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ABSTRACT

A direct bandgap can be engineered in Ge-rich group-IV alloys by increasing Sn content and by introducing tensile strain in GeSn. Here, we
combine these two routes in quantum well (QW) structures and systematically analyze the properties of SiGeSn/GeSn quantum wells for a range
of Sn content, strain, and well width values, within realistic boundaries. Using the k � p method, and including L-valley within the effective mass
method, we find that 13–16 nm is a preferred range of well widths to achieve high gain for tensile-strained SiGeSn/GeSn quantum wells. Within
the range of the well widths, a loss ridge caused by inter-valence band absorption and free carrier absorption is found in the region of parameter
space where Sn content and strain in the well are related as Sn(%) � �7:71εxx(%)þ 17:13. Limited by a practical strain boundary of 1.7%, for a
14 nm quantum well, we find that 7:5+ 1% Sn and 1+ 0:2% strain is a promising combination to get a good net gain for photon transition
energy higher than ∼0.42 eV. A maximum utilization of strain is preferred to obtain the best gain with lower energies (<0.42 eV). By comparing
these designs with a compressive strain example, an engineered tensile structure shows a better performance, with a low threshold current density
(1.42 kA/cm2). Finally, the potential benefit of p-doping of the tensile-strained GeSn QW is also discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0042482

I. INTRODUCTION

Conventional group-IV materials Si and Ge are inadequate as
efficient light emitters because of their indirect bandgap. This can
be overcome by adding a sufficiently large Sn content. The Sn
content in the GeSn alloy should exceed 6.5% for it to be a direct
bandgap material,1,2 but for an efficient laser, the Sn content
should be much larger than that. The first working GeSn laser was
demonstrated in 2015,3 but it operated only up to 90 K. The opera-
tion temperature was later increased to 230 K by using higher Sn
content in the active layer4 (16%). These lasers are both optically
pumped. A big step toward realization of an electric pumped laser
with high Sn content was achieved recently.5 Using Ge0.89Sn0.11 as
the active region, lasing operation up to 100 K was observed.

The high Sn content converting GeSn into a direct bandgap
semiconductor also has its downsides. A high defect density will
appear due to the large lattice mismatch between Ge and Sn.
Defects act as electron and hole recombination and trapping
centers and prevent the higher temperature operation of such
lasers. Introducing tensile strain is another way to make the
bandgap more “direct.” Using the data for the deformation

potential (DP) of the Γ and L valleys in Refs. 6 and 7, pure Ge will
become direct under a biaxial strain of 1.79%. If used together with
alloying Sn and Ge, this may deliver a defect-free direct bandgap
material, hence a better lasing performance can be expected. This
trend has been proved in Ref. 8, where an ultra-low threshold laser
was realized by using alloys with only 5.4% Sn, with tensile strain
introduced by SiNx in the active region.

Experience from the development of mature group III-V
based lasers indicates that a big improvement of the laser perfor-
mance can be achieved by using quantum size effects. The SiGeSn/
GeSn QWs were grown and characterized by many experimental-
ists, indicating it is a promising light emitting material.9–13 A much
lower threshold for SiGeSn/GeSn multi-quantum-well (MQW)
than bulk was justified in Ref. 14, showing that an MQW structure
is a more efficient choice than bulk for the laser active region.
Instead of using Ge or GeSn as a barrier (buffer) layer,15,16 SiGeSn
is more preferable barrier material,13 because it enables a deeper
well and allows independent engineering of the band alignment
and lattice constant (this gives more room for the choice of strain
in the well). Also, according to the results from Refs. 17 and 18,
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MQW has a larger optical confinement factor compared with
SQW, and by carefully choosing the number of QWs, an optimal
performance can be reached.

The modeling of GeSn QWs has often been carried out in par-
allel with the experimental work. The k � p method was usually
employed to calculate the band structure of tensile or compressive
strained QW.19–21 The importance of L-valley has also been
addressed in these studies, as it is much closer to the Γ-valley com-
pared to the conventional III-V structures. However, this research
was mainly focused on engineering the Sn content based on a spe-
cific design, while the possible improvements coming from tensile
strain were not thoroughly studied. Later, Liu et al.22 proposed a
tensile-strained MQW device wrapped in SiN stressor, and the calcu-
lations indicated a better performance of tensile-strained QW than
of a relaxed device. Inter-valence band absorption (IVBA) has been
studied for bulk material,23 but it was seldom mentioned in QW
modeling. In this work, in order to explore the optimum design of
GeSn/SiGeSn MQW based laser structures, instead of considering a
specific structure, we consider Sn content and strain as independent
variables. After specifying the appropriate well width, we look into
the parameter space of Sn content and strain and do the gain calcu-
lation using the k � p method. An area in the Sn content and strain
parameter space is found where a very high IVBA exists, to be
avoided in good designs. Furthermore, the optimal parameters for a
particular photon emission energy are found after considering the
IVBA and free carrier absorption (FCA). Finally, a tensile-strained
QW structure is considered and compared with a compressively
strained structure. Inter-band gain and IVBA are calculated using
the momentum matrix elements (MMEs) from the k � p
Hamiltonian, while FCA is calculated using an empirical bulk model
suggested in Ref. 24. This should be acceptable for calculations in
QWs as well, because there are no “resonant effects” for FCA in the
wavelength range where the laser would be operating.

To simplify the calculation, except in Sec. III F, the Si content
in the barrier layer is fixed to 10%, which is a realistic value that
can be obtained by CVD growth. Another reason to choose this
value is that it enables good carrier confinement even for a large Sn
content (e.g., 16%) in the well.7 To reduce the parameter space
when searching for optimum structures, the Sn content in the
barrier layer is set to be the same as that in the well layer. These
choices of Si and Sn contents give a reasonable carrier confinement.
Tensile strain in realistic structures can be obtained in three ways:
(1) by growing the structure on an (Si)GeSn buffer layer with a
larger Sn content than in the active (well) layer;25 (2) by producing
stress in the active layer by an SiNx stressor;22,26–28 and (3) by
directly applying stress, in a bridge-like structure, as presented in

Ref. 29. For the convenience of theoretical considerations, we
assume that the biaxial strain in the well layer can have any value
within reasonable boundaries (0%–1.7%), and then the strain in
other layers was calculated accordingly, to match the stressed lattice
constant in the well layer.

II. THEORY AND METHODS

The electronic band structure around the Γ-point (QW states
of Γ-electrons and of holes) and the gain/absorption coming from
interband or inter-valence band transitions are here calculated by
the eight-band k � p method. The L-valley states, which are also
very important for QW laser modeling, are calculated separately,
by the effective mass approximation. The accuracy/reliability of
material parameters needed for these calculations (particularly for
alloys) has considerably improved in recent years. Certainly, the
methodology and understanding of the GeSn band structure is
steadily progressing over years of research. To give a few examples,
when Sn content is large (∼25%), the measured bandgap shows a
large difference from the predictions based on the random alloy
model,30,31 indicating the importance of short-range order to get a
better fit the experiment.32Song et al.33 have used the 30-band k � p
method to calculate the band structure of Ge1−xSnx in the whole
Brillouin zone. Compared with the eight-band k � p method used
in this work, the higher order methods, or more precisely calcu-
lated material parameters, may generally give a better description
of real structures. However, the Sn content in GeSn/SiGeSn alloys
used here is limited to <15%, and the band structure near the
center of the Brillouin zone is sufficient to calculate the gain spec-
trum; therefore, we believe that the eight-band k � p method,
together with the effective mass approximation for the L-valley, is
accurate enough for the purpose of this work. Furthermore, using
the finite difference method (FDM) to calculate the QW band
structure is far more time-consuming than the band structure cal-
culation for bulk material and would become much more so with
the 30-band k � p method; therefore, the eight-band k � p should be
a good realistic choice for calculations involved in structure optimi-
zation studies.

A. Hamiltonian

We combine the k � p method with the FDM method to calcu-
late the band structure near the Γ point. The k � p model in this
work follows the theory of Kane34 and Bir and Pikus35 and uses the
eight-band k � p Hamiltonian derived by Bahder.36

The unstrained part is derived by substituting the Bloch func-
tion into the Schrödinger equation

p2

2m0
þ V0 þ �h2k2

2m0
þ �h
m0

k � pþ �h
4m2

0c2
∇V0 � p � σþ �h

4m2
0c2

∇V0 � �hk � σ
� �

unk(r) ¼ En(k)unk(r), (1)

where the last term (�hk � σ) on the left is ignored in this work
because the crystal momentum �hk is much smaller than the

momentum p. The inversion symmetry parameter is zero for the
diamond crystal structure. We can therefore remove these zero
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terms in the k � p interaction Hamiltonian derived in Ref. 36. With
the basis set

u1 ¼ jS #i,
u2 ¼ jS "i,

u3 ¼ � iffiffiffi
6

p (jX #i þ ijY #i)þ i

ffiffiffi
2
3

r
jZ "i,

u4 ¼ iffiffiffi
2

p (jX "i þ ijY "i),

u5 ¼ � iffiffiffi
2

p (jX #i þ ijY #i),

u6 ¼ iffiffiffi
6

p (jX "i � ijY "i)þ i

ffiffiffi
2
3

r
jZ #i,

u7 ¼ � iffiffiffi
3

p (jX "i � ijY "i)þ iffiffiffi
3

p jZ #i,

u8 ¼ � iffiffiffi
3

p (jX #i þ ijY #i)� iffiffiffi
3

p jZ "i,

(2)

the matrix form of the unstrained part of the Hamiltonian is

H(k)¼

A 0 Vy 0
ffiffiffi
3

p
V � ffiffiffi

2
p

U �U
ffiffiffi
2

p
Vy

A � ffiffiffi
2

p
U � ffiffiffi

3
p

Vy 0 �V
ffiffiffi
2

p
V U

�PþQ �Wy R 0

ffiffiffi
3
2

r
W � ffiffiffi

2
p

Q

�P�Q 0 R � ffiffiffi
2

p
R

ffiffiffi
1
2

r
W

�P�Q Wy
ffiffiffi
1
2

r
Wy ffiffiffi

2
p

Ry

H:C �PþQ
ffiffiffi
2

p
Q

ffiffiffi
3
2

r
Wy

Z 0
Z

26666666666666666666664

37777777777777777777775

,

(3)

where the superscript “†” denotes the Hermitian conjugate. The
lower triangle of the Hamiltonian is the Hermitian conjugate (HC
of the upper part. The elements of this matrix are given by

A ¼ Ec þ Acc
�h2

2m0
(k2x þ k2y þ k2z), U ¼ 1ffiffiffi

3
p P0kz ,

V ¼ 1ffiffiffi
3

p P0(kx � iky), P ¼ �Ev þ γ1
�h2

2m0
(k2x þ k2y þ k2z),

Q ¼ γ2
�h2

2m0
(k2x þ k2y � 2k2z), R ¼ � ffiffiffi

3
p �h2

2m0
(γ2(k

2
x � k2y)� 2iγ3kxky),

W ¼ ffiffiffi
3

p
γ3

�h2

m0
kz(kx � iky), Z ¼ Ev � Δ� γ1

�h2

2m0
(k2x þ k2y þ k2z),

(4)

in which the momentum matrix element P0 is related to its energy
form (Kane parameter) as

EP ¼ 2m0

�h2
P2
0 ¼

2
m0

XjpxjSh ij j2¼ 2
m0

Y jpyjS
D E��� ���2

¼ 2
m0

ZjpzjSh ij j2: (5)

The eight-band Luttinger parameters are related to six-band
Luttinger parameters as

γ1 ¼ γ(6)1 � EP
3EΓ

g þ Δ
,

γ2,3 ¼ γ(6)2,3 �
EP

2(3EΓ
g þ Δ)

:
(6)

It is important to note that using the conventional value of EP
in the Hamiltonian gives spurious solutions. This is because of the

well-known unphysical bowing in the E-k dependence. To solve
this problem, EP is modified, according to Eg, Δ and electron effec-
tive mass m*

e, through the coefficient Acc (in some papers, Acc may
appear as “1/corrected effective mass,” and they have the same
physical meaning),

Acc ¼ m0

m*
e
� EP

EΓ
g þ

2
3
ΔSO

EΓ
g (E

Γ
g þ ΔSO)

: (7)

As suggested in Ref. 37, Acc is set to 1, implying that the
remote bands are completely neglected, and EP can then be calcu-
lated from Eq. (7). This new value will be different from the stand-
ard data. The value of EP used in Ref. 7 for Ge is 26.3 eV, and the
rescaled value is 24.36 eV. This is acceptable because the change is
just 7.4% for the major component (Ge) in the structure, and
the band structure is not very sensitive to EP, so it is worthwhile
to sacrifice some accuracy in order to eliminate spurious
solutions. These solutions would not only introduce an unphysical,
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non-existing band in the full band structure, but would also influ-
ence the normal wave functions in the conduction band and make
them inappropriate for use in the inter-band gain calculations. For
the whole procedure to be consistent, the elements U and V in
Eq. (4) and eight-band Luttinger parameters in Eq. (6) also need to
be recalculated using the rescaled EP.

Regarding the strain, the orbital part of strain Hamiltonian is

D(k)¼

acε 0 �vy 0 � ffiffiffi
3

p
v

ffiffiffi
2

p
u u � ffiffiffi

2
p

vy
acε

ffiffiffi
2

p
u

ffiffiffi
3

p
vy 0 v � ffiffiffi

2
p

v �u

�pþ q �wy r 0

ffiffiffi
3
2

r
w � ffiffiffi

2
p

q

�p� q 0 r � ffiffiffi
2

p
r

ffiffiffi
1
2

r
w

�p� q wy
ffiffiffi
1
2

r
wy ffiffiffi

2
p

ry

HC �pþ q
ffiffiffi
2

p
q

ffiffiffi
3
2

r
wy

avε 0
avε

26666666666666666666664

37777777777777777777775

,

(8)

where

ε ¼ εxx þ εyy þ εzz , p ¼ �avε,

v ¼ 1ffiffiffi
6

p P0
X
j

(εxj � iεyj)kj, u ¼ 1ffiffiffi
3

p P0
X
j

εzjkj,

q ¼ b εzz � 1
2
(εxx þ εyy)

� �
, r ¼

ffiffiffi
3

p

2
b(εxx � εyy)� idεxy ,

w ¼ �d(εxz � iεyz),

(9)

where εij are the strain tensor components (i, j ¼ x, y or z), ac and
av are the conduction-band and valence band deformation poten-
tials at the Γ valley, and b and d are the shear deformation poten-
tials at the Γ valley.

The spin–orbit part that couples the valence band to uniaxial
and shear strain through the split-off energy (Δso) is

DSO ¼ Δ

3
0 0
0 N6�6

� �
, (10)

where

N6�6 ¼

� ε

3
� εzz � 2ffiffiffi

3
p (εxz þ iεyz)

ffiffiffi
1
3

r
(2iεxy þ εyy � εxx) 0 �

ffiffiffi
1
2

r
(εxz � iεyz) � 1

3
ffiffiffi
2

p (3εzz � ε)

εzz � ε 0

ffiffiffi
1
3

r
(2iεxy þ εyy � εxx)

1ffiffiffi
6

p (2iεxy þ εyy � εxx) � 1ffiffiffi
6

p (εxz � iεyz)

εzz � ε
2ffiffiffi
3

p (εxz þ iεyz) � 1ffiffiffi
6

p (εxz þ iεyz)
1ffiffiffi
6

p (2iεxy � εyy þ εxx)

� ε

3
� εzz

1

3
ffiffiffi
2

p (3εzz � ε) �
ffiffiffi
1
2

r
(εxz þ iεyz)

HC
4
3
ε 0

4
3
ε

2666666666666666666664

3777777777777777777775

:

(11)

Under strain, the total Hamiltonian matrix is obtained as the
sum of Eqs. (3), (8), and (11). For biaxial strain, when a layer is
grown on a lattice-mismatched substrate, εxy ¼ εxz ¼ εyz ¼ 0,
εxx ¼ εyy ¼ (a0 � a)/a, εzz ¼ �2C12εxx/C11, a0 and a are the
relaxed cubic lattice constants of the substrate and the layer grown
on it.

To apply the FDM to a QW system, considering the structure
grown in the [001] direction, the wave vector kz becomes an oper-
ator �i@/@z. Using the finite difference schemes, with n mesh
points in the z direction, we get an 8n × 8n sparse matrix. The
eigenvalues and eigenvectors of this matrix were calculated using
the LAPACK library,40

g(z)
@

@z
F(z) ¼ gi(Fiþ1 � Fi�1)

2Δz
, g(z)

@2

@z2
F(z) ¼ @

@z
g(z)

@

@z
F(z) ¼ (giþ1 þ gi)Fiþ1 � (giþ1 þ 2gi þ gi�1)Fi þ (gi þ gi�1)Fi�1

2(Δz)2
: (12)
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The first order terms with Pkz preserve the order as in the
original matrix. The conventional “Hermitian symmetrizing” [(i.e.,
Pkz ¼ (Pkz þ kzP)/2] is inappropriate, as has been previously dis-
cussed by Luttinger and Foreman.38,39

Equation (12) is also used to solve the effective-mass
Schrödinger equation for the L-valley

� �h2

2
@

@z
1

mL
q(z)

@

@z
ψL(z)þ VL(z)ψL(z) ¼ ELψL(z), (13)

in which mL
q is the quantization effective mass. The potential

profile under strain was calculated as

VL
ε ¼ Ev þ EL

g þ aLε, (14)

in which ε ¼ εxx þ εyy þ εzz , Ev is the valence band offset, EL
g is

the bandgap toward the L-valley, and aL denotes the L-valley defor-
mation potential. The data for the deformation potentials are given
in Sec. II C.

B. Gain calculation

Gain and absorption were calculated for a given carrier
density. The injected carrier densities for electrons and holes are
equal, while N-doping or P-doping provides additional carrier
density of electrons or holes. The 2D carrier densities in quantized
states of the conduction band and valence band are

N2D ¼ 1
4π2

XnΓ
i

ðð
dkk 1þ exp

EΓ
i (kk)� E fc

kBT

� �� �
þ 4

mL
dkBT

π�h2
XnL
i

ln 1þ exp
E fc � EL

i

kBT

� �� �
, (15)

P2D ¼ 1
4π2

Xnv
i

ðð
dkk 1þ exp

E fv � EΓ
i (kk)

kBT

� �� �
: (16)

The first term in Eqs. (15) and (16) describes the carriers near
the center of the Brillouin zone. The E-k relations for these states
in the QW were calculated by the k � p method. The second term
in Eq. (15) is the 2D carrier density in L-valley states. This term is
multiplied by four because there are eight identical half-valleys in
the [111] directions in the first Brillouin zone. Since the L-valley
states were calculated by EMM, we used the parabolic approxima-
tion for E-k dependence. md

L is the 2D density of states effective
mass. Density of states effective mass and quantization effective
mass used in the EMM were calculated from the longitudinal and
transverse effective masses as mL

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2mlmt þm2

t )/3
p

,
mL

q ¼ 3mlmt/(2ml þmt).
41 The Δ-valleys are not included in this

calculation because their energy is much higher than that of Γ and
L valleys in the GeSn alloy. Moreover, the GeSn layer is not a
potential well for Δ-valleys in SiGeSn/GeSn/SiGeSn QWs.

The inter-band absorption (IBA) and inter-valence band
absorption (IVBA) were calculated from

ασ(�hω) ¼ πq2

nrcε0m2
0ωLw

X
s,t

ðð
dkk

2

(2π)2
ΨsjcpσjΨth ij j2

� δ(Es,t(kk), �hω)( ft(kk)� fs(kk)), (17)

in which q is the electron charge, nr is the refractive index, c is the
speed of light, ε0 is the vacuum permittivity, m0 is the free electron
mass, and Lw is the QW width. s and t are the subband indices. For
IBA, s represents the conduction band and t the LH/HH bands.
For inter-valence band absorption, s denotes LH/HH bands and t
the split-off band. σ denotes the polarization, for TM σ ¼ z and
for TE σ ¼ x, y. The momentum matrix element (MME) was cal-
culated as

ΨsjcpσjΨth i ¼
X
i

Fs,i(z, kk)jcpσjFt,i(z, kk)� 	
þ
X
i,j

Fs,i(z, kk)jFt,i(z, kk)
� 	

uijcpσjuj� 	
, (18)

where ui and uj are the basis states from Eq. (2), and F(z, kk) is the
envelope function of the corresponding basis state. This expression
can be further approximated by ignoring the first term, because �hk
is much smaller than(m0/�h)P. Non-zero terms in MME come from
s orbital on one and p orbital on the other side. The difference in
Fermi–Dirac distributions ft � fs is the Fermi–Dirac inversion
factor, and if this value is negative then a negative
absorption ασ(�hω) , 0, i.e., a positive gain will be observed. The
Fermi–Dirac distribution is

fs,t(kk) ¼ 1þ exp
Es,t(kk)� Es,t

f

kBT

 !" #�1

: (19)

The quasi-Fermi levels in Eq. (19) were calculated from
Eqs. (15) and (16). For IBA, Es

f ¼ E fc, Et
f ¼ E fv . For IVBA, both of

them are the valence band quasi-Fermi level.
Integrals with the delta function in the expression for absorp-

tion were calculated by a quadratic simplex method, to reduce the
computation time.42 Lorentzian line shape function is then used to
smooth the numerical instability. Full width half maximum
(FWHM) of the Lorentzian is taken as 5 meV for IBA and 20meV
for IVBA. FWHM for IVBA is taken larger because the SO states
are much deeper in the valence band, they will “entangle” (mix)
with free LH and HH states. In actual FDM based calculations,
these free states are not in continuum and they are formally dis-
crete and are filtered out in order to reduce the artificial effects in
results as much as possible. An SO subband thus calculated will be
discontinuous, as the in-plane wave vector varies, because of these
free states, which will cause discontinuities in the absorption spec-
trum. However, we found that after convolution with a Lorentzian
function with a reasonably large FWHM, the results for IVBA will
not be very sensitive to the numerical settings.
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Free carrier absorption is an important loss mechanism for
high injected carrier density and doping. In this work, the 2D
carrier densities for both electrons and holes are around
4 × 1012 cm−2. QW width is around 15 nm, which makes the equiv-
alent 3D carrier density of the order of 1018 cm−3. In Ref. 43, an
empirical formula is given to estimate FCA for pure Ge, at 300 K,
depending on the carrier densities

αFCA(λ) ¼ �1:7� 10�25 � Nvλ
2:25 þ�3:2� 10�25 � Pvλ

2:43, (20)

in which λ is in units of nm, N and P are in units of cm−3, and α is
in units of cm−1. We have used this expression to approximate the
FCA in QW structures considered here, and the 3D (volume)
carrier densities are taken as Nv ¼ N2D/Lw and Pv ¼ P2D/Lw.

C. Parameters

SiGeSn is a ternary alloy. The parameters of SiGeSn can be
roughly estimated by taking the weighted average of the parameters
of pure elements. However, in many cases, this is not very accurate,
and to match the realistic data obtained from experiments or calcu-
lated by atomistic methods, the bowing parameters are also
included. Then, a parameter can be calculated as

GSiGeSn ¼ ηSiGSi þ ηGeGGe þ ηSnGSn � ηSiηGeBSiGe

� ηSiηSnBSiSn � ηGeηSnBGeSn, (21)

where B is the bowing parameter for two components and ηSi, ηGe,
and ηSn denote the mole fraction. The research study on bowing
was mostly focused on GeSn, while the bowing for SiGe and SiSn
was studied less frequently. Parameters of pure elements are given
in Table I.

In this work, parameters using linear interpolation are ac, av ,
b, d, aL, C11, C12, C44, and nr . The bowing parameters are found for
the lattice constant, see Table II.

For other parameters, only the bowing for GeSn could be
found, in some cases this is in the form of interpolation parame-
ters. For the ternary alloy, we used interpolation to calculate the
parameters for GeSn, and then linear interpolation according to
the silicon content,

GSiGeSn ¼ ξGeSn þ βGeSn
ηGe

1� ηSi
þ χGeSn

ηGe
1� ηSi

� �2
" #

(1� ηSi)

þ GSiηSi, (22)

in which ξ, β, and χ are the zeroth, first, and second order interpo-
lation parameters. Their values are given in Table III. The six-band
Luttinger parameters for SiGe are not described by bowing parame-
ters,49 so Eq. (22) cannot be directly used. In this work, we found
that ignoring the bowing of SiGe caused unnatural splitting of
energy levels with different spins, the reasons for this are unclear,
but including the bowing of SiGe parameters gives a more accurate

band structure. The bowing for SiGe is included as

γSiGeSn ¼
("

ξγGeSn þ βγGeSn
ηGe

1� ηSi
þ χγGeSn

ηGe
1� ηSi

� �2
#

� (1� ηE)þ γSiηSi

)
γbowSi[ηSi /(1-ηSn)]Ge

γ linearSi[ηSi /(1-ηSn)]Ge
, (23)

TABLE I. Parameters of pure Si, Ge, and Sn.

Parameter Symbol Si Ge Sn

Lattice constant alat(Å) 5.4307a 5.6579a 6.489a

Bandgap (Γ) EΓ
g (eV) 4.185a 0.89b −0.38b

Bandgap (L) EL
g (eV) 2.716a 0.74b 0.1b

Split-off energy Δso(eV) 0.044a 0.26b 0.6b

Six-band
Luttinger

γ1 4.285a 13.38a −12a

Six-band
Luttinger

γ2 0.339a 4.24a −8.45a

Six-band
Luttinger

γ3 1.446a 5.69a −6.84a

Momentum
energy

Ep(eV) 21.6a 26.3a 23.8a

Valence band
offset

Ev(eV) −1.86c −0.91b 0c

Pikus–Bir DP ac(eV) −10.06a −8.24a,d −6a

Pikus–Bir DP av(eV) 2.46a 1.24a 1.58a

Pikus–Bir DP b(eV) −2.1a −2.9a −2.7a

Pikus–Bir DP d(eV) −5.3d −4.8d −4.1d

L-valley DP aL(eV) −0.66a −1.54a −2.14a

Stiffness constant C11(GPa) 165.77a 128.53a 69a,d

Stiffness constant C12(GPa) 63.93a 48.26a 29.3a,d

Stiffness constant C44(GPa) 79.51d 66.7d 36.2d

Effective mass (Γ) mΓ
e (m0) 0.188d 0.038d −0.058d

Longitudinal
effective mass (L)

mL
l (m0) 1.418d 1.61d 1.478d

Transverse
effective mass (L)

mL
t (m0) 0.13d 0.081d 0.075d

Refractive index
(4.1 μm)

nr 3.4e 4e 6.18f

aReference 7.
bReference 1.
cReference 44.
dReference 45.
eReference 46.
fReference 47.
gReference 6.

TABLE II. Bowing parameter of lattice constant.7

BSiGe BGeSn BSiSn

0.026 −0.041 0
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where γbowSiGe is a Luttinger parameter after applying bowing for
SiGe, with Si content of ηSi/(1� ηSn), and γ linSiGe is the correspond-
ing value from linear interpolation. γbowSiGe are estimated, as in
Ref. 49, from

γ1 ¼
Ep
3E0

þ 2E0
p

3E0
0
þ γ1,

γ2 ¼
Ep
6E0

� E0
p

6E0
0
þ γ2,

γ3 ¼
Ep
6E0

þ E0
p

6E0
0
þ γ3,

(24)

in which �γ1, �γ2, and �γ3 are linear interpolation values between
pure Si and Ge. Note that these are not true Luttinger parameters.
They are just the values calculated from other parameters for pure
Si and Ge. E0

p is Kane’s momentum matrix element describing the
coupling between Γ25 band and Γ15 band. E0

0 is the bandgap
between Γ25 band and Γ15 band. Parameters used in Eq. (24) are
listed in Table IV.

The bowing parameters of SiSn in this work are set to 0
because of the lack of reliable data. For some parameters, the
bowing is intrinsically zero (e.g., the lattice constant).50 For other

parameters, some research studies do indicate the existence of
bowing in these parameters (e.g., Γ-bandgap51 and L-bandgap).52

But since the silicon content in this work is 0–0.1, and the Sn
content is less than ∼0.15, we assumed that the deviation caused by
such bowing is acceptable because the most important, well layer
does not have any Si content. Although such a difference in barrier
could affect the carrier confinement, for the parameter space
studied in this work this is not the major effect. Furthermore, the
difference for SiGeSn (barrier) will also be much smaller than for
binary SiSn considering the coefficient of the bowing term (ηSiηSn).

Note that the valence band profile is handled by assuming
ESn
v ¼ 0 as a reference point. ESi

v and EGe
v are recalculated according

to the valence band offset of Si/Sn and Ge/Sn from Refs. 1 and 44.
The valence band offset of SiGeSn/GeSn alloys can further be
obtained by using the bowing parameters in Ref. 1, and calculated
by Vegard’s law.

III. RESULTS AND DISCUSSION

A. Electronic properties

Figure 1 shows the photon emission energy (i.e., Ec1 � Ev1) of
a 15 nm QW for different Sn content and strain values. Unlike bulk
material, in which HH and LH are degenerate at the Γ point, in an

TABLE IV. Parameters used to calculate bowing of Luttinger parameters of SiGe.

Parameters Si Ge

�γ1 −0.2589a −0.1159a
�γ2 0.2357a 0.3030a

�γ3 −0.1201a −0.1243a

E0
p(eV) 14.4b 17.5b

E0
0(eV) 3.4b 3.124b

aCalculated.
bReference 49.

FIG. 1. Transition energies (ΔE1 ¼ Ec1 � Ev1) of a 15 nm SiGeSn/GeSn QW
in εxx -Sn content parameter space.

TABLE III. Interpolation parameters for GeSn.

Interpolation ξ β χ

EΓ
g (eV) 0.89a −4.29a 3.02a

EL
g (eV) 0.74a −1.87a 1.23a

Δso(eV) 0.26a 0.24a 0.1a

γ1 11.11b 28.53b 105.2b

γ2 3.252b 13.95b 52.75b

γ3 4.689b 14.37b 52.57b

Ep(eV) 25.61b −2.319b 0.2463b

Ev(eV) −0.91a 0.32a 0.59a

mΓ
e (m0) 0.042b −0.1436b 0.1026b

mL
l (m0) 1.5929b −0.0642b −0.1087b

mL
t (m0) 0.0922b −0.0561b 0.0146b

aCalculated from bowing in Ref. 1.
bReference 48.
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unstrained QW the first quantized HH state is higher than the LH
state. In such a structure, a good TE gain may be observed. When
tensile strain is introduced, LH will become higher than the HH
band at the Γ point, and for a sufficiently large strain the quantiza-
tion effects may not keep HH as the first state in the valence band,
LH will become the first state instead. For a large tensile strain
(e.g., εxx ¼ 0:6% ), the first LH state will be far away from other
states, and the gain will be dominant for TM polarization. The
indirect–direct transition boundary is also shown in Fig. 1. It will
also be different (“higher” in Fig. 1) from that of bulk material
because of quantization effects. In the conduction band, the quanti-
zation energy is larger for Γ than for L electrons, so for smaller
well widths the structure becomes more indirect. Hence, a narrow
well width is unfavorable for gain.

It is clear that the same transition energy can be achieved with
various combinations of parameters. For example, the three
marked points in Fig. 1 will all give a photon emission energy of
0.45 eV. The band structures for these cases are shown in Fig. 2.
The types of the bands are classified by checking the dominant
part of the envelope wave functions at the center of the Brillouin
zone. The energy difference between the first state of L-valley and
Γ-valley (EL

c1 � EΓc1) is 97.7 meV, when εxx is 0.062% and the Sn
content is 12%. For the third case, εxx ¼ 0:646% and Sn = 9.54%,
(EL

c1 � EΓc1) is 91.1 meV. The difference becomes smaller (“less
direct material”) for larger strain and smaller Sn content.
Therefore, for the same transition energy, a higher Sn content will
make the band structure more direct. On the other hand, higher

strain will make LH1 further away from other states, and more car-
riers will populate the first subband, for a constant carrier density,
which is also good for gain. The trade-off between strain and Sn
content is analyzed in this work. The optimum combinations of
strain, Sn content, and well width are given, as a guideline for
promising lasing structures. Although stressors like SiN usually
produce a relatively narrow range of tensile strains in the structure,
one can expect that the strain can be tuned in a broader range by
appropriate design. The inter-band group-IV QW lasers would
then be possible for a range of wavelengths.

B. Well width

In Fig. 3, four typical structures are used to determine the
optimum range of well widths for gain at room temperature
(300 K). The calculations are done for 8–21 nm well width, with a
step of 1 nm. The first structure has no strain in the well layer and
the Sn content is 12%. In this structure, a significant TE mode gain
will be achieved for a carrier density of 4 × 1012 cm−2. Some TM
gain will also exist, just because of the coupling of LH and HH
states. For the second structure, HH1 is very close to LH1, and the
polarization for which the gain is larger will change when increas-
ing the well width gradually. The third and fourth structures have
relatively large tensile strain (εxx ¼ 0:7% and εxx ¼ 1%), TM will be
the major polarization, and the photon emission energy will be rel-
atively low. Here we use the dimensionless gain (the product of
gain and well width) to eliminate the influence of the well width

FIG. 2. Band structure of a 15 nm wide GeSn/SiGeSn QW with a similar photon emission energy (a) εxx ¼ 0:062%, Sn content = 12%, (b) εxx ¼ 0:37%, Sn = 10.77%,
and (c) εxx ¼ 0:646%, Sn = 9.54%.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 123102 (2021); doi: 10.1063/5.0042482 129, 123102-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


itself on the result. In Fig. 3, in the first structure, the TE mode is
dominant, and the maximum appears for 11 nm width. In the
second structure, the TE gain is larger than TM when well width is
smaller than 11.5 nm, and TM is larger than TE for well widths
over 11.5 nm. The maximum gain appears at 11 nm for the TE
mode and 14 nm for the TM mode. In the third and fourth struc-
tures, the TM mode is dominant, and maximum gain appears at 14
and 16 nm. All these lines show a trend of gain first increasing with
the well width and then decreasing after the peak point. The gain is
lower for narrow wells because the L-valley has a larger effective
mass than the Γ-valley. So, the band structure is less direct for
narrow QWs, and more electrons will populate the L-valley. The
fraction of electrons populating the Γ-valley for an 8 nm QW is
18.7%, 22.0%, 21.5%, and 28.0% for the four cases, but these
increase to 29.4%, 34.6%, 34.2%, and 45.0% for 21 nm QW.
However, a wide well may not always give a large gain, because a
larger number of quantized states become too low in energy, and
well populated with carriers at 300 K. Higher states give little con-
tribution to gain, because transitions between states with different
quantum numbers are weak, and the spacing between the second
quantized states of the conduction and valence bands ΔE2 is always
much higher than ΔEf for a carrier density of 4 × 1012 cm−2, as
shown in Fig. 4. Gain exists for photon energies between ΔE1 and
ΔEf , and if HH1 and LH1 are not very near each other, changing
the well width will not have a big influence on the value of α0

for the main polarization. The gain is determined by α0( fc � fv),
and the maximum value will be proportional to ΔE1 � ΔEf .

So, if the gain is predominantly present for one polarization,
the maximum gain is strongly related to the difference of ΔE1 and
ΔEf . We can also see that the dimensionless gain maximum
decreases faster with the well width for structures with lower strain.
Structures giving TE gain are more sensitive to increasing well

width, because these structures will usually have a small strain in
the well layer, and in this case HH subbands are near to each other
than LH, which contributes to this negative effect and makes the
gain more sensitive to the well width. By testing different combina-
tions of strain and Sn content, we find that 11–12 nm will usually
give the highest TE mode gain for structures with low tensile strain

FIG. 3. The maximum gain vs well width dependence. The maximum points for TE and TM polarization are denoted by purple and red dots. (a) εxx ¼ 0%, Sn content = 12%,
(b) εxx ¼ 0:15%, Sn content = 12%, (c) εxx ¼ 0:7%, Sn content = 10%, and (d) εxx ¼ 1%, Sn content = 10%.

FIG. 4. The absorption spectrum α(�hω), with gain existing for photon energies
between ΔE1 and ΔEf .
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(i.e., with HH1 higher than LH1). In addition, 13–16 nm is a good
choice for high tensile strain structures to deliver the TM mode
gain.

C. Gain and absorption spectrum

Figure 5(a) shows the gain spectra at 300 K calculated by the
k � p method. The well width is taken as 14 nm and the carrier
density is 4 × 1012 cm−2 (for a 14 nm QW, the corresponding 3D
carrier density is 2.86 × 1018 cm−3). We have here chosen, as exam-
ples, three Sn contents (8%, 9.56%, and 11.1%) and tensile strain
vary from 0.3% to 1.1%. It is clear that higher Sn contents and
higher strains give higher peak gains, though at a lower photon
energy. Figure 5(b) gives the losses from FCA and IVBA. The FCA
is calculated from the bulk model and increases smoothly when
transition energy decreases. For the parameters chosen here, the
IVBA is strong between 0.35 and 0.45 eV. IVBA does not exist at
low energies, below 0.26 eV, because the spin split-off band energy
in Ge is 0.26 eV. Mixing with Sn, or introducing tensile strain, will
only make this value larger. The absorption can also take place
between LH and HH states, but the transition energy is too low to
make any difference to the gain spectrum of interest. Although the

temperature and carrier density are fixed in this case, the upper
energy boundary of the range where IVBA can be observed is
determined by the hole density and temperature. If the hole density
is large or the temperature is high, states with larger k|| will be pop-
ulated and the absorption can exist at higher photon energies.

Taking the loss mechanisms into consideration, Fig. 5(a) also
gives the net gains for these structures (thick solid lines). The TE
mode gain disappeared because the inter-band gain for it does not
exceed the loss from IVBA and FCA. So, we are mostly interested
in the TM mode here. For the TM mode, the difference between
net gain and inter-band gain is found to be the largest around
0.4 eV. Because of the limited range of parameters, the largest
tensile strain here is 1.1%, and when the Sn content is 8%, it
cannot have gain at energy lower than 0.425 eV. Also, for the Sn
content of 9.56%, the emission energy cannot be lower than
0.37 eV. Due to these aspects, it is then not simple to anticipate
what combination is better just from the gain spectra. In order to
find the highest TM gain for a given photon emission energy, the
values of IVBA + FCA at photon emission energy are analyzed
using more points in the parameter space. The combinations of
parameters that offer the highest net gain for a given photon emis-
sion energy are discussed in Secs. III D and III E.

FIG. 5. (a) Gain spectra of 14 nm wide GeSn/SiGeSn QW with 2D carrier density of 4 × 1012 cm−2 for Sn contents of 8%, 9.56%, and 11.1% under biaxial strain from
0.3% to 1.1% and (b) the corresponding inter-valence band absorption and free carrier absorption.
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D. Loss mechanisms

In order to analyze the impact of IVBA and FCA on the gain,
the value of absorption at photon emission energy (that a particular
combination of structure parameters will give) is illustrated in
Fig. 6. The well width used here is 14 nm, and the temperature is
300 K. The range of tensile strain is set to 0.3%–1.2%, and the
range of Sn content is 6.056%–11.5%. We use contour lines at 80%
of the maximum value of losses in this parameter space to show
the region where the highest losses will appear. The position of this
high-loss region is relatively insensitive to carrier density, and the
combination of parameters for the highest loss can be approxi-
mated by Sn(%) ¼ �7:71εxx(%)þ 17:13. The 80% contour lines
for different well widths, with 4 × 1012 cm−2 carrier density, are
also given in Fig. 6(b). It is clear that, in the range 12–16 nm, the
well width does not have a strong influence on the high-loss region.
We should also note that the accuracy of the result presented here
is limited by the eight-band k � p method and by “numerical noise”
from the finite difference method. As reported in Ref. 53, the IVBA
from k � p calculations for GaAs is smaller than that found experi-
mentally, and it may be reasonable to assume the same for GeSn.
Therefore, one may expect somewhat higher values in the displayed
parameter space, but the range where high losses exist should
remain the same.

E. Optimum choice of Sn content and strain

An example of a 14 nm QW, with Sn content from 6.056% to
11.5%, and strain ϵxx from 0.3% to 1.7%, is used here to show how
the optimum points are distributed in Sn-ϵxx parameter space at
room temperature. Figure 7 shows the maximum net gain after
including the loss mechanisms from IVBA and FCA, for different
carrier densities. Optimum points are found using interpolation,
and the usable areas are estimated by polynomial regression and
statistic border. The “ridge” of high loss, spanning the strain/

Sn-content parameter space, which is mentioned in Sec. III D, is
also shown in Fig. 7. It is obvious that for carrier densities from
3 × 1012 cm−2 to 5 × 1012 cm−2, the high-loss region splits the range
of usable material parameters into two areas. A few points landed
in the high-loss region, and the material parameters in this range
should be avoided. For the required photon energy higher than
420 meV, since the range of parameters that produce net gain is
also limited by the carrier density, the recommended combinations
also vary with the carrier density. We find that for the carrier
density from 4 × 1012 to 5 × 1012 cm−2, the values of ϵxx from 0.8%
to 1.2% and Sn content from 6.5% to 8.5% present an interesting
range that gives a good gain. Figure 7(b) also gives an additional
estimated optimum line for 16 nm wide QW, and it does not
change much with the QW width from 14 to 16 nm. We can
assume the well width varying around 15 nm will not have a large
impact on the result of optimum choice of parameters, although it
will change the energy that these parameters give because of quan-
tization effects. For the carrier density of 3 × 1012 cm−2, the
optimum strain is lower (0.7%–0.9%), but the tin content is higher
(8.5%–10%). For carrier density lower than 3 × 1012, it is hard to
find a good net gain for photon emission energy higher than
420 meV. However, for photon energies below 420 meV, the avail-
able parameter space is effectively limited by limitations in the
growth technology. Here we assume the strain to be limited to
1.7%, and if the realistic limit is even lower than that, in order to
have higher gain for a given photon energy one should make full
use of the available range of strain. If the growth technology
permits higher strains, this will provide a better scope for designing
GeSn QW lasers with photon energies below 0.42 eV.

F. Comparison and analysis

A structure with compressive strain in the well is here com-
pared with a modified tensile-strained structure. Figure 8(a) shows

FIG. 6. Losses from IVBA and FCA at photon emission energy for (a) 5 × 1012 cm−2, (b) 4 × 1012 cm−2, (c) 3.5 × 1012 cm−2, and (d) 3 × 1012 cm−2 carrier densities in the
structure parameter space. The red line shows the estimate of the highest losses. The solid black contour lines denote the loss of 80% of the maximum. The 80% contour
lines for different well widths, for 4 × 1012 cm−2 carrier density are shown in (b).
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a compressively strained MQW structure (sample A).17 In this
work, a SiGeSn/GeSn MQW was grown pseudomorphically on a
partially relaxed Ge0.916Sn0.084 buffer layer. The Si content is 5% in
the barrier, and the Sn contents are 6.3% and 13.8% in the barrier
and well layer, respectively. Since the buffer layer of this structure is
not fully relaxed, the strain profile used in calculations for this
structure was taken from the measurements,17 so the well layers
have compressive in-plane strain of εxx ¼ �1:05%. Figure 9 shows
the potential profile of band edges and the quantized subband
energy levels for both structures from Fig. 8. The transition energy
of the structure in Fig. 8(a) is 0.44 eV (0.45 eV calculated in
Ref. 17). Tensile strain can be introduced into GeSn QW by
growing the structure on a buffer layer with a larger Sn content. A
practical structure has been realized in Ref. 25, but the buffer layer
is still partially relaxed. Note that the influence of such a buffer
layer with large Sn content on the performance of the device (e.g.,
via carrier loss, due to band alignment) is not considered in this
work (i.e., the buffer layer just acts as the strain provider).
Although it seems that the buffer layer will have a small effect,
because the collection occurs at the SiGeSn barrier layer which is
above the buffer layer,13 in order to avoid the potential hazards one
can use an alternative way to introduce strain, by applying SiNx as
the stressor.54 Here we assume that the buffer layer is fully relaxed

so that the above layers are extended to match the lattice constant
of the buffer layer. Figure 8(b) shows the modified structure
(sample B), with a 1.25% tensile strain in the well layer (1.67% in
the barrier). The strain is introduced by a fully relaxed Ge0.85Sn0.15
buffer layer. The thickness of well layers is reduced to 15 nm,
according to the predicted optimal choice, from Sec. III B. Inspired
by the InGaAsSb MQW laser,55 the ratio of barrier width/well
width is set as 2 (20 nm barrier). Also, the Si content in the barrier
is increased to 8% to provide a good carrier confinement factor.
Finally, in order to have the same transition energy (0.44 eV) as in
Fig. 8(a), a lower Sn content of 6.7% in the well is used. From
Fig. 9, we can see that, compared to the compressively strained
QW, the difference between the first quantized Γ-valley and
L-valley states (ΔEL1

Γ1) of the tensile-strained QW has increased
from 58 to 78 meV. This leads to the fraction of electrons populat-
ing the Γ-valley states to increase from 12.4% to 17.8% for a carrier
density of 5 × 1012 cm−2 at room temperature. Under tensile strain,
the LH will be shifted above HH. The difference between the first
quantized LH and HH states (ΔELH1

HH1) for this tensile-strained QW is
140meV. In the compressive strain case, the HH ground state will be
higher than LH. The SiGeSn/GeSn structure will provide a deep well
for HH, and a shallow LH well embedded in it. Although HH1 and
LH1 also have a distinct difference of 89meV for −1.05% compressive
strain, the wide well width and a large effective mass of HH result in a
number of HH subbands near each other (and therefore significantly
populated), but higher states do not contribute to the gain peak. The
carriers will populate these bands before populating LH1. This effect
becomes more important at higher temperatures and will strongly
affect the performance of a laser operating at room temperature.
However, for tensile strain LH1 becomes the fundamental subband,
and a better performance can be expected due to a larger spacing
between LH1 and HH1 or higher LH states.

The gain of both structures at 300 K, for different volume
carrier densities, is shown in Fig. 10. Since the compressive strained
QW only shows the TE mode gain, and tensile-strained QW gives a

FIG. 7. The maximum net gain found in the parameter space of tensile strain and Sn content, for a 14 nm wide QW. The highest gain values for different photon emission
energies are denoted by green crosses. The suggested optimum combinations of parameters are shown by the green shadow area. The blue dashed line is the estimated
high-loss line. (a) 3 × 1012 cm−2, (b) 4 × 1012 cm−2, and (c) 5 × 1012 cm−2.

FIG. 8. Schematic diagrams of multi-quantum-well structures. (a) Sample A:
MQW with −1.05% compressive strain in well layers.17 (b) Sample B: MQW
with 1.25% tensile strain in well layers.
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much higher TM than TE mode gain, only the major polarization
is shown in this figure. From Figs. 10(a)–10(c), it is clear that
sample B gives a much higher inter-band gain. This is expected
because lager ΔEL1

Γ1 and ΔELH1
HH1 are indeed found here. The net gain

is obtained by considering the loss from IVBA and FCA. As can be
seen in Fig. 10, the tensile-strained structure has a better perfor-
mance because of its higher inter-band gain, but it also has a much
larger IVBA. The IVBA appears to be a major potential hazard
when designing a tensile-strained QW. Nevertheless, the proposed
SiGeSn/GeSn tensile-strained structure even has a comparable gain
with that of the AlGaAs/GaAs structure. The TE gain peaks of
Al0.45Ga0.55As (12 nm)/GaAs (8 nm) MQW56 for the same carrier
density are denoted in Fig. 10(d). They amount to 237, 817, and
1306 cm−1 at ∼1.59 eV, compared with 221, 999, and 1614 cm−1 at
∼0.44 eV for GeSn QW. Although the GaAs QW has a directness
of ∼280 meV, which is much higher than the tensile-strained GeSn
QW (78 meV), the proposed SiGeSn/GeSn QW still has slightly
higher gain, because the strain significantly shifted up the LH
states, reducing the density of states at the valence band top.

We now combine sample B with an electrically pumped laser
design20 to get a rough estimate of its performance. In Fig. 11(a), a

silica ridge (2 μm wide) with lower refractive index is used to
provide a better optical confinement. The MQW structure is sand-
wiched between two n/p-doped Si0.08Ge0.853Sn0.067 layers. The
whole structure is grown on the Ge0.85Sn0.15 buffer layer to intro-
duce strain into the well layer. The relationship between carrier
density and current density is calculated from

Jtot ¼ qLactive
ϖinj

(AnrNv þRΓPvNvΘΓ þRLPvNvΘL þ CnN2
v Pv þ CpNvP

2
v ),

(25)

in which Jtot is the current density, q is the electron charge, Lactive is
the active region width, ϖinj is the injection efficiency, Anr is the
nonradiative recombination rate, RΓ and RL are the recombination
coefficients for Γ and L valleys, and ΘΓ and ΘL are the fractions of
the electron population in the Γ- and L-valleys. Nv and Pv are 3D
(volume) carrier densities of electrons and holes, and Cn and Cp are
the electron and hole Auger recombination rates. The threshold
current density is evaluated when modal gain (= net gain × optical
confinement factor) is equal to the sum of the intrinsic modal loss

FIG. 9. QW potential profiles of various bands, and the quantized subbands at the center of Brillouin zone and at the L-valley, for (a) sample A and (b) sample B.
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and mirror loss. The modal loss and mirror loss were chosen
according to the modeling results of Ref. 20 (modal loss +
mirror loss = 82.16 cm−1). The optical confinement factor is set
to 6.98%.20 As for the recombination coefficients, we have taken
their values in Ge, shown in Table V. Figure 11(b) shows the
modal gain vs current density calculated with these parameters.
A threshold current of 1.415 kA/cm2 was found if the injection
efficiency is 0.75. This can be compared with some results
typical for AlGaAs/GaAs MQW structures (e.g., in Ref. 57 1.05–
1.2 kA/cm2 for an Al0.09Ga0.91As/GaAs 10 MQW and in Ref. 58
4.2 kA/cm2 for an Al0.3Ga0.7As/GaAs 10 MQW in continuous
wave operation).

We further give some more information about the optimi-
zation based on sample B. By changing the Sn content in the
well and modifying the strain by adjusting the Sn mole fraction
in the buffer layer, several designs with the same photon emis-
sion energy can be achieved. From Fig. 12(a), although a larger
strain reduces the required Sn content in the well layer, an
increased Sn fraction in the buffer layer is needed. This will
bring about difficulties in fabrication technology, and the larger
strain will also give some restrictions regarding the critical thick-
ness. Higher strain, but lower Sn content, will bring about two
effects: (1) a larger difference between LH1 and HH1, as indi-
cated by ΔELH1

HH1 in Fig. 12(b), which is good for gain, and (2) it
will also give a smaller directness because ΔEL1

Γ1 decreases with
increasing εxx , and this is unfavorable for performance. A larger
difference in LH and HH energies will not provide a significant
improvement if this difference is already large. For example,
ΔELH1

HH1 is 169.7 meV for a 1.5% strain (compared to 6kbT ¼
155:1 meV at 300 K), but at the same time the change in ΔEL1

Γ1
could play a more important role when increasing the strain. For
a lower carrier density, the highest point of inter-band gain peak
is found for εxx ¼ 1:5% . This comes as the result of two oppo-
site effects. For higher carrier density [in Fig. 12(d)], the curve is
monotonic as the Fermi level becomes deeper and the difference
between LH and HH becomes the most important effect in the
parameter space. It is also worth mentioning that a loss peak is
found at 1.45% tensile strain in Figs. 12(c) and 12(d), which
implies the “loss ridge” mentioned in Sec. III D. Note that by
combining the trends of the inter-band gain peak and the loss, a
possible local optimal choice for lower strain can be found at
a certain carrier density. For example, in Fig. 12(c), when
εxx ¼ 1:25% (sample B), the net gain is highest for εxx from
0.9% to 1.45%, indicating a possible lower threshold for a design
with lower strain in the well.

TABLE V. Recombination coefficients in Ge.

Material Anr(s
−1)

RΓ(cm
−3

s−1)
RL(cm

−3

s−1)
Cn(cm−6

s−1)
Cp(cm−6

s−)

Ge 10−6a 1.3 ×
10−10b

5.1 ×
10−15b

2.2 ×
10−30c

5.4 ×
10−31c

aReference 20.
bReference 59.
cReference 60.

FIG. 10. Inter-band gain and net gain for carrier densities from 2.5 × 1018 to
3.5 × 1018 cm−3 at room temperature: (a) TE inter-band gain of sample A com-
pressively strained QW, (b) TE net gain of sample A, (c) TM inter-band gain of
sample B tensile-strained QW, and (d) TM net gain of sample B.

FIG. 11. (a) Schematic diagram of an electrically pumped laser. In the active
region, the (Si)Sn content and widths of the barrier layers and well layers are
the same as in sample B. (b) The estimated model gain vs the current density.
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G. Carrier density and doping

The relationship between the quasi-Fermi level and the carrier
density for two different structures is illustrated in Fig. 13.
Structure with indirect bandgap needs a larger injected carrier
density, or doping, to reach population inversion. For an indirect
bandgap material like germanium, n-type doping is often used.61

In Fig. 13(a), a near-indirect material is used, the L-valley and

Γ-valley have similar band edges, but the bandgap is still indirect.
Since more carriers will populate the L valley, it is harder for the
electron Fermi level to reach the Γ-valley minimum. It is then rea-
sonable to choose n-doping, rather than p-doping, to improve
the gain.

Figures 14(a) and 15(a) show gain spectra of the two struc-
tures in Fig. 13 for different injected carrier densities, in case of no

FIG. 12. (a) Parameters for a 15 nm GeSn QW wrapped by Si0.08Ge0.857Sn0.063 barrier, required to produce a transition energy of 0.44 eV, by varying the in-plane tensile
strain, Sn content in the well to provide the same transition energy and Sn content in the GeSn buffer layer to have the corresponding strain. (b) Energy spacing between
the first quantized states of L-valley and Γ-valley and between LH and HH states. (c) For 3.6 × 1012 cm2 and (d) 5 × 1012 cm2 2D carrier density, the inter-band peak gain
and loss at this peak coming from IVBA and FCA at 300 K [we used the corresponding Sn fractions in the well and buffer in (a) to calculate the results of (b)–(d)].
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doping. Figure 14(b) [Fig. 15(b)] and Fig. 14(c) [Fig. 15(c)] are the
gain spectra for the same doping density but with different doping
types. The black dashed lines in Fig. 14 (also in Fig. 15) indicate
the energy difference between the first CB and (LH)HH at the
center of the Brillouin zone. In Fig. 14, the first CB and HH states
contribute to the TE mode gain, and the first LH band starts to
contribute to the TE mode gain when doping, together with carrier
density, is large enough. The spectra then feature a curve with a
double peak near Ee1

hh1(0) and Ee1
lh1(0). For the TM mode, heavy

holes do not give any contribution to gain. The TM peaks are then
located near Ee1

lh1(0). We can see that, although both p- and
n-doping can be used to achieve gain, the general performance of
n-doping is significantly better than that of p-doping, especially for
the first peak of the TE mode near Ee1

hh1(0). However, this is not

always the case. We find that p-doping may be useful when the
band structure is direct. Figure 15 considers a direct bandgap struc-
ture. In such (or similar) structure, because of high strain and Sn
content, Γ-valley is much lower than L-valley, the conduction band
can be well populated with electrons while the top valence band,
which has a flatter dispersion, will have the holes distributed over a
wider range of k-vectors. The p-doping may be useful in such a sit-
uation. As shown in Fig. 15, the TM mode is most important in
such cases. LH1 has replaced HH1 as the first valence subband. So,
the first peak of the TE and TM mode gain appears at Ee1

lh1(0). The
second peak can be observed for TE mode for high carrier density,
at Ee1

hh1(0). But this is far from the first peak and less important. In
contrast to Fig. 14, the gain spectrum for p-doping has a larger
peak. The largest difference in this test appears when injected
carrier density is 5 × 1012 cm−2, the peak gain for 2 × 1012 p-doping
is 19.24% higher than for 2 × 1012 n-doping, indicating that
p-doping will deliver a better performance in such or similar
circumstances.

As shown in Fig. 13, in both cases, the E fc and E fv lines
are essentially symmetric, which means that the variation of
electron and hole quasi-Fermi levels is similar for the same
amount of n- and p-doping. Therefore, for carrier density in the
range 1012–1014 cm−2, the same amount of n- and p-type doping
will bring about the same change in quasi-Fermi level
(ΔE fc/ΔN ¼ ΔE fv/ΔP). In Fig. 16, the Fermi functions for
n-doping and p-doping in the same reference system are shown
separately on the left and right. It is clear that for the transition
energy ℏω, the absolute value of Fermi–Dirac inversion factor
for p-type doping is larger than for n-type doping. This is
because of the original quasi-Fermi level, the absolute value of
derivative of the conduction band Fermi–Dirac function
j(dfc/dE)jE1

c (k)
j ¼ j(dfc/dE fc)jE1c (k)j will be smaller than derivative of

the valence band Fermi–Dirac function j(dfv/dE)jE1
v (k)

j ¼
j(dfv/dE fv)jE1v (k)j because of a smaller density of states in the

FIG. 13. Quasi-Fermi level vs 2D carrier density of two 15 nm SiGeSn/GeSn
QWs. (a) Indirect well layer, Sn content = 6.5%, εxx ¼ 0% (b) Direct well layer,
Sn content = 10.5%, εxx ¼ 0:6%.

FIG. 14. Gain spectra of 15 nm wide SiGeSn/GeSn QW, with Sn content = 6.5% and εxx ¼ 0%, for carrier densities from 1.3 × 1013 to 2.0 × 1013 cm−2: (a) no doping,
(b) n-doping = 1 × 1013 cm−2, and (c) p-doping = 1 × 1013 cm−2.
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conduction band. So, when the quasi-Fermi level is more
“biased” toward the conduction band, p-doping will give a larger
Fermi–Dirac inversion factor and a larger gain will be observed.
Furthermore, we can conclude that if ΔE fc/ΔN ffi ΔE fv/ΔP is
fulfilled, in order to make the full use of doping for a QW, if
E fc þ E fv . E1

c þ E1
v the p-doping is preferable, and when

E fc þ E fv , E1
c þ E1

v the n-doping is preferable. For a bulk mate-
rial, E1

c and E1
v can be replaced by band edge energy of the con-

duction band and the valence band. This rule can be applied at
any temperature, and at high temperatures (e.g., 300 K) the
effect of doping and carrier density will be gradual, so a proper
doping can still help to improve the performance when both
E fc . E1

c and E fv , E1
v are fulfilled. However, at low tempera-

tures, the behavior of gain under different doping and carrier
densities will be more “step-like,” and if E fc . E1

c and E fv , E1
v

can be achieved with a given injected carrier density, the gain
improvement by doping will be very limited. A simple physical

explanation of the gain improvement by p-doping in strongly
direct band structure cases is related to a large mismatch of
effective masses between the conduction band and the valence
band. With much larger mass, the holes will be thermally dis-
tributed over a wider range of in-plane k-vectors than electrons,
and only a small fraction of holes will contribute to gain. This
can be compensated by adding more holes in the system. Of
course, the free carrier absorption would also increase for too
large p-doping, but for a limited p-doping the net gain will
improve. The benefits of p-doping have previously been dis-
cussed for MQWs based on other materials, e.g., in Ref. 62.

IV. CONCLUSION

Gain calculations for SiGeSn/GeSn QWs show that the well
width of 13–16 nm is a good choice to get the high TM mode gain.
The transition energy is mainly determined by the Sn content and
tensile strain. At higher photon emission energies, good gain can
be obtained with different combinations of Sn content and strain,
also depending on the carrier density, but for low photon emission
energy the optimal design is restricted by the limits of the available
parameter space. The well width can also influence the transition
energy, but it will only vary about 25 meV for widths between 13
and 16 nm. For a particular transition energy, using higher Sn
content and lower strain will make the bandgap more direct, while
using higher strain and lower Sn content will give a less direct
bandgap but will also make the topmost valence band quantized
state more separated from other states. To explore the trade-offs
involved, the optimum choices are found by calculating gain for
various structures in the practically interesting range of parameters
(εxx ¼ 0:3%� 1:7%, Sn = 6.056%−11.5%), and by finding the
highest gain for a chosen energy by interpolation. IVBA and FCA
are very important in the design of SiGeSn/GeSn lasers, as these
losses are very significant between 0.35 and 0.45 eV. The region in
parameter space where the highest losses occur at photon emission
energy does not vary much, and the optimum region should avoid

FIG. 15. Gain spectra of 15 nm wide SiGeSn/GeSn QW, with Sn content = 10.5% and εxx ¼ 0:6% for carrier densities from 2 × 1012 to 6 × 1012 cm−2: (a) no doping, (b)
n-doping = 2 × 1012 cm−2, and (c) p-doping = 2 × 1012 cm−2.

FIG. 16. Schematic diagram showing how n-doping and p-doping affect the
Fermi–Dirac inversion factor for optical transitions at �hω. It is clear that for
Efc + Efv > Ec + Ev, the p-doping gives a higher inversion factor than n-doping.
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this high-loss area. Because of that, we found that the optimum
region for photon energy higher than 0.42 eV may depend on the
injected carrier densities. However, for photon energy less than
0.42 eV, the lowest Sn content is always preferable because we
assumed 1.7% tensile strain as the technological limit. A broader
space for the design of optimal GeSn QWs with low photon emis-
sion energy would appear only if higher tensile strain becomes
available by appropriate technology development.

Doping can help to improve the performance if the correct
type of doping is chosen. N-doping was often used in Ge and other
indirect bandgap materials. In this work, we find that p-doping
may be a better choice than n-doping to improve the performance
of the direct bandgap SiGeSn/GeSn QW structure. A general rule
that p-doping is preferable when E fc þ E fv . Ec þ Ev , while
n-doping is better when E fc þ E fv , Ec þ Ev , can also be extended
to other materials or structures like QWs.

APPENDIX: HAMILTONIAN AND MOMENTUM MATRIX ELEMENTS

The spin–orbit part of the Hamiltonian was given incorrectly in Ref. 31. Equation (11) is from the erratum of this paper.63

Non-zero parts of momentum matrix elements used to calculate the absorption are

For TE polarization:

X
i,j

Fs,i(z, kk)jFt,i(z, kk)
� 	

uijp̂xjuj
� 	¼ �m0P0

�h
� 1ffiffiffi

6
p Fs,1jFt,3h i

�
� 1ffiffiffi

6
p Fs,3jFt,1h i � 1ffiffiffi

2
p Fs,1jFt,5h i � 1ffiffiffi

2
p Fs,5jFt,1h i � 1ffiffiffi

3
p Fs,1jFt,8h i � 1ffiffiffi

3
p Fs,8jFt,1h i

þ 1ffiffiffi
2

p Fs,2jFt,4h i þ 1ffiffiffi
2

p Fs,4jFt,2h i þ 1ffiffiffi
6

p Fs,2jFt,6h i þ 1ffiffiffi
6

p Fs,6jFt,2h i � 1ffiffiffi
3

p Fs,2jFt,7h i � 1ffiffiffi
3

p Fs,7jFt,2h i
�
: (26)

For TE polarization:

X
i,j

Fs,i(z, kk)jFt,i(z, kk)
� 	

uijp̂zjuj
� 	¼ �m0P0

�h

ffiffiffi
2
3

r
Fs,1jFt,6h i

 
þ

ffiffiffi
2
3

r
Fs,6jFt,1h i þ 1ffiffiffi

3
p Fs,1jFt,7h i þ 1ffiffiffi

3
p Fs,7jFt,1h i þ

ffiffiffi
2
3

r
Fs,2jFt,3h i þ

ffiffiffi
2
3

r
Fs,3jFt,2h i

� 1ffiffiffi
3

p Fs,2jFt,8h i � 1ffiffiffi
3

p Fs,8jFt,2h i
�
: (27)
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