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Safely probing the chemistry of Chernobyl nuclear
fuel using micro-focus X-ray analysis†

Hao Ding,a Malin C. Dixon Wilkins, a Clémence Gausse,a Lucy M. Mottram, a

Shikuan Sun, a Martin C. Stennett, a Daniel Grolimund, b Ryan Tappero, c

Sarah Nicholas,c Neil C. Hyatt *a and Claire L. Corkhill *a

Detailed chemical analysis of the solidified molten fuel still residing in the stricken Chernobyl reactor unit 4

are inferred usingmulti-modal micro-focus X-ray analysis of a low-radioactivity proxy. A fascinatingmixture

of molten UO2, nuclear fuel cladding, concrete, stainless steel and other nuclear reactor components, these

materials behaved like lava, solidifying to form a complex, highly radioactive glass-ceramic. Using element-

specific chemical probes (micro-X-ray fluorescence and X-ray absorption spectroscopy), coupled with

micro-diffraction analysis, the crystalline phase assemblage of simulants of these heterogeneous

materials was established, which included “chernobylite” and a range of compositions in the (U1�xZrx)O2

solid solution. Novel insight to nuclear accident fuel chemistry was obtained by establishing the

oxidation state and local coordination of uranium not only in these crystalline phases, but uniquely in the

amorphous fraction of the material, which varied depending on the history of the nuclear lava as it

flowed through the reactor. This study demonstrates that micro-focus X-ray analysis of very small

fractions of material can yield rich chemical information, which can be applied to nuclear-melt down

materials to aid decommissioning and nuclear fuel management at nuclear accident sites.

Introduction

The accident that occurred at the 4th reactor of the Chernobyl

Nuclear Power Plant on April 28th 1986 resulted in complete

melting of the reactor core with severe consequences. It generated

large amounts of highly radioactive nuclear fuel-containing

materials, including so-called lava-like fuel-containing materials

(LFCMs),1–4 which have also been identied at the Fukushima

Daiichi nuclear power plant. LFCM, a mixture of nuclear fuel and

melted reactor components (stainless steel, concrete etc.), collected

from different locations within the Chernobyl reactor, are classi-

ed as either black or brown based on their colour,3,5 inuenced by

the U and Fe content.3 Investigation of a limited number of

samples of these materials has been conducted but analysis was

restricted by their high radioactivity, complicating the handling

and characterisation process.6–11

To gain deeper insight into the properties of materials arising

from nuclear reactor accidents, in a safe and efficient manner,

a suite of simulant brown and black LFCM samples with much

lower radioactivity, i.e. excluding ssion products, were

synthesised and characterised.12–14 Detailed bulk analysis of these

simulant materials was reported and the morphology and

mineralogy were found to closely approximate those of real

LFCMs. In the present study, micro-focus synchrotron X-ray

analysis was used to investigate several representative regions of

these materials. By combining the analyses from micron-resolved

chemical probes (X-ray uorescence, m-XRF and X-ray Absorption

Spectroscopy, m-XAS) and diffraction analysis (m-XRD), it was

possible to accurately identify crystalline phases, determine the

local U chemistry in crystalline and amorphous phases, and

reconstruct the paragenetic sequence, i.e., the chronology of

crystallisation of phases from the lava melt. Further analysis of

Extended X-ray Absorption Fine Structure (EXAFS) spectra were

used to quantitatively identify the local environment of U,

providing novel insights to nuclear accident material chemistry.

Understanding these interactions and U behaviours are key to

building a complete understanding of nuclear fuels in accident

scenarios. We show that rich chemical information can be ob-

tained by these methods on extremely small, mm-sized, samples;

such size reduction on real nuclear fuel materials would drasti-

cally lower the hazard associated with their analysis.

Experimental
Materials and synthesis

The detailed preparation of simulant Chernobyl brown and black

LFCMs was reported in full in our previous study.13 Both brown
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and black LFCMs were synthesised using the samemethod. Their

compositions, derived from those of real LFCM, are somewhat

different from one another, with brown LFCM containingmore U

and black LFCM containing no Fe (see ESI Table 1†). For

convenience, the materials and preparation of these samples,

developed within the HADES facility,15 and a short description of

their similarity to real LFCM, are briey described here. The

batched compositions of brown and black LFCMs were based on

an average of all analysed samples in the literature, but with

additional ZrO2 added to encourage the crystallisation of zircon

(ZrSiO4). The corresponding precursors including SiO2 (Locha-

line Quartz Sand 99.6%), CaCO3 (Fisher 98%), ZrO2 (Aldrich

99%), Na2CO3 (Alfa Aesar 98%), BaCO3 (Alfa Aesar 99%), Al(OH)3
(Acros 95%), Mn2O3 (Aldrich 99%), stainless steel 316 (Fe/Cr18/

Ni10/Mo3, Goodfellow), Mg(OH)2 (Sigma-Aldrich 99.9%), and UO2

(BDH) were mixed, and then calcined in alumina crucibles under

a reducing atmosphere (5% H2 in 95% N2) at 1500
�C for 4 h,

followed by a second dwell at 720 �C for 72 h. The second heating

step was added to facilitate crystallite growth. Analysis by X-Ray

Diffraction (XRD) and Scanning Electron Microscopy, coupled

with Energy Dispersive X-ray Spectroscopy (SEM/EDS), demon-

strated that the simulant LFCMs accurately reected the phase

assemblage, microstructure and mechanical properties of real

brown and black LFCM.12–14 Thermal characterisation of the

simulants conrmed that the crystallisation temperatures were

consistent with those of naturally-occurring versions of the LFCM

minerals.13 Furthermore, the corrosion rates of U from the sim-

ulant LFCMs were found to be similar to those determined from

limited studies of real LFCM.13

Micro-focus X-ray analysis

Samples were prepared for m-focus measurements (m-XRF, m-

XANES and m-XRD) by sectioning mounting on a 250 mm thick

Spectrosil fused quartz slide. The sample was then thinned and

polished to a thickness of 50 mm by standard metallographic

procedures. The micro-focus measurements (excluding m-EXAFS)

were conducted at the Swiss Light Source, Paul Scherrer Institute,

Switzerland, on the microXAS-X05LA beamline.16 A xed-exit

double crystal monochromator (Si (111) and Si (311) crystals)

was used, maintaining consistent and stable beam angles and

offsets for all experiments. The energy was calibrated bymeasuring

XANES of Zr and Y foil standards. The spot size of the mono-

chromatic beam as focused on the samples was tuned to 1 mm� 1

mm by a Kirkpatrick–Baez (KB) mirror system with a xed incident

X-ray energy of 18 100 eV. Samples were mounted on a manipu-

lator 80 mm behind the KB mirror (total focus distances of

150 mm horizontal � 270 mm vertical). For the micro-focus XRD

measurements, the angles and distances between the area detector

(DECTRIS Eiger 4M) and samples were calibrated by measuring

a silicon standard. The accessible 2q range was 3.5 to 42.6� 2q with

a resolution of 0.02�. All samples were scanned in transmission

mode by the beam in a raster pattern. X-ray uorescence (XRF)

spectra were simultaneously measured, using a Si dri-detector

(KETEK) with 4% energy resolution.

Uranium LIII edge X-ray Absorption Near Edge Spectroscopy

(XANES) data were collected over the energy range 17 060–

17 325 eV, with a resolution of 0.2 eV. Energy calibration was

conducted based on the K edge (17 038 eV) of an Y foil standard.

Four measurements of each point of interest were collected in

uorescence mode and averaged. The threshold energy (E0) and

edge point were determined as the rst inection point and

white line position of the spectra respectively. The oxidation

state of U has a linear inuence on the minimum excitement

energy, where it is shied due to a change in effective nuclei

charge as the U valence changes. The linear function was

established based on data collected from a range of standard U-

containing compounds, which have similar chemical environ-

ments and electron congurations to the unknown samples.

Standards measured included: UO2 (average U oxidation state

(OS) 4 and coordination number (CN) 8); CaUO4 (average OS 6

and CN 8); UMoO5 (average OS 5 and CN 7); LaUO4 (average OS 5

and CN 8); UTiO5 (average OS 6 and CN 7); UTi2O6 (average OS 4

and CN 6); and Ca3UO6 (average OS 6 and CN 6).

The average oxidation states of standards and samples were

determined by examining the energy position of the XANES

spectra, compared to the linear relationship between oxidation

state and energy position of a range of U-containing standards.

The U LIII XANES of compounds incorporating the uranyl

species are characterised by a post-edge resonance or shoulder

at ca. 15 eV above the white line, which arises from multiple

scattering associated with the UO2
2+ oxocation.17 As no such

uranyl shoulder was observed in the spectra of any point of

interest, Ca3UO6 and CaUO4 were selected as the reference

compounds for U(VI) in linear combination tting, to minimise

the inuence of the shoulder caused by uranyl species seen at

the U LIII edge (CaUO4 has a particularly long linear O–U–O

moiety, closer to a bond length indicative of U–O double-

bonding, and Ca3UO6 consists of simple regular (UO6) octa-

hedra with 6 equivalent oxygen positions).18 XANES spectra of

pure synthetic USiO4 were also collected for use as a silicate

U(IV) standard for description of the U coordination in the

zircon and glass phases.19,20

Micro-focus Extended X-ray Absorption Fine Structure (EXAFS)

data were collected at the National Synchrotron Light Source II

(NSLS-II), BrookhavenNational Laboratory, USA, on beamline 4BM

(XFM). The measurements were taken under similar conditions as

the measurements at the Swiss Light Source, but with a wider

energy range of 17 015–17 730 eV. The spot size was 2 mm� 1 mm.

The raw data were normalized and a Fourier transform applied

over the k-range 3.0–10.0 Å�1 using Athena and Artemis, parts of

the Demeter soware package.21 Scattering paths including

amplitude, phase shi, mean free path and the initial path lengths

were calculated by employing the FEFF code program in Artemis.

The tting was conducted by xing the amplitude at 0.95, using

the same Debye–Waller factors for all paths comprising the rst

oxygen shell, and rening the interatomic distance and coordi-

nation numbers simultaneously.

Reconstruction of the crystalline phase assemblage

Azimuthal integration of individual 2D m-diffraction patterns and

summation of the whole area were applied using the XRDUA

soware package to construct 1D diffraction patterns.22 The phase

J. Mater. Chem. A This journal is © The Royal Society of Chemistry 2021
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assemblage was determined by matching the diffraction peaks

with materials previously reported in the ICSD PDF database. The

location and relative abundances of the elements of interest were

obtained from the related m-XRF maps. With the use of both m-

XRD and m-XRF data, the phase assemblage was reconstructed

using an in-house MATLAB model that automated diffraction

pattern indexing and plotted an image showing the relative

distribution of phases. The model was composed of three main

functions that were performed consecutively: (1) location of peaks:

by searching through individual XRD patterns, the peaks were

determined by matching within the range of standard PDF

reection and over a proper threshold of intensity; (2) identica-

tion of phases: all peaks corresponding to the same phase were

assigned with a specic value which were shown as the same

colour in the nal map. If the spectrum hadmore than one phase,

the phase with relative higher intensity was assumed to be the

major phase (even though it is possible to show an overlap pixel in

a different colour, the distinction of phases was blurred to illus-

trate in a single map); (3) build map: collecting the assigned value

of all pixels, the topography was constructed, with different

colours representing the corresponding crystalline phases.

Results and discussion
LFCM mineral phase identication and stoichiometry

analysis

The phases identied in simulant brown LFCM were: zircon

[ZrSiO4; PDF 00-033-1485], which manifest as large (approx. 40–

60 mm) prismatic particles, oen, but not always containing U;

cubic Zr-containing UO2 (c-(U1�xZrx)O2; PDF 04-019-4898) and

tetragonal U-containing ZrO2 (t-(U1�xZrx)O2; PDF 04-020-6305)

crystallites, 5–15 mm in size; which were clustered together into

fused aggregates by monoclinic ZrO2 with U (m-(Zr1�xUx)O2).

These crystallites were embedded within a calcium alumino-

silicate glass matrix, which also contained U and Zr (Fig. 1).

Black LFCM exhibited a similar phase assemblage to brown

LFCM, albeit with distinctly different morphology. Both “fused”

(Fig. 2a–d and ESI Fig. 1†) and dendritic crystalline morphol-

ogies were observed (Fig. 2f–h and ESI Fig. 2†). Fe–Ni alloy

particles [Fe–Ni; PDF 00-047-1405] (Fig. 2e), arising from the

incorporation of stainless steel were observed. Their distribu-

tion, on the edge of fused particles (Fig. 2d, bottom le), results

from the capture of molten metal during crystal growth, in

agreement with previous studies of fuel-cladding interactions at

high temperature.23

Using the U-La and Zr-Ka counts obtained by m-XRF, the ratio,

r ¼ U/(Zr + U), in each of the three (U1�xZrx)O2 phases was

determined (Fig. 3a). The phase identied as c-(U1�xZrx)O2 had U

ratios (r) in the range of 0.2 < r < 1.0 while m-(Zr1�xUx)O2 had r in

the range 0.0 < r < 0.1. The tetragonal phase was intermediate,

with 0.1 < r < 0.5. Quantication of the deviation in (111) reection

position, which shis to a higher position 2q as the Zr content

increases due to a contraction of the unit cell associated with the

substitution of Zr4+ (ionic radius ¼ 0.84 Å) for U4+ (ionic radius ¼

1.00 Å) in the UO2 structure,
24 was also used to approximate the

stoichiometry. Assuming Vegard's Law, the U : Zr ratio of c-

(U1�xZrx)O2 should follow an approximately linear relationship

with shi in reection position, within the range of 0.2 to 1 mole

fraction U (Fig. 3a and b). The range of stoichiometry approxi-

mated for this phase from m-XRD was x ¼ 0 to 0.8, in good

agreement with the qualitative m-XRF analysis. The same principle

was applied to t-(U1�xZrx)O2, giving x ¼ 0.2 to 0.9. It was not

Fig. 1 Micro-focus analysis of simulant brown LFCM. Showing distribution of (a) U-La and (b) Zr-Ka fluorescence signals; diffraction patterns of
each identified phase present including (c) m-ZrO2, (d) t-(U1�xZrx)O2, (e) m-(Zr1�xUx)O2, (f) (Zr1�xUx)SiO4, (g) c-(U1�xZrx)O2, (h) calcium alumi-
nosilicate glass; and (i) 2D m-diffraction map reconstructed from XRD patterns taken at each individual pixel in the m-XRF maps shown in (a) and
(b). The black line in (i) indicates the region that was examined using a line analysis, detailed in Fig. 8.

This journal is © The Royal Society of Chemistry 2021 J. Mater. Chem. A
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possible to apply this methodology to obtain the stoichiometry of

m-(Zr1�xUx)O2 for several reasons: (i) themole fraction of U in was

less than 0.1, therefore, any shi in the XRD reection resulting

from a change in stoichiometry of this phase would be below the

resolution of m-XRD analysis (0.02�); (ii) since no monoclinic

phase exists for UO2, Vegard's law is not applicable; and (iii) for

the monoclinic crystal system, the unit cell parameters have more

than one independent variable (as bs c; bs 90), therefore, any

peak shi against the lattice parameter is not expected to be

a linear, or an approximately linear relationship.

The full width at half maximum reection intensity (Fig. 3c) is

inuenced by both the U/Zr ratio and the size of the crystallite.

The FWHM was observed to change where crystals were clus-

tered, indicating that different compositions of crystallite were

agglomerated. Indeed, Fig. 3d shows that most individual pixels

contained more than one phase. The FWHM tended to broaden

from the centre to the edge of c-(U1�xZrx)O2, indicating an

increase in the Zr concentration and a decrease in crystallite size.

Accordingly, more Zr-rich compositions (t-(U1�xZrx)O2 and m-

(Zr1�xUx)O2) were found to cluster around c-(U1�xZrx)O2. Differ-

entiation between m-ZrO2 and m-(Zr1�xUx)O2 was more chal-

lenging from examination in the shi of reection positions,

since both crystallise in the same structure. These two phases

were thus identied using a combination of m-XRD patterns and

U La emission in the m-XRF, by comparing the relative

abundance of U at the corresponding pixels to the average U

abundance in the glassy matrix.

The reections observed in the summed whole area diffrac-

tion pattern were broadened when compared with the reec-

tions observed at individual pixels. Due to the extended dwell

times during the heat treatment of the simulant LFCMs, it is

unlikely that this is caused by internal stresses. This reection

broadening therefore suggests that the simulant material

contains compositions from across the whole solid solution of

(U1�xZrx)O2.

Zircon (ZrSiO4) phases were also abundant (Fig. 1) and, like

their “chernobylite” counterparts in real LFCM,25 the crystallites

contained U. In the m-XRF maps, regions of zircon were

observed with a U-rich edge and U-depleted centre (Fig. 4). The

major diffraction peak in the U-rich edge region (marked A,

Fig. 4b) was shied to a lower angle than the centre U-depleted

region due to the substitution of U for Zr in the zircon/coffinite

(USiO4) solid solution, Zr1�xUxSiO4. Assuming only zircon was

present within the area sampled, the stoichiometry was

approximated from m-XRF analysis to range from x ¼ 0–0.2. The

upper bound of x reported here is slightly higher than that re-

ported for chernobylite in real LFCM (x ¼ 0.05–0.10).25,26 The

abundance of U in Zr1�xUxSiO4 has also been reported in sim-

ulant Fukushima molten core-concrete interaction (MCCI)

products, at a higher value of x than chernobylite (x ¼ 0.19–

Fig. 2 m-focus fluorescence analysis of black LFCM. Showing distribution of (a) Fe-Ka, (b) Zr-Ka and (c) U-La fluorescence signals; and (d) the 2D
m-diffraction map reconstructed from XRD patterns, all for the aggregated morphology; (e) the m-diffraction pattern of FeNi phase with m-ZrO2;
the distribution of (f) U-La and (g) Zr-Ka fluorescence signals, and (h) 2D m-diffraction map reconstructed from XRD patterns, all for the dendritic
morphology.

J. Mater. Chem. A This journal is © The Royal Society of Chemistry 2021
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0.27).27 This discrepancy is likely a result of the slower cooling

time for real LFCM, which allows for thermodynamic equili-

bration of U during Zr1�xUxSiO4 formation.19

Average uranium oxidation state and local coordination in

mineral phases and glass matrix

Points representative of the different U environments were

selected (ESI Fig. 3 and 4†) and analysed by U LIII-edge m-X-ray

Absorption Near Edge Spectroscopy (m-XANES). The average

oxidation states of all spectra collected from the different

regions (Fig. 5a), as-estimated from linear combination ts

using the range of standards listed in the Method section, was

between 4.0 and 4.5 (Fig. 5b); the crystallites in the brown and

black LFCMs had mean oxidation states of 4.2 � 0.1 and 4.3 �

0.1, respectively. This is in good agreement with the phases

identied by m-XRD and m-XRF, the majority of which are U4+-

containing minerals. The estimated average oxidation states of

these selected points were classied into three groups based on

their distribution (Fig. 5c): (i) (U1�xZrx)O2 spectra were observed

to concentrate around the energy position of UO2; (ii) Zr1�xUx-

SiO4 spectra were clustered slightly above the energy position of

USiO4, and below that of UO2; and (iii) spectra acquired from

the glassy matrix clustered at slightly higher energies. This

shows the clear difference in the local environment around U

between materials containing silicate anions (USiO4, as well as

U-containing zircon), and those containing independent oxygen

anions (UO2, UTi2O6).

Analysis of the points representing areas of (U1�xZrx)O2 of all

types were observed to concentrate around the energy position

of UO2, with estimated oxidation states slightly above 4.0+. U LIII
XANES spectra of these spots closely resemble that of the UO2

standard with regard to the position, intensity and width of the

whiteline (Fig. 5a). The spectra in the glass matrix had the

highest average oxidation state (4.4 � 0.1) due to the trend of

increasing solubility of U as the valence increases from tetra-

valent to hexavalent. However, the estimated oxidation state of

the point in the glass region was below 4.5, indicating that the

concentration of dissolved U in the glass matrix remained low.

Representative crystallites of c-(U1�xZrx)O2 and t-(U1�xZrx)O2

were further analysed by tting of the Extended X-ray Absorp-

tion Fine Structure (EXAFS). The k3-weighted EXAFS spectra and

corresponding Fourier transform (FT) were t as shown in Fig. 6

and ESI Fig. 5.† The tting results (see ESI Table 2†) show that

the O-shell distance of c-(U1�xZrx)O2 (2.32 � 0.01 Å) and t-

(U1�xZrx)O2 (2.27 � 0.01 Å) were shorter than that of the ex-

pected sum of ionic radii for 8-fold co-ordination (2.37 Å).24 The

calculated bond valence sums for c-(U1�xZrx)O2 (4.3 v.u.) and t-

(U1�xZrx)O2 (4.5 v.u.) based on the tted model were consistent

with the estimated oxidation state result. The bond length

changes agree well with the observation made from analysis of

the m-XRD pattern that the Zr4+ dopants led to a unit cell

Fig. 3 Colour gradient maps of brown LFCM derived from m-XRF and m-XRD analysis. Showing (a) the normalised m-XRF U/U + Zr ratio, where
a value of 1 is equal to UO2 and 0 corresponds to regions where no U-La was observed; (b) the U fraction in c-(U1�xZrx)O2 estimated by the
normalised peak shift of the cubic (111) peak in the m-XRD patterns acquired for each pixel, where a value of 1 indicates no shift of this reflection;
(c) the full width at half maximum (FWHM) of the (111) reflection in the m-XRD patterns acquired for each pixel, where a value of 0.02 indicates
a peak with 0.02� (2q) width; and (d) the phase distribution of the regions where (U,Zr)O2 phases are present.

This journal is © The Royal Society of Chemistry 2021 J. Mater. Chem. A
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contraction. The number of second neighbour U (and Zr) atoms

was estimated by application of a linear constraint, with the

sum of the weighted paths set equal to 12, consistent with

a uorite related structure. The number of second-neighbour U

atoms in c-(U1�xZrx)O2 (8.7 � 1.0) was higher than that of t-

(U1�xZrx)O2 (6.0 � 1.0), consistent with the higher U/Zr ratio

determined from m-XRF and expected from the phase diagram.28

The c-(U1�xZrx)O2 phase also had a longer mean distance of the

rst U–U and U–Zr shell (3.83 � 0.02 Å) compared to the t-

(U1�xZrx)O2 (3.73 � 0.03 Å) phase, consistent with an expansion

of the unit cell with increased U/Zr ratio.

The Zr1�xUxSiO4 (Fig. 6e and f) was tted with two shells of

O: 4 shorter bonds (2.26 � 0.11 Å) and 4 longer bonds (2.36 �

0.13 Å). The calculated bond valence contributions for these

two bonds were 0.64 v.u. and 0.49 v.u. with a sum of 4.5 v.u.

based on the tted model. The distance of these two bonds is

slightly shorter compared with the previous reports of the U

coordination environment in USiO4,
29 which is attributable

to the presence of the smaller Zr4+ (ionic radius ¼ 0.84 Å)

species.

Fig. 4 Analysis of Zr1�xUxSiO4 formed in simulant brown LFCM.
Showing (a) m-XRF map of the U distribution showing locations of m-
XRD patterns; and (b) m-XRD patterns taken in the U-rich zircon outer-
edge and the U-poor zircon centre.

Fig. 5 m-focus X-ray Absorption Near Edge Spectroscopy (XANES) of
simulant LFCM. (a) XANES spectra of U standards and representative
locations in LFCM; (b) average U oxidation states of points acquired in
the sample (open symbols) compared with a range of U standards of
known valence (closed symbols, labelled) as a function of X-ray
energy; and (c) detailed view of the mean oxidation state of points
sampled within brown (open diamonds) and black (closed diamonds)
LFCM, and their classification according to the phase of their origin
(note the different scale compared with b).

J. Mater. Chem. A This journal is © The Royal Society of Chemistry 2021

Journal of Materials Chemistry A Paper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

0
 F

eb
ru

ar
y
 2

0
2
1
. 
D

o
w

n
lo

ad
ed

 o
n
 3

/1
9
/2

0
2
1
 5

:3
1
:0

8
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



Regions located within the glassy matrix of brown and black

LFCMs were selected (ESI Fig. 6 and 7†) and analysed by tting

of the m-EXAFS data. The k3-weighted EXAFS spectra and

corresponding Fourier transform (FT) were tted shown as

Fig. 7. For the brown LFCM (Fig. 7a and b), an initial model of

one O-shell reported in previous U(IV)-containing silicate

Fig. 6 Local coordination analysis of U in simulant LFCM by m-EXAFS. Showing the spectra and model fit of (a) c-(U1�xZrx)O2 phase in brown
LFCM m-EXAFS spectrum in radial space and (b) the corresponding k

3-weighted m-EXAFS spectrum; (c) t-(U1�xZrx)O2 phase in brown LFCM m-
EXAFS spectrum in radial space and (d) the corresponding k

3-weighted m-EXAFS spectrum; and (e) a Zr1�xUxSiO4 phase in black LFCM m-EXAFS
spectrum in radial space and (f) the corresponding k

3-weighted m-EXAFS spectrum.

This journal is © The Royal Society of Chemistry 2021 J. Mater. Chem. A
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glasses,22 did not adequately t the structural environment of

U(IV). Thus, a two O-shell model was applied, and tted satis-

factorily, and results of structural parameter renement are

summarized in ESI Table 3.† It was tted with 2.4 � 0.6 U–O

paths at a short distance of 2.14 � 0.03 Å and 3.8 � 1.1 U–O

paths at longer distance 2.32 � 0.02 Å. This model, implying

a distorted 2 + 4 co-ordination of U(IV)O6 polyhedra in the brown

LFCM glass phase, has a mean contact distance (2.25 Å) close to

that reported for undistorted U(IV)O6 polyhedra (2.28 Å) re-

ported in silicate glasses.30 There was no second shell contri-

bution detected during analysis, indicating the U present in this

region was incorporated within the glass structure rather than

a crystalline structure, in good agreement with a previous study

on U(IV) glasses.30 The calculated bond valence sum (4.1 v.u.)

based on the tted model agrees well with the shi of white line

position (0.2 eV to higher energy position compared with UO2

standard). The distorted 2 + 4 co-ordination of the U(IV)O6

environment in the brown glass phase is unusual, but is similar

to that observed in the crystal structure of brannerite, UTi2O6.
31

The shorter and longer U–O paths have associated bond valence

contributions of 0.92 v.u. and 0.56 v.u., which suggest that the

U(IV) is co-ordinated to non-bridging or non-framework oxygens

(since co-ordination to bridging oxygens would clearly result in

unreasonable (Si,Al)–O bond lengths and polyhedral

distortion).30

In contrast to the brown LFCM glass matrix, the main peak

for the black LFCM glass (Fig. 7c and d) m-EXAFS data was tted

by two O-shells with 4.5� 0.8 oxygens at a short distance of 2.25

� 0.02 Å and 3.3 � 0.6 oxygens at a longer distance of 2.44 �

0.03 Å. This indicates that U(IV) is present in 8 coordinated sites,

which is similar to the UO8 polyhedra of USiO4. The calculated

bond valence sum (4.2 v.u.) based on the tted O-shell agrees

well with the whiteline position shi (0.4 eV to higher energy

position). The shorter and longer U–O paths had associated

bond valence contributions of 0.64 v.u. and 0.38 v.u respec-

tively, which suggest that the U(IV) is likely co-ordinated to

(Si,Al)–O bond with lower bond strengths. The second neigh-

bour Si-shell was observed and added into the model at the

distance 3.19 � 0.03 Å, improving the t. These data are in

agreement with studies of Zr–silicate glasses;32 Zr(IV) shows the

Fig. 7 Local coordination analysis of U in the glass matrix simulant LFCM by m-EXAFS analysis. Showing the spectra and model fit of (a) brown
LFCM glass m-EXAFS in radial space and (b) the corresponding k

3-weighted EXAFS spectrum; (c) black LFCM glass m-EXAFS in radial space and; (d)
the corresponding k

3-weighted EXAFS spectrum.
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same type of higher coordinated sites (ZrO8) in highly poly-

merised melts, which are considered to be a precursor to the

crystallization of zircon.

These results provide evidence that differences in the local

structure of U may exist between the crystalline phases and the

glass matrices of brown and black LFCM, highlighting the

heterogeneous properties of nuclear meltdown materials, on

the atomic scale. However, no signicant change was detected

in the U oxidation states of these phases and materials, which

all exhibited mean oxidation states of below 5.0. Such infor-

mation may be useful to the decommissioning and secure

management of LFCM, for example, in designing storage and

disposal options where knowledge of U oxidation state can

inform the disposal containment system, with reducing condi-

tions preferred to retain U in its insoluble U(IV) oxidation

state.33,34 Prior to extraction from the reactor unit, where humid

conditions have persisted, U(IV) in the LFCM will readily oxidise

to the highly soluble U(IV). This has resulted in the formation of

secondary uranium phases at the surface of LFCM35 that can be

released into the air as aerosol particles, which are a respirable

hazard during decommissioning processes.36 Given that the

local coordination of U in the glass matrix of brown and black

LFCM was different, and that in our previous work we showed

that LFCM corrosion by water proceeded in a similar mecha-

nism to glass corrosion,13 it is possible that the U released

during glass corrosion, and hence the formation of secondary

uranium phases may be different for the brown and black

LFCM. Further work is required to determine the corrosion

mechanisms and verify this hypothesis.

Insights to the paragenesis of simulant Chernobyl LFCM

The heat treatment regime used in the synthesis of the simulant

LFCM, including a period of rapid cooling from 1500 �C, and an

extended dwell at 720 �C, was sufficient to promote crystal-

lisation of the same phases that are observed in real LFCM.3

However, it was found that the diffusion of species was limited

when compared to real LFCM, which was allowed to cool over

a long period of time. For example, one consequence of the

shorter cooling time in simulant samples is the presence of

a relatively high proportion of t-(U1�xZrx)O2 at temperatures

below the cubic to tetragonal phase transition in the UO2–ZrO2

phase diagram.28 This indicates that diffusion remained

limited, leading to some regions being unable to completely

transition to the cubic equilibrium structure.

Where clusters of phases formed, a major fraction of the c-

(U1�xZrx)O2 and t-(U1�xZrx)O2 crystallites were surrounded by

either m-ZrO2 or m-(Zr1�xUx)O2 phases. Given that the ratio of U

in the (U,Zr)O2 phases was shown by m-XRF and m-XRD to

decrease, from cubic > tetragonal > monoclinic, this suggests

that c-(U1�xZrx)O2 is the rst to nucleate from the melt. As U is

depleted from the local region of the melt, t-(U1�xZrx)O2 will

crystallise, followed by m-(Zr1�xUx)O2. When no further U

remains in that region, m-ZrO2 can form. A relatively high

proportion of m-ZrO2 was formed when compared with real

LFCM, which we attribute to the addition of excess Zr to the

batch. A linear m-XRD analysis with patterns selected from

a cross section from the centre of an agglomerated mass of

phases towards the glass matrix (depicted by the line in Fig. 1i)

conrm this sequence (Fig. 8, ESI Fig. 8†). The centre of the

agglomeration (pixel 1, Fig. 8) was indexed as c-(U1�xZrx)O2;

moving towards the outside of the agglomerated mass of crys-

tallites, the reections relating to c-(U1�xZrx)O2 decreased at the

same time as those indexed as t-(U1�xZrx)O2 increased in

intensity. From pixel 15 onwards, and on the outer edge of the

agglomeration, m-XRD reections of m-(Zr1�xUx)O2 and m-ZrO2

phases were observed, which then disappeared as the line scan

passed into the glass matrix, characterised by a lack of diffrac-

tion peaks. The nal phase observed was zircon, which was

located in an adjacent agglomeration of crystallites (Fig. 1i).

U-containing zircon was distributed in a regions of fused

morphology, associated with c-(U1�xZrx)O2 and m-ZrO2 on the

outer edges, and t-(U1�xZrx)O2, which were present on top of the

zircon. The presence of m-ZrO2, not widely observed in real

LFCM,3 is thought to accompany zircon formation where there

is an excess of Zr. It is thought that zircon is formed from

molten Zr–U–O reaction with a silicate (SiO2) melt.3,25 The

proximity of t-(U1�xZrx)O2 to zircon suggests that this process, at

least in the simulant LFCM, is also accompanied by the

formation of a tetragonal (U1�xZrx)O2, according to:

Zr–U–O–Si (melt)/

(Zr1�xUx
)SiO4 + t-(U1�xZrx)O2 + m-ZrO2 (1)

Brown LFCM contained more zircon than black LFCM,12 and

contained larger crystallites, indicating that zircon formation

was more favourable in the former composition. Analysis of the

Fig. 8 m-XRD patterns showing the phase assemblage across the
linear section of simulant brown LFCM shown in Fig. 1i as a black
arrow. The section begins at pixel 1, in a region containing c-(U1�xZrx)
O2 and ends at pixel 40, in a region containing ZrSiO4. The corre-
sponding diffraction patterns are taken from each individual pixel
across the linear section. Note that the large area of high intensity
between �4 and 8� 2q in the diffraction patterns corresponds to the
diffuse scattering arising from the underlying amorphous matrix.
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local coordination of U in the glass matrix found that in sim-

ulant brown LFCM, U was present in a U(IV)O6-type environ-

ment, while in the simulant black LFCM it was in a UO8-type

environment, similar to the coordination in coffinite, the U-end

member of the U–zircon solid solution (Zr1�xUxSiO4). In the

black LFCM, therefore, U was preferentially retained in a cof-

nite-like environment within the glass instead of nucleating

as (Zr1�xUx)SiO4.

Oscillatory zonation of U, similar to that observed in cher-

nobylite in real brown LFCM,37 was observed in U-rich zircon in

the present study. Such zoning is attributed to differential

growth rates of crystal faces during cooling.38 Previous analysis

of the simulant brown LFCM showed very faint zoning

throughout the crystallite,12 however, only two zones were

apparent in the m-XAS analysis. Since the temperature of U-rich

zircon formation in this simulant material was found to be

similar to chernobylite in real LFCM (crystallites were formed at

�1245 � 5 �C and estimates made from analysis of real LFCM

gave a range of between 1000–1250 �C),13,37 the differences

observed between the simulant and real samples are most likely

due to differences in the cooling regime. A faster cooling regime

will retard crystal growth, and this may prevent formation of

more alternating zones. An alternative hypothesis is that oscil-

latory zones form when contaminant elements are incorporated

into the crystal structure during growth under conditions of

cooling from a melt.39 Since the simulant brown LFCM con-

tained a limited number of elements when compared with the

real Chernobyl LFCM which, for example, also contained all of

the ssion products expected to arise in nuclear fuel, in addi-

tion to other impurities sourced from materials within the

reactor, it is also possible that the lack of complex oscillatory

zoning is due to the simplied chemical composition used.

Conclusion

This study of simulant Chernobyl LFCM using a m-focus XAS

approach, integrating m-XRF, m-XAS and m-XRD, demonstrates that

it is possible to develop a highly detailed and complementary data

set fromwhich to accurately identify crystalline phases, determine

local U chemistry in crystalline and amorphous phases, and to

reconstruct the paragenetic sequence of phase formation in

nuclear fuel formed in accident scenarios. These techniques have

built signicantly on previous studies of nuclear melt-down

materials, by determining the U chemistry in the individual mm-

scale components, including the amorphous phase, high-

lighting that chemical heterogeneity extends to the atomic scale.

Importantly, these data can be acquired from mm-sized fractions

of material. Size reduction of highly radioactive materials, such as

fuels resulting from a nuclear accident, signicantly lowers the

risk associated with performing detailed investigations. There-

fore, it could be possible to acquire the same detailed chemical

insights as developed here, for real nuclear accident fuels.

Data availability

Data will be made available upon reasonable request to the

corresponding author.

Code availability

Matlab codes that were used to analyze the m-XRF and m-XRD are
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