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Abstract. Convolution is a ubiquitous operation in mathematics and computing. The
Kripke semantics for substructural and interval logics motivates its study for quantale-
valued functions relative to ternary relations. The resulting notion of relational convolution
leads to generalised binary and unary modal operators for qualitative and quantitative
models, and to more conventional variants, when ternary relations arise from identities over
partial semigroups. Convolution-based semantics for fragments of categorial, linear and
incidence (segment or interval) logics are provided as qualitative applications. Quantitative
examples include algebras of durations and mean values in the duration calculus.

1. Introduction

Convolution is a ubiquitous operation in mathematics, and computing. Schützenberger and
Eilenberg’s approach to formal languages, for instance, uses convolution of formal power
series (which are functions from free monoids into semirings) to generalise the standard
language product to the context of weighted automata [BR84]. If Σ∗ is the free monoid over
the alphabet Σ and f, g : Σ∗ → S are functions mapping words in Σ∗ to values or weights in
the semiring S, then the convolution of f and g is defined, for all x ∈ Σ∗, as

(f ∗ g)x =

x=yz
∑

y,z∈Σ∗

f y · g z.

Word x is thus split into all possible prefix/suffix pairs (y, z), the functions f and g are
applied separately to y and z, respectively, the weights of f y and g z are then multiplied in
S and finally the sum of weights for all possible pairs (y, z) is taken. We study convolution
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tion algebra, modal algebra, substructural logics, interval logics, duration calculus.

The research reported here was supported in part by Australian Research Council (ARC) Grant
DP190102142. Dongol is supported by EPSRC grants EP/R019045/2, EP/R032556/1 and EP/R025134/2.

LOGICAL METHODS❧ IN COMPUTER SCIENCE DOI:10.23638/LMCS-17(1:13)2021
© B. Dongol, I. J. Hayes, and G. Struth
CC© Creative Commons



13:2 B. Dongol, I. J. Hayes, and G. Struth Vol. 17:1

algebras with operations of similar shape in this article, yet replace Σ∗ and S with different
data.

Other examples relevant to us come from Rota’s famous work on the foundations of
combinatorics [Rot64], where convolution is one of the operations of the incidence algebra of
segments in locally finite posets, and Goguen’s classical work on fuzzy logic, which uses a
category with quantale-valued sets as objects and quantale-valued relations as morphisms
that are composed by convolution [Gog67]. Before that, Heisenberg’s matrix approach to
quantum mechanics was originally presented as a convolution algebra of functions from
the groupoid of ordered pairs into the field of complex numbers [Hei25], as pointed out
by Connes [Con95]. The Dirichlet convolution of arithmetic functions and the convolution
operation in group algebras used in the representation theory of finite groups provide even
earlier examples. Notions of convolution in analysis date back at least to work by Cauchy,
but are less relevant for us.

More recently, further computationally interesting applications of convolution of functions
from partial semigroups or monoids into quantales have been discussed [DHS16]. Separating
conjunction, for instance, is a convolution on a partial abelian resource monoid within the
assertion quantale of separation logic. The chop modality, a widely used binary modality in
interval temporal logics, arises as convolution on a partial semigroup of intervals and yields
a similar quantale.

It is well known that the logic of bunched implication—the logical counterpart of the
assertion quantale of separation logic—is a substructural logic similar to relevance and linear
logics, which have Kripke semantics based on ternary frames. This raises the question
whether convolution generalises similarly to ternary relations, and hence to generic semantics
for substructural logics. This generalisation seems interesting for several reasons. Using
functions instead of predicates with modalities supports quantitative applications. An
emphasis on simple uniform constructions on algebras and mappings between them leads to
equally concise formalisations in proof assistants, and further to simple generic verification
components for separation or interval logics.

The main contribution of this article lies in an answer to that question: in a novel
approach to relational convolution, the investigation of the generalised binary and unary
modalities that arise from it, in its specialisation to a previous approach based on quantale-
valued functions from partial semigroups [DHS16], in further instantiations with a focus on
incidence algebras and interval temporal logics, and, last but not least, in its formalisation
in the Isabelle/HOL proof assistant [DGHS17].

More specifically, we generalise the standard Kripke semantics for unary multimodal
operators from predicates to lattice-valued functions and show how quantale modules [AV93]
and various kinds of function transformers arise in this setting (Section 2). More general
notions of binary modalities and relational convolution over ternary relations are introduced
next (Section 3). These generalise from predicates to quantale-valued functions. Jónsson
and Tarski’s famous duality between (n+ 1)-ary relational structures and boolean algebras
with n-ary operators [JT51] generalises these results in the arity of relations and modal
operators, but for the special case of powerset algebras. Yet duality theory is not the
subject of this article; see [HWW18] for subsequent results in the lattice-valued case. A
correspondence theory for relational convolution is outlined next (Section 4), with emphasis
on relational conditions inducing monoidal laws in the convolution algebras of quantale-
valued functions. Using these, previous lifting results to convolution algebras [DHS16] are
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generalised: quantale-valued functions with relational convolution as composition form
quantales in the presence of suitable conditions on relations (Theorem 4.8).

Theorem 4.8 specialises to a convolution-based semantics for variants of the Lambek
calculus, and hence for fragments of other substructural logics including categorical and
linear ones (Section 5). It also subsumes previous lifting results based on partial semigroups
and monoids (Section 6), and specialises to various incidence algebras for segments and
intervals in partial orders with different kinds of compositions (Section 7). Convolution
algebras with semi-infinite intervals (those without upper bounds) are based on functions
from semidirect products of two partial semigroups—one for finite behaviours, another one
for infinite ones—into quantale modules (Section 8 and Section 9). They form quantales
(Theorem 9.8) in which certain distributivity and unit laws are weakened. A glossary of the
main algebraic structures used is provided in Appendix A.

After these general mathematical investigations, the second part of this article is devoted
to applications. First, a convolution-based algebraic semantics for Halpern-Shoham and
Venema style temporal logics [HS91, Ven91] with unary and binary modalities is presented,
but generalised to incidence algebras of segments over abstract time domains given by
arbitrary posets (Section 10). Within this framework, different kinds of segments, with or
without point segments and with different kinds of bounds or compositions, can be included
in a uniform and modular way by setting up different kinds of partial semigroups or monoids.
From that basis, a substantial part of the interval temporal logic ITL [Mos12] can be obtained,
using a semigroup construction for stream functions that abstract from the dynamics of
state spaces or program stores (Section 11), and by instantiating to a time domain of natural
numbers. This semantics extends seamlessly to the duration calculus [ZH04] (Section 12)
and one of its variants, the mean-value calculus [PR98] (Section 13), by instantiating to a
real-time domain. For these last two logics, we provide examples that illustrate the relevance
of convolution in quantitative modelling, by showing that the algebras of durations and
mean values over intervals form quantales, too.

A convolution-based semantics of separation logic has been investigated in a previous
article [DGS15]. It provides further evidence for the universality of the convolution-based
approach to modal and substructural logics outlined. For all applications considered, it
suffices to specify an appropriate ternary relation on the fundamental objects considered.
These could be intervals, resources as in separation logic, linear logic or biological mod-
elling [PRS09], threads of concurrent programs [HMSW11] or even operators representing
measurements on quantum systems [FB94]. Often, these relations arise from equations over
partial semigroups or monoids, and from constructions over these. The lifting to convolu-
tion algebras is then generic, and it may yield qualitative assertion algebras corresponding
to substructural or modal logics, or else quantitative algebras, for instance of weights or
probabilities—for separation logics, interval temporal logics, duration calculi and beyond. A
series of additional examples can be found in [DHS16].

The main results of this article have been formalised and verified with the Isabelle/HOL
proof assistant. Section 14 contains a brief overview of this implementation. The complete
Isabelle code and a corresponding proof document can be found online [DGHS17] in the
Archive of Formal Proofs [AFP]. Due to this, we show only a few proofs in the article; cross
references between the theorems in the article and Isabelle proofs in the Archive of Formal
Proofs can be found in Appendix B. A typical lifting result based on convolution, similar to
Theorems 4.8 and 9.8, can be found in [DHS16]. The generalised proofs in this article are
similar and provide little further insight.
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2. Generalised Unary Modalities over Binary Relations

This section introduces generalised unary modalities, parametrised by binary relations, that
are defined in terms of lattice-valued functions. These are related to Halpern-Shoham
style interval modalities [Ven90, HS91, Ven91] in Section 10. More general notions of
binary modalities, parametrised by ternary relations, are introduced and related with unary
modalities in Section 3. Modalities over binary relations arise in the context of standard
Kripke frames [BdRV01].

According to the standard Kripke semantics, if R ⊆ X ×X is a relation and P ⊆ X a
predicate, then

∣

∣R
〉

P x holds if and only if Rxy and P y hold for some y ∈ X.1 Similarly,

swapping the order of arguments in R,
〈

R
∣

∣P y holds if and only if Rxy and P x hold for

some x ∈ X. The forward diamond operator
∣

∣

〉

is thus a relational preimage operation;
∣

∣R
〉

P yields the set of pre-states that R relates to any post-state where P holds. The

backward diamond
〈 ∣

∣ corresponds to a relational image;
〈

R
∣

∣P yields the set of post-states
to which R relates any pre-state where P holds. In a Kripke frame, R is usually interpreted
in terms of accessibility or transitions between possible worlds. Yet some modal logics, such
as interval logics, require other interpretations.

More generally, we assume that R ⊆ X×Y , f : X → L and g : Y → L, where L = (L,≤)
is a complete lattice. We write ⊔ for the join and ⊓ for the meet operation in L; we write 0
for the least and ⊤ for the greatest element in this lattice. Finally, we write

P x
⊔

x∈X

f x =
⊔

{f x | x ∈ X ∧ P x}

for the supremum of the set {f x | x ∈ X ∧ P x}. Then, for all x ∈ X and y ∈ Y ,

∣

∣R
〉

g x =

Rxy
⊔

y∈Y

g y and
〈

R
∣

∣ f y =

Rxy
⊔

x∈X

f x.

Forward and backward diamonds are related by opposition duality, which is modelled by
conversion:

〈

R
∣

∣ =
∣

∣R`
〉

, where R` x y ⇔ Ry x. Forward and backward box modalities can
be obtained with infima in place of suprema:

∣

∣R
]

g x =

Rxyl

y∈Y

g y and
[

R
∣

∣ f y =

Rxyl

x∈X

f x.

Whenever the complete lattice is boolean, boxes and diamonds are related by De Morgan

duality. Using ϕ = λx. ϕ x then yields
∣

∣R
]

g =
∣

∣R
〉

g and
[

R
∣

∣ f =
〈

R
∣

∣ f .
The standard modalities [BdRV01] can be recovered by restricting types and using

L = B, the two-element lattice of booleans. The generalisation to lattice-valued functions
allows the transition from qualitative to quantitative reasoning, using, for instance, the
complete lattice of extended reals or the unit interval with respect to min and max (cf.
Example 3.2 and Sections 12 and 13).

The following statement shows that generalised modalities satisfy module-like laws, more
precisely the laws of quantale modules [AV93], which are introduced formally in Section 9. In

1We freely use set and predicate notation for relations, we write either X → Y or Y X for types and sets
of functions.
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this lemma, R ; S denotes the relational composition of R and S and IdX = {(x, x) | x ∈ X}
the identity relation over X.

Lemma 2.1. For an index set I and i ∈ I, let R,Ri ⊆ X × Y , S ⊆ Y × Z, g, gi : Y → L,
and h : Z → L. Then

∣

∣

⋃

i∈I Ri

〉

g =
⊔

i∈I

∣

∣Ri

〉

g, (2.1)
∣

∣R
〉

(
⊔

i∈I gi) =
⊔

i∈I

∣

∣R
〉

gi, (2.2)
∣

∣R ; S
〉

h =
∣

∣R
〉

(
∣

∣S
〉

h), (2.3)
∣

∣IdX
〉

g = g. (2.4)

The proofs have been formalised with Isabelle. The diamond operator
∣

∣

〉

: P(X×Y )→

LY → LX corresponds to a generalised (module) action of a binary relation of type
P(X × Y ) between the complete join (semi)lattices of functions LY and LX obtained by
pointwise lifting from Y and X. Identity (2.3) can be written as

∣

∣R ; S
〉

=
∣

∣R
〉

◦
∣

∣S
〉

, where
∣

∣R ; S
〉

: LZ → LX ,
∣

∣R
〉

: LY → LX and
∣

∣S
〉

: LZ → LY . Identity (2.4) can be written as
∣

∣IdX
〉

= idLX , where idLX is the identity function of type LX → LX . Thus
∣

∣

〉

is indeed
a covariant functor between the category of relations and the category with lattice-valued
functions as objects and higher-order functions—or function transformers—between these
functions as morphisms. Identity (2.1) can be written as

∣

∣

⋃

i∈I Ri

〉

=
⊔

i∈I

∣

∣Ri

〉

, hence
∣

∣

〉

sends unions in the category of relations of type P(X × Y ) to suprema in the complete
semilattice of function transformers. Finally, by (2.2),

∣

∣R
〉

is (completely) additive and

hence an operator on the lattice of functions LY in the sense of boolean algebras with
operators [JT51]. This justifies the status of diamond operators as modalities.

Analogous facts for the other kinds of modalities arise by duality. The operator
〈 ∣

∣

is contravariant:
〈

R ; S
∣

∣ =
〈

S
∣

∣ ◦
〈

R
∣

∣ because (R ; S)` = S` ; R`. Similarly, identities

(2.1), (2.2) and (2.4) in Lemma 2.1 are dualised by replacing
∣

∣

〉

by
〈 ∣

∣. The operator
∣

∣

]

acts covariantly on the space of functions of type LY → LX under lattice duality

like
∣

∣

〉

, that is,
∣

∣R ; S
]

=
∣

∣R
]

◦
∣

∣S
]

and
∣

∣IdX
]

= idLX . However it maps relational

unions to infima in the space of function transformers, i.e.,
∣

∣

⋃

i∈I Ri

]

=
d

i∈I

∣

∣Ri

]

, and

it is (completely) multiplicative, that is,
∣

∣R
]

(
d

i∈I gi) =
d

i∈I

∣

∣R
]

gi. Once again,
[

∣

∣ is

contravariant,
[

R ; S
∣

∣ =
[

S
∣

∣ ◦
[

R
∣

∣, and the properties corresponding to (2.1), (2.2) and (2.4)

in Lemma 2.1 arise from the forward box laws by replacing
∣

∣

]

by
[ ∣

∣.
A study of these relationships in the context of (Sup-)enriched categories or quan-

taloids [Ros91] seems worthwhile. Pragmatically, however, the functional programming style
used in this section seems general enough to cover various applications while simple enough
for a straightforward formalisation in an interactive theorem prover like Isabelle.

The final statements of this section show, in the tradition of boolean algebras with
operators, that generalised unary modalities are related by adjunctions or Galois connections
and conjugations. This yields additional theorems for free. All four proofs have been verified
with Isabelle.

Lemma 2.2. Let R ⊆ X × Y , f : X → L and g : Y → L. Then

∣

∣R
〉

g ≤ f ⇔ g ≤
[

R
∣

∣ f and
〈

R
∣

∣ f ≤ g ⇔ f ≤
∣

∣R
]

g.
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Lemma 2.3. Let R ⊆ X × Y , f : X → L and g : Y → L, where L is a complete boolean
algebra. Then

∣

∣R
〉

g ⊓ f = 0⇔ g ⊓
〈

R
∣

∣ f = 0 and
∣

∣R
]

f ⊔ g = ⊤ ⇔ f ⊔
[

R
∣

∣ g = ⊤.

3. Generalised Binary Modalities over Ternary Relations

Kripke frames based on ternary relations yield semantics for substructural logics such as
relevance logics [DR02], the Lambek calculus [Lam58], categorial logics [MR12] or linear
logic [AD93]; the general theory is once again due to Jónsson and Tarski [JT51]. We
generalise the approach from Section 2 to ternary relations and binary modalities. These are
closely related to the concatenation or product of the Lambek calculus, the tensor of linear
logic or the chop operators of interval logics. In particular, they yield relational convolution
operators similar to those that appear widely across mathematics and computing [DHS16].
Binary modalities require enrichment of the complete lattices of the previous section by an
operation of composition.

Definition 3.1. A quantale [Con71, Ros90] is a structure Q = (Q,≤, ·) such that (Q,≤) is
a complete lattice, (Q, ·) is a semigroup with composition operator · and the distributivity
axioms

(
⊔

X) · y =
⊔

x∈X

x · y and x ·
⊔

Y =
⊔

y∈Y

x · y

hold for any X,Y ⊆ Q. We write 0 for its least and ⊤ for its greatest element with respect
to ≤.

• A quantale is unital if (Q, ·, 1) is a monoid with unit 1.
• A quantale is distributive if the underlying lattice is.
• A distributive quantale is boolean if every element x is complemented, that is, x ⊓ x = 0
and x ⊔ x = ⊤ hold.

The annihilation laws x · 0 = 0 = 0 · x hold in any quantale because
⊔

∅ = 0. Our
lifting results from quantales to convolution algebras in the forthcoming sections preserve
distributivity and complementation properties of the quantale. For the sake of simplicity,
however, we present our results for quantales only and leave the extensions to distributive
or boolean quantales implicit. They can be found in our Isabelle theories.

We present some well known examples of quantales that are useful for our purposes.

Example 3.2.

(a) The Booleans form the boolean unital quantale (B,≤,⊓, 1) in which composition is the
lattice meet ⊓. It allows us to treat predicates as boolean-valued functions.

(b) The Lawvere quantale (R∞
+ ,≥,+, 0) consists of the extended nonnegative reals R∞

+

with reversed order on the reals ≥,
d

as supremum, + as composition extended by
x+∞ =∞ =∞+ x, and 0 as its unit.

(c) Similarly to (a), (R∞
+ ,≥,max, 0) forms a unital quantale with

d
as supremum.

(d) The structure (R∞
+ ,≤, ·, 1) forms a unital quantale with

⊔

as supremum.
(e) The unit interval ([0, 1],≤, ·, 1) forms a unital quantale with

⊔

as supremum. It is
isomorphic to the Lawvere quantale via the function (λx · − lnx).

(f) The structures ([0, 1],≤,min, 1) and ([0, 1],≥,max, 0) form unital quantales.

The quantales in (b)-(f) are distributive, but not boolean.
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Definition 3.3. Let R ⊆ X×Y ×Z be a ternary relation, and let f : Y → Q and g : Z → Q
be functions into the quantale Q. We define, for all x ∈ X, the generalised binary modality
of relational convolution ∗R by

(f ∗R g)x =

Rxy z
⊔

y∈Y,z∈Z

f y · g z.

In applications, R is often fixed. It is then convenient to simply write f ∗ g.
Sections 10 and 11 show how relational convolution specialises to chop modalities in

various interval logics. Its relationship to the (non-associative) Lambek calculus and similar
substructural logics is explained in Section 5. Its relationship with more conventional notions
of convolution [DHS16] is discussed further in Section 6. A similar convolution function into
lattices has been studied independently by Harding, Walker and Walker [HWW18].

The following binary counterpart of Lemma 2.1 has been verified with Isabelle.

Lemma 3.4. For an index set I and i ∈ I, let R ⊆ X × Y × Z, f, fi : Y → Q and
g, gi : Z → Q. Then, with S = (

⋃

i∈I Ri),

f ∗S g =
⊔

i∈I f ∗Ri
g,

(
⊔

i∈I fi) ∗R g =
⊔

i∈I fi ∗R g,

f ∗R (
⊔

i∈I gi) =
⊔

i∈I f ∗R gi.

The laws (2.3) and (2.4) from Lemma 2.1 make no sense in this context.
Next we relate unary and binary modalities. Both of the following statements have been

verified with Isabelle.

Lemma 3.5. Let R ⊆ X×Y and Q be a unital quantale. Let f : Y → Q and let the constant
function c1 : Z → Q be defined by c1 z = 1 for all z ∈ Z. Then, with S = λx, y, z. R x y and
T = λy, x, z. R x y,

∣

∣R
〉

f = f ∗S c1 and
〈

R
∣

∣ f = f ∗T c1.

Lemma 3.6. Let R ⊆ X×Y ×Z, f : Y → Q and g : Z → Q. Then, with S x (y, z) = Rxy z,

f ∗R g =
∣

∣S
〉

(λ(y, z). (f y · g z)).

With (·) = λ(y, z). y ·z one can write f ∗R g =
∣

∣S
〉

((·)◦ (f, g)) in functional programming
style.

Convolutions f ∗ g have been introduced in Schützenberger and Eilenberg’s approach to
formal language theory [BR84]. In this case, x, y and z are words from some free monoid
X∗ and Rxy z corresponds to x = y · z. Similar forms of convolution have been considered
widely in mathematics. Many well-known constructions from computer science can be
represented this way [DHS16].

4. Relational Semigroups and Convolution Algebras

We now fix a ternary relation R ⊆ X × X × X and write f ∗ g instead of f ∗R g. The
main result of this section (Theorem 4.8) is also one of the main theorems of this article.
It characterises the convolution algebras that arise from lifting to function spaces QX of
quantale-valued functions of type X → Q, with relational convolution as the operation
of composition on function spaces and other operations such as suprema and the order
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relation lifted pointwise from Q. Convolution algebras are usually quantale-like, but we also
encounter situations where they form semirings. But before that, in the tradition of modal
correspondence theory, we impose conditions on R that are reflected by algebraic laws in
convolution algebras.

We first consider associativity (f ∗ g) ∗ h = f ∗ (g ∗ h) of convolution for quantale-valued
functions f, g, h : X → Q. We present two counterexamples. The first one is computationally
interesting, the second one purely syntactic.

Lemma 4.1. There exists a ternary relation over X such that (f ∗ f) ∗ f 6= f ∗ (f ∗ f) for
some f : X → B.

Proof.

(a) Let X be the set of binary trees with leaves labelled by a. Let Rxy z hold if y
is an immediate left subtree of x and z an immediate right subtree of tree x. Let
f = λv. (v = a). Then f ∗ (f ∗ f) holds of the tree below, whereas (f ∗ f) ∗ f does not.

·

a ·

a a

(b) Let X = {a, b}, R = {(a, b, b), (b, b, a)} and consider f : X → B defined by f a = 0 and
f b = 1. Then ((f ∗ f) ∗ f) b = 0 6= 1 = (f ∗ (f ∗ f)) b holds by unfolding definitions and
performing some simple calculations.

In order to force associativity of convolution, we impose the following condition on R.

Definition 4.2. A relational semigroup is a structure X = (X,R) such that X is a set and R
a ternary relation over X that satisfies the relational associativity law for any x, u, v, w ∈ X:

(∃y ∈ X. R y u v ∧Rxy w)⇔ (∃z ∈ X. R z v w ∧Rxu z).

The next result has been verified with Isabelle.

Lemma 4.3. If X is a relational semigroup and Q is a quantale, then for all f, g, h : X → Q,

(f ∗ g) ∗ h = f ∗ (g ∗ h).

Next we consider the unit laws f ∗ id = f = id ∗ f for a suitable function id. Again we
provide a counterexample first.

Lemma 4.4. There is a relational semigroup X for which there is no function g : X → B

such that f ∗ g = f and g ∗ f = f hold for all f : X → B.

Proof. Consider the closed strict intervals [i, j] with i < j within [0, 1] (see Section 7 for
formal definitions) and let Rxy z hold if y, z ⊆ [0, 1] are intervals such that x = y ∪ z
whenever the maximal point in y equals the minimal point in z. As point intervals of [i, i]
have been excluded by strictness i < j, all strict intervals x and y satisfy ¬Rxx y and
¬Rxy x and therefore it cannot be the case that either

(f ∗ g)x =

Rxy z
⊔

y,z

f y · g z = f x or (g ∗ f)x =

Rxy z
⊔

y,z

g y · f z = f x

for any function g, because this would require Rxx y for some y in the first case and Rxy x
for some y in the second one in order to “filter out” f x.
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This proof additionally shows that the candidate identity function g would have to yield
1 on all intervals y satisfying Rxx y or Rxy x, assuming those existed, and it would have
to yield 0 on all other intervals. This motivates the following definitions.

Definition 4.5. A relational monoid is a structure Y = (Y,R, ξ) such that (Y,R) is a
relational semigroup and ξ ⊆ Y such that for all y ∈ Y ,

∃e ∈ ξ. R y e y and ∃e ∈ ξ. R y y e,

and for all x, y ∈ Y and e ∈ ξ,

Rxe y ⇒ x = y and Rxy e⇒ x = y.

Using the Kronecker delta function δ : Y → Y → Q into a unital quantale Q defined by

δ x y =

{

1, if x = y,

0, otherwise,

we can verify the following fact with Isabelle.

Lemma 4.6. Let Y be a relational monoid and let Q be a unital quantale. Then id =
⊔

e∈ξ δ e

is a left and right unit of relational convolution in QY .

Relational encodings of partial algebras date back at least to Skolem [Sko20]. The
correspondence between relational semigroups and monoids and (partial) algebras is explained
in Section 6. In a monoidal context, a relation Rxy z denotes an identity x = y · z, and a
relational specification of an algebraic identity is obtained by flattening the parse trees of
algebraic expressions while memoising subexpressions. The unit axioms are more general
than those of monoids in that the order of quantifiers is swapped. This allows multiple units
in a partial algebra, and different left and right units for each element, for instance, like in
(small) categories. The precise relationship to categories, and equivalent axiomatisations of
relational monoids with unit axioms more similar to those of arrows-only categories [ML98],
are discussed in [CDS20b]. Similar axioms have also been used by Rosenthal [Ros97] who
has proved a special case of the following lifting result.

Theorem 4.8(a) below does not hold for quantales but does for proto-quantales.

Definition 4.7. A proto-quantale is a quantale in which composition need not be associative.

Within this theorem, which has once more been verified by Isabelle, and beyond we
refer to algebraic structures QA that arise from the quantale liftings of suitable relational
structures A as convolution algebras.

Theorem 4.8. In each QA below, take composition as convolution ∗R and suprema and
infima to be the pointwise liftings of those in Q.

(a) Let X be a set and R ⊆ X ×X ×X. If Q is a proto-quantale, then so is QX .
(b) Let X be a relational semigroup. If Q is a quantale, then so is QX .
(c) Let Y be a relational monoid. If Q is a unital quantale, then so is QY with unit id.

These lifting results extend to distributive and boolean quantales. Proofs can be found in
our Isabelle theories.

Finally, it is natural to consider the law ∀x, y, z. R x y z ⇒ Rxz y, although it plays no
further role in this study. A relational semigroup is abelian if this relational commutativity
law holds; we call a quantale abelian if the underlying semigroup is. We have verified
with Isabelle that, if S is an abelian relational semigroup, then QS is an abelian quantale
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whenever Q is. In particular, the convolution of quantale-valued functions from an abelian
relational semigroup is commutative. In addition, we have proved lifting results to abelian
quantales similar to those in Theorem 4.8. These are relevant to separation logic [DGS15].

Quantales guarantee that infinite sums or suprema exist. In other situations, a restriction
to finite sums is possible.

Definition 4.9. A relation R ⊆ X × Y × Z is finitely decomposable if for all x there are
finitely many y and z such that Rxy z holds. A relational semigroup or monoid is finitely
decomposable whenever its relation is.

This notion adapts the notions of the same name for semigroups and monoids as well as
the topological concept of locally finite collections, and local finiteness of incidence algebras
in order theory [Rot64]. Theorem 4.8 then specialises to semirings. On the one hand, these
are essentially rings without additive inverses, that is, the additive reducts of semirings are
abelian monoids, but not necessarily abelian groups. On the other hand, they can be seen as
quantales in which finite suprema are replaced by (non-idempotent) sums, whereas infinite
sums or infima need not exist.

Corollary 4.10. Let S be a finitely decomposable semigroup (monoid). If R is a (unital)
semiring, then so is RS .

By finite decomposability, all sums in convolutions (f ∗ g)x are finite and can thus be
taken over semirings without convergence issues. Alternatively one could require that f and
g have finite support. For an extension of this lifting result to Kleene algebras see [CDS20a].

Finally, the relation R ⊆ X ×X ×X can be recovered in QX . The following lemma has
not been formalised with Isabelle. We therefore provide a proof.

Lemma 4.11. A relational monoid Y can be embedded into QY for any unital quantale Q.

Proof. With δ as defined above, we have (δ y ∗ δ z)x =
⊔Rxv w

v,w δ y v · δ z w and it follows that

((δ y ∗ δ z)x = δ x x)⇔ Rxy z, which implies ((δ y ∗ δ z) = δ x)⇔ Rxy z. Hence consider
the relation S ⊆ QY × QY × QY defined by S f g h ⇔ f = g ∗ h. Then δ : Y → QY is
the desired (relational) embedding, because, by definition, Rxy z ⇔ S (δ x) (δ y) (δ z). The
function δ is injective because if δ x z = δ y z holds for all z, then x = y. The embedding
extends to relational monoids because δ maps every e ∈ ξ to the identity of the convolution,
id : Y → Q.

5. Non-Associative Lambek Calculus and Residuation

Non-associative binary modalities are well known from substructural logics such as the
non-associative Lambek calculus [MR12], which forms a precursor to and fragment of more
expressive categorical and linear logics. In this case, binary modalities are interpreted over
ternary Kripke frames R ⊆ X×X×X. These are sometimes presented as multi-operations or
hyper-operations of type X → X → P X, which are isomorphic to ternary relations [GL06].
In any quantale Q, two residuation operations, \ and / can be defined for all u, v, w ∈ Q, by
the Galois connections

u · v ≤ w ⇔ v ≤ u\w ⇔ u ≤ w/v.
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In addition to a binary product modality similar to f ∗ g, where f and g are predicates,
hence functions of type X → B, two residual modalities f\g and f/g can be defined. In our
setting, conflating syntax and semantics, these generalise to

(f\g)x =

Rz y xl

y,z

f y\g z and (g/f)x =

Rz x yl

y,z

g z/f y,

In the non-associative Lambek calculus, these lift from the propositional logic to the
modal level. We obtain a more general result for convolution algebras in our Isabelle theories.

Proposition 5.1. Let R ⊆ X × Y × Z and let f : X → Q, g : Y → Q and h : Z → Q be
functions into a quantale Q. Then,

f ∗ g ≤ h⇔ g ≤ f\h⇔ f ≤ h/g.

In the correspondence theory of the non-associative Lambek calculus, relational associa-
tivity laws have already been studied [MR12]. In fact, these can be split into two implications
and they are reflected at the modal level. Similarly, one obtains (f ∗ g) ∗ h ≤ f ∗ (g ∗ h) and
its order dual in the convolution algebra [CDS20a].

We also recover the expected relationship between the binary modalities f\g and f/g
and unary modal box operators. If the target quantale forms a complete distributive lattice
and multiplication coincides with meet, then f\g and f/g correspond to Heyting implications
f → g and f ← g. The two cases are distinguished only by the order of arguments in R;
they coincide if R is relationally commutative. If in addition the lattice is complemented
and c0 : Z → Q defined by c0 z = 0 for all z ∈ Z, then with S x y ⇔ ∃z. R z y x,

(f\c0)x =

Rz y xl

y,z

f y → 0 =

Rz y xl

y,z

f y ⊔ 0 =

S x yl

y

f y =
∣

∣S
]

f x.

The backward box can be obtained from c0/f by conversion duality. Deeper investigations
of convolution algebras with relational residuations in other substructural logics, in particular
linear ones, are left for future work.

Modal correspondence theory also studies relational properties induced by modal ones
(conversely to the completeness-like properties in Section 4). To show that associativity of
relational convolution implies relational associativity, for instance, one can assume that the
latter fails and show that this makes the former fail as well. To this end it suffices to check
that the relation R in the proof of Lemma 4.1(b) violates the relational associativity law,
which is routine. Proofs related to commutativity and units are similar. Full soundness and
completeness proofs for the Lambek calculus with respect to a relational semantics have
been given by MacCaull [Mac98], see also [AM94]. For our convolution algebras, there are
two additional correspondences: properties of QX and Q lead to properties of X; those of
QX and X lead to properties of Q, under certain nondegeneracy assumptions on elements
of Q and X, respectively [CDS20a]. These results are not needed for this article.

6. Partial Semigroups as Relational Semigroups

This section links relational convolution with more conventional notions, as investigated
in [DHS16]. Algebraic semantics for categorical and linear logics are well known (see [AD93,
Dos92, AM94] for early examples). We generalise in two ways by considering partial algebras
and quantale-valued functions instead of boolean-values ones. Lifting results for functions
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from partial semigroups and monoids into convolution algebras formed by quantales are not
new [DHS16]. Thus it remains to explain how partial algebras correspond to their relational
counterparts. All results in this section have been verified with Isabelle.

Definition 6.1. A partial semigroup is a structure S = (X, ·, D) such that X is a set,
D ⊆ X ×X the domain of composition and · : D → X a partial operation of composition.
Composition is associative, x · (y · z) = (x · y) · z, with respect to Kleene equality in the sense
that if either side of the equation is defined then so is the other and, in that case, both sides
are equal. Formally,

Dxy ∧ D (x · y) z ⇔ Dy z ∧Dx (y · z),

D x y ∧ D (x · y) z ⇒ (x · y) · z = x · (y · z).

Definition 6.2. A partial monoid is a structureM = (X, ·, D,E) such that (X, ·, D) is a
partial semigroup and E ⊆ X a set of (generalised) units that satisfy

∃e ∈ E. D ex ∧ e · x = x,

∃e ∈ E. D x e ∧ x · e = x,

e1, e2 ∈ E ∧ D e1 e2 ⇒ e1 = e2.

Every monoid (X, ·, 1) is a partial monoid with D = X × X and E = {1}. Partial
monoids are also related to categories. More specifically, an object-free category [ML98] is a
partial monoid in which (x · y) · z is defined if and only if x · y and y · z are both defined.
More generally, partial semigroups are relational semigroups that are functional in the sense
that for each y and z there is at most one x such that Rxy z; see [CDS20a] for further
information. This is the case because the result of the associated multi-operation is either a
singleton set or empty.

Lemma 6.3. Let R = λx, y, z. D y z ∧ x = y · z.

(a) If (X, ·, D) is a partial semigroup, then (X,R) is a relational semigroup.
(b) If (X, ·, D,E) is a partial monoid, then (X,R,E) is a relational monoid.

This immediately yields a previous lifting construction to a convolution algebra for functions
from partial semigroups into quantales [DHS16] as a corollary to Theorem 4.8.

Corollary 6.4.

(a) Let S be a partial semigroup. If Q is a quantale, then so is QS .
(b) LetM be a partial monoid. If Q is a unital quantale, then so is QM.

Again, our Isabelle theories show that these results extend to distributive or boolean
quantales. Relational convolution now specialises to the more conventional convolution
operation. Using x = y · z to indicate that y · z is both defined and equal to x, we obtain:

(f ∗ g)x =

x=y·z
⊔

y,z

f y · g z.

For the free semigroup X+ or the free monoid X∗ over a finite set X, the associated
relation λx, y, z. x = y · z is finitely decomposable. As in Corollary 4.10, the sum in the
convolution can then be taken over an arbitrary semiring R. In formal language theory,

functions RX+

or RX∗

are known as formal power series [BR84]. These are to weighted
automata, what languages are to ordinary finite state machines. Languages, in particular,
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correspond to functions from X+ or X∗ into the semiring of booleans. In this special case,
convolution reduces to language product.

Finally we present three example constructions that are needed in the sequel.

Example 6.5 (Ordered Pairs). If X is a set, then (X ×X, ·, D,E) is a partial monoid with

x · y = (π1 x, π2 y),

D = {(x, y) ∈ (X ×X)× (X ×X) | π2 x = π1 y},

E = {(x, x) | x ∈ X},

where π1 and π2 are the standard projections. The cartesian fusion product (x1, x2) · (y1, y2)
thus composes two ordered pairs whenever x2 = y1. This algebra on ordered pairs is
known as pair groupoid. It has been used by Heisenberg in his original presentation of
matrix mechanics [Con95]. In particular, BX×X is the quantale of binary relations with
convolution as relational composition, QX×X is the quantale of Q-valued relations which
Goguen introduced to fuzzy logic [Gog67].

Example 6.6 (Partial Monoid Product). If (X,⊙, D⊙, E⊙) and (Y,⊗, D⊗, E⊗) are partial
monoids, then (X × Y, ·, D,E) is a partial monoid with

(x1, y1) · (x2, y2) = (x1 ⊙ x2, y1 ⊗ y2),

D = {((x1, y1), (x2, y2)) | (x1, x2) ∈ D⊙ ∧ (y2, y2) ∈ D⊗},

E = E⊙ × E⊗.

Example 6.7 (Monoid-Set Product). If (X, ·, D,E) is a partial monoid and Y a set, then
(X × Y,⊙, D′, E′) is a partial monoid with

(x1, y)⊙ (x2, y) = (x1 · x2, y),

D′ = {((x1, y), (x2, y)) | (x1, x2) ∈ D ∧ y ∈ Y },

E′ = E × Y.

7. Convolution Algebras of Finite Segments and Intervals

Following the general mathematical considerations thus far, we prepare for applications to
interval logics. Our starting point is Rota’s incidence algebras of order theory [Rot64], though
we do not restrict our attention to locally finite posets, which are finitely decomposable.
Instead we focus on quantale-valued functions from partial algebras of segments and intervals,
in line with Section 6. In that sense, incidence algebras are convolution algebras that arise
from lifting quantale-valued functions from partial semigroups and monoids of segments and
intervals.

Rota attributes the idea of interval functions to Dedekind and E. T. Bell. As before,
the most important facts in this section have been verified with Isabelle. We have so far
restricted our Isabelle formalisation to non-strict closed segments and intervals, that is,
segments or intervals of the form [i, j], with point intervals [i, i] included. Formalisations of
strict and (semi-)open intervals are routine and would not yield additional insights.

Definition 7.1. A segment of a poset P is an ordered pair (i, j) on P in which i ≤ j; the
segment is strict if i 6= j. We write S(P) for the set of all segments and Ss(P) for the set of
all strict segments over P. We write [i, j] for the segment (i, j) and write [i, j]s to indicate
strictness.
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Definition 7.2. A li-poset is a poset (P,≤) that satisfies Halpern and Shoham’s linear
interval property [HS91]:

∀i, j ∈ P. i ≤ j ⇒ ∀k, l ∈ P. (i ≤ k ≤ j ∧ i ≤ l ≤ j ⇒ k ≤ l ∨ l ≤ k).

Intuitively, li-posets generalise linear posets in that all intervals over li-posets are linear.

Definition 7.3. A (strict) interval is a (strict) segment of a li-poset.

Example 6.5 extends immediately to segments.

Lemma 7.4. Let P be a poset.

(a) (Ss(P), ·, D) forms a partial semigroup of ordered pairs.
(b) (S(P), ·, D,E) forms a partial monoid of ordered pairs.

By segment fusion, therefore, [i, j] · [j′, k] = [i, k] whenever j = j′. This is exactly cartesian
fusion of ordered pairs. Note that in each pair, the second component must not be smaller
than the first one.

The proof of Lemma 4.4 shows that partial semigroups Ss(P) do not have units. It is now

straightforward to lift from Ss(P) and S(P) to Q
Ss(P) and QS(P) by virtue of Corollary 6.4.

Corollary 7.5. Let P be a poset.

(a) If Q is a quantale, then so is QSs(P).

(b) If Q is a unital quantale, then so is QS(P).

Relational convolution can now be written, as usual in texts on incidence algebras, as

(f ∗ g) [i, j] =

i≤k≤j
⊔

k

f [i, k] · g [k, j].

Finally, using again a Kronecker delta function, the unit of composition on the incidence
algebra is δ (π1 x) (π2 x) or, more simply, δ i j, if x = [i, j]. In the case of locally finite posets,
and in particular intervals formed over N, Corollary 7.5 generalises to semirings instead of
quantales, as in Corollary 4.10.

Segments and intervals are often defined as sets instead of pairs. For intervals, the
associated partial semigroups or monoids are isomorphic. For each segment [i, j], the
function σ [i, j] = {k ∈ P | i ≤ k ≤ j} is a bijective morphism from the partial semigroup
(monoid) of ordered pairs under interval fusion onto that of set-based intervals under the
partial composition x ∪ y, whenever max x = min y. For general segments, however, only
σ (x · y) ⊇ σ x ∪ σ y always holds, and right-hand sides do not generally form segments. For
example, if x = [i, j] and y = [j, k], one may have:

i j k

Using segments as sets is therefore not an option.
Open or semi-open bounded intervals seem less popular in interval logics. It then seems

appropriate to compose not by fusion, but by unions provided segments or intervals are
adjacent, but non-overlapping. Such more general segments can be modelled by a direct
product construction like in Example 6.6. We outline this construction below; an Isabelle
formalisation is left as future work.
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Using the constants o and c to indicate whether boundaries of segments are open or
closed, an open segment (i, j) can be represented by the pair ([i, j], (o, o)), a semi-open
segment (i, j] by ([i, j], (o, c)), a semi-open segment [i, j) by ([i, j], (c, o)) and a closed segment
[i, j] by ([i, j], (c, c)).

Partial semigroups for strict segments can be constructed from these. Elements
([i, i], (c, o)) and ([i, i], (o, c)) correspond to the empty segment, which is the unit of composi-
tion in the product monoid; for instance, [1, 3) · [3, 3) = [1, 3) and [1, 3] · (3, 3] = [1, 3].

Lemma 7.6.

(a) Let C = {o, c}. Then C = (C × C, •, D•, E•) is a partial monoid of ordered pairs with

x • y = (π1 x, π2 x), D• = {(x, y) | π2 x 6= π1 y}, E• = {(o, c), (c, o)}

(b) S(P)× C is a partial product monoid with composition, domain of definition and set of
units defined as in Example 6.6.

Elements ([i, i], (o, o)), however, shrink segments—[1, 3] · (3, 3) = [1, 3) by definition—and
therefore seem undesirable in the algebra. Fortunately, no element ([i, i], (o, o)) can be
decomposed into a product of other elements of the product algebra, and these elements can
therefore be neglected.

Lemma 7.7. (S(P)× C)− {([i, i], (o, o)) | i ∈ P} forms a partial submonoid of S(P)× C.

The lifting to convolution algebras then proceeds as usual by Corollary 6.4.

8. Partial Semigroups of Closed and Semi-Open Segments

Convolution can be adapted to infinite objects such as infinite words or streams and,
consequently, to semi-infinite intervals [i,∞] without upper bounds [DHS16]. This extension
supports applications in interval temporal logics and duration calculi. The following two
sections present an alternative to our previous approach that is based on well known
semigroup constructions.

The notion of an action of a semigroup or monoid on a set, or on another semigroup or
monoid, is standard. First we adapt it to partiality.

Definition 8.1. A (left) action of a partial semigroup S = (S,⊙, D⊙) on a partial semigroup
T = (T,⊕, D⊕) is a partial operation ◦ : D◦ → T , where D◦ ⊆ S × T , that satisfies

D⊙ s1 s2 ∧ D◦ (s1 ⊙ s2) t⇔ D◦ s2 t ∧ D◦ s1 (s2 ◦ t),

D⊙ s1 s2 ∧ D◦ (s1 ⊙ s2) t⇒ s1 ◦ (s2 ◦ t) = (s1 ⊙ s2) ◦ t,

D⊕ t1 t2 ∧ D◦ s1 (t1 ⊕ t2)⇔ D◦ s1 t1 ∧ D◦ s1 t2 ∧ D⊕ (s1 ◦ t1) (s1 ◦ t2),

D⊕ t1 t2 ∧ D◦ s1 (t1 ⊕ t2)⇒ (s1 ◦ t1)⊕ (s1 ◦ t2) = s1 ◦ (t1 ⊕ t2).

If (S,⊙, D⊙, E⊙) is a partial monoid, then the left action also satisfies the left unit axiom

e ∈ E⊙ ⇒ D◦ e t ∧ e ◦ t = t.

If (T,⊕, D⊕, E⊕) is a partial monoid, then the following right annihilation axiom also holds:

e ∈ E⊕ ⇒ D◦ s e ∧ s ◦ e = e.
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In our intended applications, S and T represent different behaviours of a system encoded
in terms of pairs (s, t) ∈ S × T . These could be finite or infinite behaviours, non-faulting
or faulting ones or, as in our context, closed or semi-open intervals or segments, including
those with infinite chains.

More concretely, we consider S to be a partial monoid of closed finite segments and T a
(partial) monoid of semi-open segments [i, j). For convenience, we may include segments
[i,∞) and [i,∞], which are obtained by adding an element ∞ that is greater than any
element of the underlying poset whenever such an element does not exist. A typical example
is formed by the extended non-negative reals R∞

+ . General intervals, as in Section 7, would
require a more tedious nested product construction.

In this setting, multiplication ⊙ models fusion of closed segments, as usual. Action
s ◦ t represents the fusion of a closed segment s with a semi-open segment t. The use of
partial semigroup actions and the clear typing of closed and semi-open segments rule out
that semi-open segments are fused with closed or other semi-open ones.

A similar construction on the free monoid X∗ and the set Xω models the compositions
of finite and infinite words, albeit in a simpler total setting.

Next, in order to construct convolution algebras for such mixed behaviours, we need
to encode their algebras, and in particular those of closed and semi segments, as partial
semigroups. To this end, we adapt the well known semidirect product construction of two
semigroups or monoids [CP61].

Definition 8.2. For every action of a partial semigroup or partial monoid S on a partial
semigroup T , the semidirect product S⋉T = (S×T,⋉, D⋉) of S and T with ⋉ : D⋉ → S×T
and D⋉ ⊆ (S × T )× (S × T ) is defined by

((s1, t1), (s2, t2)) ∈ D⋉ ⇔ D⊙ s1 s2 ∧ D◦ s1 t2 ∧ D⊕ t1 (s1 ◦ t2),

((s1, t1), (s2, t2)) ∈ D⋉ ⇒ (s1, t1)⋉ (s2, t2) = (s1 ⊙ s2, t1 ⊕ (s1 ◦ t2)).

If S and T are both partial monoids with sets of units E⊙ and E⊕, respectively, then
S ⋉ T = (S × T,⋉, D⋉, E⋉) with E⋉ = E⊙ × E⊕.

The following fact has been verified with Isabelle.

Proposition 8.3. If S and T are partial semigroups (monoids), then so is S ⋉ T .

Since we are mainly interested in purely closed segments (s, 0) and purely semi-open
segments (0, t), we add an element 0 as an annihilator to S that denotes the empty closed
segment. By definition it satisfies

0⊙ s = 0 and 0 ◦ t = 0.

The use of ⊕ in semidirect products requires that we explain this operation on T in the
instance of semi-open segments. In the context of convolution, where semi-open segments
(0, t) are split with respect to ⋉, into all combinations (0, t) = (0, t1⊕s1◦t2) = (s1, t1)⋉(0, t2),
it seems reasonable to assume that a split produces either (0, t1) or (0, s1 ◦ t2). For this we
assume that ⊕ is not only associative, but (also commutative and) selective: t1⊕ t2 ∈ {t1, t2}
for all t1, t2 ∈ T . The unit 0 in T then represents the empty semi-open segment. Consequently,
s ◦ 0 = 0 holds by definition of partial monoid actions.

The following example checks that semidirect products of pure closed and semi-open
segments yield the intended behaviour.
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Example 8.4.

(a) (s1, 0)⋉ (s2, 0) = (s1 ⊙ s2, 0), whenever fusion s1 ⊙ s2 is defined. Hence, the semidirect
product of two closed segments is their fusion, as expected.

(b) (0, t1)⋉ (0, t2) = (0, t1), which is always defined, Hence, the fusion of a first semi-open
segment with a second one simply yields the first segment. This is reasonable because
one cannot fuse a semi-open segment with any other one.

(c) (s, 0)⋉ (0, t) = (0, s ◦ t), whenever s ◦ t is defined. In this case, the closed segment is
fused with the semi-open segment, as expected.

(d) (0, t)⋉ (s, 0) = (0, t), for the same reason as in (b).
(e) Finally, (s1, t1)⋉ (s2, t2) equals either (s1⊙ s2, t1) or (s1⊙ s2, s1 ◦ t2) by selectivity.

Based on these calculations, it is even simpler to check that semidirect products of finite
and infinite words in X∗ and Xω model their compositions as expected.

9. Convolution Algebras of Closed and Semi-Open Segments

We now construct convolution algebras over partial semigroups of closed and semi-open
segments. A simplistic approach might attempt using the partial semigroups and monoids
from Proposition 8.3 together with Corollary 6.4. However, this would misrepresent the most
suitable splitting of semi-open segments, intervals or words in convolutions and therefore
the most natural convolution algebra.

Example 9.1. Let f x state that word x ∈ X∗∪Xω is an element of language f : X∗∪Xω →
B. Then (f ∗ g)x = 1 if and only if x is in the language product of f and g. For infinite
x this holds if either f x = 1 or x can be split into some finite y and infinite z such that
f y = 1 and g z = 1. This generalises to segments and intervals.

In [DHS16] we have redefined convolution in order to handle this situation. The
convolution algebra then becomes a weak quantale.

Definition 9.2. A quantale is weak if the left distributivity law x ·
⊔

Y =
⊔

y∈Y x · y holds

only for Y 6= ∅ and hence 0 is no longer a right annihilator.

Example 9.3. In the language algebra BX∗∪Xω

, products f ∗ 0 with the empty language 0
yield the set of all infinite words in f by definition, but not necessarily 0. Once more this
generalises to segments and intervals.

Here, instead of redefining convolution, we adjust the target algebra A of functions
S ⋉ T → A in such a way that the splitting of segments according to ⋉ is reflected in A.
In addition, it seems reasonable to assume that elements of S are evaluated by a quantalic
structure in A and a complete lattice structure T . Elements in T thus cannot be composed
intrinsically by a multiplication. However, suprema are needed for convolution. This leads
to the following definition.

Definition 9.4. A quantale module [AV93] of a quantale Q = (Q,≤Q, ·) and a complete
lattice L = (L,≤L) is an action ◦ : Q → L → L that satisfies, for all u, v ∈ Q, x ∈ L, V ⊆ Q
and X ⊆ L,

(u · v) ◦ x = u ◦ (v ◦ x), (
⊔

V ) ◦ x =
⊔

v∈V

v ◦ x, u ◦
⊔

X =
⊔

x∈X

u ◦ x.

If Q is unital, then, in addition, 1 ◦ x = x.
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Obviously, every quantale defines a quantale module on itself with multiplication as
action. A semidirect product can be defined on Q and L as usual as

(u, x)⋉ (v, y) = (u · v, x ⊔ u ◦ y).

We can then verify the following counterpart of Proposition 8.3 with Isabelle.

Proposition 9.5. Let Q be a (unital) quantale and L a complete lattice. Then Q⋉L forms
a weak (unital) quantale in which the left distributivity law is weakened to

X 6= ∅ ⇒ u⋉
⊔

X =
⊔

x∈X

u⋉ x

and where the lattice order and operations are defined as for Q×L.

The multiplicative unit of Q ⋉ L is (1, 0), where 1 is the unit of Q and 0 the least
element in L.

Example 9.6. As a counterexample to full left distributivity, hence right annihilation, let
the unital quantale defined by 0 ≤ ⊤ with 1 = ⊤ act on itself. Note that multiplication is
fixed. Then, (0,⊤)⋉

⊔

∅ = (0,⊤)⋉ (0, 0) = (0 · 0, 1⊔ 1 ◦ 0) = (0, 1⊔ 0) = (0, 1) 6= (0, 0).

Before completing the construction of the convolution algebra we check that our con-
structions are consistent with Example 9.1.

Example 9.7. Let Sc(P) and Sso(P) denote the closed and semi-open segments for poset
P respectively. Assume that functions f : Sc(P) ⋉ Sso(P) → Q ⋉ L are given by pairs
f = (fc, fso) such that f (s, t) = (fc s, fso t) and that fc 0 = 0 and fso 0 = 0. For the sake of
simplicity, we further assume that Q = L, in which case the action is quantale multiplication.

• Convolutions over closed segments split only on Sc(P):

(f ∗ g) (s, 0) =
s=s1·s2
⊔

s1,s2

(fc s1, 0)⋉ (gc s2, 0) = ((fc ∗ gc) s, 0).

This recovers the standard convolution of closed segments restricted to fc and gc.
• A semi-open segment (0, y) is split by convolution into pairs (x1, y1) and (0, y2), and hence,
y = y1 ⊔ x1 ◦ y2. Therefore either y = y1 or y = x1 ◦ y2 by selectivity and therefore

(f ∗ g) (0, t) = (0, fso t)⋉ (0, 0) ⊔
t=s◦t′
⊔

s,t′

(fc s, 0)⋉ (0, gso t
′)

= (0, fso t) ⊔
t=s◦t′
⊔

s,t′

(0, fc s · gso t
′).

This is consistent with our previous treatment of convolution [DHS16].

The following generalisations of Corollary 6.4, which we have verified with Isabelle,
characterise the convolution algebras of finite and infinite segments and intervals. The first
statement is generic for partial semigroups and weak quantales.

Theorem 9.8. Let Q be a weak quantale.

(a) If S is a partial semigroup, then QS is a weak proto-quantale.
(b) IfM is a partial monoid, then QM is a weak quantale.
(c) If Q is unital, then id is a left unit in QS , but not necessarily a right unit.
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Example 9.9. Consider the weak unital quantale defined by 0 ≤ 1 ≤ ⊤ and by multiplication
0 · u = 0, ⊤ · u = ⊤.

(a) As a counterexample to associativity, consider this quantale with the partial semigroup
{a, b} where a2 = b is the only composition defined, and let f a = f b = ⊤. With
f2 = (f ∗ f), thus (f ∗ f2) b = f a · f2 a = ⊤ · 0 = ⊤ 6= 0 = 0 · ⊤ = f2 a · f a = (f2 ∗ f) b.

(b) As a counterexample to the right unit law, consider this quantale with the (total)
monoid {a, 1}, where multiplication is defined by a2 = a. Let f a = ⊤ and f 1 = 1.
Then (f ∗ id) 1 = f 1 · id 1 ⊔ f a · id a = 1 · 1 ⊔ ⊤ · 0 = 1 ⊔ ⊤ = ⊤ 6= 1 = f 1.

Intuitively, associativity may fail for partial semigroups because not all elements can be split
in such structures. Suprema in convolutions may thus become empty and associativity fails
due to the lack of right annihilation. By contrast, the units in partial monoids guarantee
that all elements can be split.

The second statement considers semidirect products, but is still general.

Proposition 9.10. Let Q be a quantale and L a complete lattice.

(a) If S and T are partial semigroups, then (Q⋉ L)S⋉T is a weak proto-quantale.
(b) If S and T are partial monoids, then (Q⋉ L)S⋉T is a weak quantale.
(c) If, in addition, Q is unital, then so is (Q⋉ L)S⋉T .

(d) In each case, the subquantale QS ≃ (Q⋉ {0})S⋉{0} is embedded into (Q⋉ L)S⋉T .

Proof. Apart from the right unit law, all properties follow immediately from Theorem 9.8
with Propositions 8.3 and 9.5.

The right unit law has not been checked with Isabelle (this would be rather tedious), so
we provide a proof. Because the unit in Q×L is (1, 0), the unit id on (Q⋉L)S⋉T must map
each pair (s, t) to (1, 0) if s is a monoidal unit segment and t = 0, and to (0, 0) otherwise,
hence id = (id, λx. 0). We calculate

(f ∗ id) (s, t) =

(s,t)=(s1,t1)⋉(s2,t2)
⊔

s1,s2,t1,t2

(fc s1, fso t1)⋉ (id s2, (λx. 0) t2)

=

s=s1⊙s2,t=t1⊕s1◦t2
⊔

s1,s2,t1,t2

(fc s1 · id s2, fso t1 ⊔ fc s1 ◦ 0)

=

s=s1,t=t1
⊔

s1,t1

(fc s1, fso t1)

= f (s, t).

Finally, it is routine to verify (d) in all cases considered.

Example 9.11. The failure of right annihilation with the function 0 = (λx. 0, λx. 0) can
be checked by using the calculation in Example 9.7(b):

(f ∗ 0) (0, t) = (0, fso t) ⊔
t=s◦t′
⊔

s,t′

(0, fcs ◦ (λx. 0) t
′) = (0, fso t) = f (0, t) 6= (0, 0),

whenever fso t 6= 0.

Do Theorem 9.8(a) or Proposition 9.10(a) rule out associativity of composition in
convolution algebras over partial semigroups of strict segments and intervals? The pragmatic
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answer is no. By construction, only splittings of semi-open segments or intervals can affect
associativity (otherwise Corollary 6.4 would already fail). Yet even unbounded intervals
[i,∞) over N can always be split finitely many times into finite prefixes and infinite suffixes.
A formalisation of such results with Isabelle is left for future work.

10. Modalities over Segments

The remaining technical sections relate the abstract approach to segments and their incidence
or convolution algebras with well known interval logics. Binary relationships between intervals
were first proposed by Allen [All83]; a binary modality based on chopping intervals has been
introduced by Moszkowski [MM83]. The modal logics that arise from such relationships
have been studied by Halpern and Shoham [HS91] (who consider unary modalities only)
and [Ven90, Ven91] (who considers binary modalities including chop as well). Decidability,
undecidability and completeness of various fragments including neighbourhood logic (see
Section 12) have been studied extensively [ZH04, MM11, MGMS11]. We refer to some
excellent surveys [MGMS11, GMS04, Kon13] for more information.

This section outlines how semantics for the interval logics of Halpern and Shoham [HS91],
and Venema [Ven90] arise as instances of the convolution algebras developed in previous
sections. Our constructions start from partial monoids of strict closed segments over arbitrary
partial orders, yet the approach is modular with respect to adaptations to partial semigroups
of non-strict segments and to instantiations to algebras of strict or non-strict intervals, as in
Section 7. It is also generic with respect to discrete, dense or Dedekind-complete orders.

The unary and binary interval modalities that form our convolution algebras are more
general as well. As in Sections 2 and 3, they are based on lattice-valued or quantale-valued
functions that admit quantitative interpretations beyond the standard qualitative ones. As
we disregard concrete syntax in this and the following sections, our algebraic semantics are
loose: they are not generated by homomorphic extensions of semantic maps from (finite) sets
of atomic functions or predicates and restricted sets of operations. Instead they are given
by full convolution algebras formed by all functions or predicates of a certain type. More
precise semantics usually arise as subalgebras induced by homomorphic images. Typical
examples are subalgebras that are closed under the semiring operations, but not with respect
to arbitrary infima and suprema.

We first describe relations for segments analogous to those in Allen’s interval calculus
[All83]. These in turn lead to algebraic companions of Halpern and Shoham’s and Venema’s
interval logics [HS91, Ven90] (for segments). Allen’s relations can be based on a single
ternary relation.

Possible relationships between segments x and y are illustrated in Figures 1 and 2,
recalling that relation R` is the converse of R. Like Goranko et al. [GMS04], we write
B, E and A for the beginning, end and after relationships, and D, O and L for the during,
overlapping and later relationships. Figure 1 provides an informal semantics for these. As D,
O and L can be defined in terms of B, E and A (see below), we discuss the latter three first.

Lemma 10.1. Consider the partial semigroup (S(P), ·, D) of segments (strict or non-strict)
over the poset P as a relational semigroup (P,C) with

C = λx, y, z. D y z ∧ x = y · z,

like in Lemma 6.3. Then

Bx y ⇔ ∃z. Cx y z, Ex y ⇔ ∃z. Cx z y, Ax y ⇔ ∃z. C z x y.



Vol. 17:1 CONVOLUTION ALGEBRAS 13:21

B`
x y

E`
x y

A`
x y

y

y

y

x

y

y

y
B x y

E x y

A x y

Figure 1: B, E, A and their transposes
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Figure 2: D, O, L and their transposes

Proof. From the definition of C, Bx y ⇔ ∃z. D y z ∧ x = y · z, that is, y is indeed a beginning
segment within x. Similarly, Ex y ⇔ ∃z. D z y ∧ x = z · y, that is, y is indeed an ending
segment within x. Finally, Ax y ⇔ ∃z. D x y∧z = x ·y, that is, segment y comes immediately
after segment x, hence can be composed into a segment z. More formally, these definitions
are faithful with respect to those in [GMS04] when specialised to intervals.

Further, following [MGMS11, GMS04], we (re)define

D = B ; E = E ; B, O = B ; E`, L = A ; A.

Next we show how the partial and relational semigroups and the Allen-style segment
relations introduced above yield a semantics for generalised unary Halpern-Shoham modalities
over segment functions in the context of incidence or convolution algebras. Because forward
and backward modalities are both available, modalities corresponding to the relations in
Fig. 1 can be defined by using only B, E and A.

For a segment x ∈ S(P) and quantale-valued function f : S(P) → Q, the intended
semantics is as follows:

•
∣

∣B
〉

f x means that f is applied to some beginning segment y of x:

∣

∣B
〉

f x =

Bx y
⊔

y∈S(P)

f y =

∃z∈S(P). D y z∧x=y·z
⊔

y∈S(P)

f y;

•
∣

∣E
〉

f x means that f is applied to some ending segment y of x:

∣

∣E
〉

f x =

∃z∈S(P). D z y∧x=z·y
⊔

y∈S(P)

f y;

•
∣

∣A
〉

f x means that f is applied to some segment y that starts precisely where x ends:

∣

∣A
〉

f x =

∃z∈S(P). D x y∧z=x·y
⊔

y∈S(P)

f y.

These equations expand the definitions of unary modalities in Section 2.
By opposition duality,

〈

B
∣

∣ f x means that f is applied to some segment of which x is a

beginning,
〈

E
∣

∣ f x that f is applied to some segment of which x is an ending, and
〈

A
∣

∣ f x
that f is applied to some segment that ends precisely where x begins. The standard interval
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Figure 3: C, Dv, Tv

semantics can be obtained as before by instantiating S(P) to li-posets (Definition 7.2) and
Q to B. Once again this is consistent with Section 2.

Next we show how Venema’s binary interval modalities VC , VD and VT [Ven91] arise
in convolution algebras2. These are needed in interval logics because no finite set of unary
interval operators can be functionally complete over over dense orders [Ven90]. The modality
VC , in particular, corresponds to ITL’s chop operator. Like in Lemma 3.5, we then show
how Halpern and Shoham’s unary interval modalities can be obtained from Venema’s binary
ones by restricting relational convolution.

For predicates f and g, the semantics of VC , VD and VT can be described as follows:

• VC f g x = 1 iff there are segments y and z such that x = y · z and f y = g z = 1;
• VD f g x = 1 iff there are segments y and z such that z = y · x and f y = g z = 1;
• VT f g x = 1 iff there are segments y and z such that z = x · y and f y = g z = 1.

The standard interval semantics is obtained as before by instantiating S(P) to li-posets and
Q to B.

Linking this semi-formal semantics with convolution requires ternary relations in the
context of a partial semigroup (S(P), ·, D). These relations are depicted in Fig. 3. Apart
from C = λx, y, z. D y z ∧ x = y · z, they are defined as

Dv x y z ⇔ C z y x ⇔ Dy x ∧ z = y · x,

Tv x y z ⇔ C z x y ⇔ Dxy ∧ z = x · y,

and they capture permutations of splittings within and in the neighbourhood of a given
segment. A convolution-based semantics for generalised Venema modalities is then straight-
forward.

Lemma 10.2. For the partial semigroup (S(P), ·, D) of strict closed segments and functions
f, g : S(P)→ Q,

VC f g = f ∗C g, VD f g = f ∗Dv
g, VT f g = f ∗Tv

g.

Proof. Firstly, VC f g = λx.
⊔x=y·z

y,z f y ·g z = f ∗Cg. Secondly, VD f g = λx.
⊔z=y·x

y,z f y ·g z =

f ∗Dv
g. Thirdly, VT f g = λx.

⊔z=x·y
y,z f y · g z = f ∗Tv

g. In each case, the first step is
justified by the semi-formal semantics above. Formally, it is easy to show that it is faithful
with Venema’s semantics [Ven91] when functions are specialised to predicates and segments
to intervals.

2We use non-standard notation in order to avoid conflicts within this article.
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It can be shown that none of the three modalities can be defined in terms of permutations
and combinations of the other two, and that all other possible permutations of indices are
captured by these three. It can also be checked that (P,C) forms a relational semigroup,
whereas the structures (P,VD) and (P,VT ) do not; and hence the convolutions ∗Dv

and ∗Tv

need not be associative.

Lemma 10.3. The relations C, Dv and Tv are definable in terms of Allen’s relations (Fig. 1).

Cx y z = A y z ∧ Bx y ∧ Ex z,

Dv x y z = A y x ∧ E z x ∧ B z y,

Tv x y z = Ax y ∧ B z x ∧ E z y.

The correspondence between binary and unary modalities captured in Lemma 3.5 allows
us to relate Halpern and Shoham’s modalities with relational convolution.

Lemma 10.4. For the partial semigroup (S(P), ·, D) of strict closed segments, f : S(P)→ Q
and c1 = λx. 1, where 1 is the unit in Q,

∣

∣B
〉

f = f ∗C c1,
∣

∣E
〉

f = c1 ∗C f,
∣

∣A
〉

f = f ∗Tv
c1.

Proof. Spelling out the semi-formal semantics above,
∣

∣B
〉

f x =
⊔x=y·z

y,z f y · c1 z,
∣

∣E
〉

f x =
⊔x=y·z

y,z c1 y · f z and
∣

∣A
〉

f x =
⊔z=x·y

y,z f y · c1 z.

Finally, Lemmas 10.2 and 10.4 in combination relate Venema’s binary segment modalities
with Halpern and Shoham’s unary ones:

∣

∣B
〉

f = VC f c1,
∣

∣E
〉

f = VC c1 f,
∣

∣A
〉

f = VT f c1.

11. Interval Temporal Logic

The generalised segment modalities from Section 10 can be adapted to an algebraic semantics
for the interval temporal logic ITL [Mos12, CM16]. We ignore the next-step operator in our
considerations, and our semantics is once again loose: it is not generated by a morphism
from the ITL syntax. A tighter semantics would require forming a subalgebra in which
arbitrary suprema and infima need not exist. This would be more akin to a Kleene algebra
without a right annihilator (a.k.a. a weak quantale) than a quantale. Our loose semantics,
however, allows for more expressive higher-order variants of ITL with quantification over
predicates. We do not elaborate this in detail and focus on the role of convolution instead.

ITL and the duration calculus, which subsumes it (see Section 12), use notions of
iteration. These can be defined as fixpoints on every quantale, including weak ones, due
to the underlying complete lattice structure and monotonicity of the functions needed. In
particular, x ≤ y ⇒ z · x ≤ z · y holds even in weak quantales. Hence least and greatest
fixpoints of ϕ = λx. f · x and ψ = λx. 1 ⊔ f · x exist and fω = νϕ, f∗ = µψ, and f∞ = νψ
can be used for modelling infinite, finite and potentially infinite iteration on convolution
algebras formed by weak quantales in our loose semantics.

ITL uses a notion of program store (or state space) that changes over time within an
interval. We model the store dynamics abstractly by streams of type P → X that map a
time domain given by a poset P onto a set X, which may be a set of functions from program
variables to values. How the variables and values change over time, e.g. by assignment, is
not our concern. In our ITL semantics, a predicate p evaluates a stream σ over an interval
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x, written as p x σ. Only the intervals carry algebraic structure, XP is merely a set. The
global relationship between streams, convolution algebras and ITL is captured as follows.

Proposition 11.1. Let Cl = Sc(P) be a partial monoid of (non-strict) closed segments
under fusion and Sop = Sso(P) a monoid of semi-open segments. Let XP be a set of streams,
let Q be a unital quantale and L a complete lattice.

(a) Cl×XP is a partial monoid and QCl×XP

a unital quantale with convolution as compo-
sition.

(b) (Cl⋉ Sop)×XP is a partial monoid and (Q⋉ L)(Cl⋉Sop)×XP

a weak unital quantale,

within which the unital quantale QCl×XP

is embedded.

Proof. Part (a) is immediate by the product construction in Example 6.7 and Corollary 6.4;
part (b) follows from Proposition 8.3 and Proposition 9.10.

We call the elements of the function spaces segment stream functions. For Q = L = B

we obtain (weak) quantales of segment stream predicates as special cases. These describe
the logic of ITL in terms of convolution algebras. In the more concrete case of P = N,
we may associate Cl and Sop with finite and semi-infinite intervals [i, j] and [i,∞) in N.
Moreover, the order is locally finite with respect to finite intervals. By Corollary 4.10, the
convolution algebra of finite intervals then forms an idempotent semiring (with respect to
addition). Similar observations on the algebra of ITL predicates have been made by Höfner
and Möller [HM09, HM08].

We now explain some of the ITL operations in light of Proposition 11.1 and sketch the
most important features of the loose algebraic semantics. It is based on interval stream
predicates of type Sc(N)×X

N → B over closed, non-strict and finite intervals. With this
approach, the ITL semantics of terms or expressions is abstracted into stream functions.

The semantics of boolean operations on predicates is given in Proposition 11.1(a) by
the pointwise liftings in Theorem 4.8 and Corollary 6.4, owing to the fact that segment
stream functions form partial monoids (Example 6.7). The semantics of the chop p # q of two
predicates p and q is more interesting. According to the ITL semantics, it holds on some
interval x if x can be split into some prefix-suffix pair y and z such that x = y · z, predicate
p holds on the prefix y and q holds on the suffix z [Mos12, CM16]. Hence chop is indeed
convolution and it coincides with VC . Thus,

p # q = λx, σ.

x=y·z
⊔

y,z

p y σ · q z σ = p ∗ q,

where the stream σ : N→ X supplies the store as a function of time within the intervals y
and z, over which the predicates p and q are evaluated. To obtain the middle expression
from p ∗ q, the convolution is computed over intervals x; the product and supremum have
been extended pointwise with respect to streams σ.

The unit predicate is given by id [i, j] = δ i j, as in Section 7. Intuitively it holds precisely
of any point interval. Finally, the ITL semantics of the iteration p∗, according to which p∗

holds on interval x if p holds on each interval that results from a finite decomposition of
x, can be derived from iteration in the target quantale. As the incidence algebra of finite
intervals over N is locally finite, the idempotent semiring, which forms a tight ITL semantics
as well as a subalgebra of the quantale described by Proposition 11.1(a), can be extended
to a Kleene algebra to model iteration of ITL predicates. In sum, the convolution algebras
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of a tight convolution-based semantics for ITL predicates over finite intervals are therefore
Kleene algebras.

In the presence of semi-open intervals Sso(N), the boolean operations are interpreted as
outlined, but chop p #q is interpreted differently, and the incidence algebra is no longer locally
finite. Now, by the standard ITL semantics, either p is evaluated over the entire infinite
interval x, or the infinite interval x is split into a finite prefix y and an infinite suffix z, as
in Section 8, and predicate p is evaluated over y, and predicate q over z. This corresponds
precisely to the treatment of infinite segments in Example 9.7(9.7). Hence, also for infinite
intervals, p # q = p ∗ q—chop is convolution, as desired. In this case, for Proposition 11.1(b),
the loose algebraic ITL semantics is provided by a weak quantale. Tighter semantics in
terms of weak semirings and Kleene algebras, which may arise as subalgebras, require further
work. Finally, the restriction to finite intervals of the form (x, 0) as in Example 9.7(9.7)

displays the embedding λx. (x, 0) into the subquantale QCl⋉XP

.

12. Duration calculus

Duration Calculus (DC) [ZH04, BRZ00] is an extension of ITL with continuous time
domain R. This makes DC interesting for verifying hybrid and cyberphysical systems. In
[ZH04], intervals are assumed to be finite, non-strict and closed; incidence algebras are
therefore fusion-based. Additionally, DC includes operators for reasoning about properties
in the neighbourhood of an interval, and it offers the capability of measuring and reasoning
about durations, that is, the amount of time during which a state formula holds in an
interval [ZH04, HM08, BRZ00]. Extensions of DC admit reasoning with semi-infinite
intervals [ZHL95]. Our approach supports their uniform treatment via different kinds of
partial semigroups and monoids, as before, and generalisations to segments. Hence, we need
not make any particular assumptions about the type of intervals.

Algebraic reconstructions of (fragments of) DC were given previously by Höfner and
Möller [HM08, HM09], using a trajectory-based approach. This included embeddings of the
neighbourhood logics into modal semirings [DMS06], and the use of weak semirings to cope
with infinite intervals. Beyond that, their approach is unrelated to ours.

We first discuss the duration component, which distinguishes DC from ITL. As with ITL,
we use stream predicates to abstract from the store dynamics. In DC, these have type R→ B,
but could easily be generalised to stream interval predicates of type S(R)→ XR → B, similar
to the previous section. We keep the former for the sake of simplicity.

Intuitively, a duration measures the amount of time for which a predicate is true in an
interval. Formally, the duration of stream predicate b in interval x is given by

∫

b x =
∫ xmax

xmin
b t dt.

Hence
∫

: BR → S(R)→ Ro
+, where Ro

+ for o ∈ {+∞,−∞} is an appropriate extension of
the non-negative reals by either ∞ or −∞ to indicate that integrals do not exist, e.g., due
to divergence or due to non-integrable functions. Note that finitely supported predicates can
be integrable over semi-infinite intervals, and that integrals over point intervals are zero.

Next we outline a convolution-based semantics for predicates, which we model as interval
stream predicates of type S(R) × BR → B. As in ITL, the meaning of boolean operators
is obtained by pointwise lifting, that of chop p # q is modelled by convolution over finite or
semi-infinite intervals. Beyond that, the semantics of neighbourhood modalities ♦r p (i.e., p
holds for some immediately following interval) and ♦l p (i.e., p holds for some immediately
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preceding interval) can be obtained from that of the Halpern-Shoham modalities
〈

A
∣

∣ and
∣

∣A
〉

from Section 10 as ♦r =
∣

∣A
〉

and ♦l =
〈

A
∣

∣. Since suprema correspond to existential
quantification, this yields ♦r p x σ = ∃y. Ax y ∧ p y σ and ♦l p x σ = ∃y. A y x∧ p y σ. Finally,
the semantics of iteration of predicates again follows ITL.

In light of our mathematical development so far, it is no surprise that the duration
component of DC carries an interesting algebraic structure too. However, this seems to have
been overlooked in the literature so far. It turns out that DC yields, in fact, an interesting
application of Proposition 11.1 and relatives beyond the booleans in a quantitative setting.

We now study durations as functions from partial monoids of type S(R) into the Lawvere
quantale (R∞

+ ,≥,+, 0) from Example 3.2. The following characterisation of the associated
convolution algebra then follows immediately from our general lifting results, in particular
Corollary 6.4.

Proposition 12.1. ((R∞
+ )S(R),≥, ∗, id) is a weak distributive unital quantale with

f ∗ g = λx.

x=y·zl

y,z

f y + g z.

The unit is given, as in Lemma 4.6, by id x =
d

e∈E δ e x, where E is the set of all point
intervals. As always, the delta function yields the unit of composition of the target quantale
when it encounters a point interval x and the minimal element of the quantale otherwise.
For the Lawvere quantale these are 0 and ∞, since the order is reversed.

Proposition 12.1 specialises to durations of predicates
∫

b, which have type S(R)→ R∞
+ ,

as follows, writing Int ⊆ BR for the set of all stream predicates that are integrable over any
strict interval.

Corollary 12.2.

(a) {
∫

b | b ∈ Int} forms a weak distributive quantale.

(b) {
∫

b | b ∈ BR} forms a weak distributive unital quantale.

In this instance, we obtain the convolution
∫

b ∗
∫

c = λx.
dx=y·z

y,z

∫

b y +
∫

c z,

and any non-integrable predicate b (for any interval) yields the same unit
∫

b, since
∫

b x is
equal to 0 if x is a point interval and ∞ otherwise.

Alternatively, one can use any other of the R∞
+ -quantales from Example 3.2. These

results develop the quantitative and qualitative aspects of DC uniformly and algebraically.

13. Mean-Value Calculus

This section briefly discusses the Mean-Value Calculus (MVC) [ZH04, PR98]; an extension of
DC that allows reasoning about the average length of time for which a property holds within
an interval. In our setting, this means that predicates are evaluated in another quantale,
which yields a different quantitative convolution algebra.

Now, in addition to the constructs of DC, the mean value of an integrable stream
predicate b ∈ Int over an interval x is defined as follows. For the purpose of this section, we
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assume the intervals under consideration are finite, however, it is straightforward to extend
the definitions below to the infinite case.

θ b x =

{

(
∫

b x)/(xmax − xmin), if xmax − xmin > 0,

b xmin, otherwise.

It calculates the proportion of the interval for which b holds as a value in the unit interval
[0, 1] in R, hence as a probability, so that θ : Int → S(R)→ [0, 1]. For a point interval, by
definition, the mean value is the value of b at that point.

To characterise the convolution algebra of mean values of MVC we can now use the
target quantales over [0, 1] from Example 3.2, that is, ([0, 1],≤, ·, 1), ([0, 1],≤,min, 1) or
([0, 1],≥,max, 0). Lifting results similar to Corollary 12.2 are now straightforward.

Corollary 13.1. {θ b | b ∈ Int} forms a weak distributive quantale.

Depending on the choice of the target quantale, we obtain the following convolutions

θ b ∗ θ c = λx.

x=y·z
⊔

y,z

θ b y · θ c z,

θ b ∗ θ c = λx.

x=y·z
⊔

y,z

min{θ b y, θ c z},

θ b ∗ θ c = λx.

x=y·zl

y,z

max{θ b y, θ c z},

which are similar to those for durations, but with values taken in [0, 1].

14. Remarks on the Isabelle Formalisation

Formalising the mathematical structures and theorems in this article is relatively straightfor-
ward using Isabelle, and often leads to readable definitions and proofs [DGHS17]. Isabelle’s
built-in axiomatic type classes allow formalising the basic algebraic structures used. Partial
semigroups, for instance, extend a predefined type class that provides an operation of
multiplication.

class partial-semigroup = times +
fixes D :: ′a ⇒ ′a ⇒ bool
assumes mult-assocD : D y z ∧ D x (y · z ) ←→ D x y ∧ D (x · y) z
assumes mult-assoc: D x y ∧ D (x · y) z =⇒ (x · y) · z = x · (y · z )

Structures that depend on several type parameters, such as partial actions of partial
multiplicative semigroups on sets, can be formalised as locales.

locale partial-sg-laction =
fixes Dla :: ′a::partial-semigroup ⇒ ′b ⇒ bool
and act :: ′a::partial-semigroup ⇒ ′b ⇒ ′b (α)
assumes act-assocD : D x y ∧ Dla (x ⊙ y) p ←→ Dla y p ∧ Dla x (α y p)
and act-assoc: D x y ∧ Dla (x ⊙ y) p =⇒ α (x ⊙ y) p = α x (α y p)
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Note that we write αx p instead of x ◦ p, as ◦ is used for function composition in Isabelle.
We extend this action to an action on a second semigroup:

locale partial-sg-sg-laction = partial-sg-laction +
assumes act-distribD : D (p:: ′b::partial-semigroup) q ∧ Dla (x :: ′a::partial-semigroup) (p ⊕ q)
←→ Dla x p ∧ Dla x q ∧ D (α x p) (α x q)

and act-distrib: D p q ∧ Dla x (p ⊕ q) =⇒ α x (p ⊕ q) = (α x p) ⊕ (α x q)

Proposition 8.3, which states that the semidirect product of two partial semigroups forms a
partial semigroup, can then be formalised as a sublocale statement.

definition sd-D :: ( ′a × ′b) ⇒ ( ′a × ′b) ⇒ bool where

sd-D x y ≡ D (fst x ) (fst y) ∧ Dla (fst x ) (snd y) ∧ D (snd x ) (α (fst x ) (snd y))

definition sd-prod :: ( ′a × ′b) ⇒ ( ′a × ′b) ⇒ ( ′a × ′b) where

sd-prod x y = ((fst x ) ⊙ (fst y), (snd x ) ⊕ (α (fst x ) (snd y)))

sublocale dp-semigroup: partial-semigroup sd-prod sd-D
〈proof〉

The sublocale statement requires a signature matching; here the instances of the product
operation and the domain of definition of the partial semigroup must be declared. We supply
a semidirect product operation and its domain of definition, which have been defined before
the sublocale statement.

Relational convolution can be defined in Isabelle as follows.

definition bmod-comp ::
( ′a ⇒ ′b ⇒ ′c ⇒ bool) ⇒ ( ′b ⇒ ′d :: proto-quantale) ⇒ ( ′c ⇒ ′d) ⇒ ′a ⇒ ′d (⊗) where

⊗ R f g x =
⊔

{f y · g z |y z . R x y z}

definition f ⋆ g = ⊗ R f g

The convolution operation ⊗ is supplied with a ternary relation R (in previous sections we
have written ∗R), and then with functions f , g and an element x of suitable type. Isabelle
allows us to write f ⋆ g (instead of f ∗R g) when R is fixed. In this example, the sort of
the output of the function has been restricted to proto-quantales. In our formalisation we
use even more general kinds of quantales. Our formalisations of variants of quantales are
once more based on type classes. As a final example, we show how the lifting result from
Theorem 4.8(b) can be captured as an instantiation statement in Isabelle.

instantiation fun :: (rel-semigroup,quantale) quantale
〈proof〉

As expected, it states that functions from a relational semigroup, which has been formalised
as a type class, into a quantale forms an instance of a quantale.

All constructions of partial semigroups and convolution algebras in the paper have been
formalised by similar sublocale or instantiation statements, or by interpretation statements
that are similar to instantiations.
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Isabelle offers a range of proof tools to explore the structures in this article and reason
about them. First of all, its counterexample generators are helpful, for instance, for debugging
theories. Automated theorem provers, SMT solvers and built-in simplifiers yield a high degree
of proof automation for simple equational reasoning with first-order structures. Reasoning
with higher-order structures, such as quantales and convolutions, however may require a
significant amount of user interaction and a granularity of proof much finer than that of
mathematical textbooks.

Our entire formalisation can be found online in the Archive of Formal Proofs [DGHS17].
So far it covers most of the technical material up to Section 10; open and semi-closed intervals
being a notable exception. Results on duration and mean-value calculi have not been included
because in particular the construction of quantales over the extended non-negative reals or
the unit interval require some background theory development for these number domains
to be encoded within Isabelle. All theorems that have not been formalised are mentioned
explicitly in the article; a list of cross-references between all results in the article and those
in the Archive of Formal Proofs can be found in Appendix B.

Our Isabelle convolution components can serve as a basis for (a) formalising the concrete
interval logics described in Section 10-13 and (b) building verification components for these
using a shallow embedding of our algebraic semantics. In addition, our Isabelle components
for relational convolution form a basis for formalised reasoning about resources, as for instance
in separation logic [Rey02], and for formalising a wide range of models of computational
interest, from (quantale-valued) relations and (weighted) languages to program traces,
partial-order semantics for concurrency and even quantum logics in a uniform way, simply
by setting up the appropriate partial semigroups [DHS16].

Experience shows that the simple axiomatic approach to algebras that underlies our
formalisation is sufficient for many verification applications [AGS16, DGS15, GS16]. An
in-depth formalisation of (partial) semigroups, their morphisms and subalgebras, however,
requires the explicit consideration of carrier sets, for which our current approach is too
limited. A categorical formalisation of the topics investigated may not even be feasible with
Isabelle.

15. Conclusions

The main aim of this article has been a generalisation of our previous approach to convolution
as a universal operation in computing [DHS16] to ternary relations. While the emphasis
of the applications considered was on (generalised) interval logics, separation logic, in
particular the view of separating conjunction as convolution, has been considered in a
companion paper [DGS15]. In all these cases, the general approach consists in setting up
the appropriate ternary relations, which are often generated by partial semigroups, partial
monoids or combinations of these, and then using the general lifting construction to build a
convolution algebra. If the target quantale used in the lifting is formed by the booleans, then
the convolution algebra is an algebra of predicates, hence the lifting embodies a powerset
construction with convolution as complex product. In more general cases, convolution
algebras capture quantative aspects of computing systems such as durations, weights or
probabilities, as our examples show.

The main features of the approach, including the most important lifting theorems, have
already been formalised in Isabelle [DGHS17]. The resulting mathematical components
provide first of all a basis for the design of verification components, which are currently
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under construction for separation logic and concurrent Kleene algebras. Similar components
for interval logics and Duration Calculus, with applications in hybrid and cyberphysical
systems verification, could be obtained along the same lines as instances of the general
approach. Secondly, most of the computationally interesting models of variants of Kleene
algebras within the Archive of Formal Proofs [AFP], which include relations, languages, sets
of paths in a digraph, program traces, and matrices over Kleene algebras, could be obtained
via convolution simply by setting up the appropriate partial semigroups.

Beyond that we envisage various avenues for future research. These include the investi-
gation of other substructural logics, in particular linear logics, and the effect algebras that
arise in the foundations of quantum mechanics as convolution algebras, the exploration of
other quantitative applications that arise within stochastic or probabilistic systems, and last
but not least, a consideration of the approach in the realm of higher category theory.
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[Rot64] G.-C. Rota. On the foundations of combinatorial theory I: Theory of Möbius functions. Zeitschrift
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Appendix A. Glossary of Algebraic Structures

Within the table the number of each definition is given.

Structure Axioms

6.1 partial semigroup X is a set
(X, ·, D) D ⊆ X ×X is the domain of definition of composition

· : D → X is an associative operation, i.e.,
Dxy ∧ D (x · y) z ⇔ Dy z ∧Dx (y · z)
Dxy ∧ D (x · y) z ⇒ (x · y) · z = x · (y · z)

6.2 partial monoid (X, ·, D) is a partial semigroup
(X, ·, D,E) E ⊆ X is a set of (generalised) units, i.e.,

∃e ∈ E. D ex ∧ e · x = x
∃e ∈ E. D x e ∧ x · e = x
e1, e2 ∈ E ∧ D e1 e2 ⇒ e1 = e2

3.1 quantale (X,≤) is a complete lattice with least and greatest elements 0 and ⊤,
(X,≤, ·) (X, ·) is a semigroup, composition is left and right distributive, i.e.,

x ·
⊔

Y =
⊔

y∈Y x · y and (
⊔

X) · y =
⊔

x∈X x · y

3.1 unital quantale quantale such that (X, ·, 1) is a monoid with unit 1

3.1 distrib. quantale quantale with x ⊓ (
⊔

Y ) =
⊔

y∈Y (x ⊓ y) and x ⊔ (
d
Y ) =

d
y∈Y (x ⊔ y)

3.1 boolean quantale distributive quantale with x ⊓ x = 0 and x ⊔ x = ⊤

9.2 weak quantale quantale with left distributivity weakened to
Y 6= ∅ ⇒ x ·

⊔

Y =
⊔

y∈Y x · y

4.7 proto-quantale quantale with possibly non-associative multiplication

4.2 relational X is a set,
semigroup R ⊆ X ×X ×X satisfies relational associativity, i.e.,

(X,R) (∃y ∈ X. R y u v ∧Rxy w)⇔ (∃z ∈ X. R z v w ∧Rxu z)

4.5 relational monoid (X,R) is a relational semigroup,
(X,R, ξ) ξ ⊆ X a set of units, i.e.,

∃e ∈ ξ. R x e x
∃e ∈ ξ. R xx e
e ∈ ξ ∧Rxe y ⇒ x = y
e ∈ ξ ∧Rxy e⇒ x = y

8.2 semidirect (S,⊙, D⊙) and (T,⊕, D⊕) are partial semigroups
product D⋉ = {((s1, t1), (s2, t2)) | D⊙ s1 s2 ∧ D◦ s1 t2 ∧ D⊕ t1 (s1 ◦ t2)}, where

(S × T,⋉, D⋉) ◦ : D◦ → T such that D◦ ⊆ S × T satisfies
D⊙ s1 s2 ∧ D◦ (s1 ⊙ s2) t⇔ D◦ s2 t ∧ D◦ s1 (s2 ◦ t)
D⊙ s1 s2 ∧ D◦ (s1 ⊙ s2) t⇒ s1 ◦ (s2 ◦ t) = (s1 ⊙ s2) ◦ t
D⊕ t1 t2 ∧ D◦ s1 (t1 ⊕ t2)⇔ D◦ s1 t1 ∧ D◦ s1 t2 ∧ D⊕ (s1 ◦ t1) (s1 ◦ t2)
D⊕ t1 t2 ∧ D◦ s1 (t1 ⊕ t2)⇒ (s1 ◦ t1)⊕ (s1 ◦ t2) = s1 ◦ (t1 ⊕ t2)
(s1, t1)⋉ (s2, t2) = (s1 ⊙ s2, t1 ⊕ (s1 ◦ t2))

9.4 quantale module Q = (Q,≤Q, ·) is a quantale, L = (L,�L) a complete lattice
◦ : Q → L → L
for all u, v ∈ Q, x ∈ L, V ⊆ Q and X ⊆ L,

(u · v) ◦ x = u ◦ (v ◦ x)
(
⊔

V ) ◦ x =
⊔

v∈V v ◦ x
u ◦

⊔

X =
⊔

x∈X u ◦ x
1 ◦ x = x holds whenever Q is unital
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Appendix B. Cross-References to Archive of Formal Proofs

Result in article Result in Archive of Formal Proofs

Lemma 2.1 fdia-Un-rel, fdia-Sup-fun, fdia-seq, fdia-Id

Lemma 2.2 fdia-bbox-galois, bdia-fbox-galois

Lemma 2.3 dia-conjugate, box-conjugate

Lemma 3.4 bmod-Un-rel, bmod-Sup-fun1, bmod-Sup-fun2

Lemma 3.5 fdia-bmod-comp, bdia-bmod-comp

Lemma 3.6 bmod-fdia-comp, bmod-fdia-comp-var

Lemma 4.1 Nitpick finds counterexample (b) after Lemma rel-fun-assoc

Lemma 4.3 rel-fun-assoc

Lemma 4.4 Nitpick finds (different) counterexample after Lemma
rel-fun-assoc-weak

Lemma 4.6 unnamed lemmas after bmod-oner

Theorem 4.8 second interpretation rel-fun,
first and fourth interpretation rel-fun2

Proposition 5.1 bmod-comp-bres-galois, bmod-comp-fres-galois

Lemma 6.3 sublocales rel-partial-semigroup, rel-partial-monoid

Corollary 6.4 first and second instantiation fun in Sec 7.2

Example 6.5 instatiation dprod

Example 6.6 instantiations prod

Example 6.7 interpretations ps-prod, pm-prod

Lemma 7.4 instantiations dprod, segment

Corollary 7.5 via instantiations Lemma 7.4, Corollary 6.4

Proposition 8.3 sublocale statement dp-semigroup

Proposition 9.5 interpretations dp-quantale and dpu-quantale

Theorem 9.8 second and third interpretation rel-fun

fourth interpretation rel-fun

Proposition 9.10 covered by Proposition 8.3, Proposition 9.5, Theorem 9.8
except right unit law and (d)

Proposition 11.1 covered by Example 6.7, Corollary 6.4, Proposition 8.3, Proposition 9.10

Results not formalised with Isabelle: Corollary 4.10, Lemma 4.11, Lemma 7.6, Lemma 7.7, Lem-
ma 10.1, Lemma 10.2, Lemma 10.3, Lemma 10.4, Proposition 12.1, Corollary 12.2, and Corollary 13.1

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany


	1. Introduction
	2. Generalised Unary Modalities over Binary Relations
	3. Generalised Binary Modalities over Ternary Relations
	4. Relational Semigroups and Convolution Algebras
	5. Non-Associative Lambek Calculus and Residuation
	6. Partial Semigroups as Relational Semigroups
	7. Convolution Algebras of Finite Segments and Intervals
	8. Partial Semigroups of Closed and Semi-Open Segments
	9. Convolution Algebras of Closed and Semi-Open Segments
	10. Modalities over Segments
	11. Interval Temporal Logic
	12. Duration calculus
	13. Mean-Value Calculus
	14. Remarks on the Isabelle Formalisation
	15. Conclusions
	Acknowledgments
	References
	Appendix A. Glossary of Algebraic Structures
	Appendix B. Cross-References to Archive of Formal Proofs

