
This is a repository copy of Assuring the Machine Learning Lifecycle: Desiderata,
Methods, and Challenges.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/172234/

Version: Accepted Version

Article:

Paterson, Colin orcid.org/0000-0002-6678-3752, Calinescu, Radu orcid.org/0000-0002-
2678-9260 and Ashmore, Rob (2021) Assuring the Machine Learning Lifecycle:
Desiderata, Methods, and Challenges. ACM Computing Surveys. 111. ISSN 0360-0300

https://doi.org/10.1145/3453444

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Assuring the Machine Learning Lifecycle: Desiderata,
Methods, and Challenges

ROB ASHMORE∗2, Defence Science and Technology Laboratory, UK

RADU CALINESCU∗, University of York and Assuring Autonomy International Programme, UK

COLIN PATERSON∗, University of York and Assuring Autonomy International Programme, UK

Machine learning has evolved into an enabling technology for a wide range of highly successful applications.
The potential for this success to continue and accelerate has placed machine learning (ML) at the top of
research, economic and political agendas. Such unprecedented interest is fuelled by a vision of ML applicability
extending to healthcare, transportation, defence and other domains of great societal importance. Achieving
this vision requires the use of ML in safety-critical applications that demand levels of assurance beyond those
needed for current ML applications. Our paper provides a comprehensive survey of the state-of-the-art in the
assurance of ML, i.e. in the generation of evidence that ML is sufficiently safe for its intended use. The survey
covers the methods capable of providing such evidence at different stages of the machine learning lifecycle, i.e.
of the complex, iterative process that starts with the collection of the data used to train an ML component
for a system, and ends with the deployment of that component within the system. The paper begins with
a systematic presentation of the ML lifecycle and its stages. We then define assurance desiderata for each
stage, review existing methods that contribute to achieving these desiderata, and identify open challenges
that require further research.

CCS Concepts: · Computing methodologies → Machine learning;Model verification and validation;
· General and reference → Surveys and overviews;

Additional Key Words and Phrases: Machine learning lifecycle, machine learning workflow, safety-critical

systems, assurance, assurance evidence

ACM Reference Format:

Rob Ashmore, Radu Calinescu, and Colin Paterson. 0. Assuring the Machine Learning Lifecycle: Desiderata,
Methods, and Challenges. ACM Comput. Surv. 0, 0, Article 0 (0), 37 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

The recent success of machine learning (ML) has taken the world by storm.While far from delivering
the human-like intelligence postulated by Artificial Intelligence pioneers [39], ML techniques such
as deep learning have remarkable applications. The use of these techniques in products ranging
from smart phones [8, 137] and household appliances [79] to recommender systems [36, 139] and
automated translation services [186] has become commonplace. There is a widespread belief that

∗Authors contributed equally to the paper
2Research carried out while the author was a Visiting Fellow of the Assuring Autonomy International Programme.

Authors’ addresses: Rob Ashmore, Defence Science and Technology Laboratory, UK, rdashmore@dstl.gov.uk; Radu Calinescu,
University of York and Assuring Autonomy International Programme, UK, radu.calinescu@york.ac.uk; Colin Paterson,
University of York and Assuring Autonomy International Programme, UK, colin.paterson@york.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 0 Association for Computing Machinery.
0360-0300/0/0-ART0 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:2 Rob Ashmore, Radu Calinescu, and Colin Paterson

this is just the beginning of an ML-enabled technological revolution [55, 107]. Stakeholders as
diverse as researchers, industrialists, policy makers and the general public envisage that ML will
soon be at the core of novel applications and services used in healthcare, transportation, defence
and other key areas of economy and society [11, 41, 74, 90, 111].
Achieving this vision requires a step change in the level of assurance provided for ML. The

occasional out-of-focus photo taken by an ML-enabled smart camera can easily be deleted, and
the selection of an odd word by an automated translation service is barely noticed. Although
increasingly rare, similar ML errors may be unacceptable in medical diagnosis applications or
self-driving cars. For such safety-critical systems, ML errors can lead to failures that cannot be
reverted or ignored, and ultimately cause harm to their users or operators. Therefore, the use of
ML to synthesise components of safety-critical systems must be assured by evidence that these ML

components are fit for purpose and adequately integrated into their systems. This evidence must be
sufficiently thorough. Where required by the domain, it must enable the creation of compelling
assurance cases [21, 122] that explain why the systems can be trusted for their intended applications.
Given this need, within this paper, we use the term assurance to refer to evidence that supports
safety arguments, rather than in a more general quality-related manner. Although we focus on
evidence, we note that the argument structure needs to be credible [92].

Our paper represents the first survey of the methods available for obtaining evidence concerning
ML components for use in assurance cases, with a focus on ML techniques that synthesise system
components (e.g., classifiers) from incomplete training data. As with any engineering artefact,
assurance can only be provided by understanding the complex, iterative process employed to
produce and use ML components, i.e., the machine learning lifecycle. We therefore start by defining
this lifecycle, which consists of four interrelated stages carried out following a spiral process
model [22]. A number of activities are associated with each stage. The ML lifecycle stages and
activities presented in the paper are derived from our study of the existing research literature, and
our practical experience from over 15 Assuring Autonomy International Programme projects on
the assurance and regulation of robotics and autonomous systems.1

The first stage, Data Management, focuses on obtaining the data sets required for the training
and for the verification of the ML components. This stage includes activities ranging from data
collection to data preprocessing [94] (e.g., labelling) and augmentation [140]. The second stage,
Model Learning, comprises the activities associated with synthesis of the ML component starting
from the training data set. The actual machine learning happens in this stage, which also includes
activities such as selection of the ML algorithm and hyperparameters [17, 166]. The third stage,
Model Verification, is responsible for providing evidence to demonstrate that the synthesised ML
component complies with its requirements. This stage is essential for the ML components of
safety-critical systems. Finally, the last stage of the ML lifecycle is Model Deployment. This stage
focuses on the integration and operation of the ML component within a fully-fledged system.
To ensure a systematic coverage of ML assurance methods, we structure our survey based on

the assurance considerations that apply at the four stages of the ML lifecycle. For each stage, we
identify the assurance-related desiderata (i.e. the key assurance requirements, derived from the body
of research covered in our survey) for the artefacts produced by that stage. The relative importance
of these desiderata will be largely context dependent. Indeed, it may be necessary for the engineer
to agree where it is appropriate to find trade-offs between desiderata within, and between, ML
lifecycle stages. By considering all of the proposed desiderata, with respect to the operating context,
a more compelling assurance argument may be constructed. We then present the methods available
for achieving these desiderata, with their assumptions, advantages and limitations. This represents

1https://www.york.ac.uk/assuring-autonomy/projects/

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:3

an analysis of over two decades of sustained research on ML methods for data management, model
learning, verification and deployment. Finally, we determine the open challenges that must be
addressed through further research in order to fully satisfy the stage desiderata and to enable the
use of ML components in safety-critical systems. Much like the desiderata, the relative importance
of these challenges will be dependent on the operating context, and hence ranking them is outside
of scope of this work.
Our survey and the machine learning lifecycle underpinning its organisation are relevant to a

broad range of ML types, including supervised, unsupervised and reinforcement learning. Nec-
essarily, some of the methods presented in the survey are only applicable to specific types of
ML; we clearly indicate where this is the case. As such, the survey supports a broad range of
ML stakeholders, ranging from practitioners developing convolutional neural networks for the
classification of road signs in self-driving cars, to researchers devising new ensemble learning
techniques for safety-critical applications, and to regulators managing the introduction of systems
that use ML components into everyday use.
The rest of the paper is structured as follows. In Section 2, we present the machine learning

lifecycle, describing the activities encountered within each of its stages and introducing ML ter-
minology used throughout the paper. In Section 3, we overview the few existing surveys that
discuss verification, safety or assurance aspects of machine learning. We explain that each of these
surveys focuses on a specific ML lifecycle stage or subset of activities, and/or addresses only a
narrow aspect of ML assurance. The ML assurance desiderata, methods and open challenges for
the four stages of the ML lifecycle are then detailed in Sections 4 to 7. Together, these sections
provide a comprehensive set of guidelines for the developers of safety-critical systems with ML
components, and inform researchers about areas where additional ML assurance methods are
needed. We conclude the paper with a brief summary in Section 8.

2 THE MACHINE LEARNING LIFECYCLE

Machine learning provides mechanisms for the extraction of models (or patterns) from data [20, 60,
120]. In this paper we are concerned with the use of such ML models in safety-critical systems, e.g.,
to enable these systems to understand the environment they operate in, and to decide their response
to changes in the environment. Assuring this use of ML models requires an in-depth understanding
of the machine learning lifecycle, i.e., of the process used for their development and integration into
a fully-fledged system. Like traditional system development, this process is underpinned by a set
of system-level requirements, from which the requirements and operating constraints for the ML
models are derived. As an example, the requirements for a ML model for the classification of British
road signs can be derived from the high-level requirements for a self-driving car intended to be
used in the UK. However, unlike traditional development processes, the development of ML models
involves the acquisition of data sets, and experimentation [114, 189], i.e., the manipulation of these
data sets and the use of ML training techniques to produce models of the data that optimise error
functions derived from requirements. This experimentation yields a processing pipeline capable
of taking data as input and of producing ML models which, when integrated into the system and
applied to data unseen during training, achieve their requirements in the deployed context.
As shown in Figure 1, the machine learning lifecycle consists of four stages. The first three

stagesÐData Management,Model Learning, andModel VerificationÐcomprise the activities by which
machine-learnt models are produced. Accordingly, we use the term machine learning workflow to
refer to these stages taken together. The fourth stage, Model Deployment, comprises the activities
concerned with the deployment of ML models within an operational system, alongside components
obtained using traditional software and system engineering methods. We provide brief descriptions
of each of these stages below.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:4 Rob Ashmore, Radu Calinescu, and Colin Paterson

Data Management

Preprocessing

Model Learning Model Verification

Collection Augmentation
Requirements

Analysis
Hyperparameter

Selection

Model

Selection

Transfer

Learning

Requirement

Encoding

Monitor Analysis Plan

Machine Learning Workflow

Training Formal
Verification

Training set

Trained

Model

Verification

Result

ML Understanding

Traditional

 Understanding

ML Deciding

Traditional

 Deciding

Verified

Model

Operational

data

Test-based

Verification

Environment

Verification

set

Model Deployment

MonitoringIntegration

UpdatingExecute

Performance

deficit report

Fig. 1. The machine learning lifecycle comprises four stages performed using a spiral process model.

Data is at the core of any application of machine learning. As such, the ML lifecycle starts with a
Data Management stage. This stage is responsible for the acquisition of the data underpinning the
synthesis of machine learnt models that can then be used łto predict future data, or to perform
other kinds of decision making under uncertaintyž [120]. This stage comprises four key activities,
and produces the training data set and verification data set used for the training and verification of
the ML models in later stages of the ML lifecycle, respectively. The first data management activity,
collection [59, 174], is concerned with gathering data samples through observing and measuring
the real-world (or a representation of the real-world) system, process or phenomenon for which
an ML model needs to be built. When data samples are unavailable for certain scenarios, or their
collection would be too costly, time consuming or dangerous, augmentation methods [140, 185]
are used to add further data samples to the collected data sets. Additionally, the data collected
from multiple sources may be heterogeneous in nature, and therefore preprocessing [93, 191] may
be required to produce consistent data sets for training and verification purposes. Preprocessing
may also seek to reduce the complexity of collected data or to engineer features to aid in training
[64, 86]. Furthermore, preprocessing may be required to label the data samples when they are used
in supervised ML tasks [59, 60, 120]. The need for additional data collection, augmentation and
preprocessing is established through the analysis of the data [133].
In the Model Learning stage of the machine learning lifecycle, the ML engineer typically starts

by selecting the type of model to be produced. This model selection is undertaken with reference
to the problem type (e.g., classification or regression), the volume and structure of the training
data [113, 152], and often in light of personal experience. A loss function is then constructed as a
measure of training error. The aim of the training activity is to produce an ML model that minimises
this error. This requires the development of a suitable data use strategy, so as to determine how
much of the training data set should be held for model validation,2 and whether all the other

2Model validation represents the frequent evaluation of the ML model during training, and is carried out by the development
team in order to calibrate the training algorithm. This differs essentially from what validation means in software engineering
(i.e., an independent assessment performed to establish whether a system satisfies the needs of its intended users).

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:5

data samples should be used together for training or łminibatch methodsž that use subsets of
data samples over successive training cycles should be employed [60]. The ML engineer is also
responsible for hyperparameter selection, i.e., for the choosing the parameters of the training
algorithm. Hyperparameters control key ML model characteristics such as overfitting, underfitting
and model complexity. Finally, when models or partial models that have proved successful within
a related context are available, transfer learning enables their integration within the new model
architecture or their use as a starting point for training [124, 135, 160]. When the resulting ML
model achieves satisfactory levels of performance, the next stage of the MLworkflow can commence.
Otherwise, the process needs to return to the Data Management stage, where additional data are
collected, augmented, preprocessed and analysed in order to improve the training further.
The third stage of the ML lifecycle is Model Verification. The central challenge of this stage is

to ensure that the trained model performs well on new, previously unseen inputs (this is known
as generalization) [59, 60, 120]. As such, the stage comprises activities that provide evidence of
the model’s ability to generalise to data not seen during the model learning stage. A test-based

verification activity assesses the performance of the learnt model against the verification data set
that the Data Management stage has produced independently from the training data set. This data
set will have commonalities with the training data, but it may also include elements that have been
deliberately chosen to demonstrate a verification aim, which it would be inappropriate to include in
the training data. When the data samples from this set are presented to the model, a generalization
error is computed [121, 159]. If this error violates performance criteria established by a requirement

encoding activity, then the process needs to return to either the Data Management stage or the
Model Learning stage of the ML lifecycle. Additionally, a formal verification activity may be used to
verify whether the model complies with a set of formal properties that encode key requirements for
the ML component. Formal verification methods such as model checking and mathematical proof
allow for these properties to be rigorously established before the ML model is deemed suitable
for integration into the safety-critical system. As for failed testing-based verification, further Data
Management and/or Model Learning activities are necessary when these properties do not hold.
The precise activities required from these earlier stages of the ML workflow are determined by the
verification result, which summarises the outcome of all verification activities.
Assuming that the verification result contains all the required assurance evidence, a system

that uses the now verified model is assembled in the Model Deployment stage of the ML lifecycle.
This stage comprises activities concerned with the integration of verified ML model(s) with system
components developed and verified using traditional software engineering methods, with the
monitoring of its operation, and with its updating thorough offline maintenance or online learning.
The outcome of the Model Deployment stage is a fully-fledged deployed and operating system.

More often than not, the safety-critical systems envisaged to benefit from the use of ML models
are autonomous or self-adaptive systems that require ML components to cope with the dynamic
and uncertain nature of their operating environments [29, 90, 111]. As such, Figure 1 depicts this
type of system as the outcome of the Model Deployment stage. Moreover, the diagram shows two
key roles that ML models may play within the established monitor-analyse-plan-execute (MAPE)
control loop [72, 84, 110] of these systems. We end this section with a brief description of the MAPE
control loop and of these typical uses of ML models within it.
In its four steps, the MAPE control loop senses the current state of the environment through

monitoring, derives an understanding of the world through the analysis of the sensed data, decides
suitable actions through planning, and then acts upon these plans through executing their actions.
Undertaking these actions alters the state of the system and the environment in which it operates.
The monitoring step employs hardware and software components that gather data as a set of

samples from the environment during operation. The choice of sensors requires an understanding

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:6 Rob Ashmore, Radu Calinescu, and Colin Paterson

of the system requirements, the intended operational conditions, and the platform into which they
will be deployed. Data gathered from the environment will typically be partial and imperfect due
to physical, timing and financial constraints.
The analysis step extracts features from data samples as encoded domain-specific knowledge.

This can be achieved through the use of ML models combined with traditional software components.
The features extracted may be numerical (e.g., blood sugar level in a healthcare system), ordinal
(e.g., position in queue in a traffic management system) or categorical (e.g., an element from the
set {car, bike, bus} in a self-driving car). The features extracted through analysing the data sets
obtained during monitoring underpin the understanding of the current state of the environment
and that of the system itself.

The planning (or decision) step can employ a combination of MLmodels and traditional reasoning
engines in order to select a course of action to be undertaken. The action(s) selected will aim to
fulfil the system requirements subject to any defined constraints. The action set available is dictated
by the capabilities of the system, and is restricted by operating conditions and constraints defined
in the requirements specification.
Finally, in the execution step, the system enacts the selected actions through software and

hardware effectors and, in doing so, changes the environment within which it is operating. The
dynamic and temporal nature of the system and the environment requires the MAPE control loop
to be invoked continuously until a set of system-level objectives has been achieved or a stopping
criterion was reached.

New data samples gathered during operation can be exploited by the Data Management activities
and, where appropriate, newmodels may be learnt and deployedwithin the system. This deployment
of new ML models can be carried out either as an offline maintenance activity, or through the
online updating of the operating system.

3 RELATED SURVEYS

The large and rapidly growing body of ML research is summarised by a plethora of surveys. The
vast majority of these surveys narrowly focus on a particular type of ML, and do not consider
assurance explicitly. Due to space constraints, we discuss these surveys in Appendix A from our
online supplementary material.

4 DATA MANAGEMENT

Fundamentally, all ML approaches start with data. These data describe the desired relationship
between the ML model inputs and outputs, the latter of which may be implicit for unsupervised
approaches. Equivalently, these data encode the requirements we wish to be embodied in our ML
model. Consequently, any assurance argument needs to explicitly consider data.

4.1 Inputs and Outputs

The key input artefact to the Data Management stage is the set of requirements that the model is
required to satisfy. These may be informed by verification artefacts produced by earlier iterations
of the ML lifecycle. The key output artefacts from this stage are data sets: there is a combined
data set that is used by the development team for training and validating the model; there is also a
separate verification data set, which can be used by an independent verification team.

4.2 Activities

4.2.1 Collection. This activity is concerned with collecting data from an originating source. These
data may be subsequently enhanced by other activities within the Data Management stage. New
data may be collected, or a pre-existing data set may be re-used (or extended). Data may be obtained

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:7

from a controlled process, or they may arise from observations of an uncontrolled process: this
process may occur in the real world, or it may occur in a synthetic environment.

4.2.2 Preprocessing. For the purposes of this paper we assume that preprocessing is a one-to-one
mapping: it adjusts each collected (raw) sample in an appropriate manner. It is often concerned
with standardising the data in some way, e.g., ensuring all images are of the same size [97]. Manual
addition of labels to collected samples is another form of preprocessing.

4.2.3 Augmentation. Augmentation increases the number of samples in a data set. Typically, new
samples are derived from existing samples, so augmentation is, generally, a one-to-many mapping.
Augmentation is often used due to the difficulty of collecting observational data (e.g., for reasons of
cost or ethics [140]). Augmentation can also be used to help instil certain properties in the trained
model, e.g., robustness to adversarial examples [61].

4.2.4 Analysis. Analysis may be required to guide aspects of collection and augmentation (e.g.,
to ensure there is an appropriate class balance within the data set). Exploratory analysis is also
needed to provide assurance that Data Management artefacts exhibit the desiderata below.

4.3 Desiderata

From an assurance perspective, the data sets produced during the Data Management stage should
exhibit the following key properties:

(1) RelevantÐThis property considers the intersection between the data set and the desired
behaviour in the intended operational domain. For example, a data set that only included
German road signs would not be Relevant for a system intended to operate on UK roads.

(2) CompleteÐThis property considers the way samples are distributed across the input domain
and subspaces of it. In particular, it considers whether suitable distributions and combinations
of features are present. For example, an image data set that displayed an inappropriate
correlation between image background and type of animal would not be complete [138].

(3) BalancedÐThis property considers the distribution of features that are included in the data
set. For classification problems, a key consideration is the balance between the number of
samples in each class [63]. This property takes an internal perspective; it focuses on the data
set as an abstract entity to which a generic learning algorithm will be applied. In contrast,
the Complete property takes an external perspective; it considers the data set within the
intended operational domain.

(4) AccurateÐThis property considers how measurement (and measurement-like) issues can
affect the way that samples reflect the intended operational domain. It covers aspects like
sensor accuracy and labelling errors [26]. The correctness of data collection and preprocessing
software is also relevant to this property, as is configuration management.

Conceptually, since it relates to real-world behaviour, the Relevant desideratum is concerned
with validation. The other three desiderata are concerned with aspects of verification.

4.4 Methods

This section considers each of the four desiderata in turn. Methods that can be applied during each
Data Management activity, in order to help achieve the desired key property, are discussed.

4.4.1 Relevant. By definition, a data set collected during the operational use of the planned system
will be relevant. However, this is unlikely to be a practical way of obtaining all required data.

If the approach adopted for data collection involves re-use of a pre-existing data set, then it
needs to be acquired from an appropriate source. Malicious entries in the data set can introduce

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:8 Rob Ashmore, Radu Calinescu, and Colin Paterson

a backdoor, which causes the model to behave in an attacker-defined way on specific inputs (or
small classes of inputs) [35]. Despite recent research into the detection of backdoors [100, 148, 178],
it remains an open challenge (listed as DM01 in Table 2 at the end of Section 4). It follows that
pre-existing data sets should be obtained from trustworthy sources via means that provide strong
guarantees on integrity during transit.

If the data samples are being collected from controlled trials, thenwewould require an appropriate
experimental plan that justifies the choice of feature values (inputs) included in the trial. If the
trial involves real-world observations then traditional experimental design techniques will be
appropriate [87]. Conversely, if the trial is conducted entirely in a simulated environment then
techniques for the design and analysis of computer experiments will be beneficial [146].

If the data set contains synthetic samples (either from collection or as a result of augmentation)
then we would expect evidence that the synthesis process is appropriately representative of the
real-world. Often, synthesis involves some form of simulation, which ought to be suitably verified
and validated [149], as there are examples of ML-based approaches affected by simulation bugs [37].
Demonstrating that synthetic data is appropriate to the real-world intended operational domain,
rather than a particular idiosyncrasy of a simulation, is an open challenge (DM02 in Table 2).
A data set can be made irrelevant by data leakage. This occurs when the training data includes

information that will be unavailable to the system within which the ML model will be used [83].
One way of reducing the likelihood of leakage is to only include in the training data features
that can łlegitimatelyž be used to infer the required output. For example, patient identifiers are
unlikely to be legitimate features for any medical diagnosis system, but may have distinctive values
for patients already diagnosed with the condition that the ML model is meant to identify [142].
Exploratory data analysis (EDA) [171] can help identify potential sources of leakage: a surprising
degree of correlation between a feature and an output may be indicative of leakage. That said,
detecting and correcting for data leakage is an open challenge (DM03 in Table 2).

Although it appears counter-intuitive, augmenting a data set by including samples that are highly
unlikely to be observed during operational use can increase relevance. For classification problems,
adversarial inputs [162] are specially crafted inputs that a human would classify correctly but are
confidently mis-classified by a trained model. Including adversarial inputs with the correct class in
the training data [125] can help reduce mis-classification and hence increase relevance. Introducing
an artificial unknown, or łdustbinž, class and augmenting the data with suitably placed samples
attributed to this class [1] can also help.

Finally, unwanted bias (i.e., systematic error ultimately leading to unfair advantage for a privileged
class of system users) can significantly impact the relevance of a data set. This can be addressed using
preprocessing techniques that remove the predictability of data features such as ethnicity, age or
gender [52] or augmentation techniques that involve data relabelling/reweighing/resampling [80]. It
can also be addressed during the Model Learning and Model Deployment stages. An industry-ready
toolkit that implements a range of methods for addressing unwanted bias is available [16].

4.4.2 Complete. Recall that this property is about how the data set is distributed across the input
domain. For the purposes of our discussion, we define four different, but overlapping, spaces related
to that domain:

(1) The input domain space, I, which is the set of inputs that the model can accept. Equivalently,
this set is defined by the input parameters of the software implementation that instantiates
the model.

(2) The operational domain space, O ⊂ I, which is the set of inputs that the model may be
expected to receive when used within the intended operational domain.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:9

(3) The failure domain space, F ⊂ I, which is the set of inputs the model may receive if there
are failures elsewhere in the system. The distinction between F and O is best conveyed by
noting that F covers system states, whilst O covers environmental effects: a cracked camera
lens should be covered in F ; a fly on the lens should be covered in O.

(4) The adversarial domain space, A ⊂ I, which is the set of inputs the model may receive if it
is being attacked by an adversary. This includes adversarial examples, where small changes
to an input cause mis-classification [162], as well as more general cyber-related attacks.

The consideration of whether a data set is complete with regards to the input domain can be
informed by simple statistical analysis and EDA [171], supported by discussions with experts from
the intended operational domain. Simple plots showing the marginal distribution of each feature
can be surprisingly informative. Similarly, the ratio of sampling density between densely sampled
and sparsely sampled regions is informative [19] as is, for classification problems, identifying
regions that only contain a single class [12]. Identifying any large empty hyper-rectangles (EHRs)
[98], which are large regions without any samples, is also important. If an operational input comes
from the central portion of a large EHR then, generally speaking, it is appropriate for the system to
know the model is working from an area for which no training data were provided.

Shortfalls in completeness across the input domain can be addressed via collection or augmenta-
tion. Since a shortfall will relate to a lack of samples in a specific part of the input domain, further
collection is most appropriate in the case of controlled trials. The risk of too much data yielding
spurious correlations should also be considered [30].

Understanding completeness from the perspective of the operational domain space is challenging.
Typically, we would expect the input space I to be high-dimensional, with O being a much lower-
dimensional manifold within that space [150]. Insights into the scope of O can be obtained by
requirements decomposition. The notion of situation coverage [5] generalises these considerations.
Lists of factors, based on the operational design domain, as well as object and event detection and
response can also be useful [91].
If an increased coverage of O is needed, then this could be achieved via the use of a generative

adversarial network (GAN)3 [10] that has been trained to model the distributions of each class.
Although the preceding paragraphs have surveyed multiple methods, understanding complete-

ness across the operational domain remains an open challenge (DM04 in Table 2).
Completeness across the F space can be understood by systematically examining the system

architecture to identify failures that could affect the model’s input. Note that the system architecture
may protect the model from the effects of some failures: for example, the systemmay not present the
model with images from a camera that has failed its built-in test. In some cases it may be possible to
collect samples that relate to particular failures. However, for reasons of cost, practicality and safety,
augmentation is likely to be needed to achieve suitable completeness of this space [6]. Finding
verifiable ways of achieving this augmentation is an open challenge (DM05 in Table 2).

Understanding completeness across the adversarial domain A involves checking: the model’s
susceptibility to known ways of generating adversarial examples [61, 117, 162, 188]; and its be-
haviour when presented with inputs crafted to achieve some other form of behaviour, for example,
a not-a-number (NaN) error. Whilst they are useful, both of these methods are subject to the
łunknown unknownsž problem. More generally, demonstrating completeness across the adversarial
domain is an open challenge (DM06 in Table 2).

4.4.3 Balanced. This property is concerned with the distribution of the data set, viewed from an
internal perspective. Initially, it is easiest to think about balance solely from the perspective of

3A GAN is a network specifically designed to provide inputs for another network. A classification network tries to learn the
boundary between classes, whereas a GAN tries to learn the distribution of individual classes.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:10 Rob Ashmore, Radu Calinescu, and Colin Paterson

supervised classification, where a key consideration is the number of samples in each class. If this
is unbalanced then simple measures of performance (e.g., classifier accuracy) may be insufficient
[101].
As it only involves counting the number of samples in each class, detecting class imbalance is

straightforward. Its effects can be countered in several ways; for example, in the Model Learning and
Model Verification stages, performance measures can be class-specific, or weighted to account for
class imbalance [63]. Importance weighting can, however, be ineffective for deep networks trained
for many epochs [28]. Alternatively, or additionally, in the Data Management stage augmentation
can be used to correct (or reduce) the class imbalance, either by oversampling the minority class,
or by undersampling the majority class, or using a combination of these approaches4 [101]. If data
are being collected from a controlled trial then another approach to addressing class imbalance is
to perform additional collection, targeted towards the minority class.
Class imbalance can be viewed as being a special case of rarity [182]. Another way rarity can

manifest is through small disjuncts, which are small, isolated regions of the input domain that
contain a single class. Analysis of single-class regions [12] can inform the search for small disjuncts,
as can EDA and expertise in the intended operational domain. Nevertheless, finding small disjuncts
remains an open challenge (DM07 in Table 2).
Class imbalance can also be viewed as a special case of a phenomenon that applies to all ML

approaches: feature imbalance. Suppose we wish to create a model that applies to people of all ages.
If almost all of our data relate to people between the ages of 20 and 40, we have an imbalance in this
feature. Situations like this are not atypical when data is collected from volunteers. Detecting such
imbalances is straightforward; understanding their influence on model behaviour and correcting
for them are both open challenges (DM08 and DM09 in Table 2).

4.4.4 Accurate. Recall that this property is concerned with measurement (and measurement-like)
issues. If sensors are used to record information as part of data collection then both sensor precision
and accuracy need to be considered. If either of these is high, there may be benefit in augmenting
the collected data with samples drawn from a distribution that reflects precision or accuracy errors.
For supervised learning, accuracy of labels is an important issue. When labelling is being con-

ducted by a large group of people, using a form of crowdsourcing, there are two key issues: quality
control in task processing and postprocessing to improve data quality [155]. For some especially
sensitive applications, performing all labelling using a comparatively small number of in-house staff
may be preferable [164]. Regardless of who performs the labelling, the actual value of a feature is
often unambiguously defined [157]. However, in some cases this may not be possible: for example,
is a person walking astride a bicycle a pedestrian or a cyclist? In some cases, ambiguity may be
unimportant; in others it might be critical. Consequently, labelling discrepancies are likely, espe-
cially when labels are generated by humans. Preventing, detecting and resolving these discrepancies
is an open challenge (DM10 in Table 2).

The data collection process should generally be documented in a way that accounts for potential
weaknesses in the approach. If the process uses manual recording of information, we would expect
steps to be taken to ensure attention does not waver and records are accurate. Conversely, if the
data collection process uses logging software, confidence that this software is behaving as expected
should be obtained, e.g. using traditional approaches for software quality [75, 143].

This notion of correct behaviour applies across all software used in the Data Management stage
(and to all software used in the ML lifecycle). Data collection software may be relatively simple,
merely consisting of an automatic recording of sensed values. Alternatively, it may be very complex,

4Note that the last two approaches involve removing samples (corresponding to the majority class) from the data set; this
differs from the normal view whereby augmentation increases the number of samples in the data set.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:11

Table 1. Assurance methods for the Data Management stage

Associated activities† Supported desiderata‡

Method Collection Preprocess. Augment. Analysis Relevant Complete Balanced Accurate

Use trusted data sources, with

data-transit integrity guarantees
✔ ★

Experimental design [87], [146] ✔ ✔ ★ ★ ✩

Simulation verification and

validation [149]
✔ ★ ✩ ✩

Exploratory data analysis [171] ✔ ★ ★

Use adversarial examples [125] ✔ ✩ ★

Include a łdustbinž class [1] ✔ ✩ ★

Remove unwanted bias [16] ✔ ✔ ★ ✩

Compare sampling density [19] ✓ ✔ ★ ✩

Identify empty and single-class

regions [98], [12]
✓ ✔ ★ ✩

Use situation coverage [5] ✔ ★

Examine system failure cases ✔ ★

Oversampling & undersampling [101] ✔ ★ ★

Check for within-class [76] and

feature imbalance
✔ ★

Use a GAN [10] ✔ ★ ✩

Augment data to account for sensor

errors
✓ ✔ ✩ ★

Confirm correct software behaviour

[75], [143]
✓ ✔ ✔ ✓ ✩ ★ ✩ ✩

Use documented processes ✔ ✔ ✔ ✔ ✩ ★

Apply configuration management

[75], [143]
✔ ✔ ✔ ✔ ✩ ★

†
✔ = activity that the method is typically used in; ✓= activity that may use the method

‡
★ = desideratum supported by the method; ✩ = desideratum partly supported by the method

involving a highly-realistic simulation of the intended operational domain. The amount of evidence
needed to demonstrate correct behaviour is related to the complexity of the software. Providing
sufficient evidence for a complex simulation is an open challenge (DM11 in Table 2).
Given their importance, data sets should be protected against unintentional and unauthorised

changes. Methods used in traditional software development (e.g., [75, 143]) may be appropriate for
this task, but they may be challenged by the large volume and by the non-textual nature of many
of the data sets used in ML.

4.5 Summary and Open Challenges

Table 1 summarises the assurance methods that can be applied during the Data Management stage.
For ease of reference, the methods are presented in the order they were introduced in the preceding
discussion. Methods are also matched to activities and desiderata.
Table 1 shows that there are relatively few methods associated with the preprocessing activity.

This may be because preprocessing is, inevitably, problem-specific. Likewise, there are few methods
associated with the Accurate desideratum. This may reflect the widespread use of commonly
available data sets (e.g., ImageNet [40] and MNIST) within the research literature, which de-
emphasises issues associated with data collection and curation, like Accuracy.

Open challenges associated with the Data Management stage are shown in Table 2. The relevance
and nature of these challenges have been established earlier in this section. For ease of reference,
each challenge is matched to the artefact desideratum that it is most closely related to. It is apparent

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:12 Rob Ashmore, Radu Calinescu, and Colin Paterson

Table 2. Open challenges for the assurance concerns associated with the Data Management (DM) stage

ID Open Challenge Desideratum (Section)

DM01 Detecting backdoors in data

Relevant (Section 4.4.1)DM02 Demonstrating synthetic data appropriateness to the operational domain

DM03 Detecting and correcting for data leakage

DM04 Measuring completeness with respect to the operational domain

Complete (Section 4.4.2)DM05 Deriving ways of drawing samples from the failure domain

DM06 Measuring completeness with respect to the adversarial domain

DM07 Finding small disjuncts, especially for within-class imbalances

Balanced (Section 4.4.3)DM08 Understanding the effect of feature imbalance on model performance

DM09 Correcting for feature imbalance

DM10 Maintaining consistency across multiple human collectors/preprocessors
Accurate (Section 4.4.4)

DM11 Verifying the accuracy of a complex simulation

that, with the exception of understanding the effect of feature imbalance on model performance,
these open challenges do not relate to the core process of learning a model. As such, they emphasise
important areas that are insufficiently covered in the research literature. Examples include being
able to demonstrate: that the model is sufficiently secureÐfrom a cyber perspective (open challenge
DM01); that the data are fit-for-purpose (DM02, DM03); that the data cover operational, failure and
adversarial domains (DM04, DM05, DM06); that the data are balanced, across and within classes
(DM07, DM08, DM09); that manual data collection has not been compromised (DM10); and that
simulations are suitably detailed and representative of the real world (DM11).

5 MODEL LEARNING

The Model Learning stage of the ML lifecycle is concerned with creating a model, or algorithm, from
the data presented to it. A good model will replicate the desired relationship between inputs and
outputs present in the training set, and will satisfy non-functional requirements such as providing
an output within a given time and using an acceptable amount of computational resources.

5.1 Inputs and Outputs

The key input artefact to this stage is the training data set produced by the Data Management stage.
The key output artefacts are a machine-learnt model for verification in the next stage of the ML
lifecycle and a performance deficit report used to inform remedial data management activities.

5.2 Activities

5.2.1 Model Selection. This activity decides the model type, variant and, where applicable, the
structure of the model to be produced in the Model Learning stage. Numerous types of ML models
are available [113, 152], includingmultiple types of classificationmodels (which identify the category
that the input belongs to), regressionmodels (which predict a continuous-valued attribute), clustering
models (which group similar items into sets), and reinforcement learning models (which provide an
optimal set of actions, i.e. a policy, for solving, for instance, a navigation or planning problem).

5.2.2 Training. This activity optimises the performance of the ML model with respect to an
objective function that reflects the requirements for the model. To this end, a subset of the training
data is used to find internal model parameters (e.g., the weights of a neural network, or the
coefficients of a polynomial) that minimise an error metric for the given data set. The remaining
data (i.e, the validation set) are then used to assess the ability of the model to generalise. These

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:13

two steps are typically iterated many times, with the training hyperparameters tuned between
iterations so as to further improve the performance of the model.

5.2.3 Hyperparameter Selection. This activity is concernedwith selecting the parameters associated
with the training activity, i.e., the hyperparameters. Hyperparameters control the effectiveness of the
training process, and ultimately the performance of the resulting model [130]. They are so critical to
the success of the ML model that they are often deemed confidential for models used in proprietary
systems [177]. There is no clear consensus on how the hyperparameters should be tuned [102].
Typical options include: initialisation with values offered by ML frameworks; manual configuration
based on recommendations from literature or experience; or trial and error [130]. Alternatively, the
tuning of the hyperparameters can itself be seen as a machine learning task [71, 187].

5.2.4 Transfer Learning. The training of complex models may require weeks of computation on
many GPUs [62]. As such, there are clear benefits in reusing ML models across multiple domains.
Even when a model cannot be transferred between domains directly, one model may provide a
starting point for training a second model, significantly reducing the training time. The activity
concerned with reusing models in this way is termed transfer learning [60].

5.3 Desiderata

From an assurance viewpoint, the models generated by the Model Learning stage should exhibit
some or all of the key properties described below:

(1) PerformantÐThis property considers quantitative performance metrics applied to the model
when deployed within a system. These metrics include traditional ML metrics such as classi-
fication accuracy, the receiver operator characteristic (ROC) and mean squared error, as well
as metrics that consider the system and environment into which the models are deployed.

(2) RobustÐThis property considers the model’s ability to perform well in circumstances where
the inputs encountered at runtime are different to those present in the training data. Robust-
ness may be considered with respect to environmental uncertainty, e.g. flooded roads, and
system-level variability, e.g. sensor failure, i.e. from the general perspective used in formal
verification rather than its ML interpretation as the ability of a model to generalise to data
not encountered in training [20, 192].

(3) ReusableÐThis property considers the ability of a model, or of components of a model, to be
reused in systems for which they were not originally intended. For example, a neural network
trained for facial recognition in an authentication system may have features which can be
reused to identify operator fatigue. More generally, the reuse of pre-trained or commodity
off-the-shelf ML models in transfer learning can significantly speed up model learning [108].

(4) InterpretableÐThis property considers the extent to which the model can produce artefacts
that support the analysis of its output, and thus of any decisions based on it. For example, a
decision tree may support the production of a narrative explaining the decision to hand over
control to a human operator.

5.4 Methods

This section considers each of the four desiderata in turn. Methods applicable during each of the
Model Learning activities, in order to help achieve each of the desired properties, are discussed.

5.4.1 Performant. An ML model is performant if it operates as expected according to a measure
(or set of measures) that captures relevant characteristics of the model output. Many machine
learning problems are phrased in terms of objective functions to be optimized [174], and measures
constructed with respect to these objective functions allow models to be compared. Such measures

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:14 Rob Ashmore, Radu Calinescu, and Colin Paterson

have underpinning assumptions and limitations which should be fully understood before they are
used to select a model for deployment in a safety-critical system.
The prediction error of a model has three components: irreducible error, which cannot be elim-

inated regardless of the algorithm or training methods employed; bias error, due to simplifying
assumptions intended to make learning the model easier; and variance error, an estimate of how
much the model output would vary if different data were used in the training process. The aim of
training is to minimise the bias and variance errors, and therefore the objective functions reflect
these errors. The objective functions may also contain simplifying assumptions to aid optimization,
and these assumptions must not be present when assessing model performance [59].
Performance measures for classifiers, including accuracy, precision, recall (sensitivity) and

specificity, are often derived from their confusion matrix [59, 120, 158]. Comparing models is not
always straightforward, with different models showing superior performance against different
measures. Composite metrics [59, 158] allow for a trade-off between measures during the training
process. The understanding of evaluation measures has improved over the past two decades but
areas where understanding is lacking still exist [54]. While using a single, scalar measure simplifies
the selection of a łbestž model and is a common practice [46], the ease with which such performance
measures can be produced has led to over-reporting of simple metrics without an explicit statement
of their relevance to the operating domain. Ensuring that reported measures convey sufficient
contextually relevant information remains an open challenge (challenge ML01 from Table 4).
Aggregated measures cannot evaluate models effectively except in the simplest scenarios, and

the operating environment influences the required trade-off between performance metrics. The
ROC curve [132] allows for Pareto-optimal model selection using a trade-off between the true
and false positive rates, while the area under the ROC curve (AUC) [24] assesses the sensitivity of
models to changes in operating conditions. Cost curves [46] allow weights to be associated with
true and false positives to reflect their importance in the operating domain. Where a single classifier
cannot provide an acceptable trade-off, models identified using the ROC curve may be combined to
produce a classifier with better performance than any single model, under real-world operating
conditions [131]. This requires trade-offs to be decided at training time, which is unfeasible for
dynamic environments and multi-objective optimisation problems. Developing methods to defer
this decision until run-time is an open challenge (ML02 in Table 4).

Whilst the measures presented thus far give an indication of the performance of the model against
data sets, they do not encapsulate the users’ trust in a model for a specific, possibly rare, operating
point. The intuitive certainty measure (ICM) [172] is a mechanism to produce an estimate of how
certain an ML model is for a specific output based on errors made in the past. ICM compares current
and previous sensor data to assess similarity, using previous outcomes for similar environmental
conditions to inform trust measures. Due to the probabilistic nature of machine learning [120],
models may also be evaluated using classical statistical methods. These methods can answer several
key questions [114]: (i) given the observed accuracy of a model, how well is it likely to estimate
unseen samples? (ii) if a model outperforms another for a specific data set, how likely is it to be
more accurate in general? and (iii) what is the best way to learn a hypothesis from limited data?

Methods are also available to improve the performance of theMLmodels. Ensemble learning [147]
combines multiple models to produce a model whose performance is superior to that of any of its
constituent models. The aggregation of models leads to lower overall bias and to a reduction in
variance errors [59]. Bagging and boosting [145] can improve the performance of ensemble models
further. Bagging increases model diversity by selecting data subsets for the training of each model
in the ensemble. After an individual model is created, boosting identifies the samples for which the
model performance is deficient, and increases the likelihood of these samples being selected for
subsequent model training. AdaBoost [57], short for Adaptive Boosting, is a widely used boosting

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:15

algorithm reported to have solved many problems of earlier boosting algorithms [56]. Where the
training data are imbalanced, the SMOTE boosting algorithm [33] may be employed.
The selection and optimization of hyperparameters [59] has a significant impact on the per-

formance of models [177]. Given the large number of hyperparameters, tuning them manually is
typically unfeasible. Automated optimization strategies are employed instead [71], using methods
that include grid search, random search and latin hypercube sampling [89]. Evolutionary algo-
rithms may also be employed for high-dimensional hyperparameter spaces [187]. Selecting the
most appropriate method for hyperparameter tuning in a given context and understanding the
interaction between hyperparameters and model performance [102] represent open challenges
(ML03 and ML04 in Table 4, respectively). Furthermore, there are no guarantees that a tuning
strategy will continue to be optimal as the model and data on which it is trained evolve.
We have highlighted multiple metrics for the assessment of model performance, as well as

methods which promise improved model performance with respect to these metrics. The selection
of appropriate metrics and methods remains a complex task, however, and will depend greatly
on the context into which the ML component is to be deployed. Given this complexity and the
importance of model performance, the rationale which underpins this selection process should be
clearly justified in the resulting assurance case.

5.4.2 Robust. Training optimizes models with respect to an objective function using the data in
the training set. The aim of the model learning process, however, is to produce a model which
generalises to data not present in the training set but which may be encountered in operation.

Increasing model complexity generally reduces training errors, but noise in the training data may
result in overfitting and in a failure of the model to generalise to real-world data. When choosing
between competing models one method is then to prefer simple models (Ockham’s razor) [145]. An
estimate of the model’s ability to generalise may be obtained by using 𝑘-fold cross-validation [60].
This method partitions the training data into 𝑘 non-overlapping subsets, with 𝑘−1 subsets used
for training and the remaining subset used for validation. The process is repeated 𝑘 times, with a
different validation subset used each time, and an overall error is calculated as the mean error over
the 𝑘 trials. Methods to avoid overfitting include gathering more training data, reducing the noise
present in the training set, and simplifying the model [59].

Data augmentation (Section 4.2.3) can improve the quality of training data and improve robustness
of models [88]. Applying transformations to images in the input space may produce models which
are robust to changes in the position and orientation of objects in the input space [59] whilst
photometric augmentation may increase robustness with respect to lighting and colour [165].
For models of speech, altering the speed of playback for the training set can increase model
robustness [88]. Identifying the best augmentation methods for a given context can be difficult, and
Antoniou et al. [10] propose an automated augmentation method that uses generative adversarial
networks to augment data sets without reference to a contextual setting. These methods require
the identification of all possible deviations from the training data set, so that deficiencies can
be compensated through augmentation. Assuring the completeness of (augmented) data sets has
already been identified as an open challenge (DM02 in Table 2). Even when a data set is complete,
the practice of reporting aggregated generalisation errors means that assessing the impact of
each type of deviation on model performance is challenging. Indeed, the complexity of the open
environments in which many critical systems operate, and for which assurance cases are required,
means that decoupling the effects of different perturbations on model performance remains an
open challenge (ML05 in Table 4).

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:16 Rob Ashmore, Radu Calinescu, and Colin Paterson

Regularization methods are intended to reduce a model’s generalization error but not its training
error [60, 145], e.g., by augmenting the objective function with a term that penalises model com-
plexity. The ℓ0, ℓ1 or ℓ2 norm are commonly used [120], with the term chosen based on the learning
context and model type. The ridge regression [59] method may be used for models with low bias
and high variance. This method adds a weighted term to the objective function which aims to keep
the weights internal to the model as low as possible. Early stopping [129] is a simple method that
avoids overfitting by stopping the training if the validation error begins to rise. For deep neural
networks, dropout [67, 159] is the most popular regularization method. Dropout selects different
subsets of neurons to be ignored at each training step. This makes the model less reliant on any
one neuron, and hence increases its robustness. Dropconnect [176] employs a similar technique to
improve the robustness of large networks by setting subsets of weights in fully connected layers to
zero. For image classification tasks, randomly erasing portions of input images can increase the
robustness of the generated models [193] by ensuring that the model is not overly reliant on any
particular subset of the training data.
Robustness with respect to adversarial perturbations for image classification is problematic for

deep neural networks, even when the perturbations are imperceptible to humans [162] or the model
is robust to random noise [51]. Whilst initially deemed a consequence of the high non-linearity of
neural networks, recent results suggest that the łsuccessž of adversarial examples is due to the low
flexibility of classifies, and affects classification models more widely [50]. Adversarial robustness
may therefore be considered as a measure of the distinguishability of a classifier.
Ross and Doshi-Velez [141] introduced a batch normalization method that penalises parameter

sensitivity to increase robustness to adversarial examples. This method adds noise to the hidden
units of a deep neural network at training time, can have a regularization effect, and sometimes
makes dropout unnecessary [60]. Although regularization can improve model robustness without
knowledge of the possible deviations from the training data set, understanding the nature of
robustness in a contextually meaningful manner remains an open challenge (ML06 in Table 4).

5.4.3 Reusable. Machine learning is typically computationally expensive, and repurposing models
from related domains can reduce the cost of training new models. Transfer learning [183] allows
for a model learnt in one domain to be exploited in a second domain, as long as the domains are
similar enough so that features learnt in the source domain are applicable to the target domain.
Where this is the case, all or part of a model may be transferred to reduce the training cost.

Convolutional neural networks (CNN) are particularly suited for partial model transfer [59] since
the convolutional layers encode features in the input space, whilst the fully connected layers encode
reasoning based on those features. Thus, a CNN trained on human faces is likely to have feature
extraction capabilities to recognise eyes, noses, etc. To train a CNN from scratch for a classifier
that considers human faces is wasteful if a CNN for similar tasks already exists. By taking the
convolutional layers from a source model and learning a new set of weights for the fully connected
set of layers, training times may be significantly reduced [69, 124]. Similarly, transfer learning has
been shown to be effective for random forests [153, 160], where subsets of trees can be reused. More
generally, the identification of łsimilarž operational contexts is difficult, and defining a meaningful
similarity measure in high-dimensional spaces is an open challenge (ML07 in Table 4).

Even with significant differences between the source and target domains, an existing model may
be valuable. Initialising the parameters of a model to be learnt using values obtained in a similar
domain may greatly reduce training times, as shown by the successful use of transfer learning in
the classification of sentiments, human activities, software defects, and multi-language texts [183].
Using pre-existing models as the starting point for a new problem can be effective. As such, it

may be desirable to make use of models previously used to tackle problems in related domains. A

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:17

growing number of model zoos [59] containing such models are being set up by many core learning
technology platforms [116], as well as by researchers and engineers [115].
Transfer learning resembles software component reuse, and may allow the reuse of assurance

evidence about ML models across domains, as long as the assumptions surrounding the assurance
are also transferable between the source and target domains. However, a key aspect in the assurance
of components is that they should be reproducible and, at least for complex (deep) ML models,
reproducing the learning process is rarely straightforward [174]. Indeed, reproducing ML results
requires significant configuration management, which is often overlooked by ML teams [189].

Another reason for caution when adopting third-party model structures, weights and processes is
that transfer learning can also transfer failures and faults from the source to the target domain [62].
Indeed, ensuring that existing models are free from faults is an open challenge (ML08 in Table 4).

5.4.4 Interpretable. For many critical domains where assurance is required, it is essential that
ML models are interpretable. ‘Interpretable’ and ‘explainable’ are closely related concepts, with
‘interpretable’ used in the ML community and ‘explainable’ preferred in the AI community [2]. We
use the term ‘interpretable’ when referring to properties of machine learnt models, and ‘explainable’
when systems features and contexts of use are considered.

Interpretable models aid assurance by providing evidence which allows for [2, 96, 99]: justifying
the results provided by a model; supporting the identification and correction of errors; aiding model
improvement; and providing insight with respect to the operational domain.
The difficulty of providing interpretable models stems from the frequent use of complex ML

models whose structure and size makes it impossible for a human to construct a mental model which
can explain the features and parameters of the model in a contextually meaningful manner. As such,
one approach to producing interpretable models is to reduce model complexity to a level where the
number of features and parameters are no longer a barrier to understanding. However, this is likely
to also reduce model accuracy, and therefore a better approach is to use inherently interpretable

models, i.e. models that satisfy domain-specific constraints that may include monotonicity, additivity
or causality [144].

Methods which aid in the production of interpretable models can be classified by the scope of the
explanations they generate. Global methods generate evidence that apply to a whole model, and
support design and assurance activities by allowing reasoning about all possible future outcomes
for the model. Local methods generate explanations for an individual decision, and may be used
to analyse why a particular problem occurred, and to improve the model so future events of
this type are avoided. Methods can also be classified as model-agnostic and model-specific [2].
Model-agnostic methods are mostly applicable post-hoc (after training), and include providing
natural language explanations [95], using model visualisations to support understanding [106], and
explaining by example [3]. Much less common, model-specific methods [2] typically provide more
detailed explanations, but restrict the users’ choice of model, and therefore are only suited if the
limitations of the model(s) they can work with are acceptable.
Despite significant research into interpretable models, there are no global methods providing

contextually relevant insights to aid human understanding for complex ML models (ML09 in
Table 4). In addition, although several post-hoc local methods exist, there is no systematic approach
to infer global properties of the model from local cases. Without such methods, interpretable models
cannot aid structural model improvements and error correction at a global level (ML10 in Table 4).

5.5 Summary and Open Challenges

Table 3 summaries the assurance methods applicable during the Model Learning stage. The methods
are presented in the order that they are introduced in the preceding discussion, and are matched to

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:18 Rob Ashmore, Radu Calinescu, and Colin Paterson

Table 3. Assurance methods for the Model Learning stage

Associated activities† Supported desiderata‡

Model Training Hyperparam. Transfer Performant Robust Reusable Interpretable

Method Selection Selection Learning

Use appropriate performance

measures [54, 174]
✓ ✔ ★ ★

Statistical tests [114, 120] ✓ ✔ ★

Ensemble Learning [147] ✔ ✔ ✔ ★ ★

Optimise

hyperparameters [71, 187]
✔ ✔ ★ ★

Batch Normalization [73] ✔ ✔ ★ ★

Prefer simpler models [3, 145] ✔ ✓ ✩ ★ ✩

Augment training data ✔ ★ ★

Regularization methods [59] ✔ ✔ ★

Use early stopping ✔ ✔ ★

Use models that intrinsically

support reuse [2]
✔ ✔ ★ ✩

Transfer Learning [183] ✔ ✓ ✔ ★ ✩

Use model zoos [59] ✔ ✓ ✔ ★

Post-hoc interpretability

methods [3, 95, 106]
✔ ★

†
✔ = activity that the method is typically used in; ✓= activity that may use the method

‡
★ = desideratum supported by the method; ✩ = desideratum partly supported by the method

the activities with which they are associated and to the desiderata that they support. The majority
of these methods focus on the performance and robustness of ML models. Model reusability and
interpretability are only supported by a few methods that typically restrict the types of model that
can be used. This imbalance reflects the different maturity of the research on the four desiderata,
with the need for reuse and interpretability arising more prominently after the recent advances in
deep learning and increases in the complexity of ML models.

Open challenges for the assurance of the Model Learning stage are presented in Table 4, organised
into categories based on the most relevant desideratum for each challenge. The importance and
nature of these challenges have been established earlier in this section. A common theme across
many of these challenges is the need for integrating concerns associated with the operating
context into the Machine Learning stage (open challenges ML01, ML03, ML05, ML06, ML07). Open
challenges also exist in the evaluation of performance of models with respect to multi-objective
evaluation criteria (ML02); understanding the link between model performance and hyperparameter
selection (ML04) and ensuring that where transfer learning is adopted that existing models are free
from errors (ML08). While there has been a great deal of research focused on interpretable models,
methods which apply globally to complex models (ML09) are still lacking. Where local explanations
are provided, methods are needed to extract global model properties from them (ML10).

6 MODEL VERIFICATION

The Model Verification stage of the ML lifecycle is concerned with the provision of auditable
evidence that a model will continue to satisfy its requirements when exposed to inputs which are
not present in the training data.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:19

Table 4. Open challenges for the assurance concerns associated with the Model Learning (ML) stage

ID Open Challenge Desideratum (Section)

ML01 Selecting measures which represent operational context

Performant (Section 5.4.1)
ML02 Multi-objective performance evaluation at run-time

ML03 Using operational context to inform hyperparameter-tuning strategies

ML04 Understanding the impact of hyperparameters on model performance

ML05 Decoupling the effects of perturbations in the input space
Robust (Section 5.4.2)

ML06 Inferring contextual robustness from evaluation metrics

ML07 Identifying similarity in operational contexts
Reusable (Section 5.4.3)

ML08 Ensuring existing models are free from faults

ML09 Global methods for interpretability in complex models
Interpretable (Section 5.4.4)

ML10 Inferring global model properties from local cases

6.1 Inputs and Outputs

The key input artefact to this stage is the trained model produced by the Model Learning stage. The
key output artefacts are a verifiedmodel, and a verification result that provides sufficient information
to allow potential users to determine if the model is suitable for its intended application(s).

6.2 Activities

6.2.1 Requirement Encoding. This activity involves transforming requirements into both tests and
mathematical properties, where the latter can be verified using formal techniques. Requirements
encoding requires a knowledge of the application domain, such that the intent which is implicit in
the requirements may be encoded as explicit tests and properties. A knowledge of the technology
which underpins the model is also required, such that technology-specific issues may be assessed
through the creation of appropriate tests and properties.

6.2.2 Test-Based Verification. This activity involves providing test cases (i.e., specially-formed
inputs or sequences of inputs) to the trained model and checking the outputs against predefined
expected results. A large part of this activity involves an independent examination of properties
considered during theModel Learning stage (cf. Section 5), especially those related to the Performant
and Robust desiderata. In addition, this activity also considers test completeness, i.e., whether the set
of tests exercised the model and covered its input domain sufficiently. The latter objective is directly
related to the Complete desideratum from the Data Management stage (cf. Section 4). Finally, tests
should be repeatable, allowing for the systematic elimination of errors and the identification of
improvement between development cycles.

6.2.3 Formal Verification. This activity involves the use of mathematical techniques to provide
irrefutable evidence that the model satisfies formally-specified properties derived from its require-
ments. Counterexamples are typically provided for properties that are violated, and can be used to
inform further iterations of activities from the Data Management and Model Learning stages.

6.3 Desiderata

In order to be compelling, the verification results (i.e., the evidence) generated by the Model
Verification stage should exhibit the following key properties:

(1) ComprehensiveÐThis property is concerned with the ability of Model Verification to cover:
(i) all the requirements and operating conditions associated with the intended use of the

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:20 Rob Ashmore, Radu Calinescu, and Colin Paterson

model; and (ii) all the desiderata from the previous stages of the ML lifecycle (e.g., the
completeness of the training data, and the robustness of the model).

(2) Contextually RelevantÐThis desideratum considers the extent towhich test cases and formally
verified properties can be mapped to contextually meaningful aspects of the system that will
use the model. For example, for a model used in an autonomous car, robustness with respect
to image contrast is less meaningful than robustness to variation in weather conditions.

(3) ComprehensibleÐThis property considers the extent to which verification results can be
understood by those using them in activities ranging from data preparation and model
development to system development and regulatory approval. A clear link should exist
between the aim of the Model Verification and the guarantees it provides. Limitations and
assumptions should be clearly identified, and results that show requirement violations should
convey sufficient information to allow the underlying cause(s) for the violations to be fixed.

6.4 Methods

6.4.1 Comprehensive. Compared to traditional software the dimension and testing space of an ML
model is potentially much larger [25]. Ensuring that model verification is comprehensive requires a
systematic approach to identify faults due to conceptual misunderstandings and faults introduced
during the Data Management and Model Learning activities.

Conceptual misunderstandings may occur during the construction of requirements. They impact
both Data Management and Model Learning, and may lead to errors that include: data that are
not representative of the intended operational environment; loss functions that do not capture
the original intent; and design trade-offs that detrimentally affect performance and robustness
when deployed in real-world contexts. Independent consideration of requirements is important in
traditional software but, it could be argued, it is even more important for ML because the associated
workflow includes no formal, traceable hierarchical requirements decomposition [13].

Traditional approaches to safety-critical software development distinguish between normal
testing and robustness testing [143]. The former is concerned with typical behaviour, whilst the
latter tries to induce undesirable behaviour on the part of the software. Stress testing, especially
that specifically designed for autonomy software, is a valuable approach [70]. In terms of the spaces
discussed in Section 4, normal testing tends to focus on the operational domain, O; it can also
include aspects of the failure domain, F , and the adversarial domain, A. Conversely, robustness
testing utilises the entire input domain, I, including, but not limited to, elements of F and A.
Robustness testing for traditional software is informed by decades of accumulated knowledge on
typical errors (e.g., numeric overflow and buffer overruns). Whilst a few typical errors have also
been identified for ML (e.g., overfitting and backdoors [35]), the knowledge about such errors is
limited and rarely accompanied by an understanding of how these errors may be detected and
corrected. Developing this knowledge is an open challenge (challenge MV01 in Table 6).

Coverage is an important measure for assessing the comprehensiveness of software testing. For
traditional software, coverage focuses on the structure of the software. For example, statement
coverage or branch coverage can be used as a surrogate for measuring how much of the software’s
behaviour has been tested. However, measuring ML model coverage in the same way is not infor-
mative: achieving high branch coverage for the code that implements a neuron activation function
tells little, if anything, about the behaviour of the trained network. For ML, test coverage needs to
be considered from the perspectives of both data and model structure. The methods associated with
the Complete desiderata from the Data Management stage can inform data coverage. In addition,
model-related coverage methods have been proposed in recent years [104, 126, 161], although
achieving high coverage is generally unfeasible for large models due to the high dimensionality

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:21

of their input and feature spaces. Traditional software testing employs combinatorial testing to
mitigate this problem, and DeepCT [103] provides combinatorial testing for deep-learning models.

However, whilst these methods provide a means ofmeasuring coverage, the benefits of achieving
a particular level of coverage are not clear. Put another way, we understand the theoretical value
of increased data coverage, but its empirical utility has not been demonstrated. As such, it is
impossible to define coverage thresholds that should be achieved. Indeed, it is unclear whether a
generic threshold is appropriate, or whether coverage thresholds are inevitably application specific.
Consequently, deriving a set of coverage measures that address both data and model structure, and
demonstrating their practical utility remains an open challenge (MV02 in Table 6).

The susceptibility of neural networks to adversarial examples is well known, and can be mitigated
using formal verification methods. These methods ensure local adversarial robustness by providing
mathematical guarantees that, for a suitably-sized region around an input-space point, the same
decision will always be returned [68]. This is an active research area in which tools have been
developed using satisfiability (SAT) and satisfiability modulo theory (SMT) techniques, mixed-
integer linear programming and geometric reachability [47, 48, 58, 81]. While scalability was
initially an issue, more recent work has provided tool sets and frameworks that can handle larger
networks, as well as networks that make use of more diverse structures, such as max pooling [43,
82, 169, 170]. Formal verification methods are all reliant on the assumptions of proximity and
smoothness. Proximity concerns the notion that two similar inputs will have similar outputs,
while smoothness assumes that the model smoothly transitions between values [173]. However,
without an understanding of the model’s context, it is difficult to ascertain whether two inputs
are similar (e.g., based on a meaningful distance metric), or to challenge smoothness assumptions
when discontinuities are present in the modelled domain.

While many ML formal verification methods focus on neural networks, several techniques
have been proposed for different ML paradigms, including random forests [7, 168, 181], nearest
neighbours [180], Bayesian networks classifiers [156], and support vector machines [136]. Test-
based verification may include use of a simulation to generate test cases. In this case, appropriate
confidence needs to be placed in the simulation. For normal testing, the simulation-related concepts
discussed in Section 4 (e.g., verification and validation) are relevant. If the term ‘simulation’ is
interpreted widely, then robustness testing could include simulations that produce pseudo-random
inputs (i.e., fuzzing), or simulations that try to invoke certain paths within the model (i.e., guided
fuzzing [123]). In these cases, we need confidence that the ‘simulation’ is working as intended
(verification), but we do not need it to be representative of the real world (validation).

Last but not least, the model verification may also need to be applied to any ML libraries or
platforms used in the Model Learning stage for a number of safety-critical systems. Errors in this
software are difficult to identify, as the iterative nature of model training and parameter tuning
can mask software implementation errors. Proving the correctness of ML libraries and platforms
requires program verification techniques to be applied [154].

6.4.2 Contextually Relevant. Requirement encoding should consider how the tests and formal prop-
erties constructed for verification map to context. This is particularly difficult for high-dimensional
problems such as those tackled using deep neural networks. Verification methods that assess model
performance with respect to proximity and smoothness are mathematically provable, but defining
regions around a point in space does little to indicate the types of real-world perturbation that can,
or cannot, be tolerated by the system (and those that are likely, or unlikely, to occur in reality). As
such, mapping requirements to model features is an open challenge (MV04 in Table 6).
Depending on the intended application, Model Verification may need to explicitly consider

unwanted bias. In particular, if the context of model use includes a legally-protected characteristic

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:22 Rob Ashmore, Radu Calinescu, and Colin Paterson

(e.g., age, race or gender) then considering bias is a necessity. As discussed in Section 4.4.1, there
are several ways this can be achieved, and an industry-ready toolkit is available [16].

Contextually relevant verificationmethods such as DeepTest [167] and DeepRoad [190] have been
developed for autonomous driving. DeepTest employs neuron coverage to guide the generation of
tests cases for ML models used in this application domain. Test cases are constructed as contextually
relevant transformations of the data set, e.g., by adding synthetic but realistic fog and camera lens
distortion to images. DeepTest leverages principles of metamorphic testing, so that even when the
valid output for a set of inputs is unknown it can be inferred from similar cases (e.g., an image
with and without camera lens distortion should return the same result). DeepRoad works in a
similar way, but generates its contextually relevant images using a generative adversarial network.
These methods work for neural networks used in autonomous driving, but developing a general
framework for synthesizing test data for other contexts is an open challenge (MV05 in Table 6).
Although adversarial examples are widely used to verify the robustness of neural networks,

they typically disregard the semantics and context of the system into which the ML model will be
deployed. Semantic adversarial deep learning [45] is a method that avoids this limitation through
considering the model context explicitly, first by using input modifications informed by contextual
semantics (much like DeepTest and DeepRoad), and second by using system specifications to assess
the system-level impact of invalid model outputs. By identifying model errors that lead to system
failures, the latter technique aids the model repair and re-design.
The verification of reinforcement learning [173] requires a number of different features to be

considered.WhenMarkov decision process (MDP)models of the environment are devised by domain
experts, the MDP states are nominally associated with contextually-relevant operating states. As
such, systems requirements can be encoded as properties in temporal logics and probabilistic model
checkers may be used to provide probabilistic performance guarantees [109]. When these models
are learnt from data, it is difficult to map model states to real-world contexts, and constructing
meaningful properties is an open challenge (MV06 in Table 6).

6.4.3 Comprehensible. The utility of Model Verification is enhanced if its results provide infor-
mation that aids the fixing of any errors identified by the test-based and formal verification of
ML models. One method that supports the generation of comprehensible verification results is
to use contextually relevant testing criteria, as previously discussed. Another method is to use
counterexample-guided data augmentation [44]. For traditional software, the counterexamples
provided by formal verification guide the eradication of errors by pointing to a particular block
of code or execution sequence. For ML models, counterexamples are more difficult to leverage
since the link between input values, parameter values and intended outcome is typically more
opaque. To solve this problem, the method from [44] synthesizes inputs with ground-truth labels
by using systematic techniques to cover the modification space. Error tables are then created for all
counterexamples, with table columns associated to input features (e.g., car model, environment
or brightness for an image classifier used in autonomous driving). The analysis of this table can
then provide a comprehensible explanation of failures, e.g., łThe model does not identify white
cars driving away from us on forest roadsž [44]. These explanations support further data collection
or augmentation in the next iteration of the ML workflow. In contrast, providing comprehensi-
ble results is much harder for formal verification methods that identify counterexamples based
on proximity and smoothness; mapping such counterexamples to guide remedial actions these
verification methods to remedial action remains an open challenge (MV07 in Table 6).

While adding context to training data helps inform how Data Management activities should be
modified to improve model performance, no analogous methods exist for adjusting Model Learning
activities (e.g., model and hyperparameter selection) in light of verification results. In general,

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:23

Table 5. Assurance methods for the Model Verification stage

Associated activities† Supported desiderata‡

Requirement Test-Based Formal Compre- Contextually Compre-

Method Encoding Verification Verification hensive Relevant hensible

Independent derivation of test cases ✔ ✓ ✓ ★

Normal and robustness tests [143] ✓ ✔ ★

Measure data coverage ✔ ★ ✩

Measure model coverage [104, 126, 161] ✔ ★ ✩

Guided fuzzing [123] ✔ ★

Combinatorial Testing [103] ✔ ★

SMT solvers [68] ✔ ★

Abstract Interpretation [58] ✔ ★

Generate tests via simulation ✔ ★ ✩ ✩

Verifier of Random Forests [168] ✔ ★

Verification of ML Libraries [154] ✔ ★

Check for unwanted bias [16] ✔ ★

Use synthetic test data [167] ✔ ✔ ★ ★ ✩

Use GAN to inform test generation [190] ✔ ★ ★

Incorporate system level semantics [45] ✔ ✔ ★ ★ ✩

Counterexample-guided data

augmentation [44]
✔ ★ ✩ ★

Probabilistic verification [173] ✔ ★

Use confidence levels [45] ✔ ✓ ✩ ★

Evaluate interpretability [42] ✔ ✔ ★ ★
†
✔ = activity that the method is typically used in; ✓= activity that may use the method

‡
★ = desideratum supported by the method; ✩ = desideratum partly supported by the method

defining a general method for performance improvement based on verification results is an open
challenge (MV08 in Table 6).

The need for interpretable models is widely accepted; it is also an important part of verification
evidence, being comprehensible to people not involved in the ML workflow. However, verifying
that a model is interpretable is non-trivial, and a rigorous evaluation of interpretability is neces-
sary. Doshi-Velez and Kim [42] suggest three possible approaches to achieving this verification:
Application grounded, which involves placing the explanations into a real application and letting
the end user test it; Human grounded, which uses lay humans rather than domain experts to test
more general forms of explanation; and Functionally grounded, which uses formal definitions to
evaluate the quality of explanations without human involvement.

6.5 Summary and Open Challenges

Table 5 summarises the assurance methods that can be applied during the Model Verification
stage, listed in the order in which they were introduced earlier in this section. We note that the
test-based verification methods outnumber the methods that use formal verification. Furthermore,
the test-based methods are model agnostic, while the few formal verification methods that exist are
largely restricted to neural networks and, due to their abstract nature, do little to support context
or comprehension. Finally, the majority of the methods are concerned with the Comprehensive
desideratum, while the Contextually Relevant and Comprehensible desiderata are poorly supported.
The open challenges for the assurance of the Model Verification stage are presented in Table 6.

Much of the existing research for the testing and verification of ML models has focused on neural
networks. Providing methods for other ML models remains an underexplored open challenge
(MV03). A small number of typical errors have been identified but more work is required to develop
methods for the detection and prevention of such errors (MV01). Measures of testing coverage are

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:24 Rob Ashmore, Radu Calinescu, and Colin Paterson

Table 6. Open challenges for the assurance concerns associated with the Model Verification (MV) stage

ID Open Challenge Desideratum (Section)

MV01 Understanding how to detect and protect against typical errors Comprehensive

MV02 Test coverage measures with theoretical and empirical justification (Section 6.4.1)

MV03 Formal verification for ML models other than neural networks

MV04 Mapping requirements to model features Contextually Relevant

MV05 General framework for synthetic test generation (Section 6.4.2)

MV06 Mapping of model-free reinforcement learning states to real-world contexts

MV07 Using proximity and smoothness violations to improve models Comprehensible

MV08 General methods to inform training based on performance failures (Section 6.4.3)

possible for ML models, however, understanding the benefits of a particular coverage remains an
open challenge (MV02). Mapping model features to context presents challenges (MV04, MV06) both
in the specification of requirements which maintain original intent and in the analysis of complex
models. Furthermore, where context is incorporated into synthetic testing, this is achieved on a case
by case basis and no general framework for such testing yet exists (MV05). Finally, although formal
methods started to appear for the verification of ML models, they return counterexamples that are
difficult to comprehend and cannot inform the actions that should be undertaken to improve model
performance (MV07, MV08).

7 MODEL DEPLOYMENT

The aim of the ML workflow is to produce a model to be used as part of a system. The range of
potential system types is vast. For example, it includes autonomous vehicles, personal healthcare
applications, financial systems and deep space exploration. How the model is deployed within the
system is a key consideration for an assurance argument. The last part of our survey focuses on
the assurance of this deployment: we do not cover the complete assurance of the overall system,
which represents a vast scope, well beyond what can be accomplished within this paper. However,
the close link between the model and the system means that this section inevitably includes some
system-level considerations.

7.1 Inputs and Outputs

The key input artefacts to this stage of the ML lifecycle are a verified model and associated
verification evidence. An understanding of the intended system use and an appreciation of the
system architecture are also needed. The key output is the model, suitably deployed within a
system.

7.2 Activities

7.2.1 Integration. This activity involves integrating the ML model into the wider system archi-
tecture. This requires linking system sensors to the model inputs. Likewise, model outputs need
to be provided to the wider system. Shared or concurrent processing of data, alongside non-ML
components, should be considered. A significant integration-related consideration is protecting the
wider system against the effects of the occasional incorrect output from the ML model. This would
be expected to be part of system-level safety analysis.

7.2.2 Monitoring. This activity considers the following types of monitoring associated with the
deployment of an ML-developed model within a safety-critical system:

(1) Monitoring the inputs provided to the model. This could, for example, involve checking
whether inputs are within acceptable bounds before they are provided to the ML model.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:25

(2) Monitoring the environment in which the system is used. This type of monitoring can employ
runtime verification techniques [53] and can be used, for example, to check that the observed
environment matches any assumptions made during the ML workflow [9].

(3) Monitoring the internals of the model. This is useful, for example, to protect against the
effects of single-event upsets, where environmental effects result in a change of state within
a micro-electronic device [163]. Protection against single-event upsets may be data set and
ML approach dependent [175].

(4) Monitoring the output of the model. This replicates a traditional system safety approach in
which a high-integrity monitor is used alongside a lower-integrity item.

7.2.3 Updating. Updates are an important part of any software intensive system [127]. Similarly,
deployed ML models are expected to require updating during a system’s life. This activity relates
to managing and implementing these updates. Conceptually it also includes, as a special case,
updates that occur as part of online learning (e.g., within the implementation of an RL-based model).
However, since they are intimately linked to the model, these considerations are best addressed
within the Model Learning stage.

7.3 Desiderata

From an assurance perspective, the deployed ML model should exhibit the following key properties:

(1) Fit-for-PurposeÐThis property recognises that the ML model needs to be fit for the in-
tended purpose within the specific system context. In particular, it is possible for exactly the
same model to be fit-for-purpose within one system, but not fit-for-purpose within another.
Essentially, this property adopts a model-centric focus.

(2) TolerableÐThis property acknowledges that it is typically unreasonable to expect ML models
to achieve the same levels of reliability as traditional (hardware or software) components.
Consequently, if ML models are to be used within safety-critical systems, the wider system
must be able to tolerate the occasional incorrect output from the ML model. Equivalently,
from a system perspective, the ML model must be tolerable.

(3) AdaptableÐThis property is concerned with the ease with which modifications can be made
to the deployed ML model. These modifications may be motivated by a variety of reasons,
including changes in the operating, or legislative, environment. More generally, this property
recognises the inevitability of change within a software system; consequently, it is closely
linked to the updating activity described in Section 7.2.3.

7.4 Methods

This section considers each of the three desiderata in turn. Methods that can be applied during
each Model Deployment activity, in order to help achieve the desired property, are discussed.

7.4.1 Fit-for-Purpose. In order for an ML model to be fit-for-purpose within a given system
deployment, there must be confidence that the performance observed during the Model Verification
stage is representative of the deployed performance. This confidence could be negatively impacted
by changes in computational hardware between the various stages of the ML lifecycle, e.g., different
numerical representations can affect accuracy and energy use [66]. Issues associated with specialised
hardware (e.g., custom processors designed for AI applications) may partly be addressed by suitable
on-target testing (i.e., testing on the hardware used in the system deployment).
Differences between the inputs received during operational use and those provided during

training and verification can result in levels of deployed performance that are very different to
those observed during verification. There are several ways these differences can arise:

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:26 Rob Ashmore, Radu Calinescu, and Colin Paterson

(1) Because the training (and verification) data were not sufficiently representative of the oper-
ational domain [38]. This could be a result of inadequate training data (specifically, the O
subset referred to in Section 4), or it could be a natural consequence of a system being used
in a wider domain than originally intended.

(2) As a consequence of failures in the subsystems that provide inputs to the deployed ML model
(this relates to the F subset). Collecting, and responding appropriately to, health management
information for relevant subsystems can help protect against this possibility.

(3) As a result of deliberate actions by an adversary (which relates to the A subset) [61], [162].
(4) Following changes in the underlying process to which the data are related. This could be a

consequence of changes in the environment [4]. It could also be a consequence of changes
in the way that people, or other systems, behave; this is especially pernicious when those
changes have arisen as a result of people reacting to the model’s behaviour.

The notion of the operational input distribution being different from that represented by the
training data is referred to as distribution shift [118]. Most measures for detecting this rely on
many operational inputs being available (e.g., [179]). A box-based analysis of training data may
allow detection on an input-by-input basis [12]. Learning-based approaches that compensate for
distribution shift have been proposed [15, 18]. Nevertheless, especially for high-dimensional data
[134], timely detection of distribution shift is an open challenge (MD01 in Table 8).

In order to demonstrate that a deployed model continues to remain fit-for-purpose, there needs
to be a way of confirming that the model’s internal behaviour is as designed. Equivalently, the
provision of some form of built-in test (BIT) is helpful. A partial solution involves re-purposing
traditional BIT techniques, including: watchdog timers [128], to provide confidence software is still
executing; and behavioural monitors [85], to provide confidence software is behaving as expected
(e.g., it is not claiming an excessive amount of system resources). However, these general techniques
need to be supplemented by approaches specifically tailored for ML models [151].

For an ML model to be usable within a safety-critical system, it may be necessary for its output
to be explainable (e.g., to support post-incident investigation). As discussed earlier, this is closely
related to the Interpretable desideratum, discussed in Section 5. We also note that the open challenge
relating to the global behaviour of a complex model (ML09 in Table 4) is relevant to the Model
Deployment stage.

In order to support post-accident, or post-incident, investigations, sufficient information needs to
be recorded to allow the ML model’s behaviour to be subsequently explained. As a minimum, model
inputs should be recorded; if the model’s internal state is dynamic, then this should also be recorded.
Furthermore, it is very likely that accident, or incident, investigation data will have to be recorded
on a continual basis, and in such a way that it will usable after a crash and is protected against
inadvertent (or deliberate) alteration. Understanding what information needs to be recorded, at
what frequency and for how long it needs to be maintained is an open challenge (MD02 in Table 8).

7.4.2 Tolerable. To tolerate occasional incorrect outputs from a deployed ML model, the system
needs to do two things. Firstly, it needs to detect when an output is incorrect. Secondly, it needs to
replace the incorrect output with a suitable value to allow system processing activities to continue.
An ML model may produce an incorrect output when used outside the intended operational

environment. This could be detected by monitoring for distribution shift, as indicated in the
preceding section, possibly alongside monitoring the environment. An incorrect output may also
be produced if the model is provided with inappropriate inputs. Again, this could be detected by
monitoring for distribution shift or by monitoring the health of the system components that provide
inputs to the model. In critical applications, it may be appropriate to define a minimum equipment
list. This list should describe the equipment that must be present and functioning correctly to

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:27

allow safe use of the system [119]. This approach can also protect the deployed ML model against
system-level changes that would inadvertently affect its performance.
It may also be possible for the ML model to calculate its own ‘measure of confidence’, which

could be used to support the detection of an incorrect output. The intuitive certainty measure (ICM)
has been proposed [172], but this requires a distance metric to be defined on the input domain,
which can be difficult. More generally, deriving an appropriate measure of confidence is an open
challenge (MD03 in Table 8).
Another way of detecting incorrect outputs involves comparing them with ‘reasonable’ values.

This could, for example, take the form of introducing a simple monitor, acting directly on the
output provided by the ML model [23]. If the monitor detects an invalid output then the model is
re-run (with the same input, if the model is non-deterministic, or with a different input). Defining a
monitor that protects safety is possible [105], but providing sufficient protection yet still allowing
the ML model sufficient freedom in behaviour, so that the benefits of using an ML-based approach
can be realised, is an open challenge (MD04 in Table 8).
The difficulty with defining a monitor may be overcome by using multiple, ‘independent’ ML

models, along with an ‘aggregator’ that combines their multiple outputs into a single output . This
can be viewed as an ML-based implementation of the concept of n-version programming [34]. The
approach has some similarity to ensemble learning [147], but its motivation is different: ensemble
learning aims to improve performance in a general sense, while using multiple, independent
models as part of a system architecture aims to protect against the consequences of a single model
occasionally producing an incorrect output. Whilst this approach may have value, it is not clear
how much independence can be achieved, especially if models are trained from data that have a
common generative model [49]. Consequently, understanding the level of independence that can
be introduced into models trained on the same data is an open challenge (MD05 in Table 8).

If an incorrect output is detected then, as noted above, a replacement value needs to be provided to
the rest of the system. Runtime verification methods have been introduced in which this is achieved
using software components developed and verified using traditional techniques [32, 65, 78]. In the
Simplex architecture [78], a verified supervisory controller switches control from an unverifiable
‘smart’ controller to a verified safety controller when the former misbehaves. Alternatively, a fixed
‘safe’ value or the ‘last-good’ output provided by the ML model could be used. In this approach, a
safety switch monitors the output from the ML model. If this is invalid then the switch is thrown
and the output from the ‘alternative’ approach is used instead. This assumes that an invalid output
can be detected and, furthermore, that a substitute, potentially suboptimal, output can be provided
in such cases.

The monitor, aggregator and switch model-deployment architectures could readily accommodate
human interaction. For example, a human could play the role of a monitor, or that allocated to
traditional software (e.g., when an autonomous vehicle hands control back to a human driver).

7.4.3 Adaptable. Like all software, a deployed ML model would be expected to change during
the lifetime of the system in which it is deployed [127]. Indeed, the nature of ML, especially the
possibility of operational systems capturing data that can be used to train subsequent versions of a
model, suggests that ML models may change more rapidly than is the case for traditional software.

A key consideration when allowing ML models to be updated is the management of the change
from an old version of a model to a new version. Several approaches can be used for this purpose:

(1) Placing the system in a ‘safe state’ for the duration of the update process. In the case of an
autonomous vehicle, this state could be stationary, with the parking brake applied, with
no occupants and with all doors locked. In addition, updates could be restricted to certain

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:28 Rob Ashmore, Radu Calinescu, and Colin Paterson

Table 7. Assurance methods for the Model Deployment stage

Associated activities† Supported desiderata‡

Method Integration Monitoring Updating Fit-for-Purpose Tolerable Adaptable

Use the same numerical precision for training

and operation
✔ ★

Establish WCET [184] ✔ ★ ✩

Monitor for distribution shift [118], [12] ✓ ✔ ★ ★

Implement general BIT [128], [85], [151] ✔ ✔ ★ ★

Explain an individual output [138] ✓ ✔ ★

Record information for post-accident (or

post-incident) investigation
✔ ★

Monitor the environment [9] ✔ ★ ★

Monitor health of input-providing subsystems ✔ ★ ★

Provide a confidence measure [172] ✔ ✔ ★

Use an architecture that tolerates incorrect

outputs [23], [32], [34]
✔ ★

Manage the update process [143] ✓ ✔ ★

Control fleet-wide diversity [14] ✔ ★

†
✔ = activity that the method is typically used in; ✓= activity that may use the method

‡
★ = desideratum supported by the method; ✩ = desideratum partly supported by the method

geographic locations (e.g., the owner’s driveway or the supplier’s service area). The safe state
could be determined by a technical process, or it could be specified by the user [127].

(2) If it is not feasible, or desirable, for the system to be put into a safe state then an alternative
is for the system to run two identical channels, one of which is ‘live’ and the other of which
is a ‘backup’. The live model can be used whilst the backup is updated. Once the update is
complete, the backup can become live and the other channel can be updated. This is a specific
implementation of the A/B swap discussed in [27].

(3) Another alternative is to use an approach deliberately designed to enable run-time code
replacement (or ‘hot code loading’). This functionality is available, e.g., within Erlang [31].

MLmodel updating resembles the use of field-loadable software in the aerospace domain [143]. As
such, several considerations are common to both activities: detecting corrupted or partially loaded
software; checking compatibility; and preventing inadvertent triggering of the loading function.
Approaches for protecting against corrupted updates should cover inadvertent data changes and
deliberate attacks aiming to circumvent this protection [112].
In the common scenario where multiple instances of the same system have be deployed (e.g.,

when a manufacturer sells many units of an autonomous vehicle or medical diagnosis system)
updates need to be managed at the łfleetž level. There may, for example, be a desire to gradually
roll out an update so that its effects can be measured, taking due consideration of any ethical issues
associated with such an approach. More generally, there is a need to monitor and control fleet-wide
diversity [14]. Understanding how best to do this is an open challenge (MD06 in Table 8).

7.5 Summary and Open Challenges

Table 7 summarises assurance methods associated with the Model Deployment stage, matched
to the associated activities and desiderata. The table shows that only two methods support the
activity of updating an ML model. This may reflect the current state of the market for autonomous
systems: there are few, if any, cases where a manufacturer has a large number of such systems
in operational use. Given the link between the updating activity and the Adaptable desideratum,
similar reasons may explain the lack of methods to support an adaptable system deployment.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:29

Table 8. Open challenges for the assurance concerns associated with the Model Deployment (MD) stage

ID Open Challenge Desideratum (Section)

MD01 Timely detection of distribution shift, especially for high-dimensional data sets Fit-for-Purpose

(Section 7.4.1)MD02 Information recording to support accident or incident investigation

MD03 Providing a suitable measure of confidence in ML model output

Tolerable (Section 7.4.2)MD04 Defining suitably flexible safety monitors

MD05
Understanding the level of independence that can be introduced into models

trained on the same data

MD06 Monitoring and controlling fleet-wide diversity Adaptable (Section 7.4.3)

The open challenges associated with the System Deployment stage (Table 8) include: concerns
that extend to the Model Learning and Model Verification stages, e.g., providing measures of
confidence (MD03); concerns that relate to system architectures, e.g., detecting distribution shift
(MD01), supporting incident investigations (MD02), providing suitably flexible monitors (MD04)
and understanding independence (MD05); and concerns that apply to system łfleetsž (MD06).

8 CONCLUSION

Recent advances in machine learning underpin the development of many successful systems. ML
technology is increasingly at the core of sophisticated functionality provided by smart devices,
household appliances and online services, often unbeknownst to their users. Despite the diversity
of these ML applications, they share a common characteristic: none is safety critical. Extending the
success of machine learning to safety-critical systems holds great potential for application domains
ranging from healthcare and transportation to manufacturing, but requires the assurance of the
ML models deployed within such systems. Our paper explained that this assurance must cover all
stages of the ML lifecycle, defined assurance desiderata for each such stage, surveyed the methods
available to achieve these desiderata, and highlighted remaining open challenges.

For the Data Management stage, our survey shows that a wide range of data collection, prepro-
cessing, augmentation and analysis methods can help ensure that ML training and verification data
sets are Relevant, Complete, Balanced and Accurate. Nevertheless, further research is required to
devise methods capable of demonstrating that these data are sufficiently secure, fit-for-purpose
and, when simulation is used to synthesise data, that simulations are suitably realistic.

The Model Learning stage has been the focus of tremendous research effort, and a vast array of
model selection and learning methods are available to support the development of Performant and
Robust ML models. In contrast, there is a significant need for additional hyperparameter selection
and transfer learning methods, and for research into ensuring that ML models are Reusable and
Interpretable, in particular through providing context-relevant explanations of behaviour.
Assurance concerns associated with the Model Verification stage are addressed by numerous

test-based verification methods and by a small repertoire of recently introduced formal verification
methods. The verification results provided by these methods are often Comprehensive (for the
ML model aspects being verified) and, in some cases, Contextually Relevant. However, there are
currently insufficient methods capable of encoding the requirements of the model being verified
into suitable tests and formally verifiable properties. Furthermore, ensuring that verification results
are Comprehensible is still very challenging.
The integration and monitoring activities from the Model Deployment stage are supported by

a sizeable set of methods that can help address the Fit-for-Purpose and Tolerable desiderata of
deployed ML models. These methods are often inspired by analogous methods for the integration
and monitoring of software components developed using traditional engineering approaches.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:30 Rob Ashmore, Radu Calinescu, and Colin Paterson

In contrast, ML model updating using data collected during operation has no clear software
engineering counterpart. As such, model updating methods are scarce and typically unable to
provide the assurance needed to deploy MLmodels that are Adaptablewithin safety-critical systems.
A further open challenge for assuring the ML lifecycle is the determination of effective trade-

offs between the desiderata over the four stages. In many applications, the desiderata are closely
related, either reinforcing each other or placing competing demands on the ML lifecycle activities.
As an example, a highly Reusable ML model will likely be easily Adaptable, but might be less
Contextually Relevant. Further trade-offs arise in the assurance domain, e.g., an Explainable model
might introduce vulnerabilities exploitable in a cyberattack [77].
This brief summary shows that considerable research is still needed to address outstanding

assurance concerns associated with every stage of theML lifecycle. In general, usingML components
within safety-critical systems poses numerous open challenges. At the same time, the research
required to address these challenges can build on a promising combination of rigorous methods
developed by several decades of sustained advances in machine learning, in software and systems
engineering, and in assurance development.

ACKNOWLEDGEMENTS

This work was partly funded by the Assuring Autonomy International Programme, and the UKRI
project EP/V026747/1 ‘Trustworthy Autonomous Systems Node in Resilience’.

REFERENCES

[1] Mahdieh Abbasi, Arezoo Rajabi, Azadeh Sadat Mozafari, Rakesh B Bobba, and Christian Gagne. 2018. Controlling
Over-generalization and its Effect on Adversarial Examples Generation and Detection. arXiv:1808.08282

[2] Amina Adadi and Mohammed Berrada. 2018. Peeking inside the black-box: A survey on Explainable Artificial
Intelligence (XAI). IEEE Access 6 (2018), 52138ś52160.

[3] Ajaya Adhikari, DMTax, Riccardo Satta, andMatthias Fath. 2018. Example and Feature importance-based Explanations
for Black-box Machine Learning Models. arXiv:1812.09044

[4] Rocío Alaiz-Rodríguez and Nathalie Japkowicz. 2008. Assessing the impact of changing environments on classifier
performance. In Conference of the Canadian Society for Computational Studies of Intelligence. Springer, 13ś24.

[5] Rob Alexander, Heather Rebecca Hawkins, and Andrew John Rae. 2015. Situation coverageÐa coverage criterion for

testing autonomous robots. Technical Report YCS-2015-496. Department of Computer Science, University of York.
[6] Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars Mescheder, Andreas Geiger, and Carsten Rother. 2018. Augmented

reality meets computer vision: Efficient data generation for urban driving scenes. International Journal of Computer

Vision 126, 9 (2018), 961ś972.
[7] Maksym Andriushchenko and Matthias Hein. 2019. Provably robust boosted decision stumps and trees against

adversarial attacks. In Advances in Neural Information Processing Systems. 13017ś13028.
[8] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz. 2012. Human activity recognition on smartphones

using a multiclass hardware-friendly support vector machine. In International Workshop on Ambient Assisted Living.
216ś223.

[9] Adina Aniculaesei, Daniel Arnsberger, Falk Howar, and Andreas Rausch. 2016. Towards the Verification of Safety-
critical Autonomous Systems in Dynamic Environments. In V2CPS@IFM. 79ś90.

[10] Antreas Antoniou, Amos Storkey, and Harrison Edwards. 2017. Data augmentation generative adversarial networks.
arXiv:1711.04340

[11] Maziar Arjomandi, Shane Agostino, Matthew Mammone, Matthieu Nelson, and Tong Zhou. 2006. Classification of

unmanned aerial vehicles. Report for Mechanical Engineering class. Technical Report. University of Adelaide, Australia.
[12] Rob Ashmore and Matthew Hill. 2018. Boxing Clever: Practical Techniques for Gaining Insights into Training Data

and Monitoring Distribution Shift. In International Conference on Computer Safety, Reliability, and Security. Springer,
393ś405.

[13] Rob Ashmore and Elizabeth Lennon. 2017. Progress Towards the Assurance of Non-Traditional Software. In Develop-

ments in System Safety Engineering, 25th Safety-Critical Systems Symposium. 33ś48.
[14] Rob Ashmore and Bhopinder Madahar. 2019. Rethinking Diversity in the Context of Autonomous Systems. In

Engineering Safe Autonomy, 27th Safety-Critical Systems Symposium. 175ś192.
[15] Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, and Animashree Anandkumar. 2019. Regularized learning for domain

adaptation under label shifts. arXiv:1903.09734

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:31

[16] R. K. E. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan, P. Lohia, J. Martino, S. Mehta, A. Mojsilović, S.
Nagar, K. N. Ramamurthy, J. Richards, D. Saha, P. Sattigeri, M. Singh, K. R. Varshney, and Y. Zhang. 2019. AI Fairness
360: An extensible toolkit for detecting and mitigating algorithmic bias. IBM Journal of Research and Development 63,
4/5 (2019), 4:1ś4:15.

[17] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. Journal of Machine

Learning Research 13, Feb (2012), 281ś305.
[18] Steffen Bickel, Michael Brückner, and Tobias Scheffer. 2009. Discriminative learning under covariate shift. Journal of

Machine Learning Research 10, 9 (2009), 2137ś2155.
[19] Arijit Bishnu, Sameer Desai, Arijit Ghosh, Mayank Goswami, and Paul Subhabrata. 2015. Uniformity of Point Samples

in Metric Spaces Using Gap Ratio. In 12th Annual Conference on Theory and Applications of Models of Computation.
347ś358.

[20] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer.
[21] Robin Bloomfield and Peter Bishop. 2010. Safety and assurance cases: Past, present and possible futureśan Adelard

perspective. In Making Systems Safer. Springer, 51ś67.
[22] Barry Boehm and Wilfred J Hansen. 2000. Spiral development: Experience, principles, and refinements. Technical

Report CMU/SEI-2000-SR-008. Carnegie Mellon University.
[23] Chris Bogdiukiewicz, Michael Butler, Thai Son Hoang, Martin Paxton, James Snook, Xanthippe Waldron, and Toby

Wilkinson. 2017. Formal development of policing functions for intelligent systems. In 28th International Symposium

on Software Reliability Engineering. IEEE, 194ś204.
[24] Andrew P Bradley. 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms.

Pattern Recognition 30, 7 (1997), 1145ś1159.
[25] Houssem Ben Braiek and Foutse Khomh. 2018. On Testing Machine Learning Programs. arXiv:1812.02257
[26] Carla E Brodley and Mark A Friedl. 1999. Identifying mislabeled training data. Journal of Artificial Intelligence

Research 11 (1999), 131ś167.
[27] Atilla Bulmus, Axel Freiwald, and Chris Wunderlich. 2017. Over the Air Software Update Realization within Generic

Modules with Microcontrollers Using External Serial FLASH. Technical Report. SAE Technical Paper.
[28] Jonathod Byrd and Zachary Lipton. 2019. What is the effect of Importance Weighting in Deep Learning?

arXiv:1812.03372
[29] Radu Calinescu, Danny Weyns, Simos Gerasimou, Muhammad Usman Iftikhar, Ibrahim Habli, and Tim Kelly. 2018.

Engineering Trustworthy Self-Adaptive Software with Dynamic Assurance Cases. IEEE Transactions on Software

Engineering 44, 11 (2018), 1039ś1069.
[30] Cristian S Calude and Giuseppe Longo. 2017. The deluge of spurious correlations in big data. Foundations of Science

22, 3 (2017), 595ś612.
[31] Richard Carlsson, Björn Gustavsson, Erik Johansson, Thomas Lindgren, Sven-Olof Nyström, Mikael Pettersson, and

Robert Virding. 2000. Core Erlang 1.0 language specification. Technical Report. Information Technology Department,
Uppsala University.

[32] Paul Caseley. 2016. Claims and architectures to rationate on automatic and autonomous functions. In 11th International
Conference on System Safety and Cyber-Security. IET, 1ś6.

[33] Nitesh V Chawla, Aleksandar Lazarevic, Lawrence O Hall, and Kevin W Bowyer. 2003. SMOTEBoost: Improving
prediction of the minority class in boosting. In European Conference on Principles of Data Mining and Knowledge

Discovery. 107ś119.
[34] Liming Chen and Algirdas Avizienis. 1978. N-version programming: A fault-tolerance approach to reliability of

software operation. In 8th IEEE International Symposium on Fault-Tolerant Computing, Vol. 1. 3ś9.
[35] Xinyun Chen, Chang Liu, Bo Li, Kimberley Lu, and Dawn Song. 2017. Targeted Backdoor Attacks on Deep Learning

Systems Using Data Poisoning. arXiv:1712.05526
[36] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg

Corrado, Wei Chai, Mustafa Ispir, Zakaria Anil, Rohan an Haque, Lichan Hong, Vihan Jain, Xiabing Liu, and Hemal
Shah. 2016. Wide & deep learning for recommender systems.. In 1st Workshop on Deep Learning for Recommender

Systems. ACM, 7ś10.
[37] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. 2018. Back to Basics: Benchmarking Canonical Evolution

Strategies for Playing Atari. arXiv:1802.08842
[38] David A Cieslak and Nitesh V Chawla. 2009. A framework for monitoring classifiers performance: when and why

failure occurs? Knowledge and Information Systems 18, 1 (2009), 83ś108.
[39] Adnan Darwiche. 2018. Human-level Intelligence or Animal-like Abilities? Comm. ACM 61, 10 (2018), 56ś67.
[40] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image

database. In IEEE Conference on Computer Vision and Pattern Recognition. 248ś255.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:32 Rob Ashmore, Radu Calinescu, and Colin Paterson

[41] Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai. 2017. Deep direct reinforcement learning for
financial signal representation and trading. IEEE Transactions on Neural Networks and Learning Systems 28, 3 (2017),
653ś664.

[42] Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretablemachine learning. arXiv:1702.08608
[43] Tommaso Dreossi, Daniel J Fremont, Shromona Ghosh, Edward Kim, Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte,

and Sanjit A Seshia. 2019. VERIFAI: A toolkit for the design and analysis of artificial intelligence-based systems.
arXiv:1902.04245

[44] Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Kurt Keutzer, Alberto Sangiovanni-Vincentelli, and Sanjit A Seshia.
2018. Counterexample-guided data augmentation. arXiv:1805.06962

[45] Tommaso Dreossi, Somesh Jha, and Sanjit A Seshia. 2018. Semantic adversarial deep learning. arXiv:1804.07045
[46] Chris Drummond and Robert C Holte. 2006. Cost curves: An improved method for visualizing classifier performance.

Machine learning 65, 1 (2006), 95ś130.
[47] Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2019. Sherlock-A tool for

verification of neural network feedback systems: demo abstract. In 22nd ACM International Conference on Hybrid

Systems: Computation and Control. 262ś263.
[48] Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In International

Symposium on Automated Technology for Verification and Analysis. Springer, 269ś286.
[49] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. 2018. Adversarial vulnerability for any classifier. arXiv:1802.08686
[50] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. 2015. Fundamental limits on adversarial robustness. In ICML

Workshop on Deep Learning.
[51] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. 2016. Robustness of Classifiers: From

Adversarial to Random Noise (NIPS’16). Curran Associates Inc., Red Hook, NY, USA, 1632ś1640.
[52] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian. 2015.

Certifying and removing disparate impact. In 21th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. ACM, 259ś268.
[53] Angelo Ferrando, Louise A Dennis, Davide Ancona, Michael Fisher, and Viviana Mascardi. 2018. Verifying and

validating autonomous systems: Towards an integrated approach. In International Conference on Runtime Verification.
Springer, 263ś281.

[54] Peter Flach. 2019. Performance Evaluation in Machine Learning: The Good, The Bad, The Ugly and The Way Forward.
In 33rd AAAI Conference on Artificial Intelligence. 9808ś9814.

[55] Michael Forsting. 2017. Machine learning will change medicine. Journal of Nuclear Medicine 58, 3 (2017), 357ś358.
[56] Yoav Freund, Robert Schapire, and Naoki Abe. 1999. A short introduction to boosting. Journal-Japanese Society For

Artificial Intelligence 14, 771-780 (1999), 1612.
[57] Yoav Freund and Robert E Schapire. 1997. A decision-theoretic generalization of on-line learning and an application

to boosting. Journal of Computer and System Sciences 55, 1 (1997), 119ś139.
[58] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. 2018.

AI2: Safety and robustness certification of neural networks with abstract interpretation. In 2018 IEEE Symposium on

Security and Privacy. IEEE, 3ś18.
[59] Aurélien Géron. 2017. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to

build intelligent systems. " O’Reilly Media, Inc.".
[60] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep learning. Vol. 1. MIT Press.
[61] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples.

arXiv:1412.6572
[62] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. BadNets: Identifying Vulnerabilities in the Machine

Learning Model Supply Chain. arXiv:1708.06733
[63] Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue, and Gong Bing. 2017. Learning from

class-imbalanced data: Review of methods and applications. Expert Systems with Applications 73 (2017), 220ś239.
[64] Jeff Heaton. 2016. An empirical analysis of feature engineering for predictive modeling. In SoutheastCon. IEEE, 1ś6.
[65] Constance L Heitmeyer, Ralph D Jeffords, and Bruce G Labaw. 1996. Automated consistency checking of requirements

specifications. ACM Transactions on Software Engineering and Methodology 5, 3 (1996), 231ś261.
[66] Parker Hill, Babak Zamirai, Shengshuo Lu, Yu-Wei Chao, Michael Laurenzano, Mehrzad Samadi, Marios C. Pa-

paefthymiou, Scott A. Mahlke, Thomas F. Wenisch, Jia Deng, Lingjia Tang, and Jason Mars. [n. d.]. Rethinking
Numerical Representations for Deep Neural Networks. arXiv:1808.02513

[67] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. [n. d.]. Improving
neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580

[68] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety Verification of Deep Neural Networks. In
29th International Conference on Computer Aided Verification (Lecture Notes in Computer Science), Rupak Majumdar

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:33

and Viktor Kuncak (Eds.), Vol. 10426. Springer, 3ś29.
[69] Zhongling Huang, Zongxu Pan, and Bin Lei. 2017. Transfer learning with deep convolutional neural network for

SAR target classification with limited labeled data. Remote Sensing 9, 9 (2017), 907.
[70] Casidhe Hutchison, Milda Zizyte, Patrick E Lanigan, David Guttendorf, Michael Wagner, Claire Le Goues, and Philip

Koopman. 2018. Robustness testing of autonomy software. In 40th IEEE/ACM International Conference on Software

Engineering: Software Engineering in Practice. 276ś285.
[71] Frank Hutter, Jörg Lücke, and Lars Schmidt-Thieme. 2015. Beyond manual tuning of hyperparameters. KI-Künstliche

Intelligenz 29, 4 (2015), 329ś337.
[72] Didac Gil De La Iglesia and Danny Weyns. 2015. MAPE-K formal templates to rigorously design behaviors for

self-adaptive systems. ACM Transactions on Autonomous and Adaptive Systems 10, 3 (2015), 15.
[73] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. arXiv:1502.03167
[74] Bandar Seri Iskandar. 2017. Terrorism detection based on sentiment analysis using machine learning. Journal of

Engineering and Applied Sciences 12, 3 (2017), 691ś698.
[75] ISO. 2018. Road Vehicles - Functional Safety: Part 6. Technical Report BS ISO 26262-6:2018. ISO.
[76] Nathalie Japkowicz. 2001. Concept-learning in the presence of between-class and within-class imbalances. In

Conference of the Canadian Society for Computational Studies of Intelligence. Springer, 67ś77.
[77] Nikita Johnson and Tim Kelly. 2019. Devil’s in the Detail: Through-Life Safety and Security Co-assurance Using SSAF.

In 38th International Conference on Computer Safety, Reliability, and Security. Springer, 299ś314.
[78] Taylor T Johnson, Stanley Bak, Marco Caccamo, and Lui Sha. 2016. Real-time reachability for verified Simplex design.

ACM Transactions on Embedded Computing Systems 15, 2 (2016), 1ś27.
[79] M.H. Kabir, M.R. Hoque, H. Seo, and S.H. Yang. 2015. Machine learning based adaptive context-aware system for

smart home environment. International Journal of Smart Home 9, 11 (2015), 55ś62.
[80] Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for classification without discrimination.

Knowledge and Information Systems 33, 1 (2012), 1ś33.
[81] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. 2017. Reluplex: An efficient SMT solver

for verifying deep neural networks. In International Conference on Computer Aided Verification. Springer, 97ś117.
[82] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu

Thakoor, Haoze Wu, Aleksandar Zeljić, et al. 2019. The marabou framework for verification and analysis of deep
neural networks. In International Conference on Computer Aided Verification. Springer, 443ś452.

[83] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. 2012. Leakage in data mining: Formulation,
detection, and avoidance. ACM Transactions on Knowledge Discovery from Data 6, 4 (2012), 15.

[84] Jeffrey O Kephart and David M Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003), 41ś50.
[85] Muhammad Taimoor Khan, Dimitrios Serpanos, and Howard Shrobe. 2016. A rigorous and efficient run-time security

monitor for real-time critical embedded system applications. In 3rd World Forum on Internet of Things. IEEE, 100ś105.
[86] Udayan Khurana, Horst Samulowitz, and Deepak Turaga. 2018. Feature engineering for predictive modeling using

reinforcement learning. In 32nd AAAI Conference on Artificial Intelligence. 3407ś3414.
[87] Roger E Kirk. 2007. Experimental design. Wiley Online Library.
[88] TomKo, Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur. 2015. Audio augmentation for speech recognition.

In 16th Annual Conference of the International Speech Communication Association.
[89] Patrick Koch, Brett Wujek, Oleg Golovidov, and Steven Gardner. 2017. Automated hyperparameter tuning for effective

machine learning. In SAS Global Forum Conference.
[90] Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gordon, and A Aldo Faisal. 2018. The Artificial

Intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine 24, 11 (2018),
1716ś1720.

[91] Philip Koopman and Frank Fratrik. 2019. How Many Operational Design Domains, Objects, and Events?. In AAAI

Workshop on Artificial Intelligence Safety.
[92] Philip Koopman, Aaron Kane, and Jen Black. 2019. Credible autonomy safety argumentation. In 27th Safety-Critical

Systems Symposium.
[93] SB Kotsiantis, Dimitris Kanellopoulos, and PE Pintelas. 2006. Data preprocessing for supervised leaning. International

Journal of Computer Science 1, 2 (2006), 111ś117.
[94] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas. 2007. Data Preprocessing for Supervised Leaning. International

Journal of Computer, Electrical, Automation, Control and Information Engineering 1, 12 (2007), 4104ś4109.
[95] Samantha Krening, Brent Harrison, KarenM Feigh, Charles Lee Isbell, Mark Riedl, and Andrea Thomaz. 2017. Learning

from explanations using sentiment and advice in RL. IEEE Transactions on Cognitive and Developmental Systems 9, 1
(2017), 44ś55.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:34 Rob Ashmore, Radu Calinescu, and Colin Paterson

[96] Isaac Lage, Andrew Ross, Kim Been, Samuel Gershman, and Finale Doshi-Velez. 2018. Human-in-the-Loop Inter-
pretability Prior. In Conference on Neural Information Processing Systems. 10180ś10189.

[97] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
recognition. IEEE 86, 11 (1998), 2278ś2324.

[98] Joseph Lemley, Filip Jagodzinski, and Razvan Andonie. 2016. Big holes in big data: A Monte Carlo algorithm for
detecting large hyper-rectangles in high dimensional data. In IEEE Computer Software and Applications Conference.
563ś571.

[99] Zachary C Lipton. 2016. The mythos of model interpretability. arXiv:1606.03490
[100] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu Zhang. 2019. ABS: Scanning

neural networks for back-doors by artificial brain stimulation. In 2019 ACM SIGSAC Conference on Computer and

Communications Security. 1265ś1282.
[101] Victoria López, Alberto Fernández, Salvador García, Vasile Palade, and Francisco Herrera. 2013. An insight into

classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics.
Information Sciences 250 (2013), 113ś141.

[102] Gustavo A Lujan-Moreno, Phillip R Howard, Omar G Rojas, and Douglas C Montgomery. 2018. Design of experiments
and response surface methodology to tune machine learning hyperparameters, with a random forest case-study.
Expert Systems with Applications 109 (2018), 195ś205.

[103] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao. 2019. DeepCT: Tomographic Combina-
torial Testing for Deep Learning Systems. In 26th IEEE International Conference on Software Analysis, Evolution and

Reengineering. IEEE, 614ś618.
[104] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu,

Jianjun Zhao, and Yadong Wang. 2018. DeepGauge: multi-granularity testing criteria for deep learning systems. In
33rd ACM/IEEE International Conference on Automated Software Engineering. ACM, 120ś131.

[105] Mathilde Machin, Jérémie Guiochet, Hélène Waeselynck, Jean-Paul Blanquart, Matthieu Roy, and Lola Masson. 2018.
SMOF: A safety monitoring framework for autonomous systems. IEEE Transactions on Systems, Man, and Cybernetics:

Systems 48, 5 (2018), 702ś715.
[106] Aravindh Mahendran and Andrea Vedaldi. 2015. Understanding deep image representations by inverting them. In

IEEE Conference on computer vision and pattern recognition. 5188ś5196.
[107] Spyros Makridakis. 2017. The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms.

Futures 90 (2017), 46ś60.
[108] Pedro Marcelino. 2018. Transfer learning from pre-trained models. Towards Data Science (2018).
[109] George Mason, Radu Calinescu, Daniel Kudenko, and Alec Banks. 2017. Assured Reinforcement Learning with

Formally Verified Abstract Policies. In 9th International Conference on Agents and Artificial Intelligence. 105ś117.
[110] Michael Maurer, Ivan Breskovic, Vincent C Emeakaroha, and Ivona Brandic. 2011. Revealing the MAPE loop for the

autonomic management of cloud infrastructures. In Symposium on computers and communications. IEEE, 147ś152.
[111] Markus Maurer, J Christian Gerdes, Barbara Lenz, and Hermann Winner. 2016. Autonomous driving: technical, legal

and social aspects. Springer Nature.
[112] Christopher Meyer and Jörg Schwenk. 2013. SoK: Lessons learned from SSL/TLS attacks. In International Workshop

on Information Security Applications. Springer, 189ś209.
[113] Microsoft. 2019. How to choose algorithms for Azure Machine Learning Studio. Retrieved February 2019 from

https://docs.microsoft.com/en-us/azure/machine-learning/studio/algorithm-choice
[114] Tom M. Mitchell. 1997. Machine Learning. McGraw-Hill.
[115] Model Zoos Caffe 2019. Caffe Model Zoo. Retrieved March 2019 from http://caffe.berkeleyvision.org/model_zoo.html
[116] Model Zoos Github 2019. Model Zoos of machine and deep learning technologies. Retrieved March 2019 from

https://github.com/collections/ai-model-zoos
[117] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. 2017. Universal adversarial

perturbations. In IEEE Conference on Computer Vision and Pattern Recognition. 1765ś1773.
[118] Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V Chawla, and Francisco Herrera. 2012. A unifying

view on dataset shift in classification. Pattern Recognition 45, 1 (2012), 521ś530.
[119] Pamela A Munro and Barbara G Kanki. 2003. An analysis of ASRS maintenance reports on the use of minimum

equipment lists. In R. Jensen, 12th International Symposium on Aviation Psychology. Ohio State University, Dayton, OH.
[120] Kevin P. Murphy. 2012. Machine Learning: A Probabilistic Perspective. The MIT Press.
[121] Partha Niyogi and Federico Girosi. 1996. On the relationship between generalization error, hypothesis complexity,

and sample complexity for radial basis functions. Neural Computation 8, 4 (1996), 819ś842.
[122] Object Management Group. 2018. Structured Assurance Case Metamodel (SACM). Version 2.0.
[123] Augustus Odena and Ian Goodfellow. 2018. TensorFuzz: Debugging neural networks with coverage-guided fuzzing.

arXiv:1807.10875

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:35

[124] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. 2014. Learning and transferring mid-level image rep-
resentations using convolutional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition.
1717ś1724.

[125] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami. 2017.
Practical black-box attacks againstmachine learning. In 2017 ACMonAsia Conference on Computer and Communications

Security. ACM, 506ś519.
[126] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Automated whitebox testing of deep

learning systems. In 26th Symposium on Operating Systems Principles. ACM, 1ś18.
[127] Teresa Placho, Christoph Schmittner, Arndt Bonitz, and Oliver Wana. 2020. Management of automotive software

updates. Microprocessors and Microsystems 78 (2020), 103257.
[128] Michael J Pont and Royan HL Ong. 2002. Using watchdog timers to improve the reliability of single-processor

embedded systems: Seven new patterns and a case study. In First Nordic Conference on Pattern Languages of Programs.
[129] Lutz Prechelt. 1998. Early stopping-but when? In Neural Networks: Tricks of the trade. Springer, 55ś69.
[130] Philipp Probst, Bernd Bischl, and Anne-Laure Boulesteix. 2018. Tunability: Importance of hyperparameters of machine

learning algorithms. (2018). arXiv:1802.09596
[131] Foster Provost and Tom Fawcett. 2001. Robust classification for imprecise environments. Machine learning 42, 3

(2001), 203ś231.
[132] J Provost Foster, Fawcett Tom, and Kohavi Ron. 1998. The case against accuracy estimation for comparing induction

algorithms. In 15th International Conference on Machine Learning. 445ś453.
[133] R-Bloggers Data Analysis 2019. How to use data analysis for machine learning. Retrieved February 2019 from

https://www.r-bloggers.com/how-to-use-data-analysis-for-machine-learning-example-part-1
[134] Stephan Rabanser, Stephan Günnemann, and Zachary C. Lipton. 2018. Failing Loudly: An Empirical Study of Methods

for Detecting Dataset Shift. CoRR abs/1810.11953 (2018).
[135] Jan Ramon, Kurt Driessens, and Tom Croonenborghs. 2007. Transfer learning in reinforcement learning problems

through partial policy recycling. In European Conference on Machine Learning. Springer, 699ś707.
[136] Francesco Ranzato and Marco Zanella. 2019. Robustness verification of support vector machines. In International

Static Analysis Symposium. Springer, 271ś295.
[137] Jorge-L Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita. 2016. Transition-aware human

activity recognition using smartphones. Neurocomputing 171 (2016), 754ś767.
[138] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions

of any classifier. In 22nd ACM SIGKDD International Conference on knowledge discovery and data mining. ACM,
1135ś1144.

[139] F. Ricci, L. Rokach, and B. Shapira. 2015. Recommender systems: introduction and challenges. Recommender systems

handbook (2015), 1ś34.
[140] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M Lopez. 2016. The SYNTHIA dataset:

A large collection of synthetic images for semantic segmentation of urban scenes. In IEEE Conference on Computer

Vision and Pattern Recognition. 3234ś3243.
[141] Andrew Slavin Ross and Finale Doshi-Velez. 2018. Improving the adversarial robustness and interpretability of deep

neural networks by regularizing their input gradients. In 32nd AAAI Conference on Artificial Intelligence.
[142] Saharon Rosset, Claudia Perlich, Grzergorz Świrszcz, Prem Melville, and Yan Liu. 2010. Medical data mining: insights

from winning two competitions. Data Mining and Knowledge Discovery 20, 3 (2010), 439ś468.
[143] RTCA. 2011. Software Considerations in Airborne Systems and Equipment Certification. Technical Report DO-178C.
[144] Cynthia Rudin. 2019. Stop explaining black boxmachine learningmodels for high stakes decisions and use interpretable

models instead. Nature Machine Intelligence 1, 5 (2019), 206ś215.
[145] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach. Pearson Education Limited.
[146] Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. 1989. Design and analysis of computer

experiments. Statistical science (1989), 409ś423.
[147] Omer Sagi and Lior Rokach. 2018. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery 8, 4 (2018), e1249.
[148] Ahmed Salem, Michael Backes, and Yang Zhang. 2020. Don’t Trigger Me! A Triggerless Backdoor Attack Against

Deep Neural Networks. arXiv:2010.03282
[149] Robert G Sargent. 2009. Verification and validation of simulation models. In Winter Simulation Conference. 162ś176.
[150] Lawrence K Saul and Sam T Roweis. 2003. Think globally, fit locally: unsupervised learning of low dimensional

manifolds. Journal of machine learning research 4, Jun (2003), 119ś155.
[151] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. 2018. Efficient on-line error detection and mitigation for

deep neural network accelerators. In International Conference on Computer Safety, Reliability, and Security. Springer,
205ś219.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

0:36 Rob Ashmore, Radu Calinescu, and Colin Paterson

[152] Scikit-Taxonomy 2019. Scikit - Choosing the right estimator. Retrieved February 2019 from https://scikit-learn.org/
stable/tutorial/machine_learning_map/index.html

[153] Noam Segev, Maayan Harel, Shie Mannor, Koby Crammer, and Ran El-Yaniv. 2017. Learn on source, refine on target: a
model transfer learning framework with random forests. IEEE transactions on pattern analysis and machine intelligence

39, 9 (2017), 1811ś1824.
[154] Daniel Selsam, Percy Liang, and David L Dill. 2017. Developing bug-free machine learning systems with formal

mathematics. In 34th International Conference on Machine Learning-Volume 70. JMLR. org, 3047ś3056.
[155] Victor S Sheng and Jing Zhang. 2019. Machine learning with crowdsourcing: A brief summary of the past research

and future directions. In AAAI Conference on Artificial Intelligence, Vol. 33. 9837ś9843.
[156] Andy Shih, Arthur Choi, and Adnan Darwiche. 2018. Formal verification of Bayesian network classifiers. In Interna-

tional Conference on Probabilistic Graphical Models. 427ś438.
[157] Padhraic Smyth. 1996. Bounds on the mean classification error rate of multiple experts. Pattern Recognition Letters 17,

12 (1996), 1253ś1257.
[158] Marina Sokolova and Guy Lapalme. 2009. A systematic analysis of performance measures for classification tasks.

Information Processing & Management 45, 4 (2009), 427ś437.
[159] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a

simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15, 1 (2014),
1929ś1958.

[160] Sanatan Sukhija, Narayanan C Krishnan, and Deepak Kumar. 2018. Supervised heterogeneous transfer learning using
random forests. In ACM India Joint International Conference on Data Science and Management of Data. ACM, 157ś166.

[161] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. 2018. Concolic
testing for deep neural networks. In 33rd ACM/IEEE International Conference on Automated Software Engineering.
ACM, 109ś119.

[162] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
2013. Intriguing properties of neural networks. (2013). arXiv:1312.6199

[163] A Taber and E Normand. 1993. Single event upset in avionics. IEEE Transactions on Nuclear Science 40, 2 (1993),
120ś126.

[164] Mariarosaria Taddeo, Tom McCutcheon, and Luciano Floridi. 2019. Trusting artificial intelligence in cybersecurity is
a double-edged sword. Nature Machine Intelligence (2019), 1ś4.

[165] Luke Taylor and Geoff Nitschke. 2017. Improving deep learning using generic data augmentation. (2017).
arXiv:1708.06020

[166] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2013. Auto-WEKA: Combined selection
and hyperparameter optimization of classification algorithms. In 19th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 847ś855.
[167] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated testing of deep-neural-network-

driven autonomous cars. In 40th International Conference on Software Engineering. ACM, 303ś314.
[168] John Törnblom and Simin Nadjm-Tehrani. 2018. Formal verification of random forests in safety-critical applications.

In International Workshop on Formal Techniques for Safety-Critical Systems. Springer, 55ś71.
[169] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T Johnson. 2020. Verification of Deep Convolutional

Neural Networks Using ImageStars. arXiv:2004.05511
[170] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen, Weiming Xiang,

Stanley Bak, and Taylor T Johnson. 2020. NNV: The Neural Network Verification Tool for Deep Neural Networks and
Learning-Enabled Cyber-Physical Systems. arXiv:2004.05519

[171] John W Tukey. 1977. Exploratory data analysis. Vol. 2. Reading, Mass.
[172] Jasper van der Waa, Jurriaan van Diggelen, Mark A Neerincx, and Stephan Raaijmakers. 2018. ICM: An intuitive

model independent and accurate certainty measure for machine learning.. In ICAART (2). 314ś321.
[173] Perry Van Wesel and Alwyn E Goodloe. 2017. Challenges in the verification of reinforcement learning algorithms.

(2017).
[174] Kiri Wagstaff. 2012. Machine learning that matters. (2012). arXiv:1206.4656
[175] Kiri L Wagstaff and Benjamin Bornstein. 2009. K-means in space: A radiation sensitivity evaluation. In 26th Annual

International Conference on Machine Learning. 1097ś1104.
[176] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. 2013. Regularization of neural networks using

dropconnect. In International Conference on Machine Learning. 1058ś1066.
[177] BinghuiWang and Neil Zhenqiang Gong. 2018. Stealing hyperparameters in machine learning. In 2018 IEEE Symposium

on Security and Privacy. IEEE, 36ś52.
[178] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. 2019. Neural

cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE Symposium on Security and

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges 0:37

Privacy. IEEE, 707ś723.
[179] Ke Wang, Senqiang Zhou, Chee Ada Fu, and Jeffrey Xu Yu. 2003. Mining changes of classification by correspondence

tracing. In 2003 SIAM International Conference on Data Mining. SIAM, 95ś106.
[180] Lu Wang, Xuanqing Liu, Jinfeng Yi, Zhi-Hua Zhou, and Cho-Jui Hsieh. 2019. Evaluating the Robustness of Nearest

Neighbor Classifiers: A Primal-Dual Perspective. arXiv:1906.03972
[181] Yihan Wang, Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. 2020. On 𝑙𝑝 -norm Robustness of

Ensemble Stumps and Trees. arXiv:2008.08755
[182] Gary MWeiss. 2004. Mining with rarity: a unifying framework. ACM Sigkdd Explorations Newsletter 6, 1 (2004), 7ś19.
[183] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A survey of transfer learning. Journal of Big Data 3, 1

(2016), 9.
[184] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David Whalley, Guillem

Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan
Straschulat, and Per Strenström. 2008. The worst-case execution-time problemÐoverview of methods and survey of
tools. ACM Transactions on Embedded Computing Systems 7, 3 (2008), 36.

[185] Sebastien C Wong, Adam Gatt, Victor Stamatescu, and Mark D McDonnell. 2016. Understanding data augmentation
for classification: when to warp?. In International Conference on digital image computing: techniques and applications.
IEEE, 1ś6.

[186] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V., Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey
Dean. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation.
arXiv:1609.0814

[187] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and Robert M Patton. 2015. Optimizing deep
learning hyper-parameters through an evolutionary algorithm. InWorkshop on Machine Learning in High-Performance

Computing Environments. ACM, 4.
[188] X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen, S. Zhang, H. Huang, X. Wang, and C. A. Gunter. 2018. Comman-

derSong: A Systematic Approach for Practical Adversarial Voice Recognition. arXiv:1801.08535
[189] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth Murching,

Tomas Nykodym, Paul Ogilvie, Mani Parkhe, Fen Xie, and Corey Zumar. 2018. Accelerating the machine learning
lifecycle with MLflow. Data Engineering (2018), 39.

[190] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. 2018. DeepRoad: GAN-based
metamorphic autonomous driving system testing. (2018). arXiv:1802.02295

[191] Shichao Zhang, Chengqi Zhang, and Qiang Yang. 2003. Data preparation for data mining. Applied Artificial Intelligence
17, 5-6 (2003), 375ś381.

[192] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. 2016. Improving the robustness of deep neural
networks via stability training. In IEEE Conference on Computer Vision and Pattern Recognition. 4480ś4488.

[193] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. 2017. Random erasing data augmentation.
arXiv:1708.04896

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.

	Abstract
	1 Introduction
	2 The Machine Learning Lifecycle
	3 Related Surveys
	4 Data Management
	4.1 Inputs and Outputs
	4.2 Activities
	4.3 Desiderata
	4.4 Methods
	4.5 Summary and Open Challenges

	5 Model Learning
	5.1 Inputs and Outputs
	5.2 Activities
	5.3 Desiderata
	5.4 Methods
	5.5 Summary and Open Challenges

	6 Model Verification
	6.1 Inputs and Outputs
	6.2 Activities
	6.3 Desiderata
	6.4 Methods
	6.5 Summary and Open Challenges

	7 Model Deployment
	7.1 Inputs and Outputs
	7.2 Activities
	7.3 Desiderata
	7.4 Methods
	7.5 Summary and Open Challenges

	8 Conclusion
	References

