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Abstract: The term liquid crystal elastomer (LCE) describes a class of materials that combine the elas-
tic entropy behaviour associated with conventional elastomers with the stimuli responsive properties
of anisotropic liquid crystals. LCEs consequently exhibit attributes of both elastomers and liquid
crystals, but additionally have unique properties not found in either. Recent developments in LCE
synthesis, as well as the understanding of the behaviour of liquid crystal elastomers—namely their
mechanical, optical and responsive properties—is of significant relevance to biology and biomedicine.
LCEs are abundant in nature, highlighting the potential use of LCEs in biomimetics. Their exceptional
tensile properties and biocompatibility have led to research exploring their applications in artifi-
cial tissue, biological sensors and cell scaffolds by exploiting their actuation and shock absorption
properties. There has also been significant recent interest in using LCEs as a model for morphogene-
sis. This review provides an overview of some aspects of LCEs which are of relevance in different
branches of biology and biomedicine, as well as discussing how recent LCE advances could impact
future applications.

Keywords: liquid crystal elastomers; biological materials; auxetics; biomimetics; actuators

1. Introduction

Liquid crystal elastomers (LCEs) are a novel class of materials that combine the
properties of liquid crystals (which exhibit orientational order) with the elastic properties
of conventional elastomers [1]. As a result, they display unique and interesting responses
to a variety of external stimuli, as well as intriguing responses to mechanical deformation,
such as semi-soft elasticity, auxeticity and actuation properties. The exceptional potential
of these elastomers is constantly being expanded on as more advanced synthesis and
characterisation techniques are being developed. An interesting example is recent tensile
rig developments which have allowed the concurrent analysis of the tensile behaviour and
the liquid crystal texture. The resulting insight into the strain-dependent liquid crystal
director reorientation, the mechanical properties and the birefringence (and hence the liquid
crystal order parameter), led to a re-evaluation of deformation modes that occur in different
LCE systems [2]. The exceptional properties of LCEs, such as stimuli responsiveness and
actuation, have shown them to be versatile materials for use in a range of applications in
the fields of biology and medicine, from artificial muscles to the control of cell maturation
during cell culture [3]. This review article will cover some of the key discoveries and
advances of LCEs in the field of biology.

2. Background to Liquid Crystal Elastomers and Liquid Crystals

A liquid crystal is a thermodynamically stable phase characterised by the anisotropy
of properties without the existence of a three-dimensional crystal lattice, existing in the
temperature window between the solid (crystalline) and isotropic (liquid) phase; therefore,
liquid crystal phases are referred to as mesophases [4]. If these phases are formed as
a result of a temperature change, they are referred to as “thermotropic” phases. These
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mesophases can also form as a result of amphiphilic materials dispersed in an appropriate
solvent—these are “lyotropic” liquid crystal phases [5].

Liquid crystalline materials usually have a few distinctive characteristics, including:
molecular shape anisotropy, a strong dipole and/or easily polarisable substituents. Further,
the liquid crystal molecules (mesogens) tend to point along a common axis, referred to
as the director. In contrast, liquids have no preferred order, whereas the molecules in
solids are highly ordered with very limited translational freedom. The orientational order
of a liquid crystal mesophase lies between that of a liquid (which is zero) and that of
a crystalline solid (which is 1) [6]. This orientational order can be defined by the order
parameter, S, as follows:

S = 〈P2 cos (θ)〉 = 1
2

〈(
3 cos2(θ)− 1

)〉
where P2 is the second Legendre polynomial, and θ is the angle between the director and
the long axis of a molecule in the phase which is schematically shown in Figure 1. The
brackets denote an ensemble average over many molecules. Figure 2 shows the impact of
the order parameter on the polymer shape.
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Liquid crystal mesophases can be further characterised as different phases with dif-
ferent positional and orientational order. The nematic phase is a mesophase in which the
molecules exhibit orientational but not positional order. The smectic phases additionally
have translational order (a layered structure) with subtleties in the packing symmetry,
allowing for many different variants; the simplest is the smectic-A phase in which the
director coincides with the layer normal. Molecular chirality further modifies the symme-
try of the system and can lead to distinct phases such as the chiral nematic phase, where
the molecules adopt a helicoidal structure [7]. A schematic of these phases is displayed
in Figure 3 [8].
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pitch [8]. The black arrows indicate the director in each case.

There are three main material classes that combine the properties of polymers and
liquid crystals, such as: conventional liquid crystal polymers, liquid crystal oligomers and
LCEs [6]. LCEs are weakly crosslinked, so they have a low density of crosslinks between
the polymer chains, resulting from the polymerisation of liquid crystalline monomers [1].
LCEs were first discovered by Finkelmann in 1981 [9], who reported LCEs exhibiting three
distinct phases (chiral nematic, nematic and smectic). LCEs are thermotropic and typically
lose their liquid crystal order at temperatures above the liquid crystal-isotropic phase
transition (they are then referred to as isotropic liquid crystal elastomers). In some cases,
the LCE can maintain the liquid crystal order up to very high temperatures—thermally
degrading before an isotropic phase can form. Although LCEs display properties of both
liquid crystals and elastomers, some of their properties are associated with neither category,
such as semi-soft elasticity and spontaneous shape change [1,10,11].

The unique behaviour of LCEs arises from the coupling of the intrinsic liquid crystal
orientational order to the distribution of the polymer backbone. In an isotropic system,
the statistical average of the polymer backbone will be spherical and can be described by
a single radius of gyration, R. When there is nematic ordering, the polymer backbone
will form a spheroid which is elongated either parallel or perpendicular to the nematic
director. In the former scenario, the polymer backbone distribution is said to be “prolate”
and the radius of gyration parallel to the director, R‖ is greater than the radius of gyration
perpendicular to the director, R⊥. In the later scenario, the polymer backbone is said to be
“oblate” radius of gyration parallel to the director is smaller than the radius of gyration
perpendicular to the director (R‖ < R⊥). The polymer backbone shape is coupled to
the order of the liquid crystal—so as the order is changed (for example from heating the
LCE from the nematic phase), the backbone shape is changed. In the case of the nematic–
isotropic phase transition, the backbone transforms from an anistropic oblate or prolate
shape when in the nematic phase to an isotropic spherical shape when in the nematic
shape—this is an example of actuation. This coupling of order to the backbone shape is
responsible for the shape actuation properties of the LCEs. Reducing the intrinsic liquid
crystal orientational order (as a result of changes in optical, chemical and thermal stimuli)
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reduces r (which is the ratio (R‖/R⊥)) to unity. This in turn results in the contraction of the
LCE parallel to the director [1].

LCEs can be prepared in one of two geometries—polydomain or monodomain. Mon-
odomain refers to an LCE where the director is uniform throughout the sample, as opposed
to a polydomain LCE, where the director varies with position throughout the sample.
The difference between the properties of monodomain and polydomain aligned LCEs
include the ability for LCEs to display mechanical anisotropy (and hence the observation
of semi-soft elasticity and/or the Mechanical Fréedericksz transition) and thermomechan-
ical actuation. Additionally, light is strongly scattered at domain boundaries; therefore,
polydomain LCEs tend to appear opaque, unlike monodomain LCEs. Without very special
precautions during fabrication, liquid crystal elastomers are always found in polydomain
form, with very fine texture of director orientations [12].

The intrinsic semi-soft elasticity (SSE) of liquid crystal elastomers is the second prop-
erty which makes it ideal for use in biomedical applications. This is observed when tensile
stresses are applied to an LCE perpendicular in direction to the LC director. Semi-soft
elasticity corresponds to limited/no increase in the free energy of the system throughout
a region of the deformation. This lack of increase in free energy corresponds to a plateau
on the stress strain-curve of an LCE. Along the length of the plateau, a rotation of the
nematic director supplements this deformation. This process offers a second route by
which a 90◦ rotation of the director can be mechanically induced for a LCE under tensile
strain. The Warner and Terentjev theory describing SSE also assumes a constant nematic
order parameter throughout the deformation. An alternative deformation—the Mechanical
Fréedericksz transition (MFT)—proposes that the director rotates sharply at a critical strain
(as opposed to gradually over a strain range as is observed in materials displaying SSE
behaviour) [1,13]. The Mechanical Fréedericksz transition is explored much less frequently
in literature, so, although the relationship between the plateau in the stress-strain curves of
LCEs and the director rotation in such materials is widely explored, this understanding is
much more limited in LCEs displaying the MFT deformation [14,15].

The semi-soft elasticity, in turn, also results in LCEs behaving as ideal candidates for
shock absorption applications, as a result of the internal relaxation of nematic director
modes which provides an increased resistance to deformation. When considering the
damping properties of LCEs, the mechanical response as a result of compressive loading,
is key. In practice, as shown by Agrawal et al. [16], when a polydomain LCE is compressed
dynamically, it can result in the stiffening of such materials as the director rotates in
response to the dynamic load. This stiffening is a consequence of the coupling of the
polymer backbone to the director resulting in a transformation from a prolate to an oblate
backbone. The shock absorption properties of a material depend upon the tan(δ) of
the material, where δ is the characteristic phase difference between the storage (elastic)
modulus and loss (viscous) modulus [17]. When the elastic modulus is higher, tan(δ)
increases and hence the shock absorption properties improve. An increase in stiffness
increases the storage modulus, therefore increasingthe shock absorption properties. The
shock absorption properties of monodomain and polydomain LCEs are different —when
the compressive force applied to the LCE is parallel to the director alignment, the stiffening
behaviour (similar to what was seen by Agrawal et al. [16]) can be observed. This director
rotation is still observed in polydomain LCEs, but less director rotation is necessary to
reach director alignment. However, when the compressive force is applied at a direction
perpendicular to the director, this densification/stiffening/enhanced damping effect is not
observed as there is no director rotation [18,19].

In 1975, de Gennes predicted the reversibility of the shape change responses of
LCEs [20]. A reduction to the order parameter, via external stimuli, reduces the anisotropy
of the backbone shape and, therefore, results in a reversible macroscopic shape change.
These changes in order can result from the application of external stimuli, such as the
application of heat, electric fields, or even light [21].
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The behaviour and properties of the LCEs depend directly upon the final chemical
structure of these elastomers and, therefore, upon the chemical synthesis routes required
to produce the elastomers, as well as processing routes of these elastomers (i.e., tech-
niques such as stretching and injection moulding to produce the desired elastomer shape).
There are two main types of LCE: the first being where the side (pendant) groups are
the mesogenic units, known as side-chain LCEs, and the second being LCEs where the
mesogenic group is incorporated directly into the polymer backbone, known as main-chain
elastomers [22,23].

Main-chain LCEs are traditionally synthesised by step-growth reactions, such as
polycondensation and polyaddition reactions [24]. These reactions are traditionally difficult
to control, and generally yield LCEs with high transition temperatures. Moreover, the
materials produced are very polydisperse, meaning reproducibility often becomes an
issue. However, recent developments in LCE synthetic chemistry have allowed these
obstacles to be overcome, for example, the photo-crosslinking of functionalised main-chain
polyesters [25], photopolymerisation of acrylates [10], cross-linking of functionalised liquid
crystal polymers [10], and hydrosilyation reactions [26]. More recently “click reactions”
have been used for LCE synthesis [11,19,27,28]. “Click chemistry” is a term that was
introduced by K. B. Sharpless in 2001 to describe reactions that are high yielding, wide
in scope, stereospecific, simple to preform, create only by-products that can be removed
without chromatography, and can be conducted in easily removable or benign solvents [29].
The Michael-addition of a nucleophile (e.g., thiol) to a α,β-unsaturated carbonyl compound
(e.g., acrylate) has recently been studied in detail as a powerful “click” synthesis for LCEs.
Many side-chain LCEs are generally siloxane-based, which are produced by hydrosilylation
whereby a silyl hydride is inserted across an unsaturated bond [30–32].

There are extensive techniques that have been explored for LCE monodomain align-
ment. Some of these include: mechanical rubbing [28,33], magnetic [13,34], and electric
fields [35,36], photoalignment [37,38], and stress alignment [39,40]. More recently, however,
advanced alignment techniques have been explored. For example, exchangeable covalent
bonds, which can undergo cleavage formation in the presence of external stimuli, such as
heating or UV irradiation, have been introduced into LCEs to enable the programmability
of the orientation of mesogens. The exchanging reaction of these covalent bonds can induce
permanent rearrangement of polymer networks experiencing deformation, and removal
of the stimuli quenches the reaction, fixing the alignment of the liquid crystal mesogens
in the network [41]. Additionally, Jampani et al. [34], demonstrated alignment resulting
from an osmotic pressure gradient whilst synthesising an LCE actuator shell. Impressively,
they were able to achieve a negative order parameter as a result of this osmotic pressure
gradient-based alignment route [42]. This followed the discovery of a negative order
parameter in an acrylic-based nematic liquid crystal elastomer. When the strain direction
was perpendicular to the nematic director and when the elastomer was strained enough, it
resulted in a negative order state, coinciding with the auxetic behaviour of the LCE. This
will be discussed in more detail later in this article.

3. Liquid Crystal Elastomers in Nature

In order to examine the significance of LCEs in biomimetics, the best place to start
is to consider LCEs found in nature. While the discussion to date has mostly concerned
thermotropic LCEs, most LCEs in nature are lyotropic, where the properties are tailored
using the concentration of the two components rather than temperature. There is strong
evidence that suggests that fibrils of transversely banded collagen can be regarded as
LCEs [43]. There is extensive data which shows they are lyotropic in terms of the liquid
crystalline structure, assembly and elastomeric properties. Woodhead-Galloway and
Knight [44] studied elastoidin, a form of collagen isolated from shark fins, and they found
that it has a high shrinkage temperature and high insolubility, indicating that the molecules
are cross-linked. X-ray diffraction data of elastoidin and rat-tail tendon fibrils displayed
sharp Bragg peaks and diffuse peaks, which was then confirmed to be indicative of lyotropic
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liquid crystalline behaviour by Hukins [45,46]. Many other natural fibrils have been shown
to display liquid crystallinity, such as dogfish EC collagen [43], type 1 procollagen [47],
and other fibrillar collagens [43]. The mechanical behaviour does not on first glance
corroborate LCE-like behaviour, because structures with collagen fibrils are composites
and, therefore, their mechanical response depends upon the properties of the interfibrillar
matrix. However, the isolated collagen fibrils themselves show an elastic response, and
X-ray studies on the effect of strain of collagen fibrils have displayed reversible extensions
of the axial period during cyclical loading in the “toe in” region of the stress–strain curve,
as well as an increase in lateral molecular order accompanied by a reduction of mobility
with strain [48]. The extension of the axial period is thought to result from the straightening
out of thermally activated molecular kinks. This tensile response is consistent with what is
observed by LCEs.

There is also strong evidence to suggest spider silks have a LCE structure. A spider
can produce a variety of silk materials. The protein which constitutes this silk is produced
in major ampullate (MA) glands, and the resulting silk is often referred to as MA silk
or “dragline silk”—this is illustrated in Figure 4 [49]. The capture spiral of an orb web
comprises of fibres of only one type of protein which is produced in the flagelliform (Flag)
gland of spiders and is hence known as flag silk. Spiders secrete a protein rich mixture (the
proteins are referred to as spidroins, and the secretion is known as spinning dope), and the
proteins have an unfolded structure when in the duct. The proteins assemble rapidly as
they pass through a spinning duct, where phase separation occurs and then a mechanical
drawing process occurs, wherein the rapid assembly of the silk commences and the laminar
flow through the spinning duct promotes alignment of the proteins [50]. This process is
illustrated in more detail in Figure 5. The alignment along the duct, combined with the
high concentration, results in liquid crystal behaviour of the spinning dope [51], which in
turn is used to form the LCEs.
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Flag silk is highly elastic (it can be strained up to 300% before straining) and has
a toughness of 150 MJ/m3, which is higher than carbon fibre and steel [52]. It also ef-
fectively dissipates the impact energy of prey. Dragline silk displays properties which
are consistent with what would be expected of a lyotropic LCE. It displays a non-linear
tensile behaviour [50] and X-ray data shows an axial period which increases reversibly
when strained by 10% [53]. Dragline silk reveals a tensile strength that is comparable to
Kevlar (4 × 109 N/m2) coupled with large elastic strain deformations when compared
to Kevlar (35% of failure strain compared to 5%, respectively), indicating a short-range
elastic response [49].

Spider silk is not suitable for commercial use as the amount of silk produced by a
spider is very low and is only suitable for them to make their orbwebs – not for large scale
industrial processes. Additionally, spiders are quite territorial and often end up killing
each other, making it difficult to farm silk from them [54].

4. Biomedical Advances Inspired by LCEs

Both the spinning process used by spiders and the composition and structure of
the silk they form can be considered when producing biomimetic materials with prop-
erties comparable to spider silk. The liquid crystal spinning of silks was modelled by
using nematodynamics, nematostatics, and interfacial thermodynamics, and the resulting
semi-quantitative prediction was consistent with the birefringence observed in the native
spinning gland [55]. 3D printing is one of the more recent developments in LCE manufac-
turing, and it has a variety of advantages, including the ability to construct a wide range of
geometries, as well as precise spatial deposition and temporal control [56]. In many ways,
this technique shares similarities with silk-spinning. Silk fibres are spun into structures
such as orbwebs and cocoons, in the same way 3D printing extrudes polymers/elastomers
or other curable materials into 3D structures [57].

The exemplar qualities of silk, in theory, makes it an ideal biomimetic model material.
The efficiency at which this silk is produced, under green conditions, makes the spinning
process an attractive bionic model. Mimicking the chemistry and processing route would
potentially allow a material with exceptional properties to be produced [58]. There has
been long term interest in recreating this silk synthetically, yet, so far, no synthetically
produced silk exhibits the exceptional properties of naturally spun silk.

Spinning-inspired bionic methods include wet-spinning, dry-spinning and electro-
spinning [59]. Dry-spinning most closely resembles silk produced by spiders. Despite no
technique existing to replicate dragline silk, methods to regenerate natural silk for uses in
applications have been developed. Ling et al. [60] produced polymorphic regenerated silk
fibres using a dry-spinning process; firstly, they developed a nematic silk microfibril solu-
tion which was both highly viscous and stable. They achieved this by partially dissolving
silk fibres into microfibrils. This solution effectively behaves as the “dope”. It is then spun
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into regenerated silk fibres by direct extrusion in air. The modulus of the silk formed is
even higher than that of the LCE formed by spiders [60]. Despite the impressive properties
of the silk produced by the regeneration progress, it is limited by the requirement of input
silk produced by spiders.

It is difficult to synthesise the silk produced by spiders for a range of reasons: the silk
proteins created using genetic engineering and recombinant technologies have not been
based on full-length spider silk gene sequences. Also, an incomplete understanding of the
natural spinning processes, and the influences of the internal and external environment
over silk properties, are limiting factors. In the regenerated silk process the main limiting
factor is the spinning dope – using silk produced by spiders as an input to the process is
unfeasible.The synthesis of the constituent proteins of natural spider dope would normally
overcome this problem, but this is very difficult to achieve for a multitude of reasons. The
proteins from the dope would normally be produced by recombinant protein expression,
this involves injecting spider silk genes into bacteria, resulting in the bacteria expressing the
proteins. This would be possible if the full-length sequences of spindroin-encoding genes
were known for spiders but, unfortunately, at the present time, they are not. Attaining full-
length spider silk proteins by recombinant expression is difficult because the silk proteins
are large and consequently it is challenging for the bacteria to secrete them. Therefore,
researchers have struggled to isolate and purify silk proteins using this method. There have
been advances to try and overcome this, such as genetically modifying proteins secreted by
bacteria, for example: E. coli [61], yeasts [62], plants such as tobacco [63], or in animals [64].
However, the proteins produced as a result of this vary in structure from native spidroins.

A recent advance using recombinant proteins has replicated the mechanical properties
of dragline silk, using proteins containing 192 repeat motifs of the Nephila clavipes dragline
spidroin. Although the spidroin varied noticeably in structure to what is naturally found
in spider ducts, the similarities were significant enough to develop silk with the following
properties: tensile strength (1.03 ± 0.11 GPa, where Dragline silk is 1.3 GPa), modulus
(13.7 ± 3.0 GPa, where Dragline silk is 2.2 GPa), extensibility (18 ± 6%, but around 40% for
Dragline silk), and toughness (114 ± 51 MJ/m3, but 180 MJ/m3 for Dragline silk) [61].

Researchers at Nexia Biotechnologies have successfully shown that transgenic goats
can express the genes to spin spider silk, which is produced in their milk. This silk can
subsequently be removed from the milk and purified [65].

5. The Significance of Liquid Crystal Elastomers for Understanding Biological Systems

An example of LCEs significance in biomimetics is their potential to lead towards artifi-
cial morphogenesis. Morphogenesis is a biological process that translates nanoscale details
of molecular organisation into a macroscopic shape of an organism. For example, units of
carbon, hydrogen and nitrogen assemble into molecular structures such as amino acids
whose code ultimately makes up the structure of larger proteins, and it is these proteins that
are ultimately the building blocks for eukaryotic and prokaryotic cells. Effectively, it is the
process that causes cells, tissue and organisms to develop their shape. Morphogenesis is a
mechanical process involving forces that generate mechanical stress, strain, and movement
of cells, and can be induced by genetic programs according to the spatial patterning of cells
within tissues. Therefore, ultimately, it is the process of creating complex 3D structures
upon the exposure of external stimuli [66]. Scientists have been inspired by this and have
attempted to mimic this process artificially. The classical approach to this is to take a 2D
structure, which is folded or cut in certain directions, and transform it into a 3D structure,
just like Japanese origami or kirigami. With isotropic materials—as in the case of origami
or kirigami, which uses paper—this is relatively straightforward to maintain the intrinsic
geometric properties. However, in the case of non-flat surfaces, it is not straightforward
to upgrade them to 3D structures. Aharoni et al. [67] published an explicit protocol for
pre-programming any desired 3D shape into a 2D LCE sheet [68], following a series of
articles studying self-folding 3D LCE sheets [69–71]. Given an arbitrary 3D design, they
demonstrated how to produce a flat sheet that can buckle into the desired shape when
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heated and return to flat when cooled—reversibly, due to the pre-designed molecular
orientation on the film. A flat piece of paper cannot easily achieve a non-zero surface
curvature which an LCE can. Patterning a director profile can create grooves and valleys in
the surface of the LCE upon heating. When an LCE is heated, there is shrinkage along the
director, n

_
, and therefore expansion in the perpendicular directions. So, if the patterned

director field is circular, the perimeter contracts and extends, forcing the formation of a
cone. The smooth variations in director field can successfully produce 3D shapes, such as
spherical, pseudospherical, and toroidal surfaces. Ahrahoni demonstrated many examples
of this—using a thiol-acylate-based synthesis route to produce LCEs that are flat at room
temperature, but transform into the 3D shapes prescribed by the director distribution
upon heating [67].

6. Liquid Crystal Elastomers for Biomedical Applications

The Poisson’s ratio (ν) of a material is defined as the negative ratio of the transverse
strain to the axial strain in the direction of loading. For many materials, this value is
positive and reflects a need to conserve volume. Materials with a negative Poisson’s
ratio display the unexpected property of lateral expansion when stretched, rather like a
Hoberman® sphere, with an equal and opposing densification when compressed [72,73].
Figure 6 presents a schematic of the behaviour of auxetic and non-auxetic materials.
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dinal and lateral extension (solid line) for a tensile load applied in the longitudinal (x) direction.

Materials with a negative Poisson’s ratio are referred to as auxetic materials. The vast
majority of auxetic materials are cellular auxetics. Cellular auxetics are porous materials,
where a volume increase results from the reorganisation of the internal cellular structure
and a reduction in density. The auxeticity in molecular auxetics, however, arises from
changes in their microstructure, perhaps resulting from molecular segments rotating upon
deformation [74]. In molecular auxetics, only one axis shows a negative Poisson’s ratio,
and this is coupled to a large contraction in another axis to maintain constant volume and
the original sample density.

Until recently, molecular auxetics were only found in nature, for example, in 69% of
cubic metals, α-cristobalite, and numerous examples of the zeolite class of materials [75–77].
Cellular auxetics are abundant in nature; for example, this behaviour has been reported in
cow teat skin [78], cat skin [79], cancellous bone [80], tendons [81] and membranes found
in the cytoskeleton of red blood cells [81,82]. Unlike molecular auxetics, many examples of
synthetic cellular auxetics exist, such as the Hoberman® sphere [72], ultra-high molecular
weight polyethylene (UHMWPE) [83] and paper [84].
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Recently, studies have identified the benefits of using auxetic materials in skin heal-
ing [85]. Skin healing is facilitated by the migration of cells to the wound site. Small simple
wounds, such as small finger-pricks, rarely need assistance in healing. However, when
complex wounds occur, such as burns, or when more widespread tissue regeneration is
required, assistance can promote faster healing and minimise scarring. Tissue regeneration
can be facilitated if a suitable scaffold is provided, the desired cells replicate more easily
and grow along the predefined structure. Polylactic acid-based fibres which can be pro-
duced by electrospinning are cellular auxetics [85,86]. The auxeticity of these scaffolds are
particularly attractive because of their ability to apply an enhanced negative pressure on
the wound site.

Auxetic skin sensors have also recently been developed [87]. The auxetic nature of
these skin sensors is particularly appealing because they display excellent mechanical
compliance to dynamic body motions. Human skin displays a negative Poisson’s ratio in
some regions—expanding biaxially during bending, exhalation and muscle tension. Often,
polymer films are unable to maintain contact with the skin under large body motions
due to their positive Poisson’s ratio. The usage of auxetic sensors can therefore maintain
conformational contact [87].

Recently, a side-chain LCE was the first ever synthetic material to display molecular
auxetic behaviour [2]. This polyacrylate-based LCE showed that volume was conserved
when strained, confirming that the material was a molecular auxetic. The Poisson’s ratio
displayed by the material was up to −0.8. The auxetic behaviour was not observed at low
strains, but at higher strains (>80%). Once the strains necessary to display auxetic behaviour
of the LCE were reached, a coincident negative order parameter was also observed. It
is believed that the auxetic response is related to the inherent Mechanical Fréedericksz
transition displayed by some LCEs [2]. Figure 7 shows the change in the thickness (strain
in the z-direction, εz) of the polyacrylate based auxetic LCE in response to strain in the
x-direction, εx. Shown also is the change in birefringence as a function of strain, displaying
a decrease in retardance as the strain is increased, reaching a minimum at εx = 1.14, where
what is believed to be a negative order parameter is observed. A further increase in εx
results in the retardance increasing again. The relationship between the liquid crystal order
and the emergence of auxetic behaviour of the LCE is still being explored. The reason as to
why some LCEs display the Mechanical Fréedericksz transition whereas others do not is
also currently unclear.

These auxetic LCEs show exciting potential for biomimetic applications. As previously
discussed, the auxeticity of materials used in skin sensors and skin healing scaffolds signif-
icantly enhances their performance compared to the non-auxetic counterparts. Molecular
auxetics could be used in composites which mimic the stress-strain and auxetic behaviour
of human skin [87]. Conventional auxetics have an “open” microstructure, which confers
reduced mechanical properties [77]. In many cases, these “open” microstructures display a
tensile strength that is too weak for practical applications due to their microscale poros-
ity; however, these limitations could be circumvented by molecular auxetics due to their
“closed” microstructure.

Another potential application is the use of LCEs as artificial blood vessels; the auxetic-
ity would allow the vessels to withstand the high pressure of blood through the vessels,
which are less prone to rupture as a result of thinning [88].
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Furthermore, a range of tissues display auxetic behaviour [81,82]. The discovery of
the inherent auxeticity of these tissues has a range of implications for tissue engineers
in mimicking the properties of these auxetic tissues. The mechanical characteristics of
engineered tissue ideally should match or enhance the mechanical properties of healthy,
normal host tissues, permitting full functionality, enabling it to fulfil its role in vivo. Cells
exist in their natural in vivo environment embedded within an extracellular matrix, which
is the natural scaffold of the body produced by the cells within tissues. Therefore, if the
target tissue is auxetic, an auxetic scaffold would most closely match the properties of this
tissue. The matching of this characteristic would be beneficial in recreating the loading
environment that cells would naturally experience. As will be discussed in further detail
later in this review, LCEs have already been considered and have shown to be suitable for
use as tissue replacements, as their actuation properties make them ideal candidates for
use as artificial muscles. Exploiting the auxeticity of some LCEs is, therefore, promising for
potential applications in tissue engineering.

This discovery of a molecular auxetic has overcome a long-standing limitation in
the auxetics industry and there is, therefore, a lot of potential for these materials not
just in biomedicine, but in the wider materials world [89,90]. The main challenge lies
within understanding and, if necessary, making adaptations to ensure the biocompatibility
of the materials.

7. Liquid Crystal Elastomers in Tissue Engineering

The flexibility stemming from the elasticity of LCE polymer networks allow for a large
and reversible anisotropic dimensional change in response to applied stimuli. Based on this,
de Gennes proposed a theoretical study suggesting the possibility of using LCEs as artificial
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muscles [20]. He predicted that when the temperature is lowered below the nematic clearing
point, strong uniaxial deformations occur. The estimated shape relaxation time is well
within actual muscle contraction times. Küpfer and Finkelmann [91] then went on to
experimentally confirm this behaviour, synthesising elastomers where all mesogens were
oriented uniformly across the sample and, as a result of coupling, the polymer backbone
was elongated along the director, creating a monodomain sample. The individual polymer
chain shape changes were translated to a macroscopic shape change of the elastomer
sample at the nematic–isotropic transition [92]. Following this, a range of studies have
shown physical properties suitable for use in artificial muscles, and uniaxial deformations
of up to 600% have been achieved. The main focus when considering the design of artificial
muscles involves attempting to mimic the following properties displayed by muscles:
(1) achieving a uniaxial contraction of at least 25%, (2) a stress exerted of at least 350 kPa,
and (3) a contraction frequency of 5 to 10 Hz. Although many actuating LCEs can contract
by up to 600%, it is rare for LCEs to fulfil all three properties [33]. Thomsen et al. [33]
synthesised two LCEs using mesogens with laterally-affixed polymerisable side chains
based on 4′-acryloyloxybutyl 2,5-(4′-butyloxybenzoyloxy)benzoate), the structure of which
is shown in Figure 8. The elastomers exhibited behaviour that satisfied all three criteria
necessary for artificial muscles: the relaxation frequency was between 5 and 10 Hz, they
displayed strains between 35% and 45%, and finally they exerted a stress of 210 kPa,
which is slightly lower than the average exerted by biological muscles. LCEs produced by
reacting rigid-rod mesogenic epoxy monomers with aliphatic diacids of variable length
displayed exceptional properties, with the exerted stress reaching an exceptional value
of 12 MPa—by far exceeding the properties necessary for artificial muscles, strains of
310% and relaxation time of about 150 ms, which corresponds to a relaxation frequency
6.67 Hz [93]. Following this study, a wide range of materials have shown properties which
display physical properties suitable for muscle replacement, with facile synthesis routes.
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More recently, LCEs that are responsive to other stimuli, e.g., specific chemicals, have
been developed, which also express the necessary properties for use as artificial muscles.
Boothby et al. [94] developed an LCE which was not only temperature responsive, but
also responsive to chemical stimuli. It displayed a contraction of 26.1% in response to
dimethylformamide (DMF). It also displayed this behaviour with different contractions
in other solvents such as THF, as shown in Figure 9. A limited amount of mechanical
characterisation of this elastomer was reported, so we cannot accurately determine whether
it is a suitable material to act as an artificial muscle. Nevertheless, the study is a good
starting point for the development of chemoresponsive artificial muscles in the future [95].
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Figure 9. Images taken on an optical microscope show samples with planar alignment, 1, 4 and 5 s
following immersion in tetrahydrofuran (THF). Reproduced with permission from Elsevier from
Boothby et al. [94].

Light-responsive LCEs with actuating properties have also been developed. These
LCEs generally incorporate azobenzene groups. The azobenzene group exhibits both cis
and trans isomers. When exposed to UV of a suitable wavelength, the trans azobenzene is
converted into the cis conformer. The trans isomer can be considered rod-like, whereas
the cis isomer has a bent structure. The rod-shaped molecules act to stabilise the liquid-
crystalline phase, whereas the bent shape acts as a non-mesogenic impurity—so UV
radiation can effectively initiate an isothermal phase transition from nematic to isotropic
when incorporated in a liquid crystal. In the case of LCEs, UV irradiation can initiate
expansion by up to 50% [92]. Historically, there have been multiple problems associated
with the use of photo-responsive LCEs for actuation in artificial muscles—the relaxation
time for the developed LCEs was generally far too long, often requiring many minutes for
cis–trans conversion and hence relaxation back to the original shape. Recent developments
have overcome this relaxation time limitation.

Recently, more focused applications of LCEs for use within the human body as tissue
replacements have been studied. The use of light-assisted LCEs to assist cardiac con-
traction has recently been explored by Ferrantini et al. [96]. They firstly analysed the
biocompatibility of these LCE-based molecules. LCEs are a very suitable candidate for
such an application due to their impressive photo-mechanical actuation properties and the
tunability of the tensile properties. The acrylate-based LCE was used as a culture substrate,
and they successfully observed cell differentiation and maturation of different human and
murine cell lines. They observed that human dermal fibroblasts and immortalised mouse
myoblast muscle cell lines adhered successfully onto the films, and cell differentiation
and maturation was observed. The muscle cell lines differentiated in long muscle fibres
showing several nuclei and well organised actin fibres [86]. The findings of this biocom-
patibility study allowed for a more developed in situ study, determining the suitability of
light-responsive LCEs to assist cardiac contraction [27]. In this case, the LCE was modified
slightly to incorporate an azobenzene-based dye, the same dye discussed earlier with the
structure shown in Figure 8. Unlike earlier studies on photoresponsive LCEs, even those
incorporating the same dye, the response time of this azobenzene-incorporated LCE was
sub-milliseconds, as it has a short half-time in the cis-state. This in vivo study involved
the fabrication of these LCE films into thin strips, with dimensions comparable to those of
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thin cardiac trabeculae. They studied the mechanical behaviour of LCE strips by measur-
ing passive tension and active tension in the air on stimulation with the green LED light
source at its maximal intensity. The tensile response as a result of UV illumination was
characterised, and under wide illumination, a strong tensile response, with no discernible
decay, remained over 24 days, where the LCE was subject to flashes of UV radiation every
second as an attempt to mimic cardiac twitches. To demonstrate the ability of the LCE
in assisting cardiac contraction, the tensile response of a strip of mouse right ventricle
trabecula was compared to a strip of mouse right ventricle trabecula mounted in parallel
to an LCE strip (which herein will be referred to as the muscle/LCE sample). When the UV
light was switched off, the tensile force exerted by the muscle/LCE sample was almost the
same as the force exerted by the muscle alone. However, when the muscle/LCE sample
was exposed to UV light, a force three times higher was recorded. This remarkable result
demonstrates the ability for this LCE to provide significant systolic assistance. Addition-
ally, the contraction time of the LCE/muscle sample was comparable to the contraction
time of the muscle alone, and the 4 stages of the in vitro contraction process could be
reproduced. A limitation of photoresponsive materials is that they are often subject to
photo-degradation as a result of UV exposure, limiting their lifetime [97]. This example has
focused on assisting cardiac contraction; however, changing the molecular parameters and
the actuation stimuli may also allow matching of the features of skeletal or smooth muscles,
extending this technology to non-cardiac applications. This is an in vitro demonstration of
the suitability for LCE in biomimetics—the next step will be implementing such materials
in vivo [96].

We have discussed the significance of LCE for tissue engineering focusing more
specifically on their actuation properties for their use as artificial muscles. However, their
exceptional properties do not limit them to use in muscles. For example, Shaha et al. [19]
synthesised a replacement intervertebral disc based on LCEs. This application exploits both
the load-bearing and impressive energy dissipation properties of LCEs. A polydomain
LCE was used to mimic the nucleus pulposus and a transversely loaded monodomain
liquid crystal elastomer (i.e., the direction of the compressive force was perpendicular the
compressive force direction) was used to mimic the annulus fibrosus (see Figure 10 for a
schematic of the intervertebral disc). The tensile and compressive tests of the transversely
loaded monodomain LCE did not display semi-soft elastic behaviour as there was no
bulk realignment of the director, so the material recovered rapidly when the applied load
was removed. Therefore, it could provide support and structure for the central nucleus
pulposus. A polydomain LCE was used to replace the nucleus pulposus as the semi-
soft elastic behaviour meant it displayed exceptional damping properties as a result of
director rotation. The damping and shear in terms of both the trend and magnitude of the
polydomain LCE were very similar to human nucleus of intervertebral discs.

Materials with poor energy dissipation properties are unsuitable for use as replace-
ment vertebral disks, as their use can lead to loosening and premature device failure due
to wear and damage [19]. Shaha et al. utilised acrylate-based LCEs synthesised via a
facile 2-stage thiol-acrylate click reaction which have previously demonstrated cytocom-
patibility. This in vivo study analysed a polydomain porous elastomer synthesised using
a salt leaching technique, by adding salt crystals to the LCE forming mixture, as well as
nonporous monodomain and polydomain LCEs. The biocompatibility of the LCEs was
evaluated by implanting samples of the polydomain and monodomain LCE into a rat,
and no noticeable swelling or inflammation was observed, indicating that the LCEs they
synthesised were biocompatible. They demonstrated a proof-of-concept of the ability of
a monodomain-polydomain LCE composite to mimic a vertebral disc. The centre of the
implant comprised of polydomain LCE which displayed mechanical properties, such as the
change in tan(δ) with frequency, similar to the nucleus of a vertebral disc. The outer ring of
the disc comprised of monodomain liquid crystal elastomer, which displayed mechanical
properties comparable to the behaviour displayed by the vertebral disc annulus (as seen in
Figure 10). The in vitro testing of this device is still ongoing.
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Figure 10. (a) A schematic diagram that shows the model intervertebral disc (IVD) was devised by
mimicking the collagen alignment with the LCE’s mesogen alignment. (b) The model IVD implant
made from LCE materials. Solid polydomain LCE was selected as an analogue for the nucleus
pulposus, while transversely aligned monodomain material was selected as an analogue for the
annulus fibrosus. The outer transversely aligned monodomain surrounded the central polydomain
region. Reproduced with permission from Elsevier from Shaha et al. [19].

The in vivo testing of LCEs as tissue replacements has only just begun. We have
observed how the concept of using LCEs as a muscle replacement has developed over the
years, simply from being a theory to developing LCEs that display properties that appear
to be suitable for tissue replacements. More recently, the usage of LCEs has shown success
in vivo as muscle support devices, and in vitro tests for LCEs are still ongoing. However,
this is just the beginning of making de Gennes’ vision of using LCEs a reality. Now that
the multiple technologies have been developed, research will likely focus on making this a
reality, with clinical trials testing their efficacy and, in time, we will perhaps observe LCEs
used in humans as actual artificial muscle, or other tissue replacements.

Finally, LCEs have been studied extensively as promising candidates for cell scaffolds—materials
that have been engineered to cause desirable cellular interactions to contribute to the for-
mation of new functional tissues for medical purposes. LCEs can be synthesized to employ
a porous architecture—this is vital to allow nutrient transport between cells. Synthesis tech-
niques to produce porous architectures include microemulsion photopolymerization [98],
salt-leaching [99] and electrospinning [100]. Additionally, a cell scaffold should allow
mechanical control of cell behaviour. LCEs can achieve this due to the liquid crystalline
ordering. Multiple studies have confirmed that LCEs can achieve cell alignment due to the
inherent liquid crystalline order of LCEs—this is necessary for controlled and directional
growth of cells [101,102]. The use of LCEs as cell scaffolds is discussed in great detail in a
recent review by Prévôt et al. [3].

8. Conclusions

In 1975, six years before the synthesis of the first ever LCEs, the significance of LCEs
was highlighted by de Gennes, who presented a theoretical framework of artificial muscle-
base on the contraction of LCEs at the nematic-isotropic transition. Since then, incredible
advances have been made in the field of LCEs to make this a reality. Studies have explored
the possibility of stimuli-responsive LCEs, and in more recent years, in vitro and even
in vivo testing has begun to take place, providing proofs of concept in the usage of LCEs as
actual artificial muscles. Although they have not yet been used in a medical environment,
the impressive developments thus far imply that this could be a possibility in the near
future. The significance of LCEs in biology is not only limited to artificial muscles; a more
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recent discovery of a molecular auxetic LCE has also opened up the possibility for the use
of LCEs as general artificial tissues. In addition to this, LCEs have, unsurprisingly, been
found to exist in nature, providing exceptional physical properties. This highlights the
need for further research on understanding the structure and behaviour of these natural
LCEs, the findings of which may allow for the synthesis of materials with exceptional
mechanical and tensile properties, potentially on a commercial level.
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