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STABLE STEADY-STATE SOLUTIONS OF SOME BIOLOGICAL1

AGGREGATION MODELS∗2

JONATHAN R. POTTS† AND KEVIN J. PAINTER‡3

Abstract. Aggregation phenomena occur across the biological sciences, from cell adhesion to4
insect swarms, animal home ranges to human cities. Understanding the mechanisms by which they5
may spontaneously emerge has therefore generated much interest from applied mathematicians. Par-6
tial differential equations (PDEs) with non-local advection offer a popular formalism for studying7
aggregations. However, the inherent non-locality, often necessary for ensuring continuum models8
are well-posed, makes their study technically challenging. Here, we take a different approach, by9
studying a discrete-space system that can be formally related to classical non-local PDE approaches10
via a limiting procedure. We show how to find expressions for the asymptotically-stable steady-11
states of this discrete-space system, via an energy functional approach. This allows us to predict12
the size of aggregations as a function of the underlying movement mechanisms of individual organ-13
isms. We apply this to a recent model of cell adhesion, revealing a hysteresis property whereby14
the existing aggregations may persist even as the adhesion tendency decreases past the bifurcation15
point. We compare this to numerical solutions of the associated non-local PDE system, showing that16
the hysteresis property predicted by the discrete-space expressions is also present in the continuum17
system.18

Key words. Aggregation equation, bifurcation, cell adhesion, hysteresis, non-local taxis, partial19
differential equation20

AMS subject classifications. 35B32, 35B36, 35B40, 35G20, 35Q92, 92B0521

1. Introduction. Spontaneous aggregations emerge in a wide range of natural22

systems. For example, individual animals often aggregate into swarms, herds, schools,23

or flocks [30, 20, 35]; cells can aggregate to form various phenomena, such as muscle24

tissue, slime mould plasmodia, cancers, and embryos [12, 19, 32]; humans aggregate25

in cities and towns [36], and many other animal species group themselves into home26

ranges, each confining their movements to a smaller area than their locomotive capa-27

bilities allow [7].28

Mathematical models are key to understanding the mechanisms that give rise to29

such aggregated phenomena. Often they take the form of advection-diffusion equa-30

tions, with a non-local advection term modelling the movement of individuals in31

response to the presence of others [24, 23, 33, 18]. Indeed, equations with non-local32

advection are sometimes termed ‘aggregation-diffusion equations’ to emphasise the key33

emergent phenomenon they capture [13]. However, not all the non-local advection-34

diffusion equations that have been used to model biological aggregations fit neatly35

into the usual definition of an aggregation-diffusion equation [11].36

The popularity of non-local advection-diffusion equations is in part due to their37

successful usage in answering a broad range of biological questions. For example,38

[3] used such equations to understand cell sorting behaviours, whereby homogeneous39

mixtures of two different cell types spontaneously separate into specific arrangements.40

They showed that this behaviour can be explained by a process of cell-cell adhesion,41

thus verifying mechanistic hypotheses behind observed spatial patterns. To give an ex-42
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2 JONATHAN R. POTTS, KEVIN J. PAINTER

ample from animal ecology, [4] showed how locust swarms, consisting of one grouping43

on the ground and another separate collective in the air, can emerge from long-range44

(non-local) attraction and short-range repulsion. Non-local advection-diffusion equa-45

tions were also used by [8] to show how wolves form home ranges, in the absence46

of conspecifics, from non-local attraction to their own scent markings. Models for47

human pedestrian flow have also been proposed using a non-local advection-diffusion48

formalism [16].49

Given the broad applicability of non-local advection-diffusion equations, combined50

with the non-trivial technical aspects of dealing with non-locality, there has been51

significant mathematical attention paid to such equations in recent years. These52

include classical questions of existence and uniqueness, pattern formation properties,53

blow-up, and bifurcations (e.g. [33, 5, 22, 6, 9, 14, 21]). Furthermore, these are54

often tied to important physical or biological questions. For good recent reviews see55

[13, 15, 11].56

Despite this proliferation of research attention, to our knowledge the question of57

predicting aggregation size, given the underlying adhesion mechanisms, has not yet58

been explicitly examined. However, the ability to predict the size of aggregations59

from the underlying mechanisms is of clear biological importance. If it were possible60

to find exact expressions for steady-state solutions, an answer to this question would61

naturally follow, as would other properties such as bifurcation structures and the62

existence (or otherwise) of hysteresis. However, this is not a trivial task, given the63

technical difficulties inherent in using non-local advection.64

Here, rather than using the formalism of non-local advection-diffusion equations65

directly, we instead search for steady-state solutions in a one-dimensional discrete-66

space system of ordinary differential equations (ODEs) that is formally related to a67

wide class of non-local advection-diffusion equations. Specifically, the continuum limit68

of our discrete-space system is identical to the local limit of the non-local advection69

diffusion equations (where the local limit is defined to be the limit as the non-local70

averaging becomes arbitrarily narrow). The advantage of our approach is that we71

are able to find an exact formulation of the stable steady-states of the system, via72

minimising the associated energy (or Lyapunov) functional. This then enables us to73

calculate exactly the size of any resulting aggregation, as well as revealing bifurcation74

structures and hysteresis properties.75

To demonstrate our technique, we apply it to a specific model of cell-cell adhesion76

introduced in [25]. This model is a non-local advection-diffusion equation, but we focus77

first on the associated local discrete-space system. We show how the height and width78

of resulting aggregations (in discrete-space) depend on the underlying mechanisms:79

the adhesion rate, the population size, and the ‘packing constraint’ (ensuring one80

cannot have an arbitrarily large number of cells at a given point). We also reveal81

hysteresis in the system, whereby for certain parameters the system has a constant82

stable steady-state as well as a stable steady-state where aggregations occur. We use83

the resulting solutions to construct a bifurcation diagram which we verify through84

numerical bifurcation analysis of the underlying discrete-space system of ODEs.85

We then demonstrate, via numerical simulations, that the associated non-local86

continuum model – the one originally introduced in [25] – also has a similar bifurca-87

tion structure. Indeed, as the length scales in the non-local terms are decreased in88

size (i.e. towards the local limit), the parameter regime where we observe hysteresis89

appears to tend towards that predicted by the discrete-space solutions. This demon-90

strates that insights from our discrete-space model can be used to inform properties91

of the non-local advection-diffusion equation that may be difficult to ascertain by92
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DISCRETE-SPACE STABLE AGGREGATIONS 3

directly analysing the continuum model. The success of this example suggests that93

our method may be widely applicable in understanding steady-states of non-local94

advection-diffusion equations more generally.95

The paper is organised as follows. In Section 2 we motivate the problem from the96

perspective of non-local continuous-space models. Section 3 outlines our approach97

to examining biological aggregations using discrete-space systems. Section 4 gives98

detailed analysis of a particular model of cell adhesion in a discrete-space setting.99

Section 5 compares the results in the discrete-space setting with numerics from the100

motivating non-local continuous-space model. Section 6 gives some discussion of the101

results, together with concluding remarks.102

2. Motivation from non-local continuous-space models. Our analysis is103

motivated by two 1D examples of non-local advection-diffusion equations. The first104

is given as follows105

∂u

∂t
=

∂2

∂x2
[D(u)]− ∂

∂x

[

χ(u)

∫ ∞

−∞

s

|s|Ωξ(|s|)u(x+ s, t)ds

]

.(2.1)

Here, u(x, t) is the density of individuals (cells or organisms) at location x and time106

t; D(u) and χ(u) are smooth functions. The function Ωξ(s) is defined on [0,∞) and107

has a local limit that satisfies108

lim
ξ→0

∫ ∞

0

s2n+1Ωξ(s)ds =

{

1
2 , for n = 0,

0, for n ∈ Z>0.
(2.2)

An example of such a function would be Ωξ(s) = e−s/ξ/(2ξ2). Here, attraction109

between organisms is greater when they are closer together and gradually decays as the110

distance between them increases. In this example, interactions extend to an arbitrarily111

large distance between organisms, albeit with strength that decays exponentially. To112

circumvent this, functions that are zero for large s, such as Ωξ(s) = 1/ξ2 (resp.113

Ωξ(s) = 0) for s < ξ (resp. x ≥ ξ), are sometimes used instead. Examples of the114

model in Equation (2.1) can be found in, e.g. [24, 25].115

The second class of non-local advection-diffusion model pertinent to our work is116

∂u

∂t
=

∂2

∂x2
[D(u)]− ∂

∂x

[

χ(u)
∂

∂x
(Kξ ∗ u)

]

.(2.3)

Here, Kξ(x) is a probability density function, defined on R and symmetric about 0,117

such that limξ→0 Kξ(x) = δ(x), the Dirac delta function. For example, one might118

choose Kξ(x) = e−|x|/ξ/(2ξ). Also, Kξ ∗ u is the following convolution119

(Kξ ∗ u)(x) =
∫ ∞

−∞

Kξ(y − x)u(y)dy.(2.4)

Examples of the model in Equation (2.3) can be found in, e.g. [33, 10, 31].120

Equation (2.1) can often be written in the form of Equation (2.3) [11]. This is121

possible when one can construct a function Kξ(x), symmetric about the origin, such122

that K′
ξ(x) = Ωξ(x) for x > 0, and limx→±∞ Kξ(x) = 0 (details in Appendix A of123

[11]). However, here we separate Equations (2.1) and (2.3) out, as the two forms each124

appear in slightly different parts of the literature.125

The characteristic width, ξ, of the non-local kernels, Ωξ and Kξ, will clearly have126

an effect on the size of the aggregation that emerges. Consequently it is valuable to127
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4 JONATHAN R. POTTS, KEVIN J. PAINTER

examine the limit as ξ → 0. For both models (Equations (2.1) and (2.3)), this limit128

leads to the following equation129

∂u

∂t
=

∂2

∂x2
[D(u)− φ(u)],(2.5)

where φ′(u) = χ(u).130

The trouble with analysing Equation (2.5) directly is that it can be unstable131

to perturbations at arbitrarily high wavenumbers, i.e. the linear pattern formation132

problem is ill-posed. To see this, let U be the population size and suppose we are133

working on the interval [0, L]. Let ū = u − U/L and look for solutions of the form134

ū = u0 exp(σt + iκx) valid at short times. Then, by neglecting non-linear terms,135

Equation (2.5) becomes136

σū = κ2[χ(U/L)−D′(U/L)]ū.(2.6)

Thus, if χ(U/L) > D′(U/L) then σ is an increasing (quadratic) function of κ, so137

the linear stability problem is ill-posed: Equation (2.5) is unstable to perturbations138

at arbitrarily high wavenumbers. Conversely, if χ(U/L) ≤ D′(U/L) then σ is non-139

positive for all values of κ, so patterns cannot form from small perturbations of the140

constant steady-state solution.141

To circumvent this problem, we instead study a discrete-space model that, being142

a system of ordinary differential equations, has a unique classical solution for any143

appropriate initial condition. We will then show that this model has a continuum144

limit that generalises Equation (2.5).145

3. A general discrete-space approach. We define our discrete-space model146

on a one-dimensional lattice with N+1 sites, i ∈ {0, . . . , N}, and lattice spacing l. Let147

Ui(t) be the number of individuals at site i and time t. The movement of individuals148

is governed by the following equations149

dU0

dt
= λ[Td(U1)− Td(U0)],

dUi

dt
= λ[Td(Ui−1)− 2Td(Ui) + Td(Ui+1)], for i ∈ {1, . . . , N − 1},

dUN

dt
= λ[Td(UN−1)− Td(UN )],(3.1)

where Td(Ui) is a non-constant, analytic function and λ is the jump-rate between150

adjacent sites. In principle, Td(Ui) can be arbitrary, but in Section 4 we examine a151

specific functional form relevant to biological aggregations. Taking the limit as152

λ,N, i → ∞; l → 0; l2λ → d; il → x; lN → L(3.2)

where d, x, L ∈ R>0 leads to the following partial differential equation (Appendix A)153

∂u

∂t
= d

∂2

∂x2
[Tc(u)],(3.3)

defined on [0, L] with zero-flux boundary conditions, where u(x, t) = lim[U⌊x/l⌋(t)/l] is154

the density of individuals at location x and time t, and Tc[u(x, t)] = limTd[U⌊x/l⌋(t)]/l.155

Notice that, if Tc(u) = [D(u) − φ(u)]/d, Equation (3.3) is exactly the same as156

Equation (2.5). This formalises the relationship between the discrete-space models157
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DISCRETE-SPACE STABLE AGGREGATIONS 5

studied in this section (System 3.1) and the non-local continuum models discussed in158

Section 2 (Equations (2.1) and (2.3)), the latter of which are prevalent in the literature159

[1, 24, 3, 33, 25, 10].160

A direct calculation reveals that Equation (3.1) conserves mass, i.e.161

d

dt

N
∑

i=0

Ui = 0,(3.4)

so let Pd be the total size of the population. Another direct calculation shows that162

steady-states of Equation (3.1) occur whenever there is some constant µ such that163

Td(Ui) = µ(3.5)

for all i ∈ {0, . . . , N}. An example of this situation is given in Figure 1.164

Vµ1 Vµ2 Vµ3
Ui

µ

T
d
(U

i)

a)

0 20 40 60 80 100

i

Vµ1

Vµ2

Vµ3

U
i

A3

Aggregation

width

A
g
g
re
g
a
ti
o
n
 h
e
ig
h
t

b)

Fig. 1. Graphical explanation of notation. Panel (a) shows an example function for
Td(Ui). Steady-states of System (3.1) occur whenever there is some constant µ such that Td(Ui) = µ

for all i ∈ {0, . . . , N} (Equation 3.5). In the example shown, there are three possible values that
Ui can take for the particular given value of µ. These are denoted by Vµ1, Vµ2, Vµ3. Panel (b)
illustrates one possible corresponding steady-state solution. We denote by Aj the number of integers
i for which Ui = Vµj (j = 1, 2, 3). In this example, A1 = 60, A2 = 0, and A3 = 41 (only A3 is shown
on the graph, for simplicity). Note that, by construction, A1 +A2 +A3 = N +1 where N +1 is the
number of lattice sites, and A1Vµ1+A2Vµ2+A3Vµ3 = Pd, where Pd is the total population size (see
Equations 3.9 and 3.10). This constrains the set of possible steady-state solutions associated to each
µ. Note also that no value of Ui can be greater than Pd (or less than 0) for any i, so values of µ
for which the roots of Td(Ui) = µ are all greater than Pd (or less than 0) cannot lead to steady-state
solutions to System 3.1.

The first task in understanding the formation of aggregations is to examine when165

the constant steady-state, U∗ = Pd/(N +1), is unstable to linear perturbations (here166

the superscript asterisk is used to denote steady-state, and recall that Pd is the total167

population size). In such cases, small spatially non-constant perturbations grow in168

time and may end up forming aggregations spontaneously. To this end, let Ūi =169

Ui − U∗ and W = (Ū0, . . . , ŪN )T . Then, after neglecting non-linear terms, we arrive170
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6 JONATHAN R. POTTS, KEVIN J. PAINTER

at the following matrix equation171

dW

dt
= λT ′

d(U
∗)AW,

A =























−1 1 0 . . . 0 0 0
1 −2 1 . . . 0 0 0
0 1 −2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −2 1 0
0 0 0 . . . 1 −2 1
0 0 0 . . . 0 1 −1























.(3.6)

It was shown in [2] that the eigenvalues of A all lie in (−4, 0]. In particular, they are172

non-positive, so for the eigenvalues of the matrix T ′
d(U

∗)A to be positive, we require173

the value of T ′
d(U

∗) to be negative. In this case the constant steady state is linearly174

unstable at all eigenvalues, suggesting that in the T ′
d(U

∗) < 0 region patterns will175

form spontaneously.176

It may also be possible for patterns to form due to the effect of non-linear terms177

outside the region of linear instability. To determine whether this is the case, we find178

non-constant stable steady-states of the system by using an energy (or Lyapunov)179

functional approach. The energy functional for Equation (3.1) has the following form180

Ed[U0(t), . . . , UN (t)] =

N
∑

i=0

Fd(Ui),(3.7)

where F ′
d(Ui) = Td(Ui). The following calculation shows that Ed can never increase181

over time182

dEd

dt
=

N
∑

i=0

dUi

dt
Td(Ui)

= λTd(U0)[Td(U1)− Td(U0)] + λTd(UN )[Td(UN−1)− Td(UN )]

+ λ

N
∑

i=1

[Td(Ui−1)− 2Td(Ui) + Td(Ui+1)]Td(Ui)

= −λ

N
∑

i=1

[Td(Ui)− Td(Ui−1)]
2 ≤ 0.(3.8)

Provided Equation (3.7) is bounded below (which we show later), System (3.1) will183

thus tend towards a local minimum of Equation (3.7). This local minimum occurs184

when the derivative of Ed is zero, which coincides with the values of Ui where Equation185

(3.5) is satisfied. Thus, finding the stable steady-states of System (3.1) requires us to186

find local minima of Equation (3.7) that also satisfy Equation (3.5).187

It is possible to find these local minima via a search through a finite range of188

possibilities, as follows. For each µ (from Equation 3.5), let {Vµ1, . . . , VµMµ
} be189

the real-valued solutions to Equation (3.5) such that 0 ≤ Vµj ≤ Pd (see Figure190

1). (Here, Mµ is the number of real-valued solutions to Equation (3.5).) Finding191

the local minima of Equation (3.7), requires searching through all possible µ and192
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DISCRETE-SPACE STABLE AGGREGATIONS 7

A1, . . . , AMµ
∈ {0, . . . , N} such that193

Pd =

Mµ
∑

j=1

AjVµj ,(3.9)

N + 1 =

Mµ
∑

j=1

Aj .(3.10)

Since Vµj must be both non-negative and less than or equal to Pd, for all j, we need194

only search through µ ∈ [µmin, µmax] where µmin = minUi
{Td(Ui)|0 ≤ Ui ≤ Pd} and195

µmax = maxUi
{Td(Ui)|0 ≤ Ui ≤ Pd}. Thus we have restricted our search for minimum196

energy solutions to a finite range of values for µ and A1, . . . , AMµ
. This both eases197

the computational requirement for finding minimum energy solutions and shows that198

the energy functional (Equation 3.7) is bounded, so tends to a local minimum. In199

the next section, we will demonstrate this search using a specific functional form of200

Td(Ui) relevant to contact attraction models of collective cell movement. These are201

models of cell movement whereby contact between cells causes mutual attraction.202

4. Analysis of a discrete-space contact-attraction model. Here, we apply203

the technique detailed in Section 3 to a specific model of cell aggregations. The model204

is in the form of Equation (3.1) with205

Td(Ui) = Ui − φ(Ui), φ(Ui) =
RU2

i

6
(3K − 2Ui),(4.1)

where R > 0 and K > 0 are constants. The motivation for studying this particular206

formalism is that it is related to a model of cell aggregations from a contact-attraction207

process introduced in [25]. This relationship is detailed in Appendix B.208

We begin by stating a criterion for the constant steady-state, Ui = Pd/(N +209

1), being unstable to small perturbations. Equation (3.6) and the subsequent text210

gives the general criterion T ′
d(Pd/(N + 1)) < 0, which, for our specific choice of Td,211

rearranges to give the following212

KR−
√
K2R2 − 4R

2R
<

Pd

N + 1
<

KR+
√
K2R2 − 4R

2R
and K2R > 4.(4.2)

Next, we use the energy method from Section 3 to search for the global steady-213

state solution to Equations (3.1) and (4.1). Although this method can be used to214

find any local minimum, we restrict our search to the global minimum, for sim-215

plicity. In Equation (4.1), Td(Ui) is a cubic. Therefore, for each µ ∈ R, there216

are at most three real-valued solutions to Td(Ui) = µ for µ ∈ [µmin, µmax] and at217

least one. Let Vµ1, Vµ2, Vµ3 denote these three solutions, if all three exist (so that218

Td(Vµ1) = Td(Vµ2) = Td(Vµ3) = µ). If there are only two distinct real-valued solu-219

tions, denote them by Vµ1, Vµ2 and set Vµ3 = Vµ2. If there is only one real-valued220

solution, denote it by Vµ1 and set Vµ3 = Vµ2 = Vµ1. Denote by A1 ∈ {0, . . . N} (resp.221

A2, A3) the number of sites that contain Vµ1 (resp. Vµ2, Vµ3) individuals, setting222

A3 = 0 if Vµ3 = Vµ2 and A2 = 0 if Vµ2 = Vµ1.223

If there are only two real-valued solutions to Td(Ui) = µ then, by Equation (3.10),224

A2 = N+1−A1. If there are three real-valued solutions then, by Equations (3.9-3.10),225
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8 JONATHAN R. POTTS, KEVIN J. PAINTER

we have226

A2 =
Pd +A2(Vµ3 − Vµ1)− Vµ3(N + 1)

Vµ2 − Vµ3
,(4.3)

A3 = N + 1−A2 −A1.(4.4)

Consequently, to find the minimum energy solutions, we need only search through227

values of µ ∈ [µmin, µmax] and A1 ∈ {0, . . . , N}. Then A2 and A3 are determined228

by Equations (4.3) and (4.4) respectively, whilst Vµ1, Vµ2, Vµ3 are given by Equation229

(3.5).230

Due to the constraints on A1, A2, A3 (Equation 4.3, 4.4) and the fact that they231

all have to be elements of {0, . . . , N}, the magnitude of N may have an effect on the232

existence of a non-constant minimum-energy solution. In reality, organisms will be233

able to move continuously in space, not being constrained by a lattice. Therefore it234

is valuable to search for minimum energy solutions in the large-N limit. Specifically,235

we take the limit given in (3.2), additionally with µ → 0 such that µ/l → m with236

0 < m < ∞. This latter limit is required to find a solution to Tc[u(x, t)] = m that237

corresponds to the continuum limit of Td(Ui) = µ, where Tc[u(x, t)] = lim[Td(Ui)/l]238

(Appendix A).239

In this limit, Tc(u) = u − ru2(3k − 2u)/6 and x ∈ [0, L] (Appendix B, Equation240

(B.2)). To reduce parameters, we non-dimensionalise, using the following substitu-241

tions242

x̃ =
x

L
, t̃ =

tD

L2
, ũ(x̃, t̃) =

u(x, t)

k
, r̃ = rk2,

ãj =
aj
L
, T̃c(ũ) =

Tc(u)

k
, P =

PdL

k
, m̃ =

m

k
.(4.5)

We henceforth drop the tildes for notational convenience. Then suppose there are243

three distinct, real solutions to Tc(u) = m and denote them by vm1, vm2, vm3. We244

arrive at the following expressions245

Tc(u) = u− ru2

6
(3− 2u),(4.6)

a2 =
P + a1(vm3 − vm1)− vm3

vm2 − vm3
,(4.7)

a3 = 1− a1 − a2,(4.8)

Ec(m, a1) =

3
∑

j=1

aj

[

v2mj

2
−

rv3mj

6
+

rv4mj

12

]

.(4.9)

Here, Ec(m, a1) is the energy, expressed as a function of m and a1. If there are only246

two distinct real-valued solutions to Tc(u) = m then denote them by vm1 and vm2;247

then set vm3 = vm2, a2 = 1− a1, and a3 = 0. If there is only one distinct real-valued248

solution to Tc(u) = m then denote it by vm1; then set vm3 = vm2 = vm1, a1 = 1,249

a2 = 0, and a3 = 0. Finding the global steady-state solution requires finding the250

minimum of Ec(m, a1) across all values of m ∈ [mmin,mmax] and a1 ∈ [0, 1] such that251

a2, a3 ∈ [0, 1] and vm1, vm2, vm3 ≥ 0, where mmin = minu{Tc(u)|0 ≤ u ≤ P} and252

mmax = maxu{Tc(u)|0 ≤ u ≤ P}.253

The resulting large-N limit of the global minimum energy solution to Equation254
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Fig. 2. Predicted aggregation width. Panel (a) shows the effect of the population size,
P , on the aggregation width. Dots (resp. crosses) denote situations where the constant steady-state
is unstable (resp. stable) to linear perturbations. Note that, in some cases (e.g. P = 0.1, r = 6,
see arrow in Panel a), the constant steady-state is stable, yet the global minimum energy solution
is an aggregation. This indicates a hysteresis in the system, whereby aggregations will remain if
already formed, but not arise spontaneously from small perturbations of the spatially constant solu-
tion. In Panel (b), we see how the aggregation width varies with the strength of contact attraction,
r. The solid dots denote ‘pure’ aggregations whereby only one of vm∗1

, vm∗2
, vm∗3

(defined in Equa-
tion 4.10) is greater than zero. The unfilled circles represent situations whereby more than one of
vm∗1

, vm∗2
, vm∗3

is greater than zero. Panels (c) shows that P appears not to affect the aggregation
height (defined as maxj{vm∗j}−minj{vm∗j}). Panel (d) shows the effect of r on aggregation height.

(3.1), which we denote by u∗(x), has the following functional form255

u∗(x) =











vm∗1, on a subset S1 ⊆ [0, 1] of measure a1,

vm∗2, on a subset S2 ⊆ [0, 1] of measure a2,

vm∗3, on a subset S3 ⊆ [0, 1] of measure a3,

(4.10)

for some m∗, using the definitions of vmj and aj (i ∈ {1, 2, 3}) from the previous256
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paragraph. Here, S1, S2, S3 are pairwise disjoint and u∗(x) is the continuum limit of257

the minimum energy solution for the discrete system (Equation 3.1), with Td(Ui) as258

defined in Equation (4.1).259

To understand the properties of u∗(x), we calculate it for a range of parameter260

values, r and P . Without loss of generality, suppose that vm∗1 ≥ vm∗2 ≥ vm∗3. Then261

we define a1 as the aggregation width and vm∗1 − vm∗3 as the aggregation height (see262

Figure 1). (Note that our terminology in calling a1 the ‘aggregation width’ is merely263

a heuristic nomenclature, based on the case where the set S1 is connected. However,264

there is no a priori reason that S1 must be connected.)265

Figure 2 shows the aggregation width and height for the global minimum energy266

solution for various values of r and P . For sufficiently large r, it turns out that vm∗2267

and vm∗3 are (numerically) equal to zero. We call this case a pure aggregation. These268

occur for r & 6 when P = 0.2, 0.4, 0.6 and for all values of r we examined when269

P = 0.8, 1. For situations where more than one of vm∗1, vm∗2, vm∗3 are greater than270

zero, it is possible for the whole terrain to have non-zero population density, but have271

some regions of space where the population density is higher than others.272

It is interesting to examine the parameter values for which the constant steady-273

state is unstable to linear perturbations, and compare this to the set of values where274

the minimum energy solution is non-constant. The large-N limit, dimensionless ver-275

sion of the instability criterion in Equation (4.2) is that r > 4 and 1 −
√

1− 4/r <276

2P < 1 +
√

1− 4/r. For some parameter values, the constant steady-state is sta-277

ble, yet the global minimum energy solution is one where there is an aggregation of278

length less than 1 (see Figure 2a). This indicates a hysteresis in the system, whereby279

aggregations will persist if present, but will not form spontaneously from a small280

non-constant perturbation of the constant steady-state.281

To understand this hysteresis better, we construct a bifurcation diagram (Figure282

3) for the case P = 0.1. The top branch gives the aggregation height constructed283

from the minimum energy solutions. The bottom branch corresponds to the results284

of linear stability analysis. We then tested the predictions from Equation (4.10)285

against numerical solutions of the discrete-space system (Equation 3.1) by performing286

a numerical bifurcation analysis, following the method from [27].287

This numerical method begins by setting a start value for the parameter of in-288

terest, which in our case is r = 12, and solving to numerical steady-state. Then we289

decrease the value of r, perturb the solution with small random fluctuations, and290

solve again to numerical steady-state. The process of reducing r, perturbing the solu-291

tion, and solving to steady-state is then repeated until we reach values of r for which292

the aggregation patterns disappear (see [27] for more details). Figure 3 shows that293

our predictions are in good agreement with the numerical bifurcation analysis, only294

slightly over-estimating the bifurcation point (r = 5.0 in our predictions and r ≈ 4.8295

for the numerics).296

To solve Equation (3.1) numerically, we used a finite difference approximation297

with time-step ∆t = 0.001 and N = 100. We defined the point at which numerical298

steady-state is reached to be the first point in time where
∑

i |Ui(t +∆t) − Ui(t)| <299

10−8.300

5. Numerical comparison with a non-local continuous-space formula-301

tion. We explore whether the discrete model predicts behaviour of the associated302

non-local PDE (Equation 2.1) using numerical bifurcation analysis. The numerical303

method for solving Equation (2.1) is described in detail in [17], where we set D(u) = d,304
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Fig. 3. Bifurcation diagram. The solid and dashed lines give predictions from our analysis
regarding the steady-states and their stability. Specifically, the top branch is the global minimum
energy solution (see Equation (4.10)), where this corresponds to a non-constant solution. The bottom
branch gives the stability of the constant steady-state solution: solid if it is stable and dashed if it is
unstable. The circles give numerical steady-state solutions from the numerical bifurcation analysis
described in the Main Text. Here, P = 0.1.

χ(u) = ru(k − u), and the step-form305

Ωξ(s) =

{

1/ξ2 s < ξ ,
0 otherwise .

306

These choices lead to (B.3) as ξ → 0, which is the continuum limit of the discrete-space307

model studied in Section 4. As in the discrete model we apply numerical continuation,308

fixing P = 0.1, k = d = 1 and treating r as the bifurcation parameter. Bifurcation309

curves are constructed for various ξ. Note that decreasing ξ increases computational310

time due to the finer resolution required for the non-local term, reinforcing the need311

for alternative approaches that do not require numerical solutions, such as those312
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presented here.313

The uniform steady-state of the non-local aggregation model becomes unstable at314

a critical threshold r∗(ξ): this point is straightforward to determine via linear stability315

analysis (see [25]) and, for a finite domain, varies a small amount with ξ. As would be316

expected, as ξ → 0 this converges to the critical value resulting from Equation (2.6).317

Upper curves in Figure 4(a) describe solution branches corresponding to a (numer-318

ically) stable single aggregate, with specific solutions illustrated in (b) and (c). Each319

curve is composed from supercritical and subcritical branches that extend about r∗(ξ).320

Subcritical extensions indicate a corresponding hysteresis phenomenon to that noted321

for the discrete model. These branches terminate at a lower threshold r∗∗(ξ), below322

which the aggregating component is overwhelmed by diffusion. Notably, lowering ξ323

decreases r∗∗(ξ), yet each computed value of r∗∗(ξ) is strictly higher than the corre-324

sponding bifurcation point (r = 5.0) predicted by our analysis of the discrete-space325

system (Figure 3). We conjecture that, were it possible to continue the numerical326

analysis of the non-local continuum model to arbitrarily low values of ξ, the location327

of r∗∗(ξ) would tend towards r = 5.0. Unfortunately, moving ξ > 0 considerably328

below 0.01 becomes computationally infeasible inside a reasonable time frame.329
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Fig. 4. Bifurcation diagram for a nonlocal aggregation model. (a) Solid lines show
(numerically) computed stable steady-states under different values of sensing radius ξ. Specifically,
the top branch describes a single cluster with the bottom branch showing the stability of the constant
steady-state solution. The bottom branch becomes unstable at the critical threshold r∗

ξ
, as predicted

via linear stability analysis. The subcritical branch of the single cluster solution remains stable down
to some lower threshold r∗∗

ξ
, below which the cluster collapses and disperses. Solutions at the points

marked by squares are shown in the plots in (b1)-(b3) and (c1)-(c3). For these plots, we set P = 0.1,
d = 1 and k = 1.

6. Discussion. We have shown how to gain understanding into the size and330

hysteresis properties of biological aggregations by using a discrete-space model. This331

model can be formally related to the oft-used aggregation equation formalism, but has332

the advantage of being amenable to exact analysis of the steady-state solutions. We333

tested our resulting equations against a particular model of cell adhesion and showed334

that they are in good agreement with discrete-space numerics (Figure 3). Thus this335

approach provides a quick way of giving quite a detailed description of bifurcation336

structure in discrete-space aggregation models.337

We also investigated the extent to which these predictions carry over to a corre-338

sponding non-local continuum model that is often used to study aggregation phenom-339

ena (Equation 2.1). This involved numerical simulations of this non-local continuum340

model, which are summarised in Figure 4. We observe some clear similarities between341
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the discrete-space results and the continuum results, but also some clear differences.342

Notably, guided by the identification of hysteresis in the discrete model, numerical343

investigation was performed on the continuum model and indeed the same phenom-344

enon was found. Furthermore, as the non-local parameter ξ tends towards zero, the345

point where the subcritical structure collapses (r∗∗ξ in Figure 4), appears to tend346

towards the corresponding point in the discrete-space case (Figure 3). However, nu-347

merics for small ξ become increasing time-consuming, so it is of considerable value to348

have a quick technique for deriving the expected limit of r∗∗ξ as ξ → 0.349

On the other hand, perhaps the biggest discrepancy between the steady-states350

of the non-local PDE and those of the corresponding discrete-space system is in the351

height of the resulting aggregation. We see in Figure 4 that the steady-state solution352

in the continuous case always appears to be bounded by u = 0 and u = 1. We expect353

that this arises from the fact that χ(u) = ru(k − u) vanishes at u = 0 and u = 1354

when k = 1. However, the discrete-space system, given by Equations (3.1) and (4.1)355

for K = 1, does give rise to aggregations whose height is greater than 1 (Figure 3).356

We conjecture that this is because the discrete-space system vanishes at Ui = 0 and357

Ui = 3/2 but not when Ui = 1. Note that none of the aggregations in the numerical358

solutions we examined have height greater than 3/2 (Figure 3). By extension, this359

means there is also a discrepancy in the aggregation width between the discrete and360

continuous models.361

The discrete-space model studied here only incorporates the effect of nearest-362

neighbour lattice sites. However, it may be possible to extend our techniques to363

certain cases where each lattice site is affected by sites beyond its nearest neighbour.364

Such an extension would lead to a more general form of the matrix A in Equation365

(3.6). If this new matrix has eigenvalues with negative real parts then the same366

condition for linear pattern formation would hold as in our work: T ′
d(U

∗) < 0. The367

next step, which we expect would be non-trivial in general, would be to determine368

which forms of the matrix A allow for a decreasing energy functional, to give a similar369

argument to Equation (3.8). This would be an interesting avenue for future work.370

Although many recent models of biological aggregation use a non-local continuum371

model, discrete-space formalisms are not without precedent. Indeed, until [3], it was372

typical to use a discrete-space formalism to model the specific process of aggregation373

via cell adhesion (see [3] for references). Perhaps the closest model to the one presented374

here is that of [2]. There, the authors analyse a specific discrete-space model for linear375

pattern formation properties and steady-states, but do not examine the stability of376

non-constant steady-states. Likewise, the effect of the functional form of (3.5) on377

steady-state patterns was analysed in [34], but without any stability analysis of non-378

constant steady-states. Here, we build on both studies by providing an energy method379

to categorise the asymptotic stability of such non-constant steady-states. This makes380

use of a construction of discrete-space energy functionals from [28]. Our method is381

framed in a general context (Section 3) that encompasses both the model in [2] and382

the specific model studied here (Section 4).383

PDE formalisms are often used because they are amenable to large swathes of384

analytic techniques, whereas discrete models often rely on simulation analysis [29]. In385

contrast, here we given an example of a discrete-space approach that is amenable to386

analysis that has not so far been possible with continuum descriptions. The difficulty387

with the continuum approach is the necessity for non-local advection to ensure the388

problem is well-posed. This disappears in the discrete-space description (indeed, the389

lattice size can be thought of as analogous to non-locality). By then showing that the390

steady-states of the discrete system live in a finite set (something that would lead to391
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trivial solutions in the continuum limit), it is possible to search through the possible392

steady-state solutions for the minimum energy. This would not be so easy using an393

energy description of the non-local continuum model, as the search would be through394

an entire function space rather than a finite set of possible values. In conclusion, we395

suggest that mathematical analysis of discrete-space approximations should remain396

a valuable part of the toolkit for anyone studying mathematical models of biological397

aggregations.398

Appendix A. Continuum limit of the general model. Here we show how399

Equation (3.1) leads to Equation (3.3) in the limit as λ,N, i → ∞ and l → 0 such that400

l2λ → d, il → x, and lN → L for d, L ∈ R>0. Using lim to denote this limit, we define401

u(x, t) = lim[U⌊x/l⌋(t)/l] and Tc[u(x, t)] = limTd[U⌊x/l⌋(t)]/l. Then, for 0 < i < N ,402

we have403

lim

(

1

l

dUi

dt

)

= lim

(

d

dt

(

Ux/l

l

))

=
∂u

∂t
,(A.1)

and404

lim

(

λ

l
[Td(Ui−1)− 2Td(Ui) + Td(Ui+1)]

)

= lim

(

λ
[Td(U(x−l)/l)− 2Td(Ux/l) + Td(U(x+l)/l)]

l

)

= lim

(

λl2
[Td(U(x−l)/l)/l − 2Td(Ux/l)/l + Td(U(x+l)/l)/l]

l2

)

= d
∂2

∂x2
[Tc(u)].(A.2)

By Equation (3.1), we can equate Equations (A.1) and (A.2) to give405

∂u

∂t
= d

∂2

∂x2
[Tc(u)],(A.3)

which is Equation (3.3).406

For the boundary conditions, we can take the continuum limit of either the top407

or bottom row of Equation (3.1). We start by looking at the bottom row, which gives408

the zero-flux boundary condition at x = L. For the left-hand side, we have409

lim

(

dUN

dt

)

= lim

(

l
d

dt

(

UL/l

l

))

= 0× ∂u

∂t

∣

∣

∣

∣

x=L

= 0.(A.4)

For the right-hand side (of the bottom row of Equation (3.1)), we have410

lim(λ[Td(UN−1)− Td(UN )])

= lim

(

λl2
Td(U(L−l)/l)/l − Td(UL/l)/l

l

)

= −d
∂u

∂x

∣

∣

∣

∣

x=L

.(A.5)

Then Equations (A.4) and (A.5) together give the zero flux boundary condition at411

x = L. The calculation of the boundary condition at x = 0 is similar.412

Appendix B. Continuum limit of the model in Section 4. Using the413

notation and limiting procedure from Appendix A, we derive here the continuum414
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limit of Equation (3.1) in the case where415

Td(Ui) = Ui −
RU2

i

6
(3K − 2Ui),(B.1)

as defined in Equation (4.1). In addition to the limit from Appendix A, we take the416

limit as K → 0 and R → ∞ such that K/l → k and Rl2 → r/d. Then417

dTc[u(x, t)] = lim[l2λTd(Ui)/l]

= lim

[

l2λUi

l
− l4λR

6

U2
i

l2

(

3K

l
− 2Ui

l

)]

= du(x, t)− ru2(x, t)

6
(3k − 2u(x, t)).(B.2)

Hence, by plugging Equation (B.2) into Equation (A.3), the continuum limit of Equa-418

tion (3.1) with Td as defined in Equation (4.1) is419

∂u

∂t
= d

∂2u

∂x2
− ∂2

∂x2

[

ru2

6
(3k − 2u)

]

= d
∂2u

∂x2
− ∂

∂x

[

ru(k − u)
∂u

∂x

]

,(B.3)

which is the local limit (i.e. ξ → 0) of Equation (2.1) with χ(u) = ru(k − u) and420

D(u) = d. This functional form for χ(u) was studied by [25]. It incorporates a421

‘packing’ constant, k, accounting for the fact that there is a limit to the amount of422

individuals that can be in a given area. Specifically, individuals at x at time t will423

tend to move up (resp. down) the density gradient when 0 < u(x, t) < k (resp.424

k < u(x, t)). This feature has been shown to be both mathematically important and425

biologically realistic in a variety of contexts [26].426
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