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Abstract

Cancer treatments can be highly toxic and frequently only a subset of the patient population

will benefit from a given treatment. Tumour genetic makeup plays an important role in can-

cer drug sensitivity. We suspect that gene expression markers could be used as a decision

aid for treatment selection or dosage tuning. Using in vitro cancer cell line dose-response

and gene expression data from the Genomics of Drug Sensitivity in Cancer (GDSC) project,

we build a dose-varying regression model. Unlike existing approaches, this allows us to esti-

mate dosage-dependent associations with gene expression. We include the transcriptomic

profiles as dose-invariant covariates into the regression model and assume that their effect

varies smoothly over the dosage levels. A two-stage variable selection algorithm (variable

screening followed by penalized regression) is used to identify genetic factors that are asso-

ciated with drug response over the varying dosages. We evaluate the effectiveness of our

method using simulation studies focusing on the choice of tuning parameters and cross-vali-

dation for predictive accuracy assessment. We further apply the model to data from five

BRAF targeted compounds applied to different cancer cell lines under different dosage lev-

els. We highlight the dosage-dependent dynamics of the associations between the selected

genes and drug response, and we perform pathway enrichment analysis to show that the

selected genes play an important role in pathways related to tumorigenesis and DNA dam-

age response.

Author summary

Tumour cell lines allow scientists to test anticancer drugs in a laboratory environment.

Cells are exposed to the drug in increasing concentrations, and the drug response, or

amount of surviving cells, is measured. Generally, drug response is summarized via a sin-

gle number such as the concentration at which 50% of the cells have died (IC50). To avoid
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relying on such summary measures, we adopted a functional regression approach that

takes the dose-response curves as inputs, and uses them to find biomarkers of drug

response. One major advantage of our approach is that it describes how the effect of a bio-

marker on the drug response changes with the drug dosage. This is useful for determining

optimal treatment dosages and predicting drug response curves for unseen drug-cell line

combinations. Our method scales to large numbers of biomarkers by using regularization

and, in contrast with existing literature, selects the most informative genes by accounting

for drug response at untested dosages. We demonstrate its value using data from the

Genomics of Drug Sensitivity in Cancer project to identify genes whose expression is asso-

ciated with drug response. We show that the selected genes recapitulate prior biological

knowledge, and belong to known cancer pathways.

This is a PLOS Computational BiologyMethods paper.

Introduction

Cancer is a heterogeneous disease, with individual tumours showing sometimes very different

mutational and molecular profiles. The genetic makeup of a tumour influences how it reacts

to a given anti-cancer drug. However, due to lack of predictive markers of tumour response,

often patients with very different tumour genetic makeup will receive the same therapy, result-

ing in high rates of treatment failure [1]. Large clinical trials in rapidly lethal diseases are

expensive, complex and often lead to failure due to lack of efficacy at a given dosage [2]. One

major issue for some cancer treatments, e.g. chemotherapies, are cytotoxic effects that result in

collateral damage of the healthy host tissue [3]. Patient remission depends not only on the

selection of the right drug but also on the determination of the optimal dosage, especially

when drugs with small therapeutic range, high toxicity levels or both are administered. Genetic

factors can help fine-tune the dosage for individual patients, so that the minimal effective dos-

age can be delivered [4].

Treatment response in patients with specific cancers had been intensely examined in rela-

tion to the molecular characteristics of the tumours [5]. However, cellular heterogeneity within

the tumour and the lack of standard metrics for quantifying drug response in patients can

make it difficult to computationally model response as a function of molecular features. Can-

cer cell line drug screens can provide valuable information about the effect of genetic features

on drug dose-response in a controlled setting. During the last decade, there have been several

systematic studies that examined the relationship between genetic variants and drug response

in cell lines [6–10]. There have also been studies that measured transcriptional profiles [11, 12]

and drug response in cancer cells after administering anticancer drugs at various dosages [13,

14]. By comparing multiple genomic features of cell lines to drug response, the investigators

were able to identify gene signatures for drug responsiveness in specific cancer types. However,

these signatures were selected based on a single summary statistic of response, usually IC50,

that may not always be the most useful metric for differentiating drugs [15], and only provides

information on one dose concentration. While these existing signatures of drug response pro-

vide a way towards selecting the right drug for a patient, none of them characterize gene-dose

relationships that may ultimately identify the optimal dose for a drug to use in the clinic.

With regards to the high-dimensional nature of genomic data sets, it is worth noting that

highly-complex data sets with non-stationary trends are not easily amenable to analysis by

classic parametric or semi-parametric mixed models. Such effects, e.g. the effect of genes on
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drug response over different drug dosages (dose-varying effect), can be examined using vary-

ing coefficient models which allow for the covariate effect to be varying instead of constant

[16]. Methods to estimate varying covariate effects include global and local smoothing, e.g.

kernel estimators [17, 18], basis approximation [19] or penalized splines [20]. Although non-

parametric techniques can reduce modeling biases [21], they often suffer from the “curse of

dimensionality” [22]. Inference in these models becomes impossible as the number of predic-

tors increases, and often selecting a smaller number of important variables for inclusion into

the model is clinically beneficial. Sparse regression has enabled a more flexible and computa-

tionally “inexpensive” way of choosing the best subset of predictors [23]. However, these meth-

ods cannot handle ultra-high dimensional problems without losing statistical accuracy and

algorithmic stability, since they handle all of the predictors jointly. Consequently, there is a

need of prior univariate tests focused on filtering out the unimportant predictors by estimating

the association of each predictor to the outcome variable separately [21, 24, 25]. The advantage

of using varying coefficient models along with a variable screening algorithm on genomic data

sets was first introduced to explore the effect of genetic mutations on lung function [24].

Recently, Wang et al. [26] and Tansey et al. [27] independently proposed methods for model-

ing drug-response curves via Gaussian processes and linking them to biomarkers. In both

cases, the authors did not use their models for dosage-dependent inference of biomarker

effects. Additionally, the highly non-linear neural network model in Tansey et al. [27] makes

interpretation of biomarker effects challenging.

Here, we extended the methodology of Chu et al. [24] to the objective of assessing the tran-

scriptomic effect on anti-cancer drug response, where our coefficient functions were allowed

to vary with dosage. We developed a functional regression framework to study the effective-

ness of multiple anticancer agents applied in different cancer cell lines under different dosage

levels, adjusting for the transcriptomic profiles of the cell lines under treatment. We consid-

ered a dose-varying coefficient model, along with a two-stage variable selection method in

order to detect and evaluate drug-gene relationships, and then applied this method to data

extracted from the Genomics for Drug Sensitivity in Cancer (GDSC) project [7]. To compare

and differentiate similar treatments, we examined a case study of five BRAF targeted com-

pounds under different dosages to almost 1000 cancer cell lines. We used baseline gene expres-

sion measurements for the cancer cell lines to investigate gene-drug response relationships for

almost 18000 genes. Gene rankings were obtained based on the estimated effects of the genes

on the drug response. The resulting model describes the whole dose-response curve, rather

than a summary statistic of drug response (e.g. IC50), which allowed us to identify trends in

the gene-drug association at untested dose concentrations.

Materials andmethods

The Genomics of drug sensitivity in cancer data

Drug sensitivity data and molecular measures derived from 951 cancer cell lines used for the

screening of 138 anticancer compounds were downloaded from the GDSC database (https://

www.cancerrxgene.org/). We specifically focused on cell lines of cancers of epithelial, mesen-

chymal and haematopoietic origin treated by five BRAF targeted inhibitors (PLX-4720,

Dabrafenib, HG6-64-1, SB590885 and AZ628; GDSC1 data). The maximum screening con-

centration for each different drug was: 10.00 uM for PLX-4720 and Dabrafenib, 5.12 uM for

HG6-64-1, 5.00 uM for SB590885 and 4.00 uM for AZ628. Additionally, we used the indepen-

dently generated GDSC2 data set to validate our approach on drugs targetingMEK1,MEK2

genes (Trametinib−1.00 uM; Selumetinib−10.00 uM, and; PD0325901−0.250 uM) and the

PI3K/MTOR signalling pathway (Alpelisib−10.00 uM; AMG-319−10.00 uM, and; AZD8186
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−10.00 uM). The drug sensitivity measurement was obtained via fluorescence-based cell viabil-

ity assays 72 hours after drug administration [7]. Approximately 66% of drug sensitivity

responses were measured over nine dose concentrations (2-fold dilutions) and 34% were mea-

sured over five drug concentrations (4-fold dilutions). In total, we considered 3805 cancer cell

line-drug combinations (experimental units). The distribution of different tissues of origin

treated were similar across the different drugs tested (for additional information see S1 Fig).

Paired microarray gene expression data (17737 genes) were available together with the dose-

response data.

The dose-response data also included a blank response for cells on the experimental plate

that had not been seeded with cells or treated with a drug. Blank responses have been used to

adjust for the magnitude of the observation error while measuring the amount of cells in each

plate. We used an affine transformation to the reported responses in order to normalise them

within the drug concentration interval, 0 (0% of the maximum dosage) to 1 (100% of the maxi-

mum dosage). In particular, for the normalising procedure, we have used the formula:

NRij ¼
Rij � BRi

CRi � BRi

ð1Þ

where Rij is the response of the ith experimental unit at the jth dosage level, CRi is the response

under no drug administration (zero dose, ni = 1), BRi is the blank response of the ith experi-

mental unit as described above and NRij is the new score taken from the transformation, i = 1,

. . ., 3805, j = 1, . . ., ni.

A two-stage algorithm for identification of gene-drug associations

Non-parametric techniques are a great tool for reducing modeling bias and producing data

driven inference. However, flexible modeling techniques applied on high-dimensional geno-

mic data sets can often cause real problems in statistical inference. Sparse regression tech-

niques, such as the LASSO, can be used as dimensionality reduction techniques, but cannot

handle ultra-high dimensional problems without introducing statistical inaccuracies, algorith-

mic instability and a huge computational burden [23]. Hence, the need for a feature screening

algorithm which will marginally filter unimportant variables becomes essential. Below we fur-

ther explain the two-stage algorithm that has been built in order to detect and explore dose-

dependent gene-response associations.

Let the repeated measures data {(dij, yij, zi, xi):j = 1, . . ., ni, i = 1, . . ., n}, where yij is the

response of the ith experimental unit (corresponds to a drug sensitivity assay of a specific drug

on a specific cell line) at the jth drug dosage level dij and zi along with xi are the corresponding

vectors of scalar (dose-invariant) covariates. The covariate vector zi = (1, zi1, . . ., zip)
T is a low-

dimensional vector of predictors that should be included in the model, whereas xi = (xi1, xi2,

. . ., xiG)
T is a high-dimensional vector, i.e. 17737 gene expression measurements, that needs

to be screened. We assumed that only a small number of x-variables (in our case, genes) are

truly associated with the response while most of them are expected to be irrelevant (sparsity

assumption).

To explore potential dose-varying effects between the covariates and the drug response, we

consider the following varying coefficient model:

yij ¼
Xp

k¼0

zikbkðdijÞ þ
XG

g¼1

xigggðdijÞ þ εij ð2Þ

where {βk(�), k = 0, . . ., p} and {γg(�), g = 1, . . ., G} are smooth functions of dosage level d 2 D ,
whereD is a closed and bounded interval of R. The errors εij were assumed to be independent

PLOS COMPUTATIONAL BIOLOGY Biomarker detection for revealing anticancer drug dynamics

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008066 January 25, 2021 4 / 25

https://doi.org/10.1371/journal.pcbi.1008066


across subjects and potentially dependent within the same subject with conditional mean

equal to zero and variance Var(ε) = σ2(d) = V(d).

Methods for estimating the coefficient functions in Eq (2) include local and global smooth-

ing methods, such as kernel smoothing, local polynomial smoothing, basis approximation

smoothing etc. For computational convenience, in this application we used basis approxima-

tion smoothing via B-splines.

Let the sets of basis functions {Blk(�):l = 1, . . ., Lk} and fB
0
lgð�Þ : l ¼ 1; . . . ; Lgg and constants

{zlk: l = 1, . . ., Lk} and {ηlg: l = 1, . . ., Lg} where k = 0, . . ., p and g = 1, . . ., G such that, 8d 2 D ,
βk(d) and γg(d) can be approximated by the expansion

bkð�Þ �
XLk

l¼1

zlkBlkð�Þ for k ¼ 0; . . . ; p ð3Þ

ggð�Þ �
XLg

l¼1

ZlgB
0
lgð�Þ for g ¼ 1; . . . ;G: ð4Þ

Substituting βk(�) and γg(�) of Eq (2) with Eqs (3) and (4), we approximated Eq (2) by

yij �
Xp

k¼0

zik
XLk

l¼1

zlkBlkðdijÞ þ
XG

g¼1

xig

XLg

l¼1

ZlgB
0
lgðdijÞ þ εij ð5Þ

If Bk(�) and B0
gð�Þ are groups of B-spline basis functions of degree qk and qg respectively, and

d
0
< d

1
< . . . < dKk

< dKkþ1
and d

0
< d

1
< . . . < dKg

< dKgþ1
are the corresponding knots,

then Lk = Kk + qk and Lg = Kg + qg.

Using the approximation Eq (5), the coefficients ζ = (z0, z1, . . ., zp)
T and η = (η1, η2, . . ., ηG)

T

can be estimated by minimizing the squared error

‘wððζ;ηÞ
T
Þ ¼

Xn

i¼1

Xni

j¼1

wij yij �
Xp

k¼0

zik
XKk

l¼1

zlkBlkðdijÞ �
XG

g¼1

xig

XLg

l¼1

ZlgB
0
lgðdijÞ

" #2

ð6Þ

where wij are known non-negative weights.

In cases where p + G>>n though, minimisation of Eq (6) is infeasible. Our aim was to

identify factors of the covariate vector x = (x1, x2, . . ., xG)
T (genes) that are truly associated

with the response (cancer cell line sensitivity to the drug). In addition, we wanted to explore

potential dose-varying effects on the drug response.

We make the following sparsity assumption: any valid solution γ̂ðdÞ will have ĝg ðdÞ ¼
0;8d 2 D for the majority of components g. To detect non-zero coefficient functions, we

applied a two-stage approach which incorporated a variable screening step and a further vari-

able selection step.

Screening. The sparsity assumption applies only to components of x, the high-dimen-

sional covariate vector in Eq (2).

Let the set of indices

M
0
¼ f1 � g � G : kggð�Þk2

> 0g ð7Þ

where k�k2 is the L2-norm. In order to rank the different components of x, we fitted the
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marginal non-parametric regression model for the gth x-predictor:

yij �
Xp

k¼0

zik
XKk

l¼1

z
ðgÞ

lk B
ðgÞ
lk ðdijÞ þ xig

XLg

l¼1

Z
ðgÞ
lg B

ðgÞ0
lg ðdijÞ þ εðgÞij ð8Þ

where: fBðgÞ
lk ð�Þ : l ¼ 1; . . . ; Lkg and fB

ðgÞ0
lg ð�Þ : l ¼ 1; . . . ; Lgg are sets of coefficient functions;

fzðgÞlk : l ¼ 1; . . . ; Lkg and fZ
ðgÞ
lg : l ¼ 1; . . . ; Lgg are constants to be estimated, k = 0, . . ., p;

and, ε(g) is the error term similar to Eq (5). We then computed the following weighted mean

squared error for each g 2 {1, . . ., G},

ûg ¼
1

n

Xn

i¼1

ðyi � ŷ
ðgÞ
i Þ

T
Wiðyi � ŷ

ðgÞ
i Þ ð9Þ

to quantify the importance of the gth variable. Here,

W i ¼
1

ni

V̂
�1

2

i R
�1

i ðϕ̂ÞV̂�1

2

i ð10Þ

where V̂ i is the ni × ni diagonal matrix consisting of the dose-varying variance

V̂ i ¼

V̂ ðdi1Þ 0 � � � 0

0 V̂ ðdi2Þ � � � 0

.

.

.
.
.
.

.
.

.
.
.
.

0 0 � � � V̂ ðdini
Þ

2
666666664

3
777777775

ð11Þ

and Ri(ϕ) = (Rjk) the ni × ni working correlation matrix for the ith subject. By ϕ, we denoted

the s × 1 vector that fully characterizes the correlation structure. The estimate of ϕ, ϕ̂, was
obtained by taking the moment estimators for the parameters ϕ in the correlation structure

based on the residuals obtained from fitting the following model

yij ¼
Xp

k¼0

zikbkðdijÞ þ εij where i ¼ 1; . . . ; n; j ¼ 1; . . . ; ni: ð12Þ

The variance function V(d) in Eq (11) was estimated using techniques described in [24].

After having obtained {ûg : g ¼ 1; . . . ;G}, we sorted gene utilities in an increasing order,

where smaller ûg values indicate stronger marginal associations. The x-predictors included in

the screened submodel are, then, given by

cM tn
¼ f1 � g � G : ûg ranks among the first tnðnÞg ð13Þ

where τn(ν) corresponds to the size of the submodel which is chosen to be smaller than the

sample size n.

Variable selection using a group SCAD (gSCAD) penalty. Screening algorithms aim to

discard all unimportant variables but tend to be conservative. In order to preserve only the

most important x-predictors in the final model, we considered a model including the first
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τn(ν) outranked genes and we applied a gSCAD penalty by minimising the following criterion:

1

2

Xn

i¼1

Xni

j¼1

wij

(
yij �

Xp

k¼0

zik
XLk

l¼1

zlkBlkðdijÞ� ð14Þ

X

g2 bM tn

xig

XLg

l¼1

ZlgB
0
lgðdijÞ

)2

þ
X

g2 bM tn

p
l;aðkZgkÞ ð15Þ

where

p
l;aðuÞ ¼

lu if 0 � u � l

� ðu2�2aluþl2Þ

2ða�1Þ
if l � u � al

ðaþ1Þl2

2
if u � al

;

8
>>>><

>>>>:

α is a scale parameter, λ controls for the penalty size and k�k is the Euclidean ℓ2-norm. At this

point, note that grouping is applied for the coefficients ηg that correspond to the same coeffi-

cient function. In addition, in order to reduce the bias introduced when applying a LASSO

penalty, we alternatively chose the SCAD, which coincides with the LASSO until u = λ, then
transits to a quadratic function until u = αλ and then it remains constant 8u> αλ, meaning

that it retains the penalization and bias rates of the LASSO for small coefficients but at the

same time relaxes the rate of penalization as the absolute value of the coefficients increases. In

Fig 1 the reader can find a brief overview of the employed methodology.

Tuning parameter selection

We used knots placed at the median of the observed data values along with cubic B-splines

with 1 interior knot. The suitable number of interior knots was calculated using the formula

Nn ¼ n
1

2pþ3

h i
proposed and applied by [19, 28, 29]. Due to the computational burden this

would add, we did not apply cross-validation.

As for the screening threshold τn, its magnitude could be determined by the fraction

n n
logðnÞ

h i
, ν 2 {1, 2, 3, . . .}. We conducted a pilot simulation study in order to decide the most

appropriate size (for further details see S1 Text). We also considered an automated algorithm

for its selection (Greedy Iterative Non-parametric Independence Screening-Greedy INIS,

[21]). Finally, the penalty size for the gSCAD step λ was determined using a 5-fold cross-

validation.

Simulation study

Monte Carlo simulations were conducted to examine the ability of our model to detect the

genes that are truly associated with the drug response. This had a key role in tuning model

parameters and simultaneously assessing model goodness-of-fit using a fraction of the original

data set in order to reduce the computational burden of conducting a simulation study under

the original dimensions of the data. Responses over different dosage levels were generated

based on a subset of genes, the corresponding low-dimensional GDSC data covariates (drug

and cancer type) and some prespecified smooth coefficient functions (see S1 Text). In particu-

lar, we repeatedly sampled without replacement 190 experimental units and 886 genes based
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Fig 1. The two-stage algorithm for identifying dose-dependent associations between genes and drugs.Gene expression and drug response data from a drug
screening study (e.g. GDSC) are used to fit our dose-varying coefficients model to estimate the dose-varying effect between covariates and drug response. A two-stage
variable screening and selection algorithm is applied to rank gene-drug associations. The selected genes can then be used to predict dose-dependent response for the
drugs of interest.

https://doi.org/10.1371/journal.pcbi.1008066.g001
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on which the simulated responses have been generated. The performance of the employed

methodology has been assessed based on 1000 simulations using three screening thresholds

(tnðnÞ ¼
n

logðnÞ

h i
; tnðnÞ ¼

2n
logðnÞ

h i
and τn(ν) chosen using the greedy-INIS algorithm [21]) and

two estimated covariance structure scenarios (independence and rational quadratic covariance

structure). Cubic B-splines and knots placed at the median of the observed data values have

been used for estimating the coefficient functions.

To evaluate the performance of the proposed procedure we used the following summary

measures: TP−number of genes correctly identified as active; FP−number of the genes incor-

rectly identified as active; TN−number of the genes correctly identified as inactive; FN−num-

ber of the genes incorrectly identified as inactive.

Simulation results suggested that our method accurately detects the drug associated genes

from the simulated responses under most of the examined scenarios (S1 Text). A screening

threshold of size 2n
logðnÞ

h i
and regression weights adjusted for the covariance structure of the

data were identified as the scenario where our method reached its maximum accuracy. Conse-

quently, for the GDSC application, we chose the screening threshold to be the maximum possi-

ble, i.e. 923 genes derived from the formula 2n
logðnÞ

h i
, and weights derived by assuming a rational

quadratic covariance structure for the repeated measures.

Software availability

The analysis has been conducted using R version 3.6.3. Code for applying the two-stage vari-

able selection algorithm is available online as an R package at https://github.com/koukoulEv/

fbioSelect.

Results and discussion

Dose-dependent associations with gene expression in a large-scale drug
sensitivity assay

We applied the two stage variable selection algorithm under the dose-varying coefficient

model framework described above. Gene rankings and predicted mean drug effects over dif-

ferent dosage levels were obtained. Our algorithm identified 230 candidate genes associated

with drug response. The effect of each of those genes was assessed with respect to:

1. the area under the estimated coefficient curve (AUC) and its corresponding standard devia-

tion (estimated using bootstrapping);

2. the effect on cell survival (overall positive, overall negative, mixed);

3. Spearman correlation between the coefficient function value and the dosage level;

4. the mean fold change of the expression of cell lines carrying BRAFmutations with respect

to wild type; and,

5. the protein-protein interaction network distance between the BRAF gene and the selected

genes using the Omnipath database [30].

The 230 genes were ranked based on the estimated AUC value (S1 Table), and the top 30

genes were highlighted for further analysis (Table 1). The higher the AUC, the larger the effect

of the gene on the drug response. The overall effect on cell survival can be either positive, nega-

tive or vary over the different dosage levels as determined by the range of the estimated
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coefficient function. Spearman’s rank correlation was used as an indicator of the coefficient

function’s monotonicity by characterising the progress of the genetic effect over different dos-

age levels. For instance, high expression of the C3orf58 gene at baseline has a positive effect

on cancer cell survival, which becomes stronger as the dosage increases (Spearman correla-

tion = 0.922). In other words, high expression of this gene can be an indicator of drug resistant

cell lines. On the other hand, the DLC1 gene has an overall decreasing and negative effect on

cancer cell survival (Spearman correlation = -0.928) which suggested that as the dosage

Table 1. Top 30 gene rankings based on the estimated area under the coefficient function curve.

Gene
Name

Area SD Sign Spearman’s
Correlation

Mean fold change in BRAFmutant vs wild-type
cell lines

Protein-protein interaction network distance to
BRAF

KIR3DL1 0.370 0.107 - -0.874 0.978 3

CHST11 0.257 0.092 - -0.817 0.899 NI

APOC1P1 0.247 0.09 - -0.918 1.190 NI

PLEKHA6 0.239 0.086 - -0.908 1.037 3

PPM1F 0.223 0.068 + 0.910 0.883 3

BFSP1 0.222 0.074 - -0.800 1.217 NI

PPP1R3A 0.217 0.082 + 0.774 1.078 3

C16orf87 0.207 0.087 + 0.851 0.977 NI

PARVA 0.203 0.081 + 0.890 0.984 2

SLC39A13 0.202 0.079 - -0.461 1.055 NI

UCN2 0.198 0.07 - -0.928 0.979 NI

STMN3 0.198 0.087 + 0.834 1.201 2

RNF130 0.197 0.083 - -0.927 1.153 NI

C3orf58 0.196 0.076 + 0.922 1.133 NI

CXXC4 0.188 0.079 + 0.866 0.995 NI

THBD 0.179 0.093 0 -0.967 1.231 4

SIRT3 0.173 0.066 - -0.760 1.013 3

PLAT 0.172 0.092 - -0.878 1.322 4

MPPED1 0.168 0.066 + 0.430 0.978 NI

INSL3 0.162 0.068 - -0.973 0.965 NI

FAM163A 0.159 0.078 - -0.983 1.106 NI

CNIH3 0.153 0.08 - -0.918 0.938 NI

GJA3 0.153 0.067 0 -0.940 0.933 NI

BTG2 0.152 0.078 + 0.959 1.035 2

DLX6 0.152 0.059 0 0.686 0.987 NI

DLC1 0.151 0.053 - -0.928 0.974 3

GAPDHS 0.150 0.077 + 0.886 1.232 NI

JAG2 0.149 0.069 - -0.994 0.981 3

SMOX 0.146 0.057 0 0.816 1.070 NI

ZMYND8 0.145 0.091 + 0.907 1.020 3

Gene rankings of the top 30 selected genes based on the magnitude of the genetic effect on drug response. A positive (+) sign translates to a positive effect on cell

survival after drug administration, a negative (-) sign translates to a negative effect on cell survival and a mixed (0) effect translates to a varying effect on cell survival

which depends on drug dosage. Spearman correlation is calculated between drug dosage and gene estimated coefficient function values as an indicator of the magnitude

change of the gene effect over the increasing dosage. Area corresponds to the area under the estimated coefficient curve and the SD corresponds to the standard

deviation of the area based on bootstrapping. Mean fold change is calculated between the selected gene expression values of the cell lines carrying BRAFmutations with

respect to wild type. Protein-protein interaction network distance is computed based on the shortest interaction path between the BRAF gene and each of the selected

genes. Here, NI denotes absence of any interaction.

https://doi.org/10.1371/journal.pcbi.1008066.t001
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increases, higher baseline expression of this gene can indicate higher drug sensitivity at higher

dosage. Elevated expression of DLC1 has been observed in melanoma and is a well known

tumour suppressor that could be a novel marker of BRAF inhibition [31]. Finally, in cases

where the overall effect varies (changes between positive and negative), the effect of gene

expression on the drug response depends on the drug dosage. In particular, the effect of DLX6

increases and then decreases at higher dosages (Fig 2). Given the biological and technical varia-

tion in drug screens, we should treat the mean effect estimates with caution and consider the

confidence intervals of the coefficient functions in order to derive conclusions about the exact

effect of the selected genes on the dose response (Fig 2).

Coefficient function estimates provide a lot of information about the dosage, cancer type

and genetic effects on drug response. Fig 2 illustrates the estimated coefficient functions for

different drugs, cancer types and three genes in relation to the model intercept, Dabrafenib

response in BRAFmutant cell lines originating from the skin (melanoma). Except from HG6-

64-1, all other BRAF inhibitors (AZ628, SB590885 and PLX4720) showed no additional effect

compared to the intercept. Similar patterns can be observed for cancer cell lines coming from

most of the tissues examined. This result indicates that the examined drugs may have similar

or worse behaviour over the different dosages for most of the examined cancer types. We

observed greater efficacy (negative values of the coefficient function) for cell lines originating

from the endocrine system, autonomic ganglia and heamatopoietic and lymphoid tissues at

lower dosages. The observed effect in endocrine system cell lines reflects the Dabrafenib

responses observed in anaplastic thyroid cancer patients [32]. Interestingly, the drug Trameti-

nib, taken in combination with Dabrafenib is a MEK inhibitor, and genes interacting with

MEK (MAP2K1) were selected features from our model (Fig 3A). Together these results pro-

vide important insights into the effectiveness of the five BRAF targeted drugs examined on dif-

ferent cancer types, highlighting the potential for effective treatment of a wide range of cancers

given the tumour genetic characteristics.

Since the BRAF gene is the target of the drugs, mean fold change and protein-protein inter-

action network distance were used to examine whether and how the selected genes are related

to the target of the inhibition. From the selected genes, 120 genes had a mean fold change

greater than 1 whereas the rest had a mean fold change between 1 and 0.792. Some of the

genes with the highest mean fold change of BRAFmutation were PSMC3IP, KIF3C, UBE2Q2,

SERPIND1 and PLAT, however only PLAT is displayed in Table 1. From the genes identified

through the two-stage algorithm, 35% of them encode proteins interacting with the BRAF

gene, though none of them directly. Most of the selected genes interact with the BRAF gene via

pathways mediated byHRAS,MAPK1 (ERK),MAP2K1 (MEK) and BAD (Fig 3A).

SinceHRASmutations are frequent in patients receiving BRAF targeted therapies [33], we

examined the mean estimated trajectory over different dosages under treatment with BRAF

inhibitors tested in six cancer cell lines with and without BRAF andHRASmutations (Fig 4).

As stated previously, we observed that in most cases HG6-64-1 seems to be the most effective

drug. The estimated coefficient functions facilitate drug examination and response prediction

under the different dosages. In some instances, we observed different drugs having similar

behaviour for lower drug dosages and larger divergence for higher dosages. In most cases,

regardless of the cell line origin, our method successfully estimates the expected survival rates

of the cancer cell lines for the different drugs given their gene expression information.

For validation purposes, we performed the same analysis using the independently-gener-

ated GDSC2 data set, with a different set of drugs. Note that the drug set in GDSC2 only par-

tially overlaps with the one used in GDSC1. The results are reported in supplementary S2 Fig,

and show similar properties to the analysis of the BRAF drugs in Fig 4. As the GDSC2 dose-

responses are produced from independently-generated experiments, the measured drug

PLOS COMPUTATIONAL BIOLOGY Biomarker detection for revealing anticancer drug dynamics

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008066 January 25, 2021 11 / 25

https://doi.org/10.1371/journal.pcbi.1008066


Fig 2. Estimated coefficient functions for the low-dimensional predictors and three of the selected genes. Estimated coefficient functions for the
intercept, different drugs, tissue of origin and three of the selected genes along with 95% bootstrap confidence intervals. Baseline corresponds to BRAF
mutant cell lines treated with Dabrafenib in skin tumours.

https://doi.org/10.1371/journal.pcbi.1008066.g002
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response is different for some of the drug-cell line combinations. We observe some diver-

gences between GDSC1 and GDCS2 estimated trajectories for Dabrafenib and PLX-4720,

which can be explained due to measurement error in the GDSC experiments themselves.

Variable selection algorithm identifies cancer pathways associated with
BRAF inhibitor response

Using our functional regression approach, we identified 230 genes that were selected via the

SCAD step (observed gene set). We used the Enrichr [34, 35] andWikiPathways [36] databases

to see if the selected genes can be grouped into common functional classes or pathways. In

total, 183 were identified, of which 11 were statistically significant at 5% level, including apo-

ptosis modulation, NOTCH1 regulation, and MAPK signaling (S2 Table). The model identi-

fied genes (IKBKB, RASGRF1, DUSP16, DUSP8, DUSP6,MAPT and IL1R2) downstream of

the MAPK signaling pathway targeted by BRAF inhibitors.

Previous studies of these pathways have found associations with tumorigenesis and cancer

treatment [37–40]. Genes in more than one of these pathways include IKBKB, PLAT, IL1R2

and PDPK1. The IKB kinase composed of IKBKB had previously been suggested as a marker

of sensitivity for combination therapy with BRAF inhibitors [41]. Taken together, these results

suggest that the identified associations between the drug response and the observed genes may

reveal new predictive markers of tumour response to the examined BRAF inhibitors.

Fig 3. Protein-protein interaction network for the genes selected from the two-stage variable selection algorithm. (A) Undirected protein-protein interaction
network between the 230 selected (blue) and the BRAF (red) genes (full scale analysis). (B) Undirected protein-protein interaction network between the 65 genes
selected from the two-stage variable selection algorithm for the cell lines resistant to BRAF inhibitors (blue) and the BRAF (red) gene. In both panels genes depicted
with black are the interaction mediators. Commonmediators include theHRAS,MAPK1,MAP2K1 and BAD genes.

https://doi.org/10.1371/journal.pcbi.1008066.g003
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In addition to the pathway enrichment analysis, we used the Molecular Signatures Database

(MSigDB database v7.0 updated August 2019: [42]) to compute overlaps between the observed

gene set and known oncogenic gene sets. Fig 5A and S3 Table display the 29 overlaps found.

Interestingly, we identified three instances where the observed gene set significantly over-

lapped with gene sets over-expressing an oncogenic form of the KRAS gene.

We further explored potential biologically relevant pathways using the Reactome database

[44, 45]. More than 40 enriched pathways were identified at a 5% significance level. The top 40

pathways are depicted in Fig 6 along with the pathway-gene network of the top 5 pathways

(for the full list, see S4 Table). Interestingly, axon guidance and VEGF signalling were among

the enriched pathways, confirming relevance of the selected genes to the intended role of the

examined compounds, since BRAF kinase activity drives axon growth in the central nervous

system [46] and VEGF blockade has potential anti-tumour effects when combined with BRAF

inhibitors [47]. Note that axon growth has not, thus far, been directly implicated in BRAF

Fig 4. Estimated mean drug response trajectories for six cancer cell lines with BRAF andHRASmutations.Observed responses (points) and estimated mean
trajectory (lines) of cell concentration for cancer cell lines with and without BRAF andHRASmutations after treatment with the five anticancer compounds examined.

https://doi.org/10.1371/journal.pcbi.1008066.g004
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inhibitor activity, and, consequently, our analysis provides important evidence towards this

theory.

Identifying dose-dependent genes in drug-resistance conditions

Acquired resistance to BRAF inhibitors is often observed in the clinic [48]. To further examine

the utility of the employed methodology, we applied the variable selection algorithm to a data

subset containing only cell lines with mutations activating resistance mechanisms to BRAF

inhibitors [49]. Out of the 951 cell lines in the data, 191 had some mutation in any of the fol-

lowing: RAC1 gene, NRAS gene, cnaPANCAN44 or cnaPANCAN315. We identified 65 genes

Fig 5. Overlaps between the observed gene set and oncogenic signatures in the Molecular Signatures Database (full data analysis); signalling pathways
enriched for genes predictive of BRAF inhibitor response (resistant cell lines). (A) Full gene set names can be found in S3 Table. Overlaps have been
detected using gene set enrichment analysis performed using a hypergeometric distribution. The false discovery rate analog of the hypergeometric p-value is
displayed after correction for multiple hypothesis testing according to Benjamini and Hochberg [43]. (B) Top 20 enriched signalling pathways along with the
adjusted p-values and the number of overlapping genes obtained after pathway enrichment analysis to the resistant cell line analysis results (for the full list of
the pathways identified see S6 Table).

https://doi.org/10.1371/journal.pcbi.1008066.g005
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associated with dose-response, though none of them were directly associated with the MAPK/

ERK pathway. However, from these, 25 genes have been found to indirectly interact with the

BRAF gene (Fig 3B) and 21 to overlap with three oncogenic gene sets in the Molecular Signa-

tures Database (genes down-regulated in NCI-60 panel of cell lines with mutated TP53; genes

up-regulated in Sez-4 cells (T lymphocyte) that were first starved of IL2 and then stimulated

with IL21, and; genes down-regulated in mouse fibroblasts over-expressing E2F1 gene; S5

Table). Finally, we found 34 pathways enriched for genes predicting drug response of the

Fig 6. Pathway enrichment analysis using the Reactome database. (A) Top 40 enriched signalling pathways along with the adjusted p-values. For the full list, see S4
Table. (B) Pathway-gene network of the top 5 enriched signalling pathways as found using Reactome [44, 45].

https://doi.org/10.1371/journal.pcbi.1008066.g006
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mutated cell lines to the examined BRAF inhibitors, of which the top 20 are depicted in Fig 5B

(for the full list of the pathways identified see S6 Table).

Table 2 presents gene rankings based on the AUC and the overall coefficient function effect

(sign) for the 42 genes in either the enriched pathways, the three oncogenic gene sets discussed

above or the protein-protein interaction network with the BRAF gene (full list available in S7

Table). Eight of the selected genes in the current implementation were also selected from the

algorithm implemented on the full data: ASB9, PRSS33, GJA3, PLAT, KLF9, BFSP1,MTARC1

and UCN2.

Predictive performance of dose-dependent models

As discussed above, the employed methodology gives a good overview of the baseline genetic

effect on drug response. We assessed the overall predictive performance of our method using

10-fold cross validation under two different scenarios. For the first, we split the data into train-

ing and test set holding out the experimental units (cancer cell line-drug combinations) and

for the second, holding out cancer cell lines. The absolute mean error for both cases was

around 0.12. Our analysis showed robust cross-validated performance when it comes to pre-

dicting sensitivity to the administered drugs, as shown in S3 Fig which displays the correlation

between predicted and true response. This result was further validated by repeating the analy-

sis on the independently-generated GDSC2 data set, using a different set of drugs (S4 Fig),

which demonstrated comparable predictive performance.

Predictive accuracy for the dose-response curves was evaluated under four different sub-

scenarios: prediction of the most effective drug-dosage combination for the 951 cell lines in

the data set; prediction of the most effective drug given a cell line; prediction of the most effec-

tive dosage given treatment with a particular drug and prediction of the most effective dosage

range given treatment with a drug (Table 3). The proposed model performs well when it

comes to predicting the most effective drug or dosage range (�79% in both scenarios). Results

are less reliable when it comes to prediction of the exact dosage or drug-dosage combination

(�48-49% and�57-58% in both scenarios) but this can be due to either the large variability

observed in the observed responses or due to the small number of cell lines for some predictor

level combinations. Results were similar for both cross-validation scenarios (differences range

from 0 to<2%, Table 3), meaning that as long as a cell line has similar genetic characteristics

to those observed, the model can be reliable in predicting the outcome after anticancer drug

administration.

We additionally compared the performance of our two-stage algorithm approach to a

penalized linear (LASSO) regression for predicting the IC50 and area under the dose-

response curve (AUC). Note that our functional regression model is not directly predicting

either of these values, but rather predicts the full drug-response curve. As this is a harder

problem, we would expect the LASSO to have a natural advantage; however, our method has

the added benefit of being able to detect dose-dependent associations, which is not possible

when predicting summary statistics of the dose-response curve directly. We employed

10-fold cross-validation to evaluate the predictive error in terms of root mean squared error

(RMSE), and we used a sigmoid curve fit for estimating the IC50 values from the predicted

dose-response curves with our two-stage method. Our method outperformed standard

LASSO in terms of predicting the AUC (RMSE2−stage = 0.176; RMSELASSO = 0.347) and per-

formed well on predicting the IC50, although the LASSO performed better (RMSE2−stage =

1.969; RMSELASSO = 1.134). This could be expected, as estimating the IC50 from the pre-

dicted dose-response curve adds a further level of complexity, compared to directly predict-

ing this value using the LASSO.
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Table 2. Rankings of the genes identified from the pathway and oncogenic gene set enrichment analysis.

Gene Name Area SD Sign Spearman Correlation Mean fold change in BRAFmutant vs wild-type cell

lines

Protein-protein interaction network distance to

BRAF

MYO5A 0.531 0.261 + 0.955 1.358 4

S100A1 0.488 0.189 + 0.812 1.263 NI

GPNMB 0.424 0.196 + 1 1.169 3

ACP5 0.359 0.149 - -0.998 1.039 NI

FCGR2A 0.341 0.158 - -0.588 1.25 3

CITED1 0.28 0.348 0 -0.603 1.63 3

SPRY4 0.274 0.127 - -0.611 1.228 2

CD44 0.239 0.164 + 0.868 1.413 3

RAP2B 0.236 0.179 0 0.927 1.254 NI

KCNJ13 0.205 0.094 0 -0.604 1.101 3

ALX1 0.202 0.099 - -1 1.104 NI

PLAT 0.201 0.121 - -0.405 1.312 4

RETSAT 0.201 0.142 0 0.689 1.127 NI

GSN 0.196 0.109 + 0.588 1.079 4

CDH19 0.185 0.102 0 0.943 0.933 NI

ATP1B3 0.178 0.115 - -1 1.063 NI

BAZ1A 0.173 0.105 + -0.29 1.109 4

SLC16A4 0.166 0.117 - -0.298 1.234 NI

ST6GALNAC2 0.164 0.102 0 -0.815 1.264 NI

MFSD12 0.16 0.148 0 -0.788 1.13 NI

GJA3 0.157 0.075 0 -0.85 1.071 NI

CYP27A1 0.156 0.09 - -0.743 1.373 NI

EGLN1 0.15 0.119 - -0.442 1.053 3

TRPV2 0.147 0.118 0 0.769 1.074 NI

MITF 0.146 0.106 + 1 0.743 2

TBC1D7 0.146 0.118 0 -0.603 1.304 NI

SLC6A8 0.144 0.111 0 -0.263 0.941 NI

PTPRZ1 0.139 0.138 - -0.808 1.074 4

PLOD3 0.132 0.135 0 0.696 1.166 NI

ANKRD7 0.131 0.12 + 0.92 1.241 NI

KANK1 0.107 0.113 0 -0.493 1.345 NI

GYPC 0.105 0.092 + -0.3 1.072 NI

TYR 0.1 0.098 - 0.467 1.11 4

TYRP1 0.1 0.097 0 0.457 1.326 3

IGSF8 0.09 0.129 0 -0.668 1.313 5

SPRED1 0.067 0.116 0 -0.556 1.239 4

ITGA9 0.056 0.111 0 0.785 1.154 4

KREMEN1 0.053 0.086 0 -0.555 1.123 4

LAMA4 0.038 0.083 - 0.344 1.151 4

MLANA 0.037 0.097 0 0.534 1.147 NI

KLF9 0.011 0.074 0 0.932 1.064 NI

Table notes rankings of the genes found to have some biological importance. A positive (+) sign translates to a positive effect on cell survival after drug administration, a

negative (-) sign translates to a negative effect on cell survival and a neutral (0) effect translates to a varying effect on cell survival which depends on drug dosage.

Spearman correlation is calculated between drug dosage and gene estimated coefficient function values as an indicator of the magnitude change of the gene effect over

the increasing dosage. Area corresponds to the area under the estimated coefficient curve and the SD corresponds to the standard deviation of the area based on

bootstrapping. Pearson’s correlation is calculated between the selected gene microarray expression values and the BRAF expression across all the cell lines. Protein-

protein interaction network distance is computed based on the shortest interaction path between the BRAF gene and each of the selected genes. Here, NI denotes

absence of interaction.

https://doi.org/10.1371/journal.pcbi.1008066.t002
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Conclusion

Genetic alternations and gene expression in tumours are known to affect disease progression

and response to treatment. Here, we studied dosage-dependent associations between gene

expression and drug response, using a functional regression approach which adjusts for

genetic factors. We analysed data from the Genomics of Drug Sensitivity in Cancer project

relating to drug effectiveness for suspending cancer cell proliferation under different dosages,

and examined five BRAF targeted inhibitors, each applied in a number of common and rare

types of cancer cell lines. Our implementation of a two-stage screening algorithm revealed a

number of genes that are potentially associated with drug response. Gene, drug and cancer

type trajectories have been modeled using a varying coefficient modeling framework. The pro-

posed methodology allows for dose-dependent analysis of genetic associations with drug

response data. It enables us to study the effect of different drugs simultaneously, which results

in high accuracy of drug response prediction. Drug comparisons using the proposed method-

ology could support drug repositioning, especially in diseases where existing treatment options

are limited. In addition, our methodology can help to reveal unknown potential relationships

between genetic characteristics and drug efficacy. Hence, the good predictive performance of

our method could be due to the fact that some genes may act as proxies for unmeasured phe-

notypes that are directly relevant to drug sensitivity.

Our work relies on two major assumptions. First, that out of tens of thousands genes regu-

lating protein composition only a small proportion is actually associated with cancer cell sur-

vival in a dosage-dependent manner. In other words, transcriptomic profiles exert influence

on disease progress after drug administration in a sparse and dynamic way. However, if a large

number of genes is associated with the drug response, our method may produce biased results,

and some important information about the biological mechanisms can be lost. Secondly, we

assume that the different drugs are comparable on the scale of maximum dosage percentage

level for our joint model. We acknowledge that different drugs have different chemical struc-

ture and maximum screening concentrations. Our focus is to identify genetic components

that could be informative for dose response given drugs that belong to a particular family, for

example BRAF targeted therapies. However, our methodology is flexible enough to allow each

drug to be examined separately if it appears to be clinically appropriate.

Drug response prediction from gene expression data has been widely studied in the litera-

ture. Sparse regression methods, gene selection algorithms such as the Ping-pong algorithm

[50], or a combination of network analysis and penalized regression, e.g. the sparse network-

regularized partial least squares method [51], have all been employed to simultaneously predict

drug response and select genetic factors that seem to be associated with the drug response.

Table 3. Predictive performance of the employed model (mean absolute error = 0.121).

Scenario Accuracy EU Accuracy CL

Model predicts the more effective drug-dosage combination 57.85% 57.42%

Model predicts the more effective drug given a cell-line 78.21% 78.21%

Model predicts the more effective dosage given a drug 48.44% 48.65%

Model predicts the most effective dosage range (> or� 31.25% of the maximum
dosage)

79.47% 79.28%

Table notes the predictive performance of the model based on the percentages for correctly identifying the most

effective drug, dosage or drug-dosage combinations. Results obtained based on 10-fold cross-validation of the final

model (based on holding out either experimental units−EU− or cancer cell lines−CL−).

https://doi.org/10.1371/journal.pcbi.1008066.t003
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However, none of these methods are able to quantify the effect of drug dosage on the response,

which is one of the main contributions of this work. Employing the proposed dose-varying

model gives a detailed picture of different drug effects and can be extremely valuable in pre-

dicting drug response for agents with small therapeutic range and high toxicity levels. Our

algorithm showed moderate predictive performance due to the complexity of predicting whole

drug-response curves. Methods for further enhancing the performance of the proposed meth-

odology, such as judicious use of prior information and leveraging information sharing across

multiple data sources should be explored in the future in order to overcome this issue and

make good use of its full potentials.

To conclude, the main purpose of this paper is to examine the dose-dependent associations

between genes and drugs. The proposed methodology, by using the raw data to infer the effects

of interest, allows to obtain a more comprehensive picture of the biological mechanisms that

undergo cancer treatment and the role of drug dose on that. In addition, due to its simple

structure, it allows extension to different types of molecular data (e.g. RNA-seq gene expres-

sion, methylation or mutational profiles) and enrichment with further information, such as

drug chemical composition.

Supporting information

S1 Text. Accurate detection of drug associated genes from simulated responses. Simulated

responses have been generated to examine the accuracy of the employed method in detecting

the genes that are truly associated to drug response. Three screening thresholds, three active

gene sets and two covariance structure scenarios for the repeated measurements simulation

have been considered. This text includes all the details of the simulation study that we con-

ducted.

(PDF)

S1 Fig. Distribution of tissue of origin across the five BRAF compounds used for cell line

screening in the Genomics of Drug Sensitivity in Cancer data.Overall, similar proportion of

cell lines have been treated with all of the compounds examined with smaller number of cell

lines been treated with AZ628, Dabrafenib and PLX-4720. Larger number of cell lines in the

data set were originated from the lungs, the gastrointestinal tract and the haematopoietic and

lymphoid tissues.

(TIF)

S2 Fig. Estimated mean drug response trajectories for BRAF andHRASmutated and non-

mutated cancer cell lines: analysis performed on GDSC2 data.Observed responses (points)

and estimated mean trajectory (lines) of cell concentration for cancer cell lines with and with-

out BRAF andHRASmutations after treatment with the eight anticancer compounds exam-

ined using data from GDSC2.

(TIF)

S3 Fig. Prediction accuracy for each different drug and scenario. Pearson correlation was

estimated across observed and predicted AUC values. AUC values have been computed by cal-

culating the area under the coefficient function curve (both observed and predicted). Training

and test sets have been considered based on either the experimental units or on cancer cell

lines only.

(TIF)

S4 Fig. Prediction accuracy for each different drug and scenario: analysis performed on

GDSC2 data. Pearson correlation across observed and predicted AUC values. AUC values
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have been computed by calculating the area under the coefficient function curve (both

observed and predicted) using the GDSC2 data. Training and test sets have been considered

based on either the experimental units or on cancer cell lines only.

(TIF)

S1 Table. Full gene rankings based on the estimated area under the coefficient function

curve (analysis on the full data set).Gene rankings of all selected genes based on the magni-

tude of the genetic effect on drug response. A positive (+) sign translates to a positive effect on

cells survival after drug administration, a negative (-) sign translates to a negative effect on

cells survival and a mixed (0) effect translates to a varying effect on cells survival which

depends on drug dosage. Spearman’s correlation is calculated between drug dosage and gene

estimated coefficient function values as an indicator of the magnitude change of the gene effect

over the increasing dosage. Area corresponds to the area under the estimated coefficient curve

and the SD corresponds to the standard deviation of the area based on bootstrapping. Mean

fold change is calculated between the selected gene expression values of the cell lines carrying

BRAF mutations with respect to wild type. Protein-protein interaction network distance is

computed based on the shortest interaction path between the BRAF gene and each of the

selected genes. Here, NI denotes absence of any interaction.

(XLSX)

S2 Table. Signalling pathways linked to genes predictive of BRAF inhibitor response (anal-

ysis on the full data set). Signalling pathways along with the adjusted p-values and the num-

ber of overlapping genes obtained after pathway enrichment analysis applied to the full scale

analysis results.

(XLSX)

S3 Table. Overlaps between the observed gene set and oncogenic signatures in the Molecu-

lar Signatures database (analysis on the full data set).Overlaps have been detected using

gene set enrichment analysis performed using a hypergeometric distribution. The false discov-

ery rate analog of the hypergeometric p-value is displayed after correction for multiple hypoth-

esis testing according to Benjamini and Hochberg.

(XLSX)

S4 Table. Signalling pathways linked to genes predictive of BRAF inhibitor response (anal-

ysis on the full data set)-Reactome. Signalling pathways along with the adjusted p-values and

the number of overlapping genes obtained after pathway enrichment analysis applied to the

full scale analysis results using the Reactome database.

(XLSX)

S5 Table. Overlaps between the observed gene set and oncogenic signatures in the Molecu-

lar Signatures database (resistant cell lines analysis).Overlaps have been detected using

gene set enrichment analysis performed using a hypergeometric distribution. The false discov-

ery rate analog of the hypergeometric p-value is displayed after correction for multiple hypoth-

esis testing according to Benjamini and Hochberg.

(XLSX)

S6 Table. Signalling pathways linked to genes predictive of BRAF inhibitor response (anal-

ysis on resistant cell lines). Signalling pathways along with the adjusted p-values and the

number of overlapping genes obtained after pathway enrichment analysis applied to the resis-

tant cell line analysis results.

(XLSX)
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S7 Table. Full gene rankings based on the estimated area under the coefficient function

curve (analysis on resistant cell lines). Gene rankings of all selected genes based on the mag-

nitude of the genetic effect on drug response. A positive (+) sign translates to a positive effect

on cells survival after drug administration, a negative (-) sign translates to a negative effect

on cells survival and a mixed (0) effect translates to a varying effect on cells survival which

depends on drug dosage. Spearman’s correlation is calculated between drug dosage and gene

estimated coefficient function values as an indicator of the magnitude change of the gene effect

over the increasing dosage. Area corresponds to the area under the estimated coefficient curve

and the SD corresponds to the standard deviation of the area based on bootstrapping. Mean

fold change is calculated between the selected gene expression values of the cell lines carrying

BRAFmutations with respect to wild type. Protein-protein interaction network distance is

computed based on the shortest interaction path between the BRAF gene and each of the

selected genes. Here, NI denotes absence of any interaction.

(XLSX)
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