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ARTICLE

Experimental observation of topological Z2 exciton-
polaritons in transition metal dichalcogenide
monolayers
Mengyao Li1,2,3, Ivan Sinev 4, Fedor Benimetskiy4, Tatyana Ivanova4, Ekaterina Khestanova4,

Svetlana Kiriushechkina1, Anton Vakulenko1, Sriram Guddala1,2, Maurice Skolnick4,5, Vinod M. Menon 2,3,

Dmitry Krizhanovskii 4,5, Andrea Alù 1,3,6, Anton Samusev 4 & Alexander B. Khanikaev 1,2,3✉

The rise of quantum science and technologies motivates photonics research to seek new

platforms with strong light-matter interactions to facilitate quantum behaviors at moderate

light intensities. Topological polaritons (TPs) offer an ideal platform in this context, with

unique properties stemming from resilient topological states of light strongly coupled with

matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalco-

genides (TMDs) as a promising platform for topological polaritonics. We show that the

strong coupling between topological photonic modes of the metasurface and excitons in

TMDs yields a topological polaritonic Z2 phase. We experimentally confirm the emergence of

one-way spin-polarized edge TPs in metasurfaces integrating MoSe2 and WSe2. Combined

with the valley polarization in TMD monolayers, the proposed system enables an approach to

engage the photonic angular momentum and valley and spin of excitons, offering a promising

platform for photonic/solid-state interfaces for valleytronics and spintronics.
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T
opological photonics1–3 has seen a tremendous progress in
the past years with numerous topological phases imple-
mented in a variety of platforms, from microwave to

optical frequencies4–15. Enriching topological photonics by mix-
ing light with condensed matter provides even more exciting
avenues for controlling exotic states of light and matter. Indeed,
integrating topological photonic systems with quantum wells and
quantum dots has already led to major breakthroughs, such as
topological lasers16–19, topological polaritonic phases20–24,
active25,26 and nonlinear27–29 topological photonic devices.
Consistent with their non-topological cousins, TPs20,21,30,31

represent “half-light and half-matter” excitations emerging as the
result of strong coupling32–36 between electromagnetic and solid-
state degrees of freedom. In addition, they are enriched by
topological features. The combination of photonic topological
properties (one-way pseudo-spin-polarized transport, topological
protection against scattering) and strong interactions arising from
light-matter hybridization, may support phenomena such as
topological solitons, modulation instability, and generation of
squeezed topological light12,27,29,30,37–44. Moreover, TPs pave the
way towards the development of active topological nanophotonic
devices with giant optical nonlinearity45,46 enabling control of
light by light at small intensities, down to the single-photon
level47–50. Overall, polaritonic systems51–53 serve as an ideal
interface between photonics and solid-state systems, facilitating
control of spin- and valley-degrees of freedom54–62 in future
quantum devices. TPs, enriched with additional degrees of free-
dom, inherited from nanoscale structured photonic materials thus
offer uniquely versatile control of quantum states with photons.

In this context, TPs have been an active subject of research
with several recent theoretical and experimental findings, in
particular in systems based on quantum wells integrated into
photonic nanostructures16,20,21,23,24,26. However, the topological
polaritonic systems reported so far have been mostly limited to
1D systems, and a 2D system characterized by 1D topological
invariants16,24. The only TP system characterized by a 2D topo-
logical invariant21, the Chern number, has been demonstrated
recently by Klembt et al.22 for the case of broken time-reversal
(TR) symmetry. Specifically, 2D TPs have been realized in Bragg
micropillar lattices based on GaAs quantum wells under the
application of a strong external magnetic field. On the other hand,
spin-Hall TPs, a different 2D topological polaritonic phase that
does not require magnetic field and therefore has significantly
more opportunities for broad applicability and integration in
nanophotonic systems, has so far evaded experimental realization.

In this work we put forward an approach to spin-Hall topo-
logical polaritonics based on the versatile platform of polaritonic
metasurfaces containing monolayer transition metal dichalco-
genides (TMDs). Our approach leverages the large exciton dipole
moment in a monolayer semiconductor and the remarkable
compatibility of 2D materials with various photonic structures to
realize strong coupling between light and matter. We show that
the strong coupling regime between a topological spin-Hall
photonic metasurface and a TMD monolayer featuring a pair of
degenerate TR partner excitons gives rise to a topological tran-
sition and the formation of a topological polaritonic phase
characterized by nonvanishing spin-Chern numbers. Introduc-
tion of domain walls separating topological and trivial phases is
then shown to produce spin-polarized polaritonic boundary
modes. Spin-locking of these modes and their selective coupling
to circularly polarized light of opposite handedness enables
unique polaritonic spin-Hall phenomena that we demonstrate
experimentally. In addition, by studying photoluminescence of
WSe2 topological metasurface, we confirm valley polarization of
edge polaritons.

Results
Topological polaritonic metasurface. The structure we consider
here is schematically shown in Fig. 1a and represents a Si pho-
tonic metasurface12,63 supporting photonic topological spin-Hall-
like phase64 with MoSe2 and WSe2 TMD monolayer placed on
top of it. The leaky character of the modes allows a direct exci-
tation and probing both photonic and polaritonic modes sup-
ported by such a metasurface65,66. A TMD monolayer
encapsulated with a thin hBN layer is placed on top of the
metasurface which was adjusted to hold topological modes near
the exciton frequencies. Apart from the general purpose of
enhancing the quality of the exciton in the monolayer, the hBN
layer enables tuning of the parameters of our system (see Sup-
plementary Note 7).

In order to induce a topological transition in the structure63,64,67,
its symmetry is reduced by shrinking (Fig. 1a, blue unit cells) or
expanding the six nearest triangular holes (Fig. 1a, red unit cells),
which leads to the opening of trivial and topological photonic band
gaps, respectively12,66–68. It is important to mention that the
topological polaritonic phase reported here is enabled by the
structure of the modes of the metasurface. Thus, the pairs of upper
and lower cones in unperturbed structure correspond to the
clockwise and counterclockwise s= ±1 circularly polarized dipolar
p± ¼ px ± ipy(l ¼ ± 1 ¼ 1 ´ s) and quadrupolar d ± ¼ dxy ± idx2�y2

(l ¼ ± 2 ¼ 2 ´ s) modes, where the polarization handedness s takes
the role of a photonic pseudo-spin, essential for the spin-Hall
phase64.

By adding a TMD monolayer on top of this photonic structure
we introduce excitonic degrees of freedom67,69. It is important to
stress that excitons in TMDs (MoSe2 and WSe2 in our case) are
(i) characterized by non-zero angular momentum (the spin of s-
excitons) of m=+1 and m=−1 (at K and K’ valleys,
respectively), and thus form TR partners essential for the
topological polaritonic spin-Hall phase engineered here, and (ii)
polarized in the plane of the monolayer, which allows to
efficiently couple the in-plane electric field of the modes of the
metasurfaces to the excitons65. We note that the characteristic
size of excitons (~1 nm) and the scale of spatial variation of the
photonic modes are orders of magnitude apart, which implies
that excitons can interact with both dipolar and quadrupolar
photonic modes, and there are no selection rules with respect to
the orbital momentum of photonic modes. Nonetheless, the
selection rules with respect to the photon pseudo-spin s do apply
to interactions of optical and excitonic modes due to the
conservation of angular momentum (see discussion in Supple-
mentary Note 4).

Theoretical description. The topological polaritonic system
under study can be described by an effective Hamiltonian of the
form

bH ¼ bHph þ
bHex þ ∑

k;l;m;s
ðgðk;l;m;sÞb̂

þ

mâk;l;sδs;m þ gþðk;l;m;sÞb̂mâ
þ
k;l;sδs;mÞ; ð1Þ

bHph ¼ ∑
k;l;l0;s;s0

bHðk;l;l0 ;s;s0Þâ
þ
k;l0;s0 âk;l;s; ð2Þ

bHex ¼ ∑
m;m0

~ωexb̂
þ

m0 b̂m; ð3Þ

where the photonic Hamiltonian bHph is obtained from electro-

magnetic theory (detailed in Supplementary Note 2) and it assumes
the form of the well-known Bernevig–Hughes–Zhang (BHZ)
Hamiltonian70 of the two-dimensional Z2 topological insulator
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bHk ¼ B2jkj
2 Î þ

M � Bjkj2 Að�ikx þ kyÞ 0 0

Aðikx þ kyÞ �M þ Bjkj2 0 0

0 0 M � Bjkj2 Að�ikx � kyÞ

0 0 Aðikx � kyÞ �M þ Bjkj2

0

BBBBB@

1

CCCCCA
:

ð4Þ

Here, an energy shift ω0, equal to the frequency of the Dirac
point for the unperturbed lattice, was introduced so that the Dirac
point arises at zero energy. In what follows we express frequency

in electron-volt units. In Eqs. (1–3) âk;l and b̂k;l (â
þ
k;l and b̂

þ

k;l) are

the annihilation (creation) operators for photons and excitons,
respectively, and the label k corresponds to the Bloch momentum
of photonic modes, ~ωex ¼ ωex � ω0 is the exciton frequency
shifted by ω0, and gðk;l;m;sÞ describes the coupling between

photonic and excitonic degrees of freedom in our system. We
note that the subscript m= ±1 simultaneously describes the
orbital momentum of excitons and their valley degree of freedom
(K or K’) due to the valley polarization in the TMD monolayer.
As described in Supplementary Notes 1 and 2, the 4 × 4 structure
of the photonic Hamiltonian Eq. (4) incorporates both pseudo-
spin s and orbital momentum l degrees of freedom of photonic
modes, while the mass term M reflects the band inversion.

The exciton-photon coupling and its form are crucial for
generating the TPs reported here, as it induces the topological
charge transfer from a photonic to a polaritonic band. In our case,
this coupling, described by the 2 × 4 matrix

gðk;l;m;sÞ ¼
qpþ

qdþ 0 0

0 0 qp�
qd�

 !
; ð5Þ

ensures that angular momentum is conserved, which is also
reflected by the δs;m factors in Eqs. (1–3), and qpþ ¼ qp� , qdþ ¼

qd� (when the TR symmetry is preserved). This ensures that the
spin-orbital coupling in the original photonic system is effectively
transferred to exciton-polaritons once the hybrid system is in the
strong coupling regime.

The form of coupling in Eq. (5) ensures preservation of the two
TR partners for excitons and photons, and it also ensures that the
coupling takes place only between pseudo-spin-up (-down)
photons and spin-up (-down) excitons. Consequently, the
presence of spin-orbital coupling in the photonic metasurface
leads the indirect coupling between the orbital momentum of
photons and the spin of excitons. This indirect spin-orbital
coupling represents the main mechanism behind the topological
polaritonic Z2 phase70,71 observed here. Thus, the form of
coupling described by Eq. (5) can be shown to yield an effective
phase winding in the interaction between topological photons and
excitons. This winding leads to the transfer of topological
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Fig. 1 Topological polaritonic metasurface integrating transition metal dichalcogenide (TMD) monolayer. a Schematic image of topological metasurface

with hexagonal boron nitride (hBN) spacer and MoSe2 monolayer on top. Lattice constant is a0= 460 nm, Si layer thickness is h= 75 nm. b First-principle

calculated photonic band structure for the cases of gapless (black dotted lines), topological (red lines) and trivial (blue dashed lines) metasurfaces.

The spectral position of the exciton is shown by the dashed horizontal line (here, at 1.65 eV in absolute value, which corresponds to exciton in MoSe2 at low

temperature). The righthand y-axis is in relative energy units (as measured from the Dirac point) c Bulk band structures of topological polaritonic system

obtained for one (pseudo-)spin from the analytical model for cases without (blue dashed lines) and with exciton-photon coupling qd (red solid lines). In the

uncoupled case, horizontal black dashed line (~ωex ¼ �0:1 eV here to better illustrate the avoided crossing and the Berry curvature distribution near it)

shows the spectral position of exciton. Shaded magenta curve shows distribution of the Berry curvature over the upper polariton band with the

corresponding (magenta) y-axis on the right side. d Excitonic fraction (color coded) of the band structure calculated by TBM on a supercell lattice with

topological and trivial domains (10 unit cells each) separated by domain walls for the case of optimal (for maximal excitonic fraction of the edge states)

crossing scenario near the Γ point.
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invariant from the bulk photonic bands to the bulk polaritonic
bands (see Supplementary Note 2 for details).

As a confirmation, in Fig. 1c we show the band structure
calculated for the spin-up domain of the effective Hamiltonian
Eq. (1) for the case of the (m= 1) exciton crossing lower dipolar
photonic (s= 1) band. For the case of expanded (topological)
photonic lattice, without coupling to excitons, the photonic bands
are known to possess a spin-Chern numbers Cph ¼ þ1 and

Cph ¼ �1 for the lower and upper bands, respectively. Turning

on the exciton-photon coupling leads to a transition to the
topological polaritonic phase. Thus, we observe that the strong
coupling gives rise to avoided crossing of excitonic and photonic
bands, and the formation of lower and upper polaritons.
Calculation of the spin-Chern numbers for the upper polaritonic
band yields nonzero values identical to those of the crossed
photonic bands before coupling (as in Fig. 1c for the spin-up
upper polariton). Inspection of the Berry curvature in momentum
space confirms that the topological transition arises due to
exciton photon coupling since the main contribution comes from
the region of avoided crossing (Fig.1c and Supplementary Note 2).
Similar calculations for the spin-down upper polaritons yield
opposite sign of the Berry curvature and of the spin-Chern
number, as expected for the Z2 phase.

Band structure calculated for the supercell with two domains,
topological and trivial, obtained with the tight-binding model
(TBM) (described in Supplementary Note 1) is shown in Fig. 1d,
where the degree of the excitonic component of the modes is
encoded in the color of the bands. As expected for this scenario,
the flat section of the upper polariton (the remnant of the
excitonic flat bands) is close to 100% excitonic, and the excitonic
fraction fades away as we move into the parabolic portion of the
band (having an increasing photonic fraction of the band). For
the special case of the excitonic bands touching the tip of the
photonic bands (ωphðk ¼ 0Þ ¼ ωex) allows for an exact analytical

treatment which shows that both upper and lower polaritonic
bands appear to be ~50% excitonic at Γ point (k= 0).
Remarkably, this scenario also yields topological boundary states
with largest excitonic component. Indeed, as can be seen from
Fig. 1d, the topological polaritonic boundary modes appear to be
highly excitonic in a wide range of wavenumbers and energies
below the mid-gap frequency, and even have a significant
excitonic fraction in the mid-gap and at higher frequencies.

Below we focus on the experimental observation of these
phenomena in two scenarios: when such crossing occurs (i)
between the lower (dipolar) photonic band and excitons in
MoSe2, and (ii) between the upper (quadrupolar) photonic band
and excitons in WSe2.

Experimental results. The designs of our topological photonic
metasurfaces were optimized to exhibit band crossing of the
exciton resonances in MoSe2 with lower photonic band and in
WSe2 with upper photonic band near the Γ-point. The final
designs were fabricated by patterning Silicon on Insulator (SOI)
substrates with the use of e-beam lithography followed by reactive
ion etching. The details of the fabrication techniques used can be
found in Methods. The fabricated samples consist of shrunken
and expanded regions forming an array of armchair-shaped
domain walls67. The bulk regions of at least 10 periods were
confirmed to be wide enough to eliminate possible coupling
between the edge states confined at the domain walls. One of such
domain walls separating topological and trivial regions is shown
in an SEM image in Fig. 2a.

Optical microscope images of the samples prepared for lower
and upper band crossing scenarios are shown in Fig. 2b and c,
and correspond respectively to (i) the case of the MoSe2

monolayer on top of the metasurface with subsequent transfer
of a 12 nm hBN layer and (ii) the case of a WSe2 monolayer
incapsulated by a 10 nm (bottom) and 30 nm (top) hBN layers.
The boundaries of both TMD monolayers and hBN flakes on top
of the metasurfaces are indicated by color lines in Fig. 2b, c. The
leaky character of the photonic and polaritonic bands allows their
optical characterization by the back focal (Fourier) plane imaging
in our custom-built experimental setup, which enables the
extraction of the band diagrams in frequency-momentum space
in a range from cryogenic to room temperatures (see Methods for
details on the experimental techniques used).

We observe the formation of TPs by comparing the angle-
resolved differential reflectivity spectra from different domain
walls of our metasurface (Fig. 3). The data from a domain wall
without MoSe2 (Fig. 3a) reveal the photonic bandgap of the
metasurface (~1.65–1.77 eV, see Supplementary Note 6 for details
on experimental data processing) with two gapless modes inside
the bulk bandgap, which correspond to the pseudo-spin-up and
pseudo-spin-down topological photonic edge states propagating
along the domain wall in the opposite directions. In this case, no
polaritonic bands appear, yielding purely photonic topological
edge states. In contrast, the spectra measured at 7 K from the
domain wall covered by MoSe2 (Fig. 3b) demonstrate strong
coupling between the lower energy photonic band of the
topological metasurface and the exciton, which crosses it close
to the band edge (1.65 eV) and gives rise to the transition to
the topological polaritonic phase. The experimental spectra reveal
the formation of polaritonic bands with Rabi frequency of ΩR=

27.3 meV (exact value obtained by fitting the PL data as shown
further). This is corroborated by the cross-polarized reflectivity
data (Fig. 3c) which has greatly enhanced contrast due to
suppression of the background Fabry–Perot interference from the
oxide layer. These data confirm the formation of TP bulk states as
well as topological edge polaritons. As an important indication of
the polaritonic nature of the edge states at 7 K in Fig. 3b, c, we
notice that the respective bands asymptotically approach the
polaritonic bulk band. The dispersions of the edge modes
extracted from the measured cross-polarized reflectivity maps
fit well with the dispersion calculated via TBM (Fig. 3d). In
agreement with theory (Fig. 1b) and the bulk boundary
correspondence71,72, this confirms that the topological invariants,
i.e., the spin-Chern numbers, were transferred to the respective
upper polaritonic bands from the former photonic band due to
the strong coupling. Accordingly, the lack of edge states within
the bandgap between upper and lower polariton branches further
evidences that the spin-Chern number of the lower polariton
band is zero due to this transfer. Notably, the transition from
topological photonic to topological polaritonic spin-Hall effects
can also be observed by changing the temperature, which
influences the spectral position and oscillator strength of the
exciton (see Supplementary Fig. 8).

We also note that for some experimental spectra the presence
of a small gap between forward and backward edge states is
evident at normal incidence (e.g., Supplementary Fig. 6). While
the presence of such a gap is known from the original theoretical
study64, here, the variation of the gap width between different
samples allows us to conclude that the primary mechanism of its
formation is backscattering due to defects in the structure causing
the coupling between backward and forward edge modes. At the
same time, the narrow width of the gap (which varies across
different samples, but generally does not exceed 5 meV) shows
that this backscattering is very weak, and the presence of the
defects does not affect the observed topological polaritonic phase.

We further study the TPs via angle-resolved photolumines-
cence (PL) at 7 K. In the experiment, the sample was excited by
HeNe continuous-wave laser (1.96 eV). The spectra shown in
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Fig. 4a, b reveal the emission from both polariton branches as well
as from uncoupled neutral exciton at 1.65 eV and charged exciton
(trion) at 1.62 eV. We analyze the data by fitting it with the
coupled oscillator model using the spectral position and linewidth
of uncoupled exciton (~ωex ¼ ωex þ iγex , γex ¼ 12 meV) and
photonic mode (~ωph ¼ ωph þ iγph, γph ¼ 10 meV) that we extract

from PL data at large k-vectors and from reflectivity data with no

strong coupling, respectively. The resulting spectral positions of
the upper and lower polariton bands are given by the equations73

ω± ¼ Re
~ωex þ ~ωph

2
±
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ2 þ ð~ωph � ~ωexÞ

2
q� �

; ð6Þ

Trivial Topological

1 um

Shrunken

Expanded

Domain wall

a b c

Metasurface

hBN

1L MoSe2

50 um

Metasurface

 bottom hBN

1L WSe2

top hBN

Fig. 2 Experimental samples of topological polaritonic metasurfaces. a SEM images of topological photonic metasurface with unit cells of trivial and

topological domains indicated by hexagons and the domain wall shown by the armchair shaped black line. Optical microscope images of the two

topological polaritonic metasurface samples (black) with TMD monolayers (orange) and hexagonal boron nitride (hBN) spacers (green, crimson). bMoSe2

monolayer transferred directly onto the metasurface and covered with a 12 nm hBN flake. c WSe2 monolayer incapsulated by 10 nm (bottom) and 30 nm

(top) hBN flakes on top of another metasurface.
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ΩR ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2 �
ðγph � γexÞ

2

4

s

: ð7Þ

From data fitting for both TE and TM polarized PL using Eqs.
(6) and (7), we extract a coupling strength κ of 13.7 meV, which
corresponds to a Rabi splitting ΩR of 27.3 meV consistent with
the strong coupling criterion.

The most important property of spin-Hall topological systems
is the one-way spin-polarized character of their topological
boundary states. While it was observed experimentally in
photonic structures74, a similar effect should also emerge in
spin-polarized topological polaritonic boundary modes. We
demonstrate this experimentally for TPs through circularly
polarized reflectivity measurements, where only one of the edge
states emerges for circularly polarized excitation of the structure.
Figure 4c (left, central panel) shows the one-way edge state in the
angle-resolved differential reflectivity map for σ− polarization
(see also Supplementary Fig. 7a, b). Using the numerical model of
the metasurface supercell with 10 topological and 10 trivial unit

cells separated by the domain wall based on TBM/CMT modes,
we calculate the excitonic and photonic fractions of the edge
mode (shown in Fig. 4c as well). As expected, it has a strong
excitonic component, which reaches nearly 100% near the exciton
resonance (1.65 eV) and gradually fades away at higher energies
where the photonic component starts to dominate. Due to the
very low signal-to-noise ratio of PL at the edge modes in this
configuration, it was impossible to visualize the propagation of
edge topological polaritons for non-resonant excitations. Instead,
we corroborate the angle-resolved data with differential real space
images of the domain wall of topological polaritonic metasurface
excited resonantly by focused circularly polarized laser pulses of
the opposite helicity (Fig. 4c, right). As expected, towards the
center of the topological gap (1.7–1.72 eV, cf. 1.65 eV), where the
contribution of bulk TPs vanishes, the images show clear
asymmetry, which indicates one-way propagation of edge TPs
along the domain wall. The calculation indicates that at these
frequencies the edge modes have considerable excitonic fraction
(0.05 and 0.11 at 1.72 and 1.7 eV, respectively).

Finally, we demonstrate the possibility of polarization con-
servation and selective coupling of valley polarization to the edge
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modes. To this aim, we fabricate another topological polaritonic
metasurface optimized for strong coupling between the upper
photonic band and the exciton in WSe2. The change of material is
stipulated by much superior valley depolarization properties of
WSe274 compared to MoSe275. To characterize the valley
polarization conservation in edge TPs, we transfer an hBN-
incapsulated WSe2 monolayer on top of the topological metasur-
face (Fig. 2c) with design optimized for the intersection of WSe2
exciton with the upper photonic band. First, we characterize the
sample by measuring the angle-resolved differential reflectivity
and PL which confirm the formation of upper and lower TP
bands (Fig. 5a, b). As WSe2 emission spectra are dominated by
localized excitonic states at low temperature, for the strong
coupling characterization we use a temperature of 100 K, for
which the polaritonic branches become more pronounced for the
PL signal (Fig. 5b). For excitation, we use a 1.96 eV HeNe CW
laser. Similarly to MoSe2 sample, we fit the PL data with coupled
oscillator model that yields slightly lower coupling strength (κ =
11 meV) and Rabi splitting (ΩR= 22 meV) with γex ¼ 13 meV
and γph ¼ 12 meV, which can be explained by the presence of an

additional hBN layer between the monolayer and metasurface.
Next, for the measurements of polarization conservation of TMD
emission and its selective coupling to edge states, we employ
resonant excitation at the WSe2 exciton frequency (1.74 eV) and
decrease the temperature back to 7 K (Fig. 5c, d). Emission from
TMD monolayer below the exciton energy (1.68 eV and below,
also visible in PL map in Fig. 5b) in such configuration partially

retains valley polarization76, which provides the opportunity to
observe the selective coupling of PL to the edge modes. Figure 5c,
d show the maps of angle-resolved differential reflectivity and
circular polarization degree (CPD) of emission from edge
states of topological polaritonic metasurface with WSe2 measured
at 7 K. We define the circular polarization degree as
CPD= ðIðσþÞ � Iðσ�ÞÞ=ðIðσþÞ þ Iðσ�ÞÞ, where IðσþÞ and Iðσ�Þ
are the PL emission intensity recorded for σþ or σ� circularly
polarized pump, respectively, without any polarization selective
optics in the detection channel. Due to the polarization
conservation of WSe2 PL and the spin-momentum locking of
the edge modes, the emission is predominantly coupled to one
of the counter-propagating edge modes depending on the helicity
of the excitation, which leads to the opposite signs of CPD at the
edge modes. Figure 5d reveals up to 20% CPD of the emission at
the TP edge states, which suggests the possibility of valley
transport with topological edge polaritons formed due to the
transfer of topological invariant from photonic to polaritonic bulk
modes.

Discussion
To summarize, here we have introduced an approach to engineer
Z2 topological polaritonic phase with preserved TR symmetry by
strongly coupling a topological photonic system with excitons in
2D materials. The strong polarizability and the presence of two
TR partner exciton states in 2D semiconductors, leads to strong
coupling and avoided crossing behavior accompanied by the
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emergence of effective winding and topological transition to the
topological polaritonic spin-Hall phase. TR symmetry and con-
servation of angular momentum in the system ensures that the
excitons with opposite orbital momenta couple with photons of
respective pseudo-spins, thus ensuring the formation of two TR
partner topological polaritonic bulk bands carrying nonzero spin-
Chern numbers. This gives rise to the emergence of spin-
polarized one-way edge TPs, which may carry valley-polarized
polaritonic component.

Our work demonstrates Z2 2D topological polaritonic phase
which does not require magnetic field and exhibits a large
topological bandgap hosting one-way topological polaritonic
boundary modes. In our work the topological bandgap amounts
to 20–30 meV, which is especially important for potential appli-
cations leveraging topological polariton nonlinearities, e.g., for
generation of topological solitons which require a broad range of
frequencies.

We note that in a recent work the formation of edge exciton
polaritons has been reported77 due to hybridization of WS2 exci-
tons with the topological photonic states of a SiN metasurface. In
our work we focus on a different scenario of strong coupling with
bulk photonic modes, which gives rise to a transfer of topological
invariant to bulk polaritonic states. The resultant Z2 type topolo-
gical polaritonic phase gives rise to the formation of topological
edge polaritons, whose dispersion asymptotically approaches bulk
polaritonic bands. Interestingly, in the case of the interaction
between photonic edge states and excitons77, the bulk states
remain photonic, and the mechanism of edge polariton formation
is different as it gives rise to the gapped character of edge polariton
dispersion, with edge polaritons exhibiting one-way spin-polarized
propagation. In the scenario considered here, we confirmed that
for the case of hybridization of excitons with bulk photons, the
edge polaritons emerge from the bulk upper polaritonic bands, in
agreement with the bulk-boundary correspondence, which directly
evidences the Z2 topological polaritonic phase.

Our work paves the way to engineering topological phases in
hybrid photonic-excitonic structures by enriching these systems
with additional degrees of freedom inherited from their solid-
state component, such as valley degree of freedom in TMDs. Our
results thus envision an original platform that can be employed as
a resilient topological interface between photonic and electronic
components in future valleytronic devices. This platform also has
clear advantages over the conventional approach based on
semiconductor heterostructures since 2D materials support a
broad range of excitations with a variety of internal degrees of
freedom and are easy to integrate into topological photonic sys-
tems. Thus, this concept can be extended to a wide range of solid-
state systems hosting different excitation, including phonons,
polarons, magnons and spin-waves, which can be devised to
interact with various topological photonic systems, e.g., regular
and higher-order topological insulators, yielding topological
phases and ways to control matter with light in a robust and a
resilient manner. Strong and resilient light-matter interactions in
such systems will facilitate enhanced nonlinear effects and novel
quantum effects involving half-light and half-mater excitations,
which can be of immense value for various classical and emerging
quantum applications.

Methods
Sample fabrication. A triangular lattice formed by the hexamers of triangular-
shaped holes was fabricated on the Silicon-on-Insulator substrates (75 nm of Si, 2
μm of SiO2) with the use of E-beam lithography (Elionix ELS-G100). First, the
substrates were spin-coated with e-beam resist ZEP520A of ~170 nm thickness and
then baked for 4 min at 180 °C. Next, gold film 15 nm thick was sputtered on top of
resist. E-beam lithography exposure was followed by gold etch and the develop-
ment process in n-Amyl Acetate cooled to 0 °C for ~35 s. Then, anisotropic plasma

etching of silicon was conducted in The Oxford PlasmaPro System ICP by a recipe
based on C4F8/SF6 gases. Triangular shaped holes were etched to the depth of
about 75 nm at temperature 5 °С etching with rate about 1.5 nm/s. Finally, the
residue of resist was removed by sample immersion into NMP heated to 60 °С.

Monolayers of TMD materials (MoSe2, WSe2) were exfoliated onto a thick
PDMS stamp using standard tape technique and transferred to the substrate by the
custom-built transfer system. The monolayer was annealed at 350 °C for 2 h to
remove the polymer residue from the transfer process. Further, some of the
monolayers were encapsulated within hBN layers and annealed again at 350 °C for
another 2 h.

Experimental set up. Angle-resolved reflectivity measurements were performed in
a back focal plane configuration with a slit spectrometer coupled to a liquid-
nitrogen-cooled imaging CCD camera (Princeton Instruments SP2500+PyLoN),
using white light from a halogen lamp for illumination. The sample was mounted
in an ultra-low-vibration closed-cycle helium cryostat (Advanced Research Sys-
tems) and maintained at a controllable temperature down to 7 K. To resolve the
topological edge modes, we used a slit-type spatial filter in the image plane of the
detection channel that allowed to collect signal only from the vicinity of a single
domain wall. For polarized reflectivity maps, the polarization selection was per-
formed both in excitation and in collection channels. The maps for aligned
polarizers were additionally post-processed to suppress the Fabry-Pérot back-
ground originating from the bottom silicon layer of the SOI substrate (see Sup-
plementary Note 6). For PL CPD measurements with WSe2 sample, the linear
polarizer was removed from the collection channel to exclude any polarization
sensitivity that interferes with CPD extraction.

Data availability
The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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