
This is a repository copy of SDN-Based Detection of Self-Propagating Ransomware:The
Case of BadRabbit.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/172267/

Version: Published Version

Article:

Alotaibi, Fahad and Vasilakis, Vasileios orcid.org/0000-0003-4902-8226 (2021) SDN-
Based Detection of Self-Propagating Ransomware:The Case of BadRabbit. IEEE Access.
pp. 28039-28058. ISSN 2169-3536

https://doi.org/10.1109/ACCESS.2021.3058897

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Received January 8, 2021, accepted February 4, 2021, date of publication February 11, 2021, date of current version February 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3058897

SDN-Based Detection of Self-Propagating
Ransomware: The Case of BadRabbit

FAHAD M. ALOTAIBI 1 AND VASSILIOS G. VASSILAKIS 2
1College of Science and Arts Sharoura, Najran University, Najran 66446, Saudi Arabia
2Department of Computer Science, University of York, York YO10 5GH, U.K.

Corresponding author: Vassilios G. Vassilakis (vv573@york.ac.uk)

This work was supported by the Najran University.

ABSTRACT In the last decade, many ransomware attacks had the ability to spread within local networks

or even outside them. At the same time, software defined networking (SDN) has provided a major boost

to networks by transferring intelligence from network devices to a programmable logically centralised

controller. The latter can be programmed to be compatible with the requirements of a wide range of networks

and environments in a straightforward manner. This has motivated researchers to design SDN-based security

solutions against threats targeting traditional networks and systems. This article investigates the use of SDN

to detect and mitigate the risk of self-propagating ransomware. The infamous BadRabbit ransomware has

been used for the proof of concept. To achieve this, an extensive analysis of BadRabbit was performed to

identify its characteristics and understand its behaviour at both the infected device level and at the network

level. As a result, several unique artifacts were extracted fromBadRabbit, which could facilitate its detection.

These artifacts were relied upon to design an SDN-based intrusion detection and prevention system. Our

system comprises five modules, namely deep packet inspection, ARP scanning detection, packet header

inspection, honeypot, and SMB checker. The first two modules have been inspired by other works and have

been included for comparison with the existing solutions. Three other modules rely on novel SDN-based

methods for ransomware detection. We have also evaluated the efficiency and the performance of our system

in terms of detection time, CPU utilisation, as well as TCP and ping latency. Finally, the proposed approach

has also been tested for other ransomware families, such as WannaCry and NotPetya. Our experimental

results show that the system is effective in terms of detecting self-propagating ransomware and outperforms

other proposed approaches.

INDEX TERMS Self-propagating ransomware, intrusion detection and prevention, SDN security, BadRabbit

detection.

I. INTRODUCTION

As technology advances and different types of systems

become connected to the Internet, cyberthreats are increasing

in extent and impact. Ransomware is one such threat which

has benefited from people’s dependence on new technologies

and applications. This threat is a new, unlawful business

model emerging from previously known notions of ‘‘black-

mail’’. This model exploits organizations’ and individuals’

increasing need for and dependence on their data by denying

them access and requesting ransom in return for restoration

of such [1]. Unfortunately, this business model has proved

highly successful since 2013 and has accordingly resulted in

significant financial losses [2]. The evolution of ransomware

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Verticale .

went through many stages of development as it appeared

from a virus that infects vulnerable systems until achieving

the ability to self-propagate within a network. Moreover,

ransomware-as-a-service (RaaS) has increased the risk of

this threat by giving non-professionals access to this type of

tool, and thus increasing the number of potential sources of

delivery [1].

Despite the existence of several defences that have pre-

vented the payment of over $100M illegal income for crim-

inals in 2019, ransomware was categorized as one of the

highest threats in 2019 according to the Europol report

to assess the threat of organized crime online [3]. Some

of the largest ransomware attacks occurred in 2017, when

three different types of ransomware were deployed, namely

WannaCry, Petya/NotPetya and BadRabbit [4]. In the litera-

ture, WannaCry and Petya have been adequately studied and

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 28039

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

the functions and methods they use to propagate and imple-

ment their goals are relatively well understood [5]–[9]. On the

contrary, adequate studies are not available for BadRabbit.

It has used more advanced techniques such as the targeted

attack on Eastern European countries. This resulted in hitting

important government sectors such as Odessa International

Airport [10]. Therefore, understanding the mechanism by

which this type of targeted ransomware operates is one of the

major objectives of our work.

Software-defined networking (SDN) is a major devel-

opment for networks, which has enhanced their flexibility

through the transfer of intelligence and decision making from

the data plane to a logically centralised controller [11]. This

development has motivated well-known technology compa-

nies such as Google, Facebook, and Microsoft to support

this technology through the funding of the Open Network-

ing Foundation (ONF) to develop standards for SDN [11].

Moreover, Google has networked its data centres using SDN,

which is expected to greatly enhance the applicability of

SDN-based systems in the future [12]. Consequently, exam-

ining security threats on traditional networks and finding

solutions to them through the use of SDN, may allow for

the provision of a suitable security architecture that can be

applied in the future. Despite that, not many SDN-based solu-

tions have been proposed to mitigate the risk of various types

of ransomware. The proposed solutions are mostly limited to

restricting the risk of malware families such as CryptoWall,

Locky, WannaCry, Cerber, and ExPetr [13]–[17]. Therefore,

studying previous solutions and providing SDN-based solu-

tions to mitigate the risk from BadRabbit is another incentive

point.

The rest of the paper is organised as follows. In Section II

we review related works on SDN-based malware and ran-

somware detection. In Section III we state the problem and

discuss the limitations of existing solutions. We also justify

our approach and discuss the novelty of our work compared

with the existing works. In Section IV we perform a compre-

hensive static and dynamic analysis of BadRabbit.We present

its unique features which can be used to improve the detec-

tion. In Sections V and VI we present the design and the

implementation of our proposed system that comprises five

modules. In Sections VII and VIII we present our experi-

mental setup and our evaluation results. Besides BadRabbit,

the proposed approach has also been tested againstWannaCry

and NotPetya, and has been compared with existing ran-

somware detection approaches. Finally, Section IX concludes

the paper.

II. RELATED WORK

In this section, we review the most important and recent

SDN-based works on malware detection in general and on

ransomware detection in particular.

A. SDN-BASED MALWARE DETECTION

One of the first efforts to utilize SDN as a security solution

against malware was by Jin and Wang [18]. The authors

were motivated by the flexibility that SDN delivers and the

associated controller programmability. Their proposals are

based on detecting mobile malware by assuming that mobiles

are connected to access point SDN switches. In their imple-

mentation, Jin andWang proposed four detection algorithms:

1) Using internal or external IPs blacklists, to match with

the connections requested by the phones.

2) Based on the assumption that the number of successful

connections will be greater than failed connections

in healthy phones, they suggested using a connection

success ratio algorithm to compare successful com-

munications with failures, as the probability that the

device is infected increases with an increasing number

of its failed connections. To achieve successful detec-

tion, the authors suggested using a predefined value

for the difference between the two connections. For

example, in the event that the number of unsuccessful

connections was greater than successful connections

by 20, the device would be blocked.

3) Based on the assumption that communications from

uninfected devices will occur at lower rate and to

recently accessed destinations, the authors suggested

implementing a recently accessed hosts list to allow

phones to access the destinations in the list without

forwarding to the controller. Otherwise, required access

destinations from a specific device are placed in a

queue, and if this exceeds a certain number per sec-

ond, the device would be blocked. Otherwise, access

is allowed and the destination is added to the Recently

Accessed Hosts.

4) Implementing an algorithm to analyse similar patterns

on the network, assuming that malware might infect

other phones in the network. These devices perform

similar activities in terms of their communications such

as identical destinations, similar connection time dura-

tion, and that they have the same operating systems.

Evaluation consists of measuring the delay and the maximum

number of packets handled by the controller by using Cbench

as a simulator to generate packets from 10,000 unique MAC

addresses for 10 seconds. This process was repeated 10 times,

as it was found that if using the four algorithms the delay

increases by 3.2%, while the number of packets processed by

the controller decreases by 27.9%.

Ceron et al. [19] discussed the difficulties inherent to

analysing modern malware that only activates under certain

conditions such as the type of network, network structure,

and interactions within the network, as some malware may

be difficult to analyse in traditional analysis environments

due to its development and its identification of predetermined

targets. Therefore, they suggest using SDN as a solution to

overcome this issue, as SDN allows considerable flexibility

in terms of controlling and modifying the network structure.

Ceron et al. assessed their proposal by analysing 50 malware

samples in three different environments: an open environment

with no restrictions, which resulted in a mean of 38.94 events

being detected; a partial environment with some open ports,

28040 VOLUME 9, 2021

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

resulting in a mean of 30.04 events being detected; and

a closed environment, which was a closed local network

without any Internet connection, which resulted in a mean

of 18.90 events being detected.

B. SDN-BASED RANSOMWARE DETECTION

When the scope is narrowed to mitigating the risk of ran-

somware using SDN, to the best of our knowledge, only five

pieces of work have discussed the use of SDN as a secu-

rity solution to detect and mitigate ransomware [13]–[17].

These works can be divided into two categories: ransomware

with worm capabilities and non-spreading ransomware. For

non-spreading ransomware, the aim is to prevent the vic-

tim’s device being encrypted, while for ransomware with

worm capabilities, the aim is to prevent the victim’s device

being encrypted in addition to preventing the spread of the

ransomware within, and indeed, outside the local network.

Table 1 summarises the features of the proposed approaches

in the literature, whereas Table 2 gives a comparison between

the proposed solutions to mitigate the risk of ransomware.

These works are briefly reviewed below.

TABLE 1. SDN-based ransomware detection approaches proposed in the
literature.

Cabaj and Mazurczyk [13] studied CryptoWall 3.0, which

is a non-spreading ransomware. They proposed a solution to

prevent the victim’s device being encrypted by matching the

domains used in external communications with a dynamic

blacklist. Thus, the communication between the infected

device and the command and control (C&C) server is detected

and the exchange of the encryption key is stopped, which

leads to the encryption being suspended. The authors also

proposed another solution to provide better time efficiency,

which is to keep the communication in progress between

the devices and external parties without the need to wait for

the SDN controller’s instructions, and to forward a copy to

the SDN controller. The latter then performs the inspection

and blocks any ongoing communication with a suspicious

domain. Moreover, a comparison between the iptables fire-

wall and the proposed approaches has been made, which

showed that iptables might lead to delay of 300 ms on inser-

tion of 1000 new rules, while both suggested approaches have

a maximum delay of only 180 ms. In a follow up work,

Cabaj et al. [14] utilized SDN to detect two families of

non-spreading ransomware, namely CryptoWall and Locky.

In their implementation of the proposed solution, they used

the size of the first three HTTP Post messages sequentially as

a detection method, which achieved a 97-98% true positive

rate and a 2-3% false positive rate.

In another solution that is based on the characteristics

of the messages exchanged between the controller and the

ransomware, Cusack et al. [15] found that cyber-criminals

began to change the protocol used to communicate between

themselves and their ransomware. They used HTTPS to

encrypt these messages, which prevents the inspection pro-

cess. Hence, the authors proposed a solution based on the

unencrypted part of HTTPS, specifically the header, to detect

malware using machine learning (ML). To demonstrate the

feasibility of their solution, they tested it against the Cerber

ransomware, which resulted in an 87% true positive rate.

When it comes to ransomware with worm-spreading capa-

bilities, researchers have studied two related families: Wan-

naCry and ExPetr. For WannaCry [16], the suggestion is to

use two applications. The first uses a dynamic IP blacklist

to detect WannaCry’s communication with its C&C, which

prevents the victim’s device from being encrypted. The sec-

ond applicationmonitors the ports used byWannaCry (specif-

ically ports 139, 445, 443, 9001, and 9050) to detect and

block WannaCry’s self-propagating within and outside the

network, in addition to preventing the encryption process.

The authors tested their solution, which resulted in successful

detection and blocking ofWannaCry. It is worth noting that in

their second application, three ports belonging to a legitimate

service used routinely, specifically 443 for HTTPS, 445 for

SMB, and 139 for NetBIOS, were blocked. For ExPetr [17],

the suggested solutions are based on blocking suspicious

ports as well as inspecting HTTP and SMB payloads. In the

case of the organization in question not using SMB, the port

blocker can be applied to block any connection that attempts

to use SMB.Where SMB is a legitimate service, SMBpackets

are inspected to search for a Bitcoin address; if the address

is found, the connection would be blocked for a pre-defined

time duration (e.g., 90 minutes). Similarly, the HTTP packet

inspection method is used to search for PROPFIND in order

to identify attempts to connect to the admin$ shared folder.

III. PROBLEM STATEMENT

In this section, we state the problem and identify the limi-

tations of the existing solutions. We also explain and justify

our approach. As shown in Table 2, only two of the existing

solutions consider ransomware with worm (self-propagating)

capabilities. That is, [13]–[15] propose approaches to detect

ransomware communications with the C&C, in order, for

example, to prevent a victim’s device from being encrypted.

On the other hand, approaches proposed in [16], [17] attempt

to detect ransomwares’ attempts to spread within a network.

Our results of the BadRabbit ransomware analysis given later

in Section IV indicate that a system infectedwith the BadRab-

bit ransomware does not make attempts to communicate

with third parties, as it depends on generating an encryption

key using Microsoft libraries and then encrypting this key

with a public key in a form of behaviour similar to that

of ExPetr [17]. The aim of our work is to detect attempts

VOLUME 9, 2021 28041

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

TABLE 2. Comparison of ransomware detection and prevention approaches using SDN.

to spread ransomware at the network level rather than to

prevent device encryption, which has already been addressed

in previous works.

Solutions presented in [16], [17] may result in high

numbers of false positives by blocking an unnecessary high

number of legitimate users. Moreover, they are essentially

dependent on the network not needing the SMB service.

This would allow port blocking as a solution to prevent

ransomware from spreading. These solutions are effective in

this regard, but do not take into account the possibility of the

need for this service on the network, thus preventing users

from accessing a legitimate service. In [17], as an alternative

solution the authors suggested inspecting HTTP and SMB

packets to search for the specific values that ExPetr uses, such

as the Bitcoin address and the admin$ folder name. This

solution may be useful in preventing ExPetr from spreading

but may not prevent other types of ransomware because of

the need for prior knowledge, such as Bitcoin addresses, file

names, or other unique strings.

In fact, all the solutions discussed above assume the con-

troller’s ability to access and analyse the packets very rapidly.

The controller’s capabilities in this regard, the network size,

and typical amounts of traffic have not been studied suf-

ficiently. Indeed, it is difficult for the controller to inspect

all the traffic destined for a specific service or analyse the

domains or IP addresses used, especially if the network con-

tains a large number of running devices. The difficulty here is

based on the network performance, as additional inspection

means increased delays and/or degradation in performance.

Therefore, a general solution must be found that detects

different types of ransomware without affecting significantly

the efficiency of the network and the requirements of its

users. As an alternative solution, a honeypot could provide

these features and is a proportionate and efficient solution

investigated in our work.

The use of honeypot as a ransomware solution has

been suggested in a number of studies. For example,

Gomez-Hernandez et al. in [20] use a honeypot to detect

ransomware, suggesting that files on the network devices can

be deployed to act as a means of threat detection. These files

are connected to a monitoring process, and therefore, when

opening or reading any of these files, the process responsible

will be detected and then blocked. The authors discussed

the advantages of their proposal, stating that this approach

does not require the application of initial training or prior

knowledge of threats, thus allowing for efficient detection

of unknown threats. To demonstrate the effectiveness of the

approach, files were distributed across a Linux network,

where Bash-Ransomware and Linux.Encoder were used as

samples, and WannaCry was also used by using WineHQ to

run it. This method achieved a 100% detection rate. Recently,

several types of honeypots have been proposed for the spe-

cific detection of ransomware. For instance, shared folders

with other devices, a web server, a fake memory partition,

a file and e-mail or pictures as tokens. These traps were

trialled against six types of ransomware, including Cryp-

toWall, which was run 50 times on the device and for which a

100% detection rate was achieved [21]. In other words, these

solutions are based on the creation of a sample that is not used

by the network or its clients, and thus any attempt to reach it

can reasonably be considered suspicious.

In fact, the honeypot approach may be an effective and

straightforward solution to implement, whether at the net-

work level using systems to act as traps, as suggested in [21],

or at the level of devices, as suggested in [20], by using

files to act as traps. The effectiveness and privilege of this

approach lies in its ease of implementation and its ability to

detect unknown threats. On the other hand, each approach has

negative aspects, which for this approach lies in the demand

for a considerable awareness on the part of the network’s

users not to access these files or systems, whereby any access

to these traps will be considered suspicious and thus the

device or process responsible for access is blocked, resulting

in a false positive detection.

On the other hand, regardless of the drawbacks of the traffic

inspection previously discussed, payload inspection has also

been used in this work as a supplementarymeasure tomitigate

the spread of BadRabbit within a given network. In particular,

28042 VOLUME 9, 2021

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

the following modules are suggested by [19] for designing

an SDN-based malware analysis architecture. These modules

are working on top of the POX controller:
1) Inspection: This inspects the traffic within the net-

work as well as the traffic directed outside the network

to match it with predefined values such as specific

IP addresses, specific values used by malware, and

specific ports. In the event of a match, either the con-

tainment, the configuration manager, or the analysis

control module is assigned to deal with connection

based on the possible associated risk. For example, not

allowing malware to attack predefined external desti-

nations using the containment module.

2) Containment: This is used to mitigate the risk from

malware using OpenFlow to install rules in SDN

switches, as the risk can be one of either spreading to

or attacking other internal/external devices.

3) Configuration Manager: This is used to create changes

to the network to analyse malware activities in several

environments, where changes can be implemented to

the network topology by adding or deleting services

(such as adding a web server or removing an SMTP

server), or configuring the network to be similar to a

university network.

4) Analysis Control: This is used for the safety control of

the analysis process. The module enables the controller

to re-execute themalware several times as well as revert

the device to a clean state.
Note, that the aformetioned modules have not been adopted

as part of the existing ransomware detection mechanisms

(i.e., [16], [17]). We believe that they deserve attention and

have been considered in our proposed design.

IV. BadRabbit ANALYSIS

In this section, the main findings from our extensive analysis

of BadRabbit ransomware are presented. The main machine

specifications that were used in the analysis are: Intel Core i7

8550U, 1.80 GHz, and 16GB RAM. To perform the analysis,

VirtualBox was used to host the virtual machines (VMs). For

the static analysis, two VMs were used: Windows 10 and

REMnux. For dynamic analysis, four VMs were hosted, with

the following roles: REMnux as a gateway where the other

systems were linked to it and also as a fake HTTP service,

two Windows 10 systems, one infected with BadRabbit and

the other healthy, and one Windows 7 system.

A. THE WORM COMPONENT

By analysing the BadRabbit main file, it was found that the

file size is large but contains little data in the source code.

In addition, there is a presence of two suspicious entropy

values (Figure 1). This suggests that the file is compressed or

encrypted. After the file was executed in a safe environment,

it was found that the file works as a dropper for another file,

specifically the worm file named infpub.dat. The worm

file itself has been coded to work for propagation within the

local network, in addition to a drop-in for three other files.

FIGURE 1. The dropper entropy.

Two of these files are dropped into the Windows directory,

while the third is dropped into the Windows Temp folder.

These files are:

• Dispci.exe: Performs the encryption and decryption

with the help of the DiskCryptor driver, cscc.dat,

which encrypts files individually based on their

extensions.

• Cscc.dat: A legitimate file recognised as a DiskCryp-

tor driver, and which is used to encrypt/decrypt system

partitions. In this instance, cscc.dat encrypts all the

disk partitions.

• Random Value.tmp: A Mimikatz tool used to

extract account authentication data from the system.

The worm component runs the above files as follows:

• In order to run the DiskCryptor driver, the malicious

file (infpub.dat) creates a service called Windows

Client Side Caching DDriver.

• Schedules a task to execute the dispci.exe file.

• Uses ConnectNamePipe as a communication point with

the Mimikatz tool.

Also, the worm component schedules three system tasks,

which are:

• Rhaegal: runs the dispci.exe file each time the sys-

tem is turned on.

• Drogon: reboots the system once to enable the encryp-

tion process.

• Viserion: shuts down the system after the completion of

the encryption process.

B. THE ENCRYPTION COMPONENT

A high-level analysis of the encryption component

(dispci.exe) reveals that the file contains false infor-

mation to deceive the user and to hide its true nature. This

information was extracted using the Pescanner tool, where

the file was described as a Microsoft Display Class Installer

and the product name given as GrayWorm. However, signa-

ture scans indicate that it is a diskcoder typically used by

Windows-based ransomware (Figure 2). For a more accurate

analysis the strings were extracted; it was found that the file

contains an RSA-2048 key and 113 file extensions. To under-

stand the encryption mechanism, the libraries and functions

used were extracted. It was found that the ADVAPI32.dll

library functions are used extensively to generate keys and

VOLUME 9, 2021 28043

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

FIGURE 2. Dispci.exe PE header.

to perform the encryption and decryption processes; these

functions are presented in Table 3. It is worth noting that

CryptDestroyKey is used to destroy the encryption key after

using it. Moreover, the functions CryptImportPublicKeyInfo,

CryptStringToBinaryW, CryptDecodeObjectEx, and Crypt-

BinaryToStringW from the CRYPT32.dll library are used

to load the integrated public key to encrypt the file encryption

key.

TABLE 3. Functions used by the encryption component.

The extensions of the files that are encrypted by BadRabbit

are given in Appendix A. The malware author’s public key

(RSA-2048) is given in Appendix B.

C. ENCRYPTION PROCESS

The encryption component file (dispci.exe) operates as

follows. It first invokes the malware author’s public key using

CryptImportPublicKeyInfo and then calls the file exten-

sions. After that, the disk is accessed through the use of

the command ArcName\multi(0)disk(0)rdisk(0)

partition (1)\, and an attempt is made to access dif-

ferent file system formats, such as NTFS, FAT12, FAT16,

and FAT32. Next, the AES-CBC 128-bit key is generated

using the CryptGenRandom function, and then file mapping

begins to encrypt the files (Figure 3). It is worth noting that

there are exceptions to some folders, these folders are App-

Data, ProgramData, Program Files, and Windows. After the

encryption is complete, the AES key is itself encrypted using

the author’s public key, and a Readme.txt file containing

information about the payment mechanism and the encrypted

key is dropped in the C path. Noticeably, the file also drops

a shortcut of itself called DECRYPT onto the desktop for the

decryption.

D. NETWORK ENUMERATION

BadRabbit depends on various methods to enumerate the

devices on the network. Some of these methods depend

on the active connections in the network, while others

depend on the extraction of network device addresses

FIGURE 3. File mapping.

(whether active or inactive) through ARP requests. These

enumeration methods work as follows:

• By extracting recent TCP connections from GetExtend-

edTcpTable, which contains a group consisting of the

IP addresses and ports communicated within a network.

• By using the GetIpNetTable function, which enumerates

the network’s ARP entries in a table specifying the phys-

ical addresses, and returns this information in a table

structure.

• By using NetServerEnum to extract the addresses of all

servers in the network, whether all servers generally or

servers that contain a specific service.

• Utilizing the Windows Server DHCP Services API via

the DhcpEnumSubnetClients, DhcpEnumSubnets, and

DhcpGetSubnetInfo functions to extract subnets and

clients in subnets, in addition to extracting information

about a specific client.

E. PROPAGATION METHODS

BadRabbit makes several attempts to spread within the net-

work using four methods detailed below:

1. The worm component runs the Mimikatz tool to extract

the authentication information from the infected system and

the Active Directory in Windows networks. The worm file

first drops a temporary file there with a random name and

then creates a named pipe to act as a point of communica-

tion between the worm and the tool as shown in Figure 4.

After that, it runs the tool using the command line, where

the command used to run the tool contains the name of the

temporary file in addition to the name of the named pipe

created (Figure 5). Furthermore, the worm attempts to use the

WindowsManagement Interface Command (WMIC) in order

to access the Windows Management Instrumentation (WMI)

through the use of any extracted passwords and usernames.

2. Using the authentication information extracted by the

Mimikatz tool, BadRabbit attempts to access SMB shared

services. If unsuccessful, the worm contains a list of user-

names and passwords that it can use to launch a dictionary

attack against network devices that use SMB. Appendix C

reports the built-in usernames used by the worm, while the

integrated passwords are given in Appendix D.

3. Attempts to copy the files infpub.dat and

cscc.dat to the admin$ folder, by establishing a remote

connection to admin$, and then copying BadRabbit files

28044 VOLUME 9, 2021

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

FIGURE 4. Creation of a named pipe to act as a line of communication
between Mimikatz and the worm file.

FIGURE 5. The command used to run Mimikatz and the named pipe.

to the same folder. After that, BadRabbit can be executed

remotely.

4. The worm component exploits one of MS17-010’s vul-

nerabilities called EternalRomance. It is an SMB vulnerabil-

ity previously leaked by The Shadow Brokers group to spread

across the network, where this is one of several vulnerabilities

that resulted from poor handling of transactions. According

to the Cisco Talos Intelligence Group [22], exploiting the vul-

nerability is similar to one of the exploits that was published

on GitHub [23]. Appendix E shows two snippets from the

worm source code, showing the similarity between the exploit

published in [23] and the worm file. These snippets describe

the use of the strings ‘‘Frag’’ and ‘‘Free’’ to match them in the

response analysis stage. In case of a match, the information

leakage is successful and there is an opportunity for the

continuation of the exploit [24].

F. DEFENSIVE STRATEGIES

From BadRabbit worm file source code analysis we found

that certain defensive techniques have been deployed to avoid

detection and hinder the code analysis. The first task per-

formed by the worm component (infpub.dat) is to gen-

erate hashes for all processes running on the infected device.

Afterwards, the presence of specific hashes is checked, where

these values represent the hashes for antivirus software; more

precisely, the hashes of Dr. Web and McAfee products. Deal-

ing with these processes is dependent on the antivirus used.

For example, in the case of matching any of these hashes,

certain malicious tasks such as accessing SMB shared folders

will not be performed. Furthermore, the worm file applies

anti-debugging techniques; the IsDebuggerPresent function

is used to determine any debuggers running and then disavow

the debugger by placing traps to prevent it from properly

monitoring any processes being performed (Figures 6 and 7).

FIGURE 6. Using the function IsDebuggerPresent to identify debugger
existence.

FIGURE 7. Traps created for debuggers.

After completion of its activities, the worm deletes the

records to prevent an analyst from tracking the opera-

tions that occurred on the infected machine. This is done

by deleting the logs in System, Security, Application, and

Setup, as shown in Figure 8. Also, the fsutil.exe usn

deletejournal/D %c command is executed to delete

the existing Update Sequence Number, as it is considered a

record containing all changes that occurred on files.

G. NETWORK ACTIVITY

1) TEST SCENARIOS AND CONFIGURATIONS

BadRabbit’s network activity was captured by running the file

under four different scenarios to more accurately understand

its behaviour. These scenarios share the structure described

in Figure 9 using the network configuration shown in Table 4,

but differ in terms of the victims’ devices. Specifically, aWin-

dows 10 system with IP address 10.0.0.4 and a Windows 7

system with IP address 10.0.0.6, where some additional mod-

ifications were made to these systems. Ransomware exe-

cution is performed in the Windows 10 system with IP

address 10.0.0.5 The REMnux system acts as a gateway with

VOLUME 9, 2021 28045

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

FIGURE 8. Deleting the log records.

FIGURE 9. The lab scheme used in static and dynamic analysis.

TABLE 4. Systems used in network-level analysis and their assigned IP
addresses.

IP address 10.0.0.3. The modifications that have been made

and the scenarios that have been considered are as follows:

• Scenario 1: Two Windows systems are connected to

the network. One system is running Windows 7 that

has a password that does not exist in the ransomware’s

dictionary attack list. The second system is Windows

10 and has the same authentication information as the

infected system. The reason for using such a structure is

to identify the order in which BadRabbit propagates and

the techniques it uses to do so.

• Scenario 2: One Windows 7 system is connected

to the network which is unpatched with regard to

MS17-010 vulnerabilities. Furthermore, SMBv1 authen-

tication has been activated in both the infected system

and the Windows 7 system. As a result, it can be

determined whether the ransomware has exploited the

EternalRomance vulnerability or not.

• Scenario 3:OneWindows 10 system is connected to the

network but which has different authentication informa-

tion that is also not in the ransomware’s dictionary list.

This has been done to monitor ransomware activity in an

otherwise well-secured network.

• Scenario 4: Two Windows systems are connected to the

network, one of which is a Windows 10 system with a

username and a password that exists in the ransomware’s

dictionary list, whilst the other one is a Windows 7 with

a password that does not exist in the list or that is used

by other devices on the network.
Although there is no clear evidence about the use of web

services using web transmission protocols such as HTTP

and HTTPS from the static analysis, there is a possibility

that BadRabbit copies itself through the admin$ folder,

as explained previously in Section IV-E. This could be

achieved through an extension of HTTP calledWebDAV [25].

To verify this hypothesis, INetSim was used to act as a

simulator for web services, and indeed other services as well.

Our findings are presented in the following subsection.

2) BadRabbit ACTIVITIES IN THE CONSIDERED SCENARIOS

The traffic that was generated by the infected system

was analysed using Wireshark. This has revealed the steps

BadRabbit follows to self-propagate in each of the tested

scenarios. In general, the infected system first checks the

availability of two services in other clients, specifically the

HTTP and SMB services. After identifying clients that use

the SMB protocol, an attempt is made to establish a connec-

tion between the infected system and systems that use SMB

by using authentication information stolen from the session

(Figure 10). The stolen authentication information belongs

only to the infected system, thanks for not using the Active

Directory in the network. However, in the case of using the

Active Directory, all the extracted passwords will be tried

against each client.

If the connection attempt is unsuccessful, another method

of propagating within the network is used by exploiting

the EternalRomance vulnerability. To do this, the infected

system tries to find vulnerable systems through sending

SMB requests that contain the dialect NT LM 0.12, which

represents SMB NTLMv1 challenge-response authentication

protocol. If the receiver is using SMBv1, the response will

include the same dialect which is an indicator of EternalRo-

mance vulnerability existence possibility (Figure 11). Also,

by monitoring the SMB connections it was observed that

fixed sizes are used for the first three packets. In partic-

ular, first the infected system sends a request with a size

of 127 bytes, then receives an answer with a size of 228,

and then sends a request with a size of 232. Another attempt

to spread, but against specific victims, is by contacting

clients/servers that use web services (specifically, the HTTP

protocol on port 80) and then trying to access the admin$

shared folder through HTTP PROPFIND (Figure 12).

Furthermore, the infected system launches a dictio-

nary attack on NTLMSSP authentication as a target to

28046 VOLUME 9, 2021

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

FIGURE 10. An attempt to identify available HTTP and SMB services on
clients and an unsuccessful attempt to log in via SMB using stolen
information.

FIGURE 11. An attempt to use SMBv1.

FIGURE 12. An attempt to access the admin$ share folder using HTTP
PROPFIND.

access SMB. In some connections, the infected system also

tries to access the SMB shared folders, as shown in Figure 13.

After completing these actions, the infected system performs

a full network scan using ARP to extract the clients connected

to the network; the infected system sends ARP queries three

times for each address in the network. It is worth noting that

the process of scanning the network using ARP is widely used

by different families of ransomware, such as WannaCry.

In scenario 1, after identifying clients who use SMB,

an attempt is made to communicate with these clients through

the use of authentication information stolen from the session.

In case the connection succeeds (as is the case in this sce-

nario) between the infected system (10.0.0.5) and the clean

Windows 10 system (10.0.0.4), the infected system requests

a connection to admin$, and then checks the presence of

the cscc.dat file. If the file is found, it is opened. In the

absence of the file, a error is raised. After that the infected

system inquires about the existence of theinfpub.datfile.

If the file exists, it is overwritten. In the absence of such a

file, the file is created and data is transferred to it (Figure 14).

When the file transmission is complete, the DCE/RPC proto-

col is used to request a query of SVCCTL by using DCE/RPC

Endpoint Mapper (EPM) and then calling it to control Win-

dows services, especially StartServiceW, to execute the ran-

somware (Figure 15). After the process is over, the infected

FIGURE 13. An attempt to access SMB share folders.

FIGURE 14. Successful authentication using credentials stolen from the
session.

FIGURE 15. Using the DCE/RPC and EPM protocols to request SVCCTL.

system also lunches a dictionary attack on the other

systems to authenticate through NTLMSSP as explained

earlier.

In scenario 2, the infected system performs the same steps

described previously and in the same order, starting from

checking the services used and then trying to log into the

SMB shared folders using the stolen authentication data.

In this scenario, however, if the connection is not success-

ful, the infected system determines the clients using HTTP

and then attempts to access admin$ through PROPFIND

requests supported by an extension to the HTTP proto-

col, namely WebDAV. This protocol provides file sharing

and remote control service. As this protocol is not config-

ured on the REMnux system, this method was not success-

ful, as shown in Figure 16. After that, the infected device

tries to exploit the SMB vulnerability on the Windows 7

VOLUME 9, 2021 28047

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

FIGURE 16. An attempt to move suspicious files to the admin$ folder.

device (10.0.0.6), but this was not successful either. Two

experiments were performed: one using the SMBv1 protocol

and the other using SMBv2. In both, the infected system did

not succeed in exploiting the vulnerability correctly, despite

the evidence in the static analysis of coding to attempt to

use the EternalRomance vulnerability. In practice, however,

no evidence was found to verify this.

In scenario 3, the goal is to analyse the activities carried out

by the infected system after themalware propagationmethods

within the network have completed. Our experiments show

that the infected system performs only the usual propagation

processes as in the previous scenarios.

In scenario 4, the infected system first tried the stolen

authentication data on Windows 10 system (10.0.0.4), and

then on Windows 7 (10.0.0.6); the two attempts did not

succeed. After that, an effort was made to launch a dictionary

attack on Windows 7, and that did not succeed either. How-

ever, afterwards BadRabbit did not move to the other system

(10.0.0.4) to start a dictionary attack. It is worth noting that

this behavior was observed through many attempts to analyse

BadRabbit dynamically, as the infected system launches a

dictionary attack on only the last system, attempted to log

into it.

After the self-propagation process within the network is

completed, the infected system is restarted to complete the

file encryption process. After that, when trying to reboot

the system, a message appears asking to pay the ransom

amount. This is because BadRabbit rewrites the Master Boot

Record (MBR), which makes the device unable to access the

operating system.

V. RANSOMWARE DETECTION SYSTEM: DESIGN

To design effective solutions against BadRabbit, both our

analysis (in Section IV) as well as the solutions proposed in

the literature (in Section II) have been taken into account.

We have reviewed and evaluated the proposed solutions

against ransomware activities and have taken into consider-

ation their efficiency and the extent of their impact on the

network performance. As a result, we have designed and

implemented an SDN-based intrusion detection and preven-

tion system (IDPS) comprising five modules. This sections

describes the system design, whereas Section VI provides

the implementation details using POX SDN controller. The

IDPS detects and blocks self-propagating ransomware, such

as BadRabbit. Two of the modules, namely Deep Packet

Inspection (DPI)-based and ARP-scanning based detection,

have been inspired by the work of [17]. At the same time,

three novel modules/methods have been developed, namely

Packet Header Inspection (PHI), the use of a honeypot, and a

detection based on SMB packet size.

A. MODULE 1: DEEP PACKET INSPECTION (DPI)

As identified in Section IV, BadRabbit attempts to trans-

fer a file when SMB authentication succeeds or via HTTP

PROPFIND requests. This file has a fixed and unique name,

infpub.dat, and there are no services known by this name.

For the purposes of detection, HTTP and SMB traffic inspec-

tion are used to search for the name of this file. Figure 17

gives a high-level representation of the concept.

FIGURE 17. Conceptual design of DPI detection framework.

Algorithm 1 shows the mechanism for applying the

DPI-based method. The following steps are performed

sequentially when a new packet arrives:
1) The switch forwards packets to the controller.

2) The SMB and HTTP inspection applications at con-

troller match the destination port with the ports used

for the HTTP and SMB services, specifically ports 80,

445 and 139.

3) In the case of non-matching, the controller forwards

the packet to the forwarding.l2_learning component,

which means that the controller will not inspect the

following incoming packets.

4) In the case of matching, all the subsequent incoming

traffic is inspected. This is done by forwarding the

packet, and then halting the event before it reaches the

forwarding.l2_learning component.

5) The controller checks each incoming packet to search

for the infpub.dat string.

6) In the event of matching, the sender of the packets is

blocked through the installation of a new rule to the

switch to prevent it from sending any packets from the

source port to the clients.

B. MODULE 2: PACKET HEADER INSPECTION (PHI)

BadRabbit attempts to reach systems that have an active

SMBv1 protocol. To do this, BadRabbit uses the NT LM

0.12 dialect in SMB requests in the packets sent to other

systems. SMBv1 has numerous known security vulnerabili-

ties and therefore any attempt to use it should be considered

suspicious and require attention [26], [27]. Inspecting the first

packet of each SMB connection to search for the NT LM

0.12 dialect represents an effective solution to preventing

28048 VOLUME 9, 2021

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

Algorithm 1: DPI Algorithm

Require PacketIn event

Function DPI

packet = PacketIn.tcp

if packet is None then

return

else if packet.dstport == 80 or 445 or 139 then

if packet.find(‘‘infpub.dat’’) = True then

Install new entry to block the sender MAC

address from sending from the source port

else

Forward the packet

PacketIn.halt

end if

else

return

end if

BadRabbit from propagating across a network and, indeed,

preventing the use of this unsafe protocol within the network

in general. Figure 18 gives a high-level representation of the

concept.

FIGURE 18. Conceptual design of the PHI detection framework.

Algorithm 2 explains the steps used to implement the

PHI-based method. This approach successively performs the

following steps:

• Parsing packets to determine if the packet is TCP.

• If the packet is TCP, then the ports to which the packets

are sent are matched to the SMB ports, specifically

ports 445 and 139.

• If the packet is directed to one of these ports, the pack()

function is used to convert the packet into strings. Then,

the find() function is used to search for the NT LM

0.12 dialect.

• In case the dialect is present in the packet,

of.ofp_flow_mod is used to direct the switch to add a

new flow entry that blocks the MAC address of the

packet sender from sending any packet that has the same

destination port (139 or 445).

• If the dialect is not found, the packet is returned to

the forwarding.l2_learning component. As a result,

the incoming traffic will not be inspected.

Algorithm 2: PHI Algorithm

Require PacketIn event

Function PHI

packet = PacketIn.tcp

if packet is None then

return

else if packet.dstport == 445 or 139 then

if packet.find(‘‘NT LM 0.12’’) = True then

Install new entry to block the sender MAC

address from sending from the source port

else

return

end if

else

return

end if

C. MODULE 3: HONEYPOT-BASED

Based on the results of BadRabbit dynamic analysis, pre-

sented in Section IV, we have identified that BadRabbit

first attempts to transmit packets on ports 445 and 139 to

all network devices without consideration for whether they

are active or inactive systems. Therefore, installing a trap

system (honeypot) on the network and ensuring that it cannot,

or is not, accessed by legitimate network devices is an appro-

priate solution for detecting suspicious activities, especially

BadRabbit. For this, an application that works on the top of

the controller is implemented to monitor the SMB and HTTP

connections directed to the honeypot system, and that blocks

systems that try to access it. Figure 19 presents the steps for

the proposed approach to detect suspicious activities at the

SDN network level using a honeypot.

FIGURE 19. Conceptual design of Honeypot detection framework.

VOLUME 9, 2021 28049

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

Algorithm 3 explains the honeypot-based detection

method. The steps to be taken when a new packet is received

are as follows:

1) The switch forwards the first packet of each new con-

nection to the controller.

2) The controller inspects the packet header to identify

HTTP and SMB packets.

3) If the packet is HTTP or SMB, the controller inspects

the header to identify the destination IP address.

4) Then, the controller matches the packet destination

IP address with the honeypot IP address.

5) If the packet is directed to the honeypot, a new rule

will be created and enforced to prohibit the sender

IP address from communicating within the network

using the destination port or, if not, the controller will

direct the packet to the switch.

Algorithm 3: Honeypot Algorithm

Require PacketIn event

HoneypotIP = ‘‘10.0.0.6’’

Function Honeypot

packet = PacketIn.tcp

if packet is None then

return

else if packet.dstport == 445 or 80 then

IP = PacketIn.ipv4

ipaddress = IP.dstip

if ipaddress == HoneypotIP then

Install new entry to block the sender IP

address from communicating within the network

else

return

end if

else

return

end if

D. MODULE 4: ARP SCANNING-BASED DETECTION

According to Rouka et al. [17], detecting network scans

may represent an effective solution to the detection of

malware activity, and thus the detection of BadRabbit is

possible using this approach. Based on the results of our

analysis, BadRabbit performs a network scan using ARP.

Consequently, the method presented in [17] can be used to

detect BadRabbit. Figure 20 gives a high-level explanation of

how this module operates.

Algorithm 4 describes the ARP scanning based detection

method. The module relies on the dict function in Python to

store two values: the originating address for ARP requests

and the number of unanswered requests. The ARP library in

POX can be used to determine whether the packet is ARP or

otherwise, and also to specify requests and responses. This

application implements the following steps:

FIGURE 20. Conceptual design of ARP scanning detection framework.

1) Parses incoming packets and identifies ARP packets

using the ARP_TYPE function.

2) If the packet is ARP, the source IP address is checked

to compare it with 0.0.0.0. This step helps to decrease

the possibility of false positive, as this IP address is

used by new clients on the network that have yet to be

assigned an IP address [28]. As a result, if the source

IP address is 0.0.0.0, the packet will be forwarded to

the forwarding.l2_learning component.

3) If the packet does not originate from 0.0.0.0, the ARP

state is determined as either request or reply.

4) Increase 1 to the source MAC address if it is a request,

and decrease 1 to the receiver MAC address if it is a

reply.

5) If the number of unanswered requests is greater than

a predefined threshold (say 5), a new rule is installed

to block the source MAC address from communi-

cating within the network for a predefined duration

(e.g., 20 minutes).

E. MODULE 5: SMB PACKET SIZE CHECKER

According to the results of our BadRabbit analysis, the

system infected with BadRabbit will exchange with the

benign system three consecutive SMB packets of a fixed and

unique size. Thus, a BadRabbit-detecting application can be

designed based on these characteristics. It is worth noting that

traffic characteristics have also been used by other works to

detect ransomware in SDN networks [14], [15]. These solu-

tions, however, analyse HTTP and HTTPS traffic rather than

the SMB traffic. Figure 21 gives a high-level explanation of

how this approach works, while Figure 22 shows the process

of exchanging the first three packets between the infected

system and the benign system.

Algorithm 5 illustrates the SMB packet size checker appli-

cation.. This application extracts the size of each incoming

SMB packet to port 445 to compare it with the three afore-

mentioned values and then stores the sender MAC address

and the number of suspicious SMB packets in a dictionary.

It then blocks the sender MAC address in the event that the

number of suspicious sent packets exceed a certain threshold

28050 VOLUME 9, 2021

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

Algorithm 4:ARP Scanning-Based Detection Algorithm

Require PacketIn event

Values = dict(MAC,No)

Function ARP-Scanning-Detection

packet = PacketIn.ARP_TYPE

if packet is None then

return

if packet.payload.protosrc == IPAddr(‘‘0.0.0.0’’) then

return

if packet.payload.opcode == arp.REQUEST then

Add the MAC source to the dictionary

Values and increase one to the No field

if No > 5 then

Install new entry to block the sender MAC

address from communicating within the network

else

return

if packet.payload.opcode == arp.REPLY then

Get the MAC address and decrease one to the No

field

else

return

end if

FIGURE 21. Conceptual design of the SMB packet size detection
framework.

FIGURE 22. BadRabbit SMB negotiation.

(e.g. three packets). This approach applies the following steps

to address suspicious SMB traffic:

1) Parse incoming SMB packets to port 445.

2) Extract the size of each SMB packet using the len

function.

3) Compare the size of the packet with predefined sizes

(145, 238, 250).

4) In case of a match, the MAC address of the source and

a value of 1 are stored in a directory, so that the value

is increased by one for each matching case.

5) If the number of suspicious packets exceeds the

threshold (e.g., three packets), the MAC address of

the source is blocked through installing a rule that

instructs the switches to block all incoming connec-

tions from the blocked source for a predefined duration

(e.g., 20 minutes).

Algorithm 5: SMB Packet Size Checker Algorithm

Require PacketIn event

Suspicious_size = dict(MAC,No)

Function SizeChecker

packet = PacketIn.tcp

if packet is None then

return

else if packet.dstport == 445 then

PacketSize = len(packet)

if PacketSize == 145 or 238 or 250 then

Add the MAC source to the dictionary

Suspicious_size

and increase one to the No field

if No > 3 then

Install new entry to block the associated MAC

address from

sending packets from the detected source port

else

return

else

Forward the packet

PacketIn.halt

end if

else

return

end if

VI. RANSOMWARE DETECTION SYSTEM:

IMPLEMENTATION

The IDPS has been implemented on top of the POX controller.

The implementation of the five modules relies on a PacketIn

event. It is created when a new packet arrives at the switch

and does not match any of the entries in the forwarding tables,

or there is an entry in the table that includes a procedure that

specifies the packet transmission to the controller [29]. Con-

sequently, when a packet reaches the switch and has nomatch,

it will be directed to the controller.Moreover, the launch func-

tion was used to initialize the application, as this is required

for the applications to function properly [29]. Our developed

code can be found on GitHub [30].

To implement the IDPS modules, an SDN testbed has

been configured and used. This testbed includes Ubuntu

16.04.6 LTS as a physical machine that hosts five other

systems through the use of the VirtualBox virtualization

VOLUME 9, 2021 28051

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

environment. The Ubuntu machine also acts as an Open

vSwitch, while the VMs work as follows: REMnux, as a

fake DNS and HTTP server using the INetSim tool, three

Windows systems, two of which run Windows 10 and one

runs Windows 7, and where one of the Windows 10 acts as

an infected system, while the other two systems are benign.

Furthermore, the Ubuntu machine has been utilized to work

as a POX controller. Figure 23 details the testbed topology

and configuration.

FIGURE 23. SDN testbed topology and configuration.

A. MODULE 1: DPI

To implement this module (Algorithm 1), the libopen-

flow_01.pyfile in the POX/Openflow foldermust bemodified

(the modification will be made to the POX utility in the con-

troller system). This file has a variable that restricts the num-

ber of bytes transferred to the controller. Hence, the attribute

miss_send_len in libopenflow_01.py file has been mod-

ified from 128 to 1600. Whilst the command ./pox.py

misc.full_payload forwarding.l2_learning DPI is sufficient

to run the application, it is possible to add new compo-

nents to enable appropriate notifications. The full command

for this is as follows: $./pox.py misc.full_payload forward-

ing.l2_learning DPI samples.pretty_log log.level ––DEBUG

info.packet_dump

The misc.full_payload component is also invoked to send

all the traffic to the controller without any restriction to the

size of the transmission [29].

B. MODULE 2: PHI

This module (Algorithm 2) does not require access to all

the network traffic or to the data section in the packet; it

suffices to check the header of the first packet of each new

traffic only. There is no need to modify the POX utility or use

the misc.full_payload component. Thus, the following com-

mand can be used to run the application: $./pox.py forward-

ing.l2_learning PHI samples.pretty_log log.level ––DEBUG

info.packet_dump.

C. MODULE 3: HONEYPOT

The honeypot-based approach (Algorithm 3) does not require

full access to the network traffic or to the full packet

information as is the case of the DPI based method. It only

needs to inspect the header, which is included in the first

128 bytes of each packet. Therefore, there is no need

to invoke special components such as misc.full_payload

or modify the POX utility. Therefore, the following com-

mand is sufficient to run the application: $./pox.py for-

warding.l2_learning Honeypot samples.pretty_log log.level

––DEBUG info.packet_dump.

D. MODULE 4: ARP SCANNING

The ARP scanning detection application (Algorithm 4) does

not need full access to all traffic. It only needs a header from

each ARP packet. As a result, there is no need to imple-

ment modifications to the switch or controller. Therefore,

the following command is sufficient to run the application

correctly: $./pox.py forwarding.l2_learning ARP-Detection

samples.pretty_log log.level ––DEBUG info.packet_dump.

E. MODULE 5: SMB CHECKER

The SMB packer size checker application needs access to all

traffic and therefore there is a need to amend the POX appli-

cation as previously explained in the case of the DPI based

method. There is also a need to use the misc.full_payload

component to forward all traffic to the controller, and

thus the following command has to be used to run the

application correctly: $./pox.py misc.full_payload forward-

ing.l2_learning SizeChecker samples.pretty_log log.level

––DEBUG info.packet_dump.

VII. SYSTEM VALIDATION

In this section, the experimental results of the five proposed

methods/modules are presented. Our aim is to validate the

effectiveness of each method in detecting self-propagating

ransomware, focusing on BadRabbit. Each module was

enabled separately on the controller and the ransomware was

executed on the infected system. To obtain accurate results,

reliance was placed on traffic inspection using Wireshark,

monitoring the controller’s graphical interface to track alerts,

and checking the Windows folder on the benign systems to

determine whether BadRabbit had managed to transfer the

suspicious files to these systems or not.

A. DPI RESULTS

To evaluate the efficacy of the solution, the same authen-

tication information were used on the infected system and

on a clean Windows 10 system with IP address 10.0.0.4.

In addition, an HTTP emulator (InetSim) is run on the REM-

nux system to ensure that the HTTP traffic is inspected.

BadRabbit was executed on the infected system and the inf-

pub string was detected in the SMB traffic after 7 minutes

14 seconds (Figure 24), whereas the string was detected in

the HTTP traffic after 7 minutes 27 seconds (Figure 25).

Figures 26 and 27 show the packets responsible for triggering

this detection, while Figure 28 shows the attempts by the

infected system to connect to port 445 after the ban. Although

the suspicious file name was detected, the file was created on

28052 VOLUME 9, 2021

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

FIGURE 24. Detection of the infpub string in the SMB traffic.

FIGURE 25. Detection of the infpub string in the HTTP traffic.

FIGURE 26. A capture of traffic showing the SMB packet being detected.

FIGURE 27. A capture of traffic showing the HTTP packet being detected
and the blocking of this traffic.

FIGURE 28. A capture of the traffic showing the infected system being
blocked.

the clean system, but the data was not transferred to it as a

result of the ban (Figure 29).

B. PHI RESULTS

BadRabbit was executed on the infected system, while the

PHI application was running on the top of the controller.

After five seconds, an alert has raised showing an attempt to

use SMBv1 on port 445 by the infected system (Figure 30).

Consequently, the infected system was blocked from using

port 445 as Figure 31 shows. Thirty seconds later, another

alarm was issued showing that the infected system had been

banned from using port 139 as it sent a packet that contained

the suspicious dialect (Figure 32). The packet responsible for

this alert is shown in Figure 33.

C. HONEYPOT RESULTS

BadRabbit was executed on the infected system, and

the honeypot application was invoked on the top of the

FIGURE 29. A screenshot of the clean system showing the infpub file as
empty.

FIGURE 30. Detection of an attempt to use SMBv1 on port 445.

FIGURE 31. The SMBv1 packet that triggered the detection on port 445.

FIGURE 32. Detection of an attempt to use SMBv1 on port 139.

FIGURE 33. The SMBv1 packet that triggered the detection on port 139.

controller. Eight seconds later, the honeypot application

detected an attempt to communicate with the honeypot itself

on port 445, where this attempt was issued from the infected

system (Figure 34). One minute and six seconds from the

time at which it was run, the application also detected an

attempt to reach port 80 on the honeypot. This attempt was

also issued from the infected system, as shown in Figure 35.

Packets responsible for triggering this detection are shown

in Figures 36 and 37. These attempts led to the prohibition

of the infected system from communicating with network

devices on ports 445 and 80, as shown in Figure 38. The

infected system tried to communicate with the HTTP sim-

ulator (REMnux system) post-detection, but the connection

was not allowed due to its prohibition already being in

place.

VOLUME 9, 2021 28053

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

FIGURE 34. Detection of SMB packet directed to the honeypot.

FIGURE 35. Detection of HTTP packet directed to the honeypot.

FIGURE 36. The SMB packet that triggered the detection.

FIGURE 37. The HTTP packet that triggered the detection.

FIGURE 38. Blocking the infected system’s connections to the port 80.

D. ARP SCANNING-BASED DETECTION RESULTS

BadRabbit was run and 5 minutes 1 second later, two systems

were detected and banned as they attempted to make more

than five unanswered requests (Figures 39 and 40). After

analysing the traffic and looking at the clean system that

has the IP address 10.0.0.4, it was found that the application

did not detect BadRabbit sufficiently quickly, allowing time

for the ransomware to transfer its files to the clean system

(Figures 41 and 42). This is be because BadRabbit does

not perform a large ARP scan except after exhausting its

attempts to spread to systems that it manages to reach without

a scanning. Therefore, this application cannot be used against

BadRabbit due to the detection speed being insufficient,

whereby the risk of BadRabbit being able to spread has not

been greatly reduced.

FIGURE 39. Detection of two systems that performed more than five
unanswered ARP requests.

FIGURE 40. Table entries showing the two systems being blocked.

E. SMB PACKET SIZE CHECKER RESULTS

BadRabbit was executed on the system and 21 seconds

later the infected system was detected, as shown in

Figure 43. The detection was sufficiently fast that the infected

FIGURE 41. A part of the suspicious file transmission to the benign
system.

FIGURE 42. BadRabbit files on the benign system.

FIGURE 43. Blocking a system responsible for sending three suspicious
SMB packets.

system was blocked before it proceeded to its subsequent

self-propagation steps. As a result, the risk of BadRabbit was

contained and no successful self-propagation occurred.

VIII. PERFORMANCE EVALUATION AND COMPARISON

In this section, we present our performance evaluation results

for the five proposed detection methods. Two modules rely

on methods proposed in [16], [17]. Specifically, DPI to look

for specific values inside the packet, and monitoring ARP

scanning. Three other modules rely on novel methods in

SDN-based ransomware detection. The performance is evalu-

ated based on five criteria: the time taken to detect BadRabbit,

CPU utilization rate, Ping latency, TCP latency, and the capa-

bility of the solutions to detect other types of ransomware.

Measuring CPU usage and delay for both Ping and TCP was

achieved by running BadRabbit, the proposed solution, and

the evaluation mechanism for ten minutes. To measure the

CPU usage, the script reported in [31] was used. To measure

the Ping delay, the ping command available on most systems

like Windows and Linux was used. Finally, to measure the

TCP delay the hping utility was used. Furthermore, in this

section, the capability of the suggested solutions to detect

other types of ransomware has been examined. To this end,

two modules (PHI and honeypot) were implemented and

tested against the NotPetya ransomware.

A. DETECTION TIME AND CPU UTILISATION

The BadRabbit detection times and the CPU utilization rates

were measured. Table 5 shows the detection time for each

module in addition to the average CPU utilization rate. The

latter is also depicted in Figure 44 to better illustrate the

28054 VOLUME 9, 2021

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

TABLE 5. Detection time and CPU utilisation of the proposed methods.

FIGURE 44. Average CPU utilisation (%).

differences. The interpretation of these results is as follows.

The PHI solution achieved the fastest detection time, as it

detected the attempt to access via SMBv1 in only five sec-

onds, while the honeypot detected an attempt to access SMB

in eight seconds. However, the attempt to access via HTTP

was detected after 1 minute 6 seconds, while the SMB Packet

Size Checker achieved BadRabbit detection after only 21 sec-

onds. It is worth noting that the PHI solution depends only on

inspection of each packet header destined to port 445 or 135,

while the honeypot depends only on detecting attempts to

access a service on a specific device on the network, while the

SMB Packet Size solution takes more time to process SMB

traffic to compare it with three predefined sizes. Moreover,

the CPU usage for the three solutions was the lowest of

the available solutions as CPU usage was 7.712% for SMB

Packets Size, 7.448% for the PHI, whilst the honeypot had

the lowest CPU usage at 6.934%. The other two solutions

achieved detecting times between 5 and 7 minutes, where

the ARP scanning achieved detection in 5 minutes 1 second

using 11.579% of the CPU. DPI achieved detection times

of 7 minutes 14 seconds for SMB, and 7 minutes 27 seconds

to detect the string in the HTTP traffic with a relatively high

CPU usage of 16.971%, which may be due to the processing

of all traffic directed at SMB and HTTP, which would quite

naturally require quite high CPU usage.

B. TCP AND PING DELAY

Our measurements of the TCP and Ping traffic delays

gave distinct results for each of the proposed methods.

Tables 6 and 7 show the highest delay, minimum delay and

average delay in addition to the number of packets that

TABLE 6. Ping delay for the proposed methods.

TABLE 7. Ping and TCP delay for the proposed methods.

were processed in a ten-minute period. Figure 45 illustrates

the differences in the TCP and Ping delay of the proposed

methods. In regards to TCP delays, three solutions achieved

similar results of the average delay and the same number of

processing packets; PHI, ARP scanning, and SMB Packets

Size Checker processed 601 packets in ten minutes. The aver-

age delay was 34.9 ms for PHI, 35.0 ms for ARP scanning,

and 35.2 ms for SMB Packets Size Checker. The difference

was not significant between these three solutions and the

honeypot; the latter achieved an average delay of 37.1 ms and

handled more packets, at 603. These four methods depend on

fewer operations compared to the DPI method, which handles

all HTTP and SMB traffic to search for a specific string.

This leads to a high delay rate of 77.3 ms and processing

of fewer packets, at 598. In ping delay measurement, ARP

scanning had the highest delay, at an average of 2.39 ms,

due to the fact that this solution relies on the analysis of

all ARP requests and replies. DPI and PHI achieved similar

average delays, at 1.63 and 1.66ms, respectively. By contrast,

the honeypot achieved an average delay of 1.84 ms, while the

SMB Packets Size Checker achieved the lowest delay among

other solutions, with an average of 1.33 ms.

FIGURE 45. Ping and TCP latency (ms).

Despite the competence that DPI provided in monitoring,

its impact was significant both in terms of CPU usage and

VOLUME 9, 2021 28055

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

network delays. This is due to the amount of data processed

by the controller. Other solutions were found to have less

impact on the network compared to DPI.

C. DETECTING OTHER RANSOMWARE FAMILIES

Two of the proposed methods (PHI and honeypot) may pro-

vide solutions to other threats on the network, particularly

ransomware. This is because some types of ransomware

rely on two particular methods in an attempt to propagate

across the network. The first method is to try to access the

SMBv1 protocol, because it contains security flaws which

could facilitate the spread of malware. The second method

is an attempt to access specific ports on all systems on the

network, mostly ports 80 and 445. Thus, PHI can be applied

to detect the first method, and the honeypot can be used

to detect the second method. To demonstrate this, PHI and

honeypot have been implemented against NotPetya. The anal-

ysis of NotPetya in [32], [33] showed that it uses SMBv1 as

well as trying to access all the systems in the network on

ports 80 and 445. As a result, PHI and honeypot were found

to be successful in both detecting and blocking the system

infected with NotPetya before it was able to successfully

spread itself to other systems on the network. Figure 46

shows the detection of the infected device using PHI, while

Figures 47 and 48 show the detection of the infected device’s

attempts to access the honeypot on ports 445 and 80.

FIGURE 46. Detection of NotPetya’s attempt to access SMBv1.

FIGURE 47. Detection of NotPetya attempting to access port 445 on the
honeypot.

D. DETECTING POLICY CHANGES

Another important issue is related to detecting policy changes

in an SDN environment. That is, when installing new Flow

Table or firewall rules, or when defining new Access Con-

trol List (ACL) policies, conflicts may arise due to already

installed rules [34].

Generally speaking, there is a possibility that ransomware

may be granted access, even despite being blocked by the

controller. The cause could be that there were old rules that

allowed this access, before the new rule was installed trying

to block a connection. As an example, consider the following

scenario. A device with an IP address 10.0.0.1 is allowed to

access a webserver through port 80. After that, assume that

FIGURE 48. Detection of NotPetya attempting to access port 80 on the
honeypot.

the device has been infected with ransomware. The detection

mechanism then installs a new rule, that prevents the infected

device accessing other devices or services in the network

through the port 80. As a result, there are two rules, one of

which allows access and the other that denies it, which consti-

tutes a conflict. This may cause the connection to be allowed

or denied, depending on the rule priorities. Similar violations

may occur due to multiple conflicting ACL policies.

Referring specifically to our proposed approach, some of

the modules, such as DPI, PHI, and SMB based, halt the

suspicious packet, thus stopping the ransomware from infect-

ing other devices. In other words, even if there is a conflict,

the infected device will not be able to infect any other device,

even if it can access it (assuming that there is a conflict).

Two other modules, namely Honeypot and ARP-Scanning-

based, could indeed cause a conflict which leads to violating

the installed rule and spreading ransomware. This is because

these two approaches depend entirely on monitoring a certain

number of legitimate packets (the number of ARP requests,

and the attempt to reach the webserver) to impose restrictions

on the infected device. Resolving such conflicts is beyond

the scope of this article and the interested reader may refer

relevant works [34]–[36].

In summary, the proposed methods achieved different

results when evaluated, with DPI showing the weakest perfor-

mance in terms of delay and CPU load. It resulted in a delay

in TCP traffic that was twice as long as the other solutions

and also used approximately 17% of the CPU. By contrast,

other methods resulted in less pressure on the CPU capac-

ity and less delay in TCP traffic. Moreover, two methods

achieved successful detection of another type of ransomware

family as PHI and honeypot detected NotPetya’s attempts to

self-propagate within the network.

IX. CONCLUSION

After performing a thorough analysis of BadRabbit, it was

found that this ransomware family does not need to commu-

nicate with external entities (e.g., C&C servers) to exchange

an encryption key. Instead, it uses a public key inte-

grated into its files. Therefore, methods used in [13], [14]

would not be suitable for this type of ransomware. As a

result, the focus of this project was on blocking BadRab-

bit’s attempts at self-propagation. We have implemented an

SDN-based IDPS which consists of five modules to detect

and block self-propagating ransomware, such as BadRabbit.

Two modules rely on methods proposed in [17]. Specifi-

cally, deep packet inspection to look for specific values,

and monitoring ARP scanning. Three other modules rely on

28056 VOLUME 9, 2021

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

novel methods in SDN-based ransomware detection. They

include inspecting the packet header to block SMBv1 access

attempts, an SMB packet size checker, and finally using a

honeypot in the network to detect any attempts to access port

80 or 445 of the honeypot system.

Thesemethods have been evaluated based on TCP and ping

delays, CPU utilization, detection duration, and the capability

to detect other types of ransomware, such as NotPetya. It was

found that traffic inspection resulted in a greater delay than

any of the other methods considering TCP traffic, while

the ping approach was causing the least delay. The traffic

inspection module utilized nearly 17% of the CPU, which

is double that of any other method. Furthermore, two of the

modules (packet header inspection and honeypot) are able to

detect other types of ransomware. To demonstrate this, they

have been implemented against NotPetya andwere successful

at both detection and timely blocking.

In our future work, we plan to test the performance and

the efficiency of the IDPS in a live network. For validation

purposes, the presence of different applications and realistic

background trafficwill be considered, as well as the operation

of other security appliances and functions. We also plan to

investigate any conflicts that might be caused by conflicting

security policies, when defending against different types of

threats.

APPENDIX A

The extensions of the files that are encrypted by BadRabbit

are:

.3ds,.7z,.accdb,.ai,.asm,.asp,

.avhd,.back,.bak,.bmp,.brw,.c,

.cc,.cer,.cfg,.conf,.cpp,.crt,

.ctl,.cxx,.dbf,.der,.dib,.disk,

.doc,.docx,.dwg,.eml,.fdb,.gz,

.hdd,.hpp,.hxx,.iso,.java,.jfif,

.jpe,.jpeg,.jpg,.js,.kdbx,.key,

.mdb,.msg,.nrg,.odc,.odf,.odg,

.odm,.odp,.ods,.odt,.ora,.ost,

.ovf,.p12,.p7b,.p7c,.pdf,.pem,

.php,.pmf,.png,.ppt,.pptx,.ps1,

.pvi,.py,.pyw,.qcow,.qcow2,.rar,

.rtf,.scm,.sln,.sql,.tar,.tib,

.tiff,.vb,.vbox,.vbs,.vcb,.vdi,

.vhd,.vhdx,.vmc,.vmdk,.vmsd,.vmtm,

.vmx,.vsdx,.vsv,.work,.xls,.xlsx,

.xvd,.zip,.pyc..aspx,.cab,.cs,

.djvu,.h,.mail,.odi,.xml,.vfd,

.tif,.pst,.pfx,.ova,.rb

APPENDIX B

BadRabbit’s author’s public key (RSA-2048) is:

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIB

CgKCAQEA5clDuVFr5sQxZ+feQlVvZcEK0k4u

CSF5SkOkF9A3tR6O/xAt89/PVhowvu2TfBTR

snBs83hcFH8hjG2V5F5DxXFoSxpTqVsR4lOm

5KB2S8ap4TinG/GN/SVNBFwllpRhV/vRWNmK

gKIdROvkHxyALuJyUuCZlIoaJ5tB0YkATEHE

yRsLcntZYsdwH1P+NmXiNg2MH5lZ9bEOk7YT

MfwVKNqtHaX0LJOyAkx4NR0DPOFLDQONW9OO

hZSkRx3V7PC3Q29HHhyiKVCPJsOW1l1mNtwL

7KX+7kfNe0CefByEWfSBt1tbkvjdeP2xBnPj

b3GE1GA/oGcGjrXc6wV8WKsfYQIDAQAB

APPENDIX C

Table 8 reports the built-in usernames used by the worm.

TABLE 8. BadRabbit built-in usernames to launch a dictionary attack.

APPENDIX D

Integrated passwords: Administrator, administrator, Guest,

guest, User, user, Admin, admin, Test, test, root, 123,

1234, 12345, 123456, 1234567, 12345678, 123456789,

1234567890, Administrator123, administrator123, Guest123,

guest123, User123, user123, Admin123, admin123, Test123,

test123, password, 111111, 55555, 77777, 777, qwe, qwe123,

qwe321, qwer, qwert, qwerty, qwerty123, zxc, zxc123,

zxc321, zxcv, uiop, 123321, 321, love, secret, sex, god.

APPENDIX E

Figures 49 and 50 demonstrate the use of Frag and Free

strings, respectively.

FIGURE 49. The use of the Frag string.

FIGURE 50. The use of the Free string.

VOLUME 9, 2021 28057

F. M. Alotaibi, V. G. Vassilakis: SDN-Based Detection of Self-Propagating Ransomware: The Case of BadRabbit

REFERENCES

[1] Industrial Control Systems Emergency Response Team (ICS-CERT), Mal-

ware Trends, Department of Homeland Security, Washington, DC, USA,

Oct. 2016.

[2] M. Conti, A. Gangwal, and S. Ruj, ‘‘On the economic significance of

ransomware campaigns: A Bitcoin transactions perspective,’’ Comput.

Secur., vol. 79, pp. 162–189, Nov. 2018, doi: 10.1016/j.cose.2018.08.008.

[3] Internet Organised Crimethreat Assessment (IOCTA), European Cyber-

crime Centre, The Hague, Netherlands, 2019.

[4] Kaspersky. (Mar. 2017). The Biggest Ransomware Threats of 2017.

[Online]. Available: https://www.kaspersky.com/resource-center/threats/

biggest-ransomware-threats-2017

[5] Q. Chen and R. A. Bridges, ‘‘Automated behavioral analysis of malware:

A case study of wannacry ransomware,’’ in 16th IEEE Int. Conf. Mach.

Learn. Appl. (ICMLA), Cancun, Mexico, Jan. 2017, pp. 454–460, doi:

10.1109/ICMLA.2017.0-119.

[6] D.-Y. Kao and S.-C. Hsiao, ‘‘The dynamic analysis of WannaCry ran-

somware,’’ inProc. 20th Int. Conf. Adv. Commun. Technol. (ICACT), Seoul,

South Korea, Feb. 2018, p. 159, doi: 10.23919/ICACT.2018.8323682.

[7] M. Akbanov, V. G. Vassilakis, and M. D. Logothetis, ‘‘WannaCry ran-

somware: Analysis of infection, persistence, recovery prevention and prop-

agation mechanisms,’’ J. Telecommun. Inf. Technol., vol. 1, pp. 113–124,

Apr. 2019, doi: 10.26636/jtit.2019.130218.

[8] M. Akbanov, V. G. Vassilakis, I. D. Moscholios, and M. D. Logothetis,

‘‘Static and dynamic analysis of WannaCry ransomware,’’ in Proc.

IEICE Inf. Commun. Technol. Forum, Graz, Austria, Jul. 2018, p. 2, doi:

10.34385/proc.32.SESSION02_2.

[9] J. S. Aidan, H. K. Verma, and L. K. Awasthi, ‘‘Comprehensive survey on

petya ransomware attack,’’ in Proc. Int. Conf. Next Gener. Comput. Inf.

Syst. (ICNGCIS), Jammu, India, Dec. 2017, p. 122, doi: 10.1109/ICNG-

CIS.2017.30.

[10] MS Office DDE Exploit/BadRabbit Ransomware, Univ. Hawaii-West

Oahu, Kapolei, HI, USA, Oct. 2017.

[11] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,

S. Azodolmolky, and S. Uhlig, ‘‘Software-defined networking: A compre-

hensive survey,’’ Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015, doi:

10.1109/JPROC.2014.2371999.

[12] B. A. A. Nunes,M.Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,

‘‘A survey of software-defined networking: Past, present, and future of

programmable networks,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 3,

pp. 1617–1634, 3rdQuart., 2014, doi: 10.1109/SURV.2014.012214.00180.

[13] K. Cabaj and W. Mazurczyk, ‘‘Using software-defined networking for

ransomware mitigation: The case of CryptoWall,’’ IEEE Netw., vol. 30,

no. 6, pp. 14–20, Dec. 2016, doi: 10.1109/MNET.2016.1600110NM.

[14] K. Cabaj, M. Gregorczyk, and W. Mazurczyk, ‘‘Software-defined

networking-based crypto ransomware detection using HTTP traffic char-

acteristics,’’ Comput. Electr. Eng., vol. 66, pp. 353–368, Feb. 2018, doi:

10.1016/j.compeleceng.2017.10.012.

[15] G. Cusack, O. Michel, and E. Keller, ‘‘Machine learning-based detection

of ransomware using SDN,’’ in Proc. ACM Int. Workshop Secur. Softw.

Defined Netw. Netw. Function Virtualization (SDN-NFV), Tempe, AZ,

USA, 2018, pp. 1–6, doi: 10.1145/3180465.3180467.

[16] M. Akbanov, V. G. Vassilakis, and M. D. Logothetis, ‘‘Ransomware

detection and mitigation using software-defined networking: The case of

WannaCry,’’ Comput. Electr. Eng., vol. 76, pp. 111–121, Jun. 2019, doi:

10.1016/j.compeleceng.2019.03.012.

[17] E. Rouka, C. Birkinshaw, and V. G. Vassilakis, ‘‘SDN-based malware

detection and mitigation: The case of ExPetr ransomware,’’ in Proc.

IEEE Int. Conf. Informat., IoT, Enabling Technol. (ICIoT), Doha, Qatar,

Feb. 2020, pp. 150–155, doi: 10.1109/ICIoT48696.2020.9089514.

[18] R. Jin andB.Wang, ‘‘Malware detection formobile devices using software-

defined networking,’’ in Proc. 2nd GENI Res. Educ. Exp. Workshop,

Salt Lake City, UT, USA, Sep. 2013, pp. 81–88, doi: 10.1109/

GREE.2013.24.

[19] J. M. Ceron, C. B. Margi, and L. Z. Granville, ‘‘MARS: An SDN-

based malware analysis solution,’’ in Proc. IEEE Symp. Comput. Com-

mun. (ISCC), Messina, Italy, Aug. 2016, pp. 525–530, doi: 10.1109/

ISCC.2016.7543792.

[20] J. A. Gomez-Hernandez, L. Alvarez-Gonzalez, and P. Garcia-Teodoro,

‘‘R-locker: Thwarting ransomware action through a honeyfile-based

approach,’’ Comput. Secur., vol. 73, pp. 389–398, Mar. 2018, doi:

10.1016/j.cose.2017.11.019.

[21] A. El-Kosairy and M. A. Azer, ‘‘Intrusion and ransomware detection

system,’’ in Proc. Int. Conf. Comput. Appl. Inf. Secur. (ICCAIS), Riyadh,

Saudi Arabia, Apr. 2018, pp. 1–7, doi: 10.1109/CAIS.2018.8471688.

[22] N. Biasini. (Oct. 2017). Threat Spotlight: Follow the Bad Rabbit. [Online].

Available: https://blog.talosintelligence.com/2017/10/bad- rabbit.html

[23] W. Wang. (Mar. 2018). MS17-010/zzzexploit.py. [Online]. Available:

https://github.com/worawit/MS17-010/blob/master/zzz_exploit.py

[24] S. Hurley and S. Frankoff. (Nov. 2017). BadRabbit MS17-010

Exploitation Part One: Leak and Control. [Online]. Available: https:

//www.crowdstrike.com/blog/badrabbit-ms17-010-exploitation- part-one-

leak-and-control/

[25] L. Dusseault. (Jun. 2007).HTTP Extensions for Web Distributed Authoring

and Versioning (WebDAV). [Online]. Available: http://www.webdav.org/

specs/rfc4918.html

[26] N. Pyle. (Sep. 2016). Stop using SMB1—Microsoft Tech Community-

425858. [Online]. Available: https://techcommunity.microsoft.

com/t5/storage-at-microsoft/stop-using-smb1/ba-p/425858

[27] (Jul. 2020). Indiana University Knowledge Base, About the SMBv1 Retire-

ment. [Online]. Available: https://kb.iu.edu/d/aumn

[28] R. Woundy and K. Marez. (Dec. 2006). Cable Device Management Infor-

mation Base for Data-Over-Cable Service Interface Specification (DOC-

SIS), [Online]. Available: https://tools.ietf.org/html/rfc4639

[29] J. McCauley. (Jun. 2015). Installing POX—GitHub Pages. [Online]. Avail-

able: https://noxrepo.github.io/pox-doc/html/

[30] F. M. Alotaibi. (Sep. 2020). SDN Ransomware Detection. [Online]. Avail-

able: https://github.com/Falkarshmi/SDN-Ransomware-Detection

[31] F. M. Alotaibi. (Sep. 2020). CPU-Measure/CPU.py. [Online]. Available:

https://github.com/Falkarshmi/CPU-Measure/blob/master/CPU.py

[32] I. Gofman. (Oct. 2017). Advanced Threat Analytics Security

Research Network Technical Analysis: NotPetya. [Online]. Available:

https://www.microsoft.com/security/blog/2017/10/03/advanced-threat-

analytics-security-research-network-technical-analysis-notpetya/

[33] PwC. (2017). Petya Ransomware-Strategic Report. [Online]. Avail-

able: https://www.pwc.com/vn/en/assurance/assets/pwc-petya- strategic-

report.pdf

[34] M. Hussain, N. Shah, and A. Tahir, ‘‘Graph-based policy change detec-

tion and implementation in SDN,’’ Electronics, vol. 8, no. 10, pp. 1–21,

Oct. 2019, doi: 10.3390/electronics8101136.

[35] M. Hussain and N. Shah, ‘‘Automatic rule installation in case of policy

change in software defined networks,’’ Telecommun. Syst., vol. 68, no. 3,

pp. 461–477, Nov. 2017, doi: 10.1007/s11235-017-0404-2.

[36] H. Hu, W. Han, S. Kyung, J. Wang, G.-J. Ahn, Z. Zhao, and H. Li,

‘‘Towards a reliable firewall for software-defined networks,’’ Comput.

Secur., vol. 87, pp. 1–17, Nov. 2019, doi: 10.1016/j.cose.2019.101597.

FAHAD M. ALOTAIBI received the bachelor’s

degree in computer science and networking from

Shaqra University, Saudi Arabia, and the master’s

degree in cybersecurity from the University of

York, U.K. During his B.A. studies, he has worked

as a Freelancer in two fields such as penetration

testing and e-commerce. He currently works as a

Teaching Assistant with Najran University. During

his work at Najran University, he was assigned

to provide several courses for students to develop

them in penetration testing in addition to e-commerce. He obtained the

Scholarship from Najran University for his master’s degree.

VASSILIOS G. VASSILAKIS received the Ph.D.

degree in electrical and computer engineering

from the University of Patras, Greece, in 2011.

He is currently a Lecturer (an Assistant Pro-

fessor) in cyber security with the University of

York, U.K. He has been involved in EU, U.K.,

and industry funded research and development

projects related to the design and analysis of future

mobile networks and Internet technologies. His

main research interests include network security,

the Internet of Things, next-generation wireless and mobile networks, and

software-defined networks. He has served as an Associate Editor for IEICE

Transactions on Communications, IET Networks, andOptical Switching and

Networking (Elsevier).

28058 VOLUME 9, 2021

