + t′Ψ∗(z) + U∗
n(z)− t′Ψ∗(z)

)2
dG∗

n(z)(4.10)

= T ∗
n1(t) + 2T ∗

n2(t) + Q̃∗
n(t).
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We shall shortly prove the following facts. For every 0 < b <∞,

(a) sup
‖t‖≤b

T ∗
n1(t) = op∗(1), in probability, (b) sup

‖t‖≤b
Q̃∗

n(t) = Op∗(1), in probability.(4.11)

By (4.11) and the Cauchy-Schwarz inequality,

sup‖t‖≤b

∣∣T ∗
n2(t)

∣∣2 ≤ sup‖t‖≤b T
∗
n1(t) sup‖t‖≤b Q̃

∗
n(t) = op∗(1),

in probability, and hence the claim (4.7) follows.

Proof of (4.11)(a). Rewrite

W ∗
n(z, t) := n−1/2

n∑

i=1

[ ψ(Z∗
i−1, θ̂n)

ψ(Z∗
i−1, θnt)

− 1
]
ε∗i I(Z

∗
i−1 ≤ z)

= −n−1/2
n∑

i=1

1

ψ(Z∗
i−1, θnt)

[
ψ(Z∗

i−1, θnt)− ψ(Z∗
i−1, θ̂n)− n−1/2t′ψ̇(Z∗

i−1, θ̂n)
]
ε∗i I(Z

∗
i−1 ≤ z)

− t′n−1
n∑

i=1

[ 1

ψ(Z∗
i−1, θnt)

− 1

ψ(Z∗
i−1, θ̂n)

]
ψ̇(Z∗

i−1, θ̂n) ε
∗
i I(Z

∗
i−1 ≤ z)

− t′n−1
n∑

i=1

ϕ(Z∗
i−1, θ̂n)(ε

∗
i − 1) I(Z∗

i−1 ≤ z)

− t′n−1
n∑

i=1

[
ϕ(Z∗

i−1, θ̂n) I(Z
∗
i−1 ≤ z)− E∗

(
ϕ(Z∗

0 , θ̂n)I(Z
∗
0 ≤ z)

)]
− t′Ψ∗(z).

Let d∗it := ψ(Z∗
i−1, θnt)− ψ(Z∗

i−1, θ̂n) and δ
∗
it := d∗it − n−1/2t′ψ̇(Z∗

i−1, θ̂n). Then the above identity is

equivalent to

W ∗
n(z, t) + t′Ψ∗(z)(4.12)

= −n−1/2
n∑

i=1

δ∗it
ψ(Z∗

i−1, θnt)
ε∗i I(Z

∗
i−1 ≤ z)

+ t′n−1
n∑

i=1

d∗it
ψ(Z∗

i−1, θnt)
ϕ(Z∗

i−1, θ̂n) ε
∗
i I(Z

∗
i−1 ≤ z)− t′S∗

n(z)− t′
(
Ψ∗

n(z)−Ψ∗(z)
)

= A∗
1(z, t) +A∗

2(z, t)− t′S∗
n(z)− t′

(
Ψ∗

n(z)−Ψ∗(z)
)
, say.

By (C.1), infz≥0,ϑ∈Θ ψ(z, ϑ) ≥ C > 0 and by (B.1), for every 0 < b <∞,

sup
1≤i≤n,‖t‖≤b

n1/2
∣∣δ∗it

∣∣ = op∗(1),

in probability. Moreover, because E∗(ε∗0) = 1, we have n−1
∑n

i=1 ε
∗
i = Op∗(1) in probability. Hence

sup
z≥0,‖t‖≤b

|A∗
1(z, t)| ≤ C−1 sup

1≤i≤n,‖t‖≤b
n1/2

∣∣δ∗it
∣∣n−1

n∑

i=1

ε∗i = op∗(1), in probability.(4.13)
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Since supn≥N E∗‖ψ̇(Z∗
0 , θ̂n)‖2 <∞, a.s., we obtain that n−1/2max1≤i≤n ‖ψ̇(Z∗

i−1, θ̂n)‖ = op∗(1),

in probability. Hence (C.1) and (B.1) imply that

D∗
n := sup

1≤i≤n,‖t‖≤b
|d∗it| ≤ sup

1≤i≤n,‖t‖≤b

∣∣δ∗it
∣∣+ bn−1/2 max

1≤i≤n
‖ψ̇(Z∗

i−1, θ̂n)‖ = op∗(1),

in probability. Moreover, supn≥N E∗
(
n−1

∑n
i=1 ‖ϕ(Z∗

i−1, θ̂n)‖ ε∗i
)
= supn≥N E∗‖ϕ(Z∗

0 , θ̂n)‖ < ∞
a.s. and hence by the Markov inequality, n−1

∑n
i=1 ‖ϕ(Z∗

i−1, θ̂n)‖ ε∗i = Op∗(1), and

sup
z≥0,‖t‖≤b

|A∗
2(z, t)| ≤ bC−1D∗

nn
−1

n∑

i=1

‖ϕ(Z∗
i−1, θ̂n)‖ ε∗i = op∗(1), in probability.(4.14)

Next, consider S∗
n(z). Observe that S∗

n(z) is a vector of marked empirical processes of Z∗
0 , · · · ,

Z∗
n−1 with marks n−1/2ϕ(Z∗

0 , θ̂n) (ε
∗
1 − 1), · · · , n−1/2ϕ(Z∗

n−1, θ̂n) (ε
∗
n − 1). Further, the summands

of each component are stationary and ergodic, and E∗S∗
n(z) ≡ 0. Hence, a Glivenko-Cantelli

Lemma type argument yields supz≥0 ‖S∗
n(z)‖ = op∗(1), in probability. Similarly, one also obtains

supz≥0

∥∥Ψ∗
n(z)−Ψ∗(z)

∥∥2 = op∗(1), in probability. For details see Koul [16]. Upon combining these

two facts with (4.12), (4.13) and (4.14) we obtain that for every 0 < b <∞,

sup
z≥0,‖t‖≤b

∣∣W ∗
n(z, t) + t′Ψ∗(z)

∣∣ = op∗(1), in probability.

This fact combined with the definition of T ∗
n1 and G∗

n being a d.f. readily yields (4.11)(a).

Proof of (4.11)(b). Recall that M̃∗
n(θ̂n) :=

∫
{U∗

n(z, θ̂n)}2dG(z), G∗ :=
∫
Ψ∗(z)Ψ∗(z)′dG(z).

Note that
∥∥G∗‖ ≤

∫ ∥∥Ψ∗(z)
∥∥2dG(z) ≤ E∗‖ϕ(Z∗

0 , θ̂n)‖2 = Op∗(1), in probability, and we have

M̃∗
n(θ̂n) ≤ supz≥0{U∗

n(z, θ̂n)}2 = Op∗(1), in probability, by (4.4). Hence, for every 0 < b <∞,

sup
‖t‖≤b

Q∗
n(t) := sup

‖t‖≤b

∫ (
U∗
n(z, θ̂n)− t′Ψ∗(z)

)2
dG(z) ≤ 2M̃∗

n(θ̂n) + 2b2
∥∥G∗‖

= Op∗(1), in probability.

Hence, it suffices to show that for every 0 < b <∞,

sup
‖t‖≤b

∣∣Q̃∗
n(t)−Q∗

n(t)
∣∣ = op∗(1), in probability.(4.15)

To prove (4.15), let

B∗
n1 :=

∣∣
∫
(U∗

n)
2
[
dGn − dG

]∣∣, B∗
n2 :=

∥∥
∫
U∗
nΨ

∗
[
dGn − dG

]∥∥,

B̃∗
n1 :=

∣∣
∫
(U∗

n)
2
[
dG∗

n − dGn

]∣∣, B̃∗
n2 :=

∥∥
∫
U∗
nΨ

∗
[
dG∗

n − dGn

]∥∥.

Note that the left hand side of (4.15) is bounded from the above by

∣∣∣
∫
(U∗

n)
2
[
dG∗

n − dG
]∣∣∣+ 2b

∥∥∥
∫
U∗
nΨ

∗
[
dG∗

n − dG
]∥∥∥+ b2

∥∥∥
∫

Ψ∗(Ψ∗)′
[
dG∗

n − dG
]∥∥∥

≤ (B∗
n1 + B̃∗

n1) + 2b(B∗
n2 + B̃∗

n2) + b2
∥∥
∫

Ψ∗(Ψ∗)′
[
dG∗

n − dG
]∥∥.
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Since E∗[G∗
n(z)] = Gn(z)+op(1) and supx≥0

∣∣Gn(x)−G(x)
∣∣ → 0, a.s., by the Ergodic Theorem and

Assumption B.2,
∥∥ ∫ Ψ∗(Ψ∗)′

[
dG∗

n−dG
]∥∥ = op∗(1), in probability. Since supx≥0

∣∣Gn(x)−G(x)
∣∣ → 0,

a.s., by Lemmas 2.2 and 4.1, B∗
n1 and B∗

n2 tend to zero in probability. Similarly, by Lemma 2.2

and Assumption B.2, B̃∗
n1 and B̃∗

n2 are of order op∗(1) in probability. This completes the proof of

(4.15), and hence (4.11)(b) follows.

Next we establish the asymptotic validity of the bootstrap testing procedure. To this end we

make use of some ideas from Cavaliere, Perera and Rahbek [3].

First, we generalize the DGP specified by model (1.1)–(1.2) for an arbitrary true value ϑ ∈ Θ

and a given error d.f. L, with unit mean and finite variance, as follows:

(4.16) Y
(ϑ,L)
i = ψ(Z

(ϑ,L)
i−1 , ϑ)ε

(L)
i ,

where ε
(L)
i = L−1(Ui) := inf{y ∈ R : L(y) ≥ Ui} and {Ui, i ∈ Z} are i.i.d. uniform(0,1) r.v.’s.

Let F denote the d.f. of εi in the model (1.1)–(1.2). Let Fn, n ∈ N, be a sequence of cumulative

distribution functions, with unit mean and finite variance, and θn ∈ Θ, such that ‖θn− θ‖ → 0 and

d2(Fn, F ) → 0 as n → ∞, where d2(FX , FY ) is the Mallows metric for the distance between two

probability distributions FX and FY , with d2(FX , FY ) = inf{E|X − Y |2}1/2, where the infimum is

over all square integrable random variables X and Y with marginal d.f.’s FX and FY ; see Freedman

[9] and Bickel and Freedman [2], Section 8, for a detailed account of this metric.

Note that, for (ϑ, L) = (θ, F ) the model (4.16) is equivalent to the null model (1.1)–(1.2).

Hence, the d.f. G of Z0 in (1.1)–(1.2) is the same as the stationary distribution of the Z-process

induced by (θ, F ) in (4.16). We need to make the following additional assumption.

B.4. Under H0, for every nonrandom sequence (θn, Fn) → (θ, F ) where ‖θn − θ‖ → 0 and

d2(Fn, F ) → 0, supz |G̃n(z) − G(z)| = o(1) and supx ‖ϕ(x, θn) − ϕ(x, θ)‖ = o(1), where G̃n is

the stationary distribution of the Z-process induced by (θn, Fn) in (4.16).

The next theorem shows that the conditional distribution, given Y = (Y−p, Y1−p, · · · , Yn)′, of
the bootstrap statistic T ∗

n , consistently estimates the limiting null distribution of T , in probability.

Theorem 4.1. Suppose that H0 holds, and assumptions (C.1)–(C.3) and (B.1)–(B.4) are satisfied.

Further assume that G, G∗ are positive definite. Then, T ∗
n := (s∗n)

−2M∗
n(θ̂

∗
n) →D∗ Z, in probability,

where Z is as in Theorem 2.1.

Proof of Theorem 4.1. Note that

(4.17) |M∗
n(θ̂

∗
n)−Q∗

n(t̃
∗
n)| ≤ |M∗

n(θ̂
∗
n)−M∗

n(θ̂n + n−1/2t̃∗n)|+ |M∗
n(θ̂n + n−1/2t̃∗n)−Q∗

n(t̃
∗
n)|.

Let G̃∗
n denote the stationary d.f. of Z∗

i -process, conditional on Y = (Y−p, Y1−p, · · · , Yn)′. Then
∥∥∥
∫ z

0
ϕ(x, θ̂n)dG̃

∗
n(x)−

∫ z

0
ϕ(x, θ)dG(x)

∥∥∥(4.18)

≤ sup
x

‖ϕ(x, θ̂n)− ϕ(x, θ)‖+
∥∥∥
∫ z

0
ϕ(x, θ)[dG̃∗

n(x)− dG(x)]
∥∥∥.
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Lemma 2.1 implies ‖θ̂n − θ‖ →p 0. Further, by arguing as in the proof of Lemma 6 in Perera and

Silvapulle [26] one obtains d2(F̃n, F ) →p 0. These two facts together with condition (B.4) yield

(4.19) (a) sup
z

|G̃∗
n(z)−G(z)| = op(1), (b) sup

x
‖ϕ(x, θ̂n)− ϕ(x, θ)‖ = op(1).

By (4.19)(b) the first term of the upper bound (4.18) is of order op(1). Since G̃∗
n and G are

uniformly bounded, the second term can be argued to tend to zero in probability as in Lemma 4.1

by using (4.19)(a). Therefore, E∗
[
ϕ(Z∗

0 , θ̂n)I(Z
∗
0 ≤ z)

]
→p E

[
ϕ(Z0, θ)I(Z0 ≤ z)

]
, z ≥ 0, and hence

Σ∗ := E∗(ξ∗(Z∗
0 )ξ2(Z

∗
0 )

′) →p Σ and G∗ :=
∫
Ψ∗(z)Ψ∗(z)′dG(z) →p G.

Since V ∗
n is a vector of the sums of martingale difference arrays satisfying (4.6) and s2n →p σ

2,

then by the martingale central limit theorem, see Hall and Heyde [13], V ∗
n →D∗ N(0, σ2Σ), in

probability. Hence t̃∗n = {G∗}−1V ∗
n = Op∗(1), in probability. Therefore, by (4.7) of Proposition 4.1,

|M∗
n(θ̂n + n−1/2t̃∗n)−Q∗

n(t̃
∗
n)| = op∗(1), in probability.

Since Proposition 4.1 yields ‖n1/2(θ̂∗n − θ̂n) − t̃∗n‖ = op∗(1), in probability, by assumptions (C.1),

(B.1) and (B.3) one also obtains that |M∗
n(θ̂

∗
n)−M∗

n(θ̂n + n−1/2t̃∗n)| = op∗(1), in probability. These

two facts in combination with (4.17) imply that |M∗
n(θ̂

∗
n)−Q∗

n(t̃
∗
n)| = op∗(1), in probability.

Since t̃∗n = {G∗}−1V ∗
n one can rewrite

Q∗
n(t̃

∗
n) =

∫ (
U∗
n(z)− (t̃∗n)

′Ψ∗(z)
)2
dG(z) = M̃∗

n(θ̂n)− 2(t̃∗n)
′V ∗

n + (t̃∗n)
′G∗(t̃∗n)(4.20)

= M̃∗
n(θ̂n)− 2(V ∗

n )
′{G∗}−1V ∗

n + (V ∗
n )

′{G∗}−1G∗{G∗}−1V ∗
n

= M̃∗
n(θ̂n)− (V ∗

n )
′{G∗}−1V ∗

n

=

∫
{U∗

n}2dG−
∫
U∗
n(Ψ

∗)′dG {G∗}−1

∫
U∗
nΨ

∗dG.

Since (s∗n)
2 = s2n + op∗(1), in probability, and s2n →p σ2, by (4.3) and the Slutsky’s Theorem,

(s∗n)
−1U∗

n converges weakly to B ◦ G, in probability, in the Skorokhod space and uniform metric,

where B is the standard Brownian motion on [0,∞), and hence (s∗n)
−1U∗

n is of order Op∗(1), in

probability. Moreover, as above Ψ∗(z) := E∗
(
ϕ(Z∗

0 , θ̂n)I(Z
∗
0 ≤ z)

)
→p Ψ(z), z ≥ 0, and G∗ →p G.

By these facts and (4.20),

(s∗n)
−2Q∗

n(t̃
∗
n) =

∫
{(s∗n)−1U∗

n}2dG−
∫
(s∗n)

−1U∗
nΨ

′dG G−1

∫
(s∗n)

−1U∗
nΨdG+ op∗(1),

in probability. Hence, one obtains

(s∗n)
−2M∗

n(θ̂
∗
n) →D∗

∫
B2(G(z))dG(z)−

∫
B(G(z))Ψ(z)′dG(z) G−1

∫
B(G(z))Ψ(z)dG(z)

=

∫ 1

0
B2(u)du−

∫ 1

0
B(u)Ψ(G−1(u))′du G−1

∫ 1

0
B(u)Ψ(G−1(u))du

= Z, in probability. �
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5 Conclusion

This paper advances the current state of econometric methodology in MEMs for nonnegative time

series. In particular, we propose a new minimum distance lack-of-fit test for a parametric specifi-

cation of the conditional mean in a Markovian MEM. We derive the asymptotic null distribution

of the proposed test statistic under fairly general and easily verifiable conditions. Since the limit-

ing distribution of the test statistic is model dependent and is not free from nuisance parameters,

we propose a bootstrap method to implement the test and establish that the proposed bootstrap

method is asymptotically valid. Our bootstrap test is easy to implement and is flexible enough to

be applied to a wide range of parametric specifications of the conditional mean in the Markovian

MEM setup. The simulation findings about empirical level and power of the test demonstrate that

the new testing procedure performs better than some of the competing ones.
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