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I. INTRODUCTION

The fifth generation (5G) and beyond 5G 

(B5G) wireless networks face challenges in 

terms of high spectrum efficiency (SE) re-

quirement and massive connections [1]. In par-

ticular, when Internet of Things (IoT) devices 

are located in a disaster area, the base stations 

(BSs) may be damaged, and thus cannot pro-

vide reliable services to users. Due to its flex-

ibility and mobility, unmanned aerial vehicles 

(UAVs) act as flying BSs that can be rapidly 

deployed to provide wireless coverage to a di-

saster area. On the other hand, non-orthogonal 

multiple access (NOMA) is considered as a 

prominent candidate to improve SE as well as 

to support massive connectivity of IoT devices 

[2]. Compared with the conventional orthog-

onal multiple access (OMA), NOMA enables 

multiple users to share the same physical re-

sources (time/frequency/code) by employing 

superposition coding (SC) at the transmitters 

and successive interference cancellation (SIC) 

at the receivers, and thus achieves better spec-

trum utilization [2].
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research works.

In this paper, an emergency communica-

tions framework of NOMA-based UAV-aided 

networks is established, where the disasters 

scenarios are divided into three categories, 

namely, emergency areas, wide areas and 

dense areas. First, a UAV is employed as a 

data collector to gather information from IoT 

devices in emergency areas. To maximize the 

total uplink throughput and prevent buffer 

overflow in IoT devices, a deep- Q-learning 

(DQL)-based path planning scheme is de-

signed, where the data transmission require-

ments priorities of IoT devices, the uncertain 

channel state information (CSI) and the wire-

less coverage of the UAV are jointly taken into 

account. Then, for the case that IoT devices 

are distributed over wide geographical areas, 

a multi-UAV enabled NOMA system is es-

tablished to extend the UAV coverage for IoT 

devices. To maximize the total achievable rate 

at IoT devices, a total achievable rate opti-

mization problem with the constraints of the 

minimum rate constraint, maximum transmit 

power and user scheduling is studied, where 

the interference between UAVs is considered. 

Finally, a UAV equipped with an antenna ar-

ray has been considered, where multi-beams 

are generated to provide wireless service for 

multiple devices that are densely distributed 

in disaster areas. To improve the sum rate of 

IoT devices while guaranteeing the QoS of 

devices, a sum rate maximization problem is 

investigated, in which the UAV path planning, 

beam pattern and transmit power are jointly 

optimized.

The remainder of this paper is organized 

as follows. In the next section, an emergency 

communications framework of NOMA-based 

UAV-aided networks is first presented. Then, 

a DQL-based path planning scheme is studied 

to avoid data overflow in IoT devices. In ad-

dition, a multi-UAV enabled NOMA system 

is designed to extend the wireless coverage 

of the UAV. Subsequently, a joint three-di-

mension (3D) trajectory and power allocation 

scheme is established to maximize the sum 

rate of IoT devices while guaranteeing the 

Recently, NOMA-based UAV-aided net-

works have attracted much attention in both 

academia and industry [3]-[7]. In [3], a sto-

chastic geometry method was studied in mul-

tiple-input multiple-output (MIMO)-NOMA 

assisted UAV networks to model the locations 

of users and interference sources, in which 

the closed-form expressions of the outage 

probability and the ergodic rate were derived 

both for line-of-sight (LoS) and non-line-of-

sight (NLoS) scenarios. In [4], the trajectory 

of UAV and precoding vectors at the BS were 

jointly optimized in UAV-assisted NOMA net-

works to maximize the sum rate of all users. A 

low-complexity mechanism was proposed in 

[5] for maximizing the number of users with 

satisfied quality- of-service (QoS) experience 
in a NOMA-based UAV system, where the 

placement design, admission control and pow-

er allocation were jointly optimized. In [6], a 

max-min rate optimization was studied in a 

UAV-enabled NOMA system, and the problem 

was solved by a path-following algorithm un-

der the constraints of total power, bandwidth, 

flight altitude and antenna beamwidth. In [7], 
an aerial-ground (AG)-NOMA scheme with 

perfect and statistical channel state informa-

tion (CSI) was proposed for investigating the 

achievable rates of the ground users (GU), 

in which the closed-form expressions for the 

optimal SIC policy, power allocation, GU 

rate and feasibility conditions were derived. 

Although excellent research now exists on 

NOMA-based UAV networks, very few works 

have been focused on NOMA-based UAV-aid-

ed networks for emergency communications 

[8]. In [8], a distributed SIC- free NOMA 

(DSF-NOMA) scheme was proposed for a 

UAV-assisted emergency communication in 

the heterogeneous IoT to satisfy the commu-

nication requirements of the surviving users 

and devices. Simulation results demonstrated 

that the DSF-NOMA scheme achieved better 

performance compared with the orthogonal 

frequency division multiple access (OFDMA) 

scheme. However, an emergency communi-

cations architecture for NOMA-based UAV 

networks is missing in the aforementioned 

I n  t h i s  p a p e r,  a n 

emergency commu-

nications framework 

o f  N O M A -  b a s e d 

UAV-aided networks is 

established, where the 

disasters scenarios can 

be divided into three 

broad categories that 

have named emergen-

cy areas, wide areas 

and dense areas.
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•   Scenario 3: In the scenario with ultra-dense 

device deployment, a UAV mounted with 

an antenna array is dispatched as a flying 

BS to disseminate data towards IoT devic-

es. With the help of the multi-beam and 

NOMA, multiple devices can be served si-

multaneously in a high-throughput commu-

nications system. In this case, UAV’s path 

planning, beam pattern and transmit power 

are jointly optimized to maximize the sum 

rate of all IoT devices.

In the follow sections, these key scenarios 

of NOMA-based UAV networks for emergen-

cy communications are analyzed in detail.

III. PATH PLANNING OF THE UAV FOR 
UPLINK NOMA SYSTEMS

When the IoT devices located in an area 

where unexpected and sudden disasters occur, 

it is crucial to gather data from specific areas 
and send it to the control station for further 

processing and analysis. In this section, we 

consider a scenario where an UAV acts as a 

data collector to collect data from multiple IoT 

devices. To overcome the inherent latency and 

improve the system throughput, a UAV-en-

abled uplink NOMA system is established. Be-

sides, since the data transmission requirements 

are changing over time, the trajectory planning 

of UAV should be appropriately designed, 

which is discussed in this section.

3.1 System description and problem 
formulation
The system is shown in Figure 1. We consid-

er an uplink NOMA communication system 

wherein a UAV flying at a constant altitude is 
deployed to collect information from a certain 

number of IoT devices periodically. Those 

IoT devices   {k K=1, 2, , } are randomly 

distributed on the ground and send their sen-

sory data to the UAV via NOMA transmission. 

For simplicity, we assume that the UAV and 

all devices are equipped with a single antenna 

and the horizontal location of IoT device k is 

z x yk k k= ( , ,0). The flight period of UAV is 

QoS of devices. Finally, potential research di-

rections and challenges are discussed, and then 

the conclusions are given in the final section.

II. EMERGENCY COMMUNICATIONS 
FRAMEWORK OF NOMA-BASED UAV 

NETWORKS

The emergency communications framework 

of NOMA-based UAV-aided networks can be 

described as follows:

•   Scenario 1: In the scenario with IoT devic-

es distributed in an area where unexpected 

and sudden disasters occur, the UAV is 

dispatched to gather real-time data from 

IoT devices and sends it to the control sta-

tion for further processing and analysis. 

To avoid data overflow in IoT devices, a 

real-time trajectory planning of UAV is 

designed, in which the data transmission 

requirements priorities of IoT devices and 

the wireless coverage of UAV are jointly 

considered.

•   Scenario 2: In the scenario with IoT devices 

that are dispersed over a wide geographi-

cal area, multi-UAVs can be deployed to 

extend the wireless coverage and provide 

wireless service for IoT devices. In this 

case, the UAV deployment and interference 

management are properly designed to max-

imize the total achievable rate of IoT devic-

es.

Fig. 1.  Illustration of a UAV-enabled uplink NOMA 
network.
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is imperfect, the proposed optimization prob-

lem cannot be modeled as a deterministic op-

timization problem. As a result, the flight con-

trol of the UAV is intractable and impractical. 

Given the fact that deep-Q-learning (DQL) 

[11] can handle sophisticated state space and 

time-varying environment, a path planning 

algorithm based on DQL is developed to solve 

this problem.

3.2 DQL-based path planning of the 
UAV for uplink NOMA systems
Based on Q-learning, DQL is an efficient rein-

forcement learning (RL) method that enables 

the agent to find an optimal policy to maxi-

mize the average long-term cumulative reward 

through the Q-table. Besides, DQL uses deep 

neural network (DNN) as a function approxi-

mator to estimate the action-value function so 

as to circumvent the curse-of-dimensionality 

of Q- learning. The state space, action space 

and reward function of agent are defined as 

follows:

•  State space s[n]: The state space of the 

agent consists of the location of the UAV, 

the relative positions between the target 

device and the UAV, the number of IoT 

devices with data over flow and the number 
of times that the UAV tries to fly out of the 
restricted area. Here, we assume that the 

IoT device with the highest priority (i.e., 

given as T, which is divided into N time slots. 

The duration of each time slot  δ =
T

N
 is cho-

sen to be sufficiently small so that the UAV 

can be considered to be static in each time 

slot. The location of UAV at slot  1, ,n N∈{  } 

is z n x n y n h nu u u u[ ] = ( [ ], ,[ ] [ ]). It is assumed 

that the UAV communication channel is domi-

nated by LoS links, and the channel gain from 

the UAV to the kth device at slot n is h nk [ ] [9]. 

The coverage radius of UAV is Rcov. At each 

slot, the update of UAV’s position is synchro-

nized at its flying speed v n v[ ]∈[0, max ] and 

flying angel θ π[n]∈[0,2 ], where vmax is the 

maximum flying speed. Since IoT  devices are 
used to sense and collect data in real time from 

the physical surrounding environment, the 

amount of data stored in the buffer will vary 

over time. λk [n] represents data accumulation 

rate of the IoT device  k at slot n, which obeys 

Poisson distribution. Q nk [ ] = λk k[n l n

lmax

] [ ]
 de-

notes the data transmission requirement pri-

ority of device  k at slot n where l nk [ ] is the 

current data buffer length and lmax is the max-

imum storage. Since the data storage capacity 

is limited, the UAV should collect data in time 

to prevent data overflow. We use N no [ ] to 

denote the number of devices with data over 

flow.
The UAV adopts the NOMA technique [10] 

to achieve low latency massive access, and 

hence the achievable rates at slot n is

 
R n r n

∀ − ≤

[

k z z n R

]

, ,

= = +

 

∑ ∑

k u cov

k k

k [

[

]

]

log 1 ,2

 
 
 

p n h nk k[
σ
]

2

[ ]
 (1)

where σ 2 denotes the variance of additive 

white Gaussian noise (AWGN). Here, we as-

sume that the transmit power of IoT devices 

are fixed. To maximize the uplink throughput, 
the flight control of the UAV (i.e., the UAV 

deployment) is optimized by considering the 

coverage radius constraints. Since the data 

transmission requirements priorities of the IoT 

devices are dynamic and uncertain and the CSI Fig. 2.  An example of convergence behaviors of the proposed DQL- based algo-
rithm.
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Fig. 3.  The training curves of the proposed DQL-based algorithm (a) Average data buffer length; (b) Average 
number of devices with data over flow.

to evaluate the performances of our proposed 

DQL-based algorithm. We assume that 100 

IoT devices are distributed in a 400 400m× 2 

area, where the data accumulation rate  λk (t ) 
is randomly assigned from {4, 6,10,18} and 

the maximum storage lmax is set to 5000 pack-

ets. The coverage radius of the UAV is 20 m, 

and the maximum flying speed vmax is 40m/s. 

The flight altitude of the UAV hu is set to 100 

m. The received signal noise ratio (SNR) at a 

reference distance of 1 m is 40 dB. Our sim-

ulation runs are performed with Tensor flow 

2.1.0 and Python 3.7.

As shown in Figure 2, we can observe that 

the sum rate initially increases with the num-

ber of training episodes, and then converges 

to a stable value after 200 iterations. Then, 

the performance of the proposed algorithm in 

terms of the average data buffer length and 

the average number of devices with data over 

flow are shown in Figure 3. It is observed that 
the average data buffer length converges to 0.3 

when the number of training episodes is 200. 

At the same time, the number of IoT devices 

whose data over flow occurred drops from 25 
to nearly 0. This is due to the fact that the UAV 

achieves the flight control by using the trained 
DNN. Specifically, the IoT devices with high 
data transmission requirements are accurately 

covered by the UAV. As a result, the IoT de-

vices can upload data in a timely manner to 

the highest service requirements) is chosen 

as the target, and its location is known by 

the UAV.

•  Action space a[n]: The action space in-

cludes the flying speed and flying angle of 
the UAV. To improve the accuracy of the 

flight control, both flying speed and angle 

are uniformly discretized into 8 values. Ac-

cording to the observed state, the UAV flies 
to a waypoint that serves the target and the 

other devices within the coverage area of 

the UAV.

•  Reward function R n[ ]: The UAV gets the 

reward for improving the uplink throughput 

of the network which is calculated by (1) as 

well as flying close to the target device. On 
the other hand, the UAV gets penalties for 

flying out of bounds and buffer over flows 
in IoT devices.

At each time slot, based on the observed 

state s[n], the UAV interacts with the environ-

ment by executing action a[n] and receives 

reward. Then, the long-term reward is updated 

and maximized through the parameters of the 

neural network updated iteratively from its 

interactions with the environment. Finally, 

the UAV achieves a path planning strategy to 

solve the proposed problem.

3.3 Simulation results
In this section, numerical results are provided 

(a) (b)
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Fig. 5.  The locations of the UAVs in multi-UAV enabled NOMA networks with 
K = 1 1 IoT devices.

4.1 Problem formulation
We consider a multi-UAV enabled NOMA 

network as shown in Figure 4. M UAVs are 

employed to provide reliable wireless access 

to K IoT devices. The IoT devices can be 

grouped into M clusters through the K-means 

algorithm, and each cluster is served by one 

UAV. For any cluster m M∈ = {1, , }, we 

use NOMA scheme to support massive access, 

where all devices share the same subcarrier. 

The UAVs and IoT devices are equipped with 

reduce the average data storage of the system, 

and thereby prevent a buffer over flow. Thus, 
the throughput of the uplink NOMA commu-

nication system can be optimized through a 

proper management of the proposed DQL-

based algorithm with the consideration of the 

data transmission requirements priorities of 

IoT devices.

3.4 Discussion
In this scenario, the trajectory design of the 

uplink NOMA communication network is 

designed to maximize the uplink throughput 

under the fixed transmit power. To further re-

duce the inter-user interference and guarantee 

the user fairness, the transmit power should 

be also optimized. Therefore, a joint trajectory 

planning and power allocation problem can be 

further investigated, in which the data trans-

mission requirements of the IoT devices, the 

imperfect CSI and the wireless coverage radi-

us of the UAV are considered. In this case, the 

optimization problem becomes more complex, 

and an effective resource allocation scheme 

should be designed, which needs further ex-

ploration.

IV. MINIMUM THROUGHPUT 
MAXIMIZATION FOR MULTI-UAV 

ENABLED NOMA NETWORKS

When the IoT devices are deploying in a wide 

area, it is inefficient to employ single UAV for 
data transmission due to the communication 

delay. Therefore, in this scenario, multiple 

UAVs can be exploited to extend the wireless 

coverage of IoT devices and to disseminate 

data towards IoT devices. To improve the 

transmission performance in multi-UAV en-

abled NOMA networks, an achievable rate 

maximization problem is studied. In addition, 

since the interference between UAVs can 

severely degrade the system performance, a 

joint UAV deployment and resource allocation 

scheme is designed, which is discussed in this 

section.

Fig. 4.  Illustration of a multi-UAV enabled NOMA network with UAV deployment 
and resource scheduling.
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Due to the binary variable and the non-convex 

constraints, this problem is a mixed-integer 

non-convex optimization problem that is diffi-

cult to solve.

To tackle this problem, we decompose the 

original problem into three sub-problems, 

i.e., the user scheduling, the mobility of the 

UAVs and transmit power control. In partic-

ular, we can obtain the suboptimal solutions 

through solving the subproblem with fixed 

transmit power pk m,  and UAV locations zm, the 

sub-problem with fixed user scheduling αk m,  

and UAV locations zm and the sub-problem 

with fixed user scheduling αk m,  and transmit 

power pk m, . Specifically, when the transmit 

power pk m,  and UAV locations zm are fixed, we 
relax the binary variable αk m,  into a continu-

ous variable which can take all values in [0,1]. 

Therefore, the problem can be reformulated 

as a linear program problem, which can be 

solved by the standard convex optimization 

techniques [12]. For the case that user sched-

uling αk m,  and UAV locations zm are fixed, the 
problem remains non-convex. To solve this 

subproblem, we first transform the objective 

function into the difference of two convex 

functions, and then the difference of convex 

(DC) programming [13] is applied to convert 

the non-convex problem into a convex one 

that can be solved by the standard convex 

optimization techniques. Similarly, when 

the user scheduling αk m,  and transmit power 

pk m,  are fixed, the optimization problem is 

reformulated as a non-convex single-variable 

optimization problem where transmit power 

pk m,  is the optimization variable. To tackle it, 

the non-convex constraints are converted into 

convex ones via the successive convex ap-

proximation (SCA) technique [14], and hence 

the sub-problem can be solved by the standard 

convex optimization techniques. As a result, 

the suboptimal values of αk m, , pk m,  and zm can 

be achieved by solving the three sub-prob-

lems.

single antenna. The location of the mth UAV 

is denoted by z x y hm m m m= ( , , ), and the device 

k Km m∈ = {1, 2, , } served by the mth UAV 

is located at z x yk k km m m
= ( , ,0). To illustrate 

the user scheduling in the multi-UAV enabled 

NOMA system, we define a binary variable 

αk m, . In particular, αk m,  equaling 1 or 0 means 

that the device km is connected or not to the m

th UAV. To ensure the reliability of transmis-

sion, the achievable rate of devices Rk should 

be larger than a threshold rk. In order to satisfy 

the QoS requirements of all devices, the trans-

mit power of the device  k from the mth UAV 

is defined as pk m, , and  
k

∑
∈m

pk m,  is equal to the 

maximum transmit power Pmax. To mitigate the 

intra-cluster interference, the SIC technique is 

applied for signal detection.

To improve the capacity and reliability 

of wireless network, we maximize the total 

achievable rate of devices by optimizing the 

user scheduling, the placement of UAVs and 

transmit power, where the intra-cluster inter-

ference, interference between UAVs, mini-

mum rate requirements and maximum transmit 

power constraint are taken into consideration. 

Fig. 6.  Illustration of a UAV-enabled NOMA network with multi-beams and power 
allocation.
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a cluster of UAVs to provide wireless service 

for IoT devices due to the severe interference 

between UAVs. Alternatively, a UAV mount-

ed with antenna array can be deployed as an 

access point and generates multi-beams to 

serve multiple users simultaneously, as shown 

in Figure 6. Thus, the beam pattern and trans-

mit power are optimized to improve the QoS 

of users. In addition, since the coverage area 

of the UAV is limited by its deployment, the 

3D trajectory of the UAV should be properly 

designed to extend its coverage, which is dis-

cussed in this section.

5.1 Problem formulation
We consider a UAV-enabled NOMA system 

consisting of K IoT devices and one UAV. The 

IoT devices are divided into Γ clusters accord-

ing to the distance, and the UAV flies above Γ 

serving areas to communicate with K IoT de-

vices periodically. It is assumed that a uniform 

planar array (UPA) with M N×  array elements 

is equipped at the UAV, while the IoT devices 

are equipped with one antenna. To improve the 

system throughput, we employ the power-do-

main NOMA schemes such that all devices 

share the same subcarrier at different power 

level [2].

Define the 3D location of the UAV as 

z x y hu u u u= ( , , ), and the coordinate of the 

device k K∈{1, 2, , } as z x yk k k= ( , ,0). The 

effective coverage area of the UAV is a cir-

cle with radius hu tanΘ, where 2Θ denotes 

effective illumination angle. Thus, the hori-

zontal distance between the UAV and devices 

 z zk u−  should be less than or equal to the 

coverage radius hu tan Θ. Besides, the beam 

pattern E (θ φ, ) for the elevation θ and azimuth 

φ angles should be designed and optimized to 

improve the channel gain. To guarantee the 

QoS of users, the achievable rate of devices 

Rk should be larger than a rate threshold rk. In 

addition, we define the transmit power from 

the UAV to device k as p pk k,  and∑
k

K

=1

 is equal to 

Pmax .

4.2 Simulation results
In this section, the performance of the pro-

posed joint UAV deployment and resource 

allocation scheme is evaluated. We consider 

a multi-UAV enabled NOMA network with 

M =  4 UAVs and K = 1 1 IoT devices uni-

formly distributed within a 200 200m× 2 area, 

where the UAVs are assumed to fly at a fixed 
altitude h = 100 m. The receiver noise power 

σ 2 is set to −110 dBm. The channel power 

gain at the reference distance d0 = 1  m is set to 

be ρ0 = −60 dB. The maximum transmit power 

of UAVs is assumed to be Pmax =  0.1 W, and 

the minimum rate threshold rk is set to 1 bit/

s/Hz. As shown in Figure 5, in order to maxi-

mize the total achievable rate of IoT devices, 

the positions of UAVs lie within the center of 

devices that in the same cluster. In addition, 

to improve the communication performance 

as well as to reduce the interference between 

UAVs, the UAVs are geographically far away 

from each other. Therefore, the total achiev-

able rate of all IoT devices can be maximized 

through a proper management of joint UAV 

deployment and resource allocation.

C. Discussion
In this scenario, we consider multiple 

UAVs as flying BSs to extend the coverage 

area of a multi-UAV enabled NOMA system. 

However, due to the constrained transmit pow-

er of the UAVs, the reliability requirements of 

devices cannot be guaranteed when the total 

number of users increases. To improve the 

system performance, device-to-device (D2D) 

communication can be employed to enable the 

UAVs to further extend the coverage of wire-

less networks at disaster areas. Therefore, an 

effective resource allocation scheme should be 

designed by optimizing the trajectory of UAVs 

and communication scheduling, which will be 

further studied.

V. JOINT 3D TRAJECTORY AND POWER 
OPTIMIZATION

When the IoT devices are densely distributed 

in disaster areas, it is not efficient to employ 
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Fig. 7.  Performance of joint 3D trajectory and power optimization scheme: (a) 
Sum rate versus transmit power. (b) Power allocation of devices versus transmit 
power.

To tackle this problem, we decompose the 

optimization problem into three sub-problems, 

and the suboptimal solutions can be calculated 

through solving the sub-problems sequentially. 

Specifically, when E (θ φ, ) and pk are fixed, 

the original problem is transformed into the 

problem of minimizing the total path loss, and 

the optimal value of hu can be achieved by 

monotonic optimization theory. Then, with the 

solved hu, the problem become a convex one, 

and the 2D location of the UAV can be cal-

culated by the standard convex optimization 

techniques. When the 3D location of the UAV 

zu and transmit power pk are fixed, the prob-

lem can be reformulated into a beam pattern 

optimization problem. Note that the design of 

beam pattern E (θ φ, ) considers the optimiza-

tion of the array gain, side-lobe level (SLL) 

and beamwidth, which can be constructed 

into a multiobjective optimization problem 

with the variable β (i.e., the phases of the an-

tenna elements). To solve this sub-problem 

effectively, the multiobjective evolutionary 

algorithm based on decomposition (MOEA/D) 

based algorithm [15] is applied to decompose 

this multiobjective optimization into a number 

of scalar sub-problems, which can be solved 

via an iteration process. When the 3D loca-

tion of the UAV zu and beam pattern E (θ φ, ) 
are fixed, the problem becomes a non-convex 
transmit power optimization problem. To 

tackle this sub-problem, we first transform the 
constraints into convex functions by the loga-

rithmic transformation, and then the fractional 

programming (FP) [16] and the Karush-Kuhn-

Tucker (KKT) conditions [17] are applied to 

solve this subproblem, respectively. Since the 

UAV trajectory optimization problem can be 

constructed as a traveling salesman problem 

(TSP) to minimize the total flight distance, the 
branch and bound algorithm is developed to 

solve it.

5.2 Simulation results
The performance of the joint 3D trajectory 

and power optimization scheme is analyzed in 

Figure 7. First, the sum rate of all IoT devices 

To schedule the transmission of the UAV 

and guarantee the QoS of devices, the sum 

rate of all IoT devices can be maximized by 

sequentially optimizing the 3D position of 

the UAV, beam pattern E (θ φ, ) and transmit 

power pk, with the constraints of the maximum 

coverage radius of the UAV, minimum rate 

constraint, flight altitude restrictions and max-

imum transmit power constraint. However, 

this optimization problem is a mixed combina-

torial and non-convex problem, and hence is 

extremely difficult to solve.
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problem. To tackle this problem, an efficient 

joint resource scheduling scheme should be 

properly designed.

VI. OPEN RESEARCH ISSUES AND 
CHALLENGES

In this article, the emergency communications 

framework of UAV-enabled NOMA-aided 

networks in disaster has been investigated. 

However, there are still some open research 

issues and challenges, which are highlighted 

as follows.

Energy supply: In the considered scenarios, 

an emergency communications framework of 

UAV-enabled NOMA networks is designed to 

provide network access for IoT devices. How-

ever, the battery-limited IoT devices usually 

suffer from the limitations in energy supply, 

especially in disaster. This challenge can be 

solved by the application of wireless power 

transfer (WPT) technique. Thus, an effective 

resource allocation scheme should be further 

analyzed with the consideration of downlink 

WPT and uplink wireless information transfer.

Secure communication: Secure communica-

tion is one of the key challenges for UAV-en-

abled NOMA networks due to the LoS chan-

nels and a higher transmit power allocated to 

the users with poor channel quality. Therefore, 

a secure UAV-enabled NOMA system should 

be further investigated to guarantee security of 

transmission. In addition, transmit beamform-

ing with artificial noise (AN) should be prop-

erly designed to confuse the eavesdroppers.

Cellular-connected UAV: In this paper, 

we consider the scenarios where all the BSs 

are destroyed by disaster. In practice, the di-

saster areas may have some surviving BSs, 

and hence the UAVs can cooperate with the 

remaining BSs to offer the 3D communication 

coverage for ground users. However, since the 

UAV-BS channels are usually dominated by 

the LoS link, the UAVs may receive severe 

interference from the neighboring BSs. Thus, 

designing an effective interference mitigation 

scheme is very important for cellular-connect-

ed UAV networks.

is investigated by comparing different power 

allocation schemes. We set the noise power 

σ 2 = −110 dBm, the mean square additional 

loss ηLoS = 0.1 dB, the path loss factor α = 2, 
the maximum transmit power Pmax = 80 mW, 
the minimum rate constraint of devices rk

= 1 bit/s/Hz, and the carrier frequency to 25 
GHz. We assume that K = 4 IoT devices are 
distributed in a cluster, and the channel gains 

of four devices are       h h h1 2< < < K . 

The maximum effective illumination 2Θ, is 

set to 80° and the amplitude and spacing of 

the antenna array are set to 1 A and 5.5 mm, 

respectively. It is assumed that the minimum 

altitude hmin and maximum altitude hmax are 

set to 21 m and 120 m, respectively. As it can 

be seen in Figure 7(a), the sum rate increases 

rapidly to a certain transmit power, but there-

after rises slowly. In addition, it can also be 

observed that the sum rate performance of the 

FP-based algorithm is very close to that of the 

optimal power allocation scheme. Then, we 

also compare the power allocation of devices 

with different schemes in Figure 7(b). From 

Figure 7(b), we can see that the users with 

poor channel quality are allocated more power 

than the users with good channel quality. This 

is attributed to the fact that the weak devices 

allocated more transmit power can reduce the 

interference from other strong users according 

to the SIC technique. As a result, the sum rate 

of all IoT devices can be maximized through 

the proper management of the joint 3D trajec-

tory design and power allocation.

5.3 Discussion
In this scenario, an antenna array mounted 

UAV is employing as a wireless access point 

to provide wireless service at the downlink in 

a NOMA-based UAV system. However, IoT 

devices are generally battery-powered, which 

may have limited energy storage. In this situ-

ation, the simultaneous wireless information 

and power transfer (SWIPT) technique can be 

exploited to prolong the lifetime of devices. 

Thus, the optimization problem can be mod-

elled as an energy efficiency maximization 
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VII. CONCLUSION

NOMA-based UAV-aided network is emerg-

ing as a promising technique to provide high 

spectrum efficiency and massive connections 

for IoT devices deployed in disaster areas. 

In this paper, an emergency communications 

framework of NOMA-based UAV-aided net-

works is established, where the disasters areas 

can be divided into three scenarios. First, a 

DQL-based path planning scheme has been 

established to gather information from IoT de-

vices in emergency areas. Then, a multi-UAV 

enabled NOMA network has been investigated 

to extend the UAV coverage for IoT devices in 

wide areas. Furthermore, a joint 3D trajectory 

and power optimization scheme is designed 

to provide wireless service for IoT devices in 

densely distributed areas. Finally, some poten-

tial research directions and challenges have 

also highlighted and discussed.
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