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Abstract 1 

Logistic regression classification (LRC) is widely used to develop models to predict the risk of 2 

femoral fracture.  LRC models based on areal bone mineral density (aBMD) alone are poor, 3 

with area under the receiver operator curve (AUROC) scores reported to be as low as 0.63.  4 

This has led to researchers investigating methods to extract further information from the image 5 

to increase performance. Recently, the use of active shape models (ASMs) and active 6 

appearance models (AAMs) have resulted in moderate improvements, but there is a risk that 7 

inclusion of too many modes will lead to overfitting. In addition, there are concerns that the 8 

effort required to extract the additional information does not justify the modest improvement in 9 

fracture risk prediction. This raises the question, are we reaching the limits of the information 10 

that can be extracted from an image? Finite element analysis was used in combination with 11 

active shape and appearance modelling to select variables to develop LRC models of fracture 12 

risk. Active shape and active appearance models were constructed based on a previously 13 

reported cohort of 94 post-menopausal Caucasian women (47 with and 47 without a fracture). 14 

T-tests were used to identify differences between the two groups for each mode of variation.  15 

Femur strength was predicted for two load cases, stance and a fall.  Stepwise multi-variate 16 

linear regression was used to identify shape and appearance modes that were predictors of 17 

strength for the femurs in the training set. Femurs were also synthetically generated to explore 18 

the influence of the first 10 modes of the shape and appearance models. Identified modes of 19 

variation were then used to generate LRC models to predict fracture risk. Only 6 modes, 4 20 

active appearance and 2 active shape mode, were identified that had a significant influence 21 

on predicted fracture strength. Of these, only two active appearance modes were needed to 22 

substantially improve the predictive mode performance (DAUROC = 0.080).  The addition of 23 

3 more modes (1 AAM and two ASM) further improved the performance of the classifier 24 

(DAUROC = 0.123). Further addition of modes did not result in any further substantial 25 

improvements.  Based on these findings, it is suggested that we are reaching the limits of the 26 

information that can be extracted from an image to predict fracture risk. 27 
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Introduction 29 

Fragility fractures at the hip are a major social-economic problem, particularly with the 30 

increasing size of the elderly population. Excess mortality after 1 year of hip fracture varies 31 

between 1 in 6 for women to 1 in 3 for men (Frost et al., 2013). Therefore, considerable efforts 32 

have been made to better understand the risk factors associated with fracture so that the right 33 

medical advice and intervention can be provided.  Fracture risk is a function of femur 34 

geometry, bone density, microarchitecture, the applied loads and interaction with external 35 

environment at the time of a fall. The most widely used technique for assessing the risk of 36 

fracture is dual-energy X-ray absorptiometry, or DXA, which measures the areal bone mineral 37 

density (aBMD) in the femoral neck. It has been widely used in the clinic to assess bone 38 

mineral density status, especially for post-menopausal women, due to its low radiation dose 39 

and low cost (Griffith and Genant, 2008).  40 

Logistic regression classifiers (LRC) are widely used for predicting femur fracture risk (Baker-41 

Lepain et al., 2011; Bousson et al., 2011; Bredbenner et al., 2014; Carballido-Gamio et al., 42 

2019; Cheng et al., 2007; Crabtree et al., 2002; Draper et al., 2012; Gnudi et al., 2002; 43 

Goodyear et al., 2013; Whitmarsh et al., 2012) and the predictive capability is commonly 44 

assessed using the area under the receiver operator curve (AUROC).  LRC’s built using DXA 45 

based aBMD have reported a wide range of AUROC values from 0.62 (Goodyear et al., 2013) 46 

to 0.84 (Carballido-Gamio et al., 2019).  These reported AUROC values, particularly at the 47 

lower end of the range, suggest that the predictive capability of aBMD when used in isolation 48 

is, at best, modest.  From a clinical perspective, this means that individuals may be 49 

misclassified as not being at risk of fracture and then not receive the appropriate care. In 50 

addition, a false positive will result in unnecessary intervention, exposing the patient to 51 

potential side effects of drug therapy and needless cost to the healthcare provider. This has 52 

resulted in a significant body of research investigating whether additional information can be 53 

extracted from an image in order to enhance the prediction of fracture risk. Various anatomical 54 

measurements, such as hip axis length, femoral neck width and femoral neck angle have been 55 
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previously associated with fracture risk. However, the inclusion of discrete anatomical 56 

measures in LRC’s have resulted in negligible improvement in the AUROC as compared to 57 

aBMD alone (Baker-Lepain et al., 2011, DAUROC = 0.016). Composite measures, which 58 

combine aBMD with anatomical measurements in an attempt to estimate strength, have also 59 

result in negligible improvements in AUROC (Leslie et al., 2009, DAUROC = 0.009; Li et al., 60 

2013, DAUROC = 0.005). The use of quantitative computed tomography scans to assess the 61 

volumetric bone mineral density (vBMD) does not improve the reported AUROC values 62 

(Cheng et al., 2007, DAUROC = 0.005; Carballido-Gamio et al., 2019, DAUROC = -0.002).  63 

Moderate improvements in AUROC have been reported when cortex thickness related 64 

variables have been incorporated into the LRC’s (Cheng et al., 2007, DAUROC = 0.024 to 65 

0.05; Treece et al., 2015, DAUROC = 0.072). The greatest improvements have been seen 66 

when variables derived from active shape (ASM) and appearance (AAM) models have been 67 

used.  Based on DXA images LRC’s using ASM and AAMs have had mixed performance (Lu 68 

et al., 2017, DAUROC = 0.0; Goodyear et al., 2013, DAUROC = 0.03; Baker-Lepain et al., 69 

2011, DAUROC = 0.160). When using ASMs and AAMs built from QCT images, there is a 70 

more consistent improvement in performance (Bredbenner et al., 2014, DAUROC = 0.12; 71 

Carballido-Gamio et al., 2019, DAUROC = 0.081). However, various authors have commented 72 

that the additional effort in extracting information from DXA and CT images (which are not 73 

routinely used in the diagnosis of osteoporosis) using increasingly sophisticated approaches 74 

does not significantly improve fracture prediction (Black et al., 2008; Treece et al., 2015). 75 

Therefore, are we reaching the limits of what can be achieved using information derived from 76 

an image alone?  77 

The potential advantage of using ASM and AAMs is the ability to use all of the information 78 

contained within the image.  Due to their nature, ASMs typically describe the variation in the 79 

external geometry of the femur. ASMs indirectly capture information related to discrete 80 

anatomical measures including femoral neck diameter, hip axis length and femoral neck-shaft 81 

angle within the shape modes. ASMs tend to be compact typically requiring approximately 82 
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10% of the available modes to describe 95% of the variations in shape (Bryan et al., 2010; 83 

Sarkalkan et al., 2014).  AAMs are built using the bone density information within the image, 84 

with or without the shape component.  AAMs describe the variation and distribution of bone 85 

density and therefore capture the variation in cortical bone thickness. AAMs are not compact 86 

and require a high proportion of the available modes to describe 95% of the variation in bone 87 

density (Bryan et al., 2010; Bonaretti et al., 2011; Sarkalkan et al., 2014). A significant number 88 

of the modes describe less than 1% of the variation and it is debatable whether these modes 89 

contain any meaningful information. ASMs and AAMs use principal component analysis to 90 

reduce the dimensionality of a much larger data set, however, it still remains a challenge to 91 

identify which modes of variation will be useful in building a logistic regression model to predict 92 

fracture risk. Traditionally, it has been recommended that the sample size should be at least 93 

10 times greater than the number of predictive variables when developing a logistic regression 94 

model (van Smeden et al., 2019). Increasing the number of predictive variables beyond this 95 

threshold risks over fitting. ASM and AAMs generate N – 1 modes of variation, where N is the 96 

number of training sets, so generating many more potential variables than should be included 97 

in logistic regression. The most common approach to identify potential predictive variables is 98 

by performing a statistical test on the principal component (PC) scores for each mode between 99 

the fracture and non-fracture cohorts in the ASM and AAM training data. This could be as 100 

simple as performing a t-test  (Goodyear et al., 2013), using Fisher linear discriminate analysis 101 

(Whitmarsh et al., 2011) through to more complex machine learning based techniques 102 

(Bredbenner et al., 2014; Carballido-Gamio et al., 2019; ). For the first few modes, which 103 

capture a significant proportion of the variation, the differences in the PC scores are likely to 104 

be due to real differences in the shape or density distribution. However, statistical differences 105 

seen in later modes, particularly in AAMs, which explain less than 1% of the variation may not 106 

contain any meaningful information. Identifying predictive variables using this approach also 107 

gives no information about the relative importance of a selected mode and its contribution to 108 

the prediction of fracture risk.  109 
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The mechanical competency of the proximal femur, as measured through its strength, is a key 110 

factor in determining an individual’s risk of fracture.  Finite element (FE) analysis has been 111 

used extensively to assess proximal femoral strength. QCT based FE models (or 112 

biomechanical CT analysis) can predict between 80% and 94% of femoral strength in 113 

simulated fall or stance position (Dall’Ara et al., 2013; Hambli and Allaoui, 2013; Schileo et al., 114 

2014; Zysset et al., 2015), whereas some papers showed a similar predictive accuracy 115 

between DXA-FE and DXA-aBMD (Amin et al., 2011; Yang et al., 2014). When used in 116 

combination with ASM and AAMs, FE models have the potential to investigate the contribution 117 

of individual modes to fracture strength.  We hypothesised that modes which do not contribute 118 

to fracture strength are unlikely to contribute to the performance LRC models to predict 119 

fracture risk. 120 

The aim of this study was to explore the use of FE analysis as an alternative method to identify 121 

meaningful predictive variables for use in the development of a logistic regression model of 122 

fracture risk.  Independent ASM and AAMs were generated on a previously reported cohort of 123 

menopausal women with and without fractured femurs. FE analysis was used to predict the 124 

fracture strength of all femurs within the cohort. Stepwise multiple linear regression was used 125 

to identify the modes which contribute to femur strength. In addition, synthetic FE models were 126 

generated from the ASM and AAMs to explore how the primary modes of variation influence 127 

femur strength. Finally, the selected ASM and AAM modes were used to build logistic 128 

regression models to determine if sequential addition of the selected modes improved the 129 

prediction of fracture risk as compared to aBMD alone. 130 

 131 

  132 
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Methods 133 

Cohort description: 134 

Independent active shape and appearance models were constructed based on a previously 135 

reported cohort of Caucasian women (Qasim et al., 2016; Yang et al., 2014) and details of the 136 

cohort are briefly summarised. There were 100 women who were at least 5 years post 137 

menopause, 50 of whom had a low energy hip fracture and 50 of whom were selected to be 138 

pair matched in terms of age, height and weight. For fracture patients with a body mass index 139 

(BMI) between 16 and 34, the control was chosen to have an age ±5 years, height ± 5 cm and 140 

weight ± 5 kg.  For fracture patients with BMI ≥34 or BMI ≤16, the control was chosen to have 141 

age ± 5 years and BMI ± 4 kg/m2.  Sheffield Local Research Ethics Committee approved the 142 

study and informed written consent was obtained for all participants. Bilateral QCT scans 143 

(LightSpeed 64 VCT, GE Medical Systems at 120 KVp/150mA) were obtained for each subject 144 

for a region which included from just above the femoral head to 3.5cm below the lesser 145 

trochanter. The European spine phantom was used to calibrate for bone density 146 

retrospectively. For subjects that had experience a fracture, the contralateral femur was used 147 

for analysis.  A summary of the demographics of the subjects is included in Table 1. Note that 148 

Qasim et al., 2016 reported results for only 98 individuals. This was due to the fact that multiple 149 

high-density calcified areas were observed in the CT images of a fractured case. This femur 150 

and its paired control femur were excluded. In addition, a further four femurs were excluded 151 

from the present study as the femurs were too short, with the CT scan finishing close to the 152 

lesser trochanter rather than 3.5 cm below it. 153 

 Fracture (n = 47) Control (n = 47) 

 Mean (range) Std  Mean (range) Std  

Age (years) 75.1 
(54.8 – 88.7) 

9.5 74.1 
(55.9 – 91) 

9.0 

Weight (kg) 62.7 
(31 – 101.1) 

14.7 64.6 
(42.8 – 92.7) 

12.3 

Height (cm) 158.7 
(145 – 173) 

6.6 157.5 
(145.1 – 169.3) 

5.9 

T-score -2.40 0.85 -1.62 0.85 
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(-4.15 - -1.07) (-3.07 – 0.85) 
 154 

Table 1: Subject demographics 155 

Development of the active shape and appearance models: 156 

The femur for each patient was segmented manually using ITK-Snap 2.0.0 (University of 157 

Pennsylvania) (Yushkevich et al., 2006) in order to extract the 3D bone geometry (Qasim et 158 

al 2016). Active shape and appearance models require correspondence across the training 159 

datasets and this was achieved by morphing a template mesh to each femur in the study using 160 

an established methodology (Grassi et al., 2011). A template mesh was generated for one of 161 

the femurs, which consisted of 295,589 tetrahedral elements, with an averaged finite element 162 

size of 3 mm. The morphing was performed in two steps. First surface morphing was 163 

performed, where the surface mesh was extracted from the template mesh and morphed to 164 

the target femur using a landmark based methodology. The landmarks acted as constraints 165 

and were used to interpolate the motion of all the nodes. Laplacian smoothing was 166 

implemented to maintain the quality of the surface mesh. In the second phase the template of 167 

the volumetric mesh was morphed to the target femur, using the nodes of the morphed surface 168 

mesh as the constraints. This was performed using a standard automatic meshing algorithm 169 

(ICEM CFD14, Ansys Inc, PA, USA). Elastic moduli were mapped from the CT scans to the 170 

morphed FE mesh of the femurs using Bonemat (http://www.bonemat.org/), using established 171 

relationships (Schileo et al., 2008a) between radiographic density and ash density (rash 172 

=0.877rQCT+0.079), ash density and wet apparent density (rapp = rash/0.6) and wet apparent 173 

density and elastic modulus (E = 6590 rapp
1.49). Once correspondence was achieved, principal 174 

component analysis was performed on the nodal coordinates to generate the ASM and the 175 

apparent density assigned to each element to generate the AAM. 176 

Finite element analysis: 177 
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FE analysis was performed on each femur contained within the training set. In addition, the 178 

active shape and appearance models were used to synthetically generate FE models in order 179 

to explore the influence of shape and bone density distribution on femoral bone strength. The 180 

mean and standard deviation of the PC scores were calculated for the fracture and control 181 

femurs, for each mode of the ASM and AAM. These values enabled the generation of synthetic 182 

femurs representative of the fracture and control groups.  First, to explore the influence of 183 

shape, the active shape model was used to synthetically generate the mean femur geometry 184 

and femur geometries at ± 1 and ± 2 standard deviations of each of the first 10 shape modes 185 

for both the fracture and control groups. To isolate the influence of geometry, the mean bone 186 

density distribution for each group was applied to all models in that group. Second, to explore 187 

the influence of bone density distribution, the active appearance model was used to 188 

synthetically generate the mean bone density and bone densities at ± 1 and ± 2 standard 189 

deviations of each of the first 10 appearance modes for the fracture and control groups. To 190 

isolate the influence of bone density distribution, analyses were performed using the mean 191 

shape for each group. 192 

Two loading conditions were simulated: the first replicating a stance load case with a vertically 193 

oriented joint contact force (0 degrees in both the frontal and sagittal planes) (Taylor et al., 194 

2017). The distal end of the femur was rigidly constrained. The second load case represented 195 

a fall with the joint contact force applied at 90 and 0 degrees in the frontal and sagittal planes, 196 

respectively (Qasim et al., 2016). In addition to the distal femur being rigidly constrained, the 197 

most lateral node was constrained in the direction of loading, but was free to translate 198 

perpendicular to the direction of the applied load. The femoral neck fracture load was 199 

estimated using a modified version (Taylor et al., 2017) of Schileo's maximum principal strain 200 

criterion (Schileo et al., 2008b). The 90th percentile principal tensile and compressive strain, 201 

for all elements in the femoral neck, were expressed as a fraction of their tensile and 202 

compressive elastic limits. The maximum of these was taken as the femoral neck risk factor 203 

(RF). The femoral neck fracture load was then estimated by linearly scaling the applied forces 204 
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until the risk factor reached unity.  When the modes were studied independently, a mode was 205 

deemed to have a substantial, moderate or negligible influence on strength if the range of 206 

forces across two standard deviations of variation were greater than 1000 N (substantial), 207 

between 250 N and 1000 N (moderate) and less than 250 N (negligible). 208 

Statistical analysis: 209 

i) The PC scores of the fracture and non-fracture groups were compared for each mode in 210 

both the active shape and appearance models (Daruwalla et al., 2010).  Student T-tests 211 

were used to identify statistical differences (p<0.05). 212 

ii) Stepwise multivariate linear regression (MLR) was performed with the predicted femoral 213 

neck strength as the output variable. Three MLR models were built using the first 20 modes 214 

(10 ASM and 10 AAM), the first 40 modes (20 ASM and 20 AAM) and the modes required to 215 

describe 95% of the variation. Only variables that achieved significance (p<0.05) value were 216 

included in the final MLR models. This was performed for both the stance and fall load cases. 217 

The coefficient of regression (R2) and the root mean square (RMS) error were reported. 218 

iii) A series of logistic regression models were built, using variables identified from (i) and (ii). 219 

In each case, a five-fold cross validation methodology was employed. The training set was 220 

randomly divided into 5 equal folds. The first 4 folds were used to train the logistic regression 221 

classifier and the fifth fold was used to validate the classifier. This process was repeated five 222 

times and the area under the receiver operator curve (AUROC) and the precision, as defined 223 

by the percentage of correct true and false classifications, were calculated. In order to assess 224 

the robustness of each classifier, the entire process was repeated 100 times. The mean and 225 

range for the resulting AUROC and precision have been reported. As a reference, a logistic 226 

regression classifier was also built using aBMD using the same methodology.  227 
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Results 228 

The ASM was compact, with more than 95% of the variation in shape (Table 2) explained by 229 

the first 12 modes (out of a total of 93 modes).  ASM Mode 1 (figure 1) was a scaling mode, 230 

as well as capturing the variation in length of the femur below the lesser trochanter contained 231 

within the original images, and explains over 55% of the variation in shape. Analysis of the PC 232 

scores for the fracture and non-fracture groups shows that statistical differences were only 233 

observed for modes 4, 5, 12, 35 and 67.  Modes 4 and 5 combined explained 8.5% of the 234 

observed variation, and the other 3 modes combined explained less than 1% of the variation. 235 

Mode 4 captures the variation in the geometry of the femoral neck, with variations in both neck 236 

length and diameter (figure 1). Mode 5 captures the variation in geometry of the greater 237 

trochanter and to a lesser extent, the geometry of superior femoral neck.  238 

 239 

 Active shape model Active appearance model 

Mode Percentage of 
explained 
variation 

P value Percentage of 
explained 
variation 

P value 

1 55.0 0.99 39.8 1x10-6 

2 11.5 0.32 6.6 0.28 
3 7.5 0.72 5.1 0.01 

4 4.9 0.02 4.3 0.40 
5 3.8 0.02 3.3 0.02 

6 2.3 0.96 2.5 0.94 
7 2.1 0.99 2.0 0.92 
8 1.6 0.18 1.8 0.14 
9 1.2 0.95 1.8 0.60 
10 1.1 0.49 1.4 0.70 

 240 

Table 2:  Comparison of the percentage of explained variation for the first 10 modes of the 241 

active shape and active appearance models for the entire cohort. The P value is reported for 242 

the difference in the mode weights between the fracture and non-fracture groups.  Statistically 243 

significant differences (P<0.05) are shown in bold. 244 

 245 

 246 
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 247 

Figure 1: The first 5 modes of variation (STD, standard deviation) of the active shape model 248 

The AAM was less compact, with the first 62 modes required to explain 95% of the variation 249 

in the proximal femoral bone density distribution. The mean femur in the fracture group had 250 

noticeably lower bone density as compared to the mean femur in the non-fracture group (figure 251 
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2). AAM mode 1 captures 39.8% of the variation (Table 2) and captures the overall variation 252 

in bone mass, as well as variation in cortex thickness. In particular, the cortex of the superior 253 

femoral neck appears to be thinner and less dense in the fracture group as compared to the 254 

control group. Statistically significant differences were seen between the mode PC scores of 255 

the fracture and non-fracture groups for modes 1, 3, 5 (table 2) and 26. These explained 39.8, 256 

5.1, 3.3 and 0.6 percent of the variation of the bone density distribution respectively.  257 

 258 

 -2 STD Mean 2 STD 

 

 

 Fracture 

   

 

 

Control 

   

 259 

Figure 2 – Variation in mode 1 of the active appearance model for the fracture group (top row) 260 

and the controls (bottom row). The average (middle) and -2 std’s (left) +2 std’s (right) are 261 

shown. 262 

 263 

 264 

 265 
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Figure 3 – Variation in mode 2 of the active appearance model for the fracture group (top row) 267 

and the controls (bottom row). The average (middle) and -2 std’s (left) +2 std’s (right) are 268 

shown. 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 
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 279 

 280 

 281 

 282 
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Figure 4 – Variation in mode 3 of the active appearance model for the fracture group (top row) 284 

and the controls (bottom row). The average (middle) and -2 std’s (left) +2 std’s (right) are 285 

shown. 286 

The predicted fracture strength for the average femur was 3380 N and 5552 N for the stance 287 

load case, and 1221 N and 2256 N for the fall load case for the fracture and control groups 288 

respectively. For the fall load case, independently varying the first 10 modes of the ASM 289 

resulted in a maximum difference of 339 N and 705 N for the fracture and control groups 290 

respectively (figure 5). The greatest change in the predicted fracture load was associated with 291 

ASM mode 4, followed by mode 2 and then mode 1. The remaining modes had no significant 292 

influence on femoral neck strength. Independently varying the first 10 modes of the AAM 293 

resulted in maximum differences of 2269 N and 2564 N from the fracture and control groups 294 

respectively. AAM mode 1 was associated with the greatest change in the fracture load, 295 

followed by mode 3, mode 8 and then mode 2. AAM modes 7 and 9 also influenced the femoral 296 

neck strength more than was observed for any of the ASM modes. 297 
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Three MLR models were built using 20 modes, 40 modes and all the modes required to 298 

describe 95% of the variation (12 ASM and 62 AAM modes) for the fall load case. Using 299 

stepwise MLR to elimination of the trivial modes resulted in models based on 6, 11 and 17 300 

predictive variables. These had R2 values of 0.83, 0.88 and 0.92 and RMSE values of 372 N, 301 

316 N and 265 N respectively. The first 6 predictive variables were the same in each of the 302 

MLR models and were, in order of importance, AAM 1, AAM 3, AAM 2, AAM 8, ASM 4 and 303 

ASM 5.  Mode 1 of the AAM was the most important term, yielding an R2 value of 0.466. The 304 

addition of mode 3, mode 2 and then mode 8 of the AAM improved the R2 value to 0.792 and 305 

reduced the RMS error from 642 N to 407 N. The addition of ASM modes 4 and 5 resulted in 306 

a minor increase in the R2 value from 0.792 to 0.830 and a minor reduction in the RMSE from 307 

407 N to 372 N.  A similar trend was observed for the stance loadcase.  Four predictive 308 

variables were identified, AAM modes 1, 3 and 8 and ASM mode 4, producing an R2 value of 309 

0.781 and an RMS error of 1032 N. 310 

The ability to predict fracture risk was assessed using logistic regression models. The 311 

reference fracture risk model was built using aBMD resulted in an AUROC score of 0.719 and 312 

a precision of 65.2% (Table 4). A fracture risk model built using just AAM mode 1 yielded 313 

similar results to the one built using aBMD. The addition of AAM mode 3 improved the AUROC 314 

score to 0.799 and the precision to 75.2%. Fracture risk models built using the other modes 315 

identified by MLR did not improve their performance (Table 4).  The best performing fracture 316 

risk model, with an AUROC of 0.865 and a precision of 80.5% was constructed using all of the 317 

modes identified using T-tests.  Removal of the trivial modes (those contributing less that 1% 318 

of the explained variation) produced a similar level of performance (AUROC = 0.842, precision 319 

= 80.6%).  This fracture risk model consisted of AMM modes 1, 3 and 5 and ASM modes 4 320 

and 5. 321 

 322 

 323 

 324 
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 325 

 326 

Variables used in building 
MLR model 

R squared RMSE (N) 

AAM 1 0.466 642 
AAM 1+ AAM 3 0.646 525 

AAM 1+ AAM 3 + AAM 2 0.722 468 
AAM 1+ AAM 3 + AAM 2 + 

AAM8 
0.792 407 

AAM 1+ AAM 3 + AAM 2 + 
AAM8 + ASM4 

0.816 385 

AAM 1+ AAM 3 + AAM 2 + 
AAM 8 + ASM 4 +ASM 5 

0.830 372 

 327 

Table 3:  Stepwise multivariate linear regression to predict fracture load for the fall load case 328 
based on the first 20 modes (10 ASM and 10 AAM modes). 329 

 330 

 331 

Variables used in building logistic 
regression classifier 

Mean AUROC 
(min – max) 

Mean precision (%) 
(min -max) 

aBMD 0.719 
(0.688 – 0.737) 

65.2 
(59.6 – 68.1) 

AAM 1 0.761 
(0.732 – 0.782) 

68.7 
(64.9 – 73.4) 

AAM 1+ AAM 3 0.799 
(0.762 – 0.825) 

75.2 
(68.1 – 79.8) 

AAM 1+ AAM 2 + AAM 3 + AAM8 + 
ASM 4 + ASM 51 

0.794 
(0.748 – 0.825) 

78.1 
(67.0 – 77.7) 

AAM 1+ AAM 2 + AAM 3 + AAM 7 + 
AAM8 + AAM 12 + AAM 15 + AAM 

17+ ASM 3 + ASM 4 + ASM 52 

0.801 
(0.740 – 0.847) 

72.5 
(64.8 – 79.8) 

AAM 1+ AAM 3 + AAM 5 + AAM 26 + 
ASM 4 + ASM 5 + ASM 12 + ASM 35 

+ ASM 673 

0.865 
(0.793 – 0.905) 

80.5 
(75.5 – 85.1) 

AAM 1+ AAM 3 + AAM 5 + ASM 4 + 
ASM 54  

0.842 
(0.781 – 0.870) 

80.6 
(75.5 – 85.1) 

 332 

Table 4:  Summary of the performance of the logistic regression classifiers to predict fracture 333 
risk.  1Features identified based on multivariate linear regression of the first 10 ASM and AAM 334 
modes. 2Features identified based on multivariate linear regression of the first 20 ASM and 335 
AAM modes. 3Features identified based t-testing for significant differences between the modes 336 
for the fracture and control groups.  4Same as 3 but with the minor modes removed.  This was 337 
also the highest performing classifier based on any combination of 5 variables chosen from 7 338 
candidate variables identified from t-testing and MLR. 339 

 340 

 341 

 342 
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 343 

 344 

 345 

  

  

 346 

Figure 5 – Influence of shape (top row) and density (bottom row) on the predicted fracture 347 
strength of the fractured femurs (left) and non-fractured femurs (right) subjected to the fall load 348 
case. Data labels: mode 1 – square; mode 2 – cross, mode 3 – triangle, mode 4 – circle and 349 
mode 5 – diamond, mode 8 - dash.  Modes which have a substantial influence on strength are 350 
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highlighted in blue, a moderate influence in green and negligible influence in black. For clarity 351 
only the first 5 modes are shown, plus mode 8. The other modes have negligible influence on 352 
the fracture strength and are not shown.  353 
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Discussion 354 

The current benchmark for prediction of femoral neck fracture risk is based on aBMD. 355 

Researchers have included discrete geometric measures of anatomy to try and improve 356 

predictions with limited success (Baker-Lepain et al., 2011; Cody et al., 2000a; Gnudi et al., 357 

2002; Gregory et al., 2004; Michelotti and Clark, 1999; Partanen et al., 2001; Pulkkinen et al., 358 

2004). Statistical regression and classification models built using variables derived from ASM 359 

and AAMs in 2D (Goodyear et al., 2013) and 3D (Bredbenner et al., 2014; Carballido-Gamio 360 

et al., 2019) have the potential to utilise all of the information contained within the image. ASMs 361 

have been shown to be compact, however, AAMs, either based on density alone or in 362 

combination with shape, required a high percentage of the modes to describe the variation in 363 

the training set. When using these modes as variables in a predictive statistical model, there 364 

is a risk that using too many will lead to over-fitting and, as a consequence, an over-estimation 365 

in the model’s ability to predict fracture risk. FE analysis, used in combination with ASM and 366 

AAMs, provides a mechanism to explicitly explore and identify the meaningful modes that 367 

contribute to the prediction of fracture strength, which can then be used to inform the selection 368 

of appropriate variables for use in predictive models of fracture risk. In this study, FE was used 369 

to explore which modes were useful by: (i) identifying potential variables using stepwise MLR 370 

to predict fracture strength and (ii) examining the influence of each mode in isolation on the 371 

predicted fracture strength. 372 

Similar to other studies (Baker-Lepain et al., 2011; Bredbenner et al., 2014; Bryan et al., 2010; 373 

Goodyear et al., 2013; Sarkalkan et al., 2014), the ASM was compact with the first 12 modes 374 

(of 93) explaining more than 95% of variation in geometry. The AAM required a higher 375 

percentage of modes (62 out of 93) to explain 95% of the variation in bone density distribution 376 

in the training cohort. The poorer performance of the AAMs as compared to the ASMs has 377 

been commonly reported (Bonaretti et al., 2014; Bredbenner et al., 2014; Bryan et al., 2010; 378 

Sarkalkan et al., 2014). 379 
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Based on the empirical recommendation of the sample size being at least 10 times the number 380 

of predictive variables (van Smeden et al., 2019), up to 9 predictive variables would be 381 

appropriate for this study.  Selection based on differences in the PC scores for each mode 382 

between the fracture and non-fracture groups identified 5 ASM modes and 4 AAM modes as 383 

potential predictive variables.  Depending on the number of modes used to develop an MLR 384 

model of fracture strength, between 6 (2 ASM and 4 AAM modes) and 17 modes (4 ASM and 385 

13 AAM modes) were identified as predictive variables for the fall load case. Increasing the 386 

number of predictive variables improved the R2 score and reduced the RMS error in the MLR 387 

models. In theory, the additional information contained by including more modes has the 388 

potential to improve the performance of logistic regression model of fracture risk, but this was 389 

found not to be the case.  Although stepwise MLR regression has identified a particular mode 390 

as a predictive variable, the question is whether it truly contributes to femur strength and hence 391 

to fracture risk.  Synthetically generating and analysing FE models for each of the ASM and 392 

AAM modes in isolation allows us to quantify its contribution to fracture strength.  Bredbenner 393 

et al. (Bredbenner et al., 2014) built a coupled statistical shape and intensity model.  Based 394 

on a larger training set than used in this study (N = 450), they identified 20 modes which were 395 

used to build a logistic regression classifier. The first 3 modes described 46% of the variation 396 

and the remaining 17 models explained a further 7.1% of the variation. Based on our results, 397 

in the interest of determining causality, it is recommended that separate ASMs and AAMs are 398 

built in order to identify their relative contributions to strength. In addition, it is likely that modes 399 

that only account for a small percentage of variation do not contribute to femur strength and 400 

therefore are questionable in their role in predicting fracture risk.   401 

The first 6 predictive variables in each of the MLR models were, in order of importance, AAM 402 

modes 1, 3, 2 and 8 and ASM modes 4 and 5.  AAM modes 1, 3 and 8 all had a substantial 403 

influence of femoral neck strength for the fall load case.  AAM mode 1, which accounted for 404 

39.9% of the variation, captures two main features, the global distribution of bone density and 405 

the cortex thickness, particularly of the superior femoral neck. When examined independently, 406 
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AAM mode 1 has the greatest influence on femoral neck strength of any of the appearance or 407 

shape modes (Figure 5). AAM mode 3 accounts for just 5% of the variability in the bone density 408 

distribution and appears to capture the architecture of the head-neck region (figure 4), 409 

controlling the width of the medial column stretching from the femoral head to the medial 410 

cortex, as well as the lateral arch spanning from the lateral cortex through the superior femoral 411 

neck and into the distal medial femoral head.  When studied independently, AAM mode 3 also 412 

has a substantial influence on femoral neck strength, which varied from 602 N to 2033 N and 413 

from 1183 N to 3455 N for the fracture and non-fracture cohorts respectively. 414 

The next two predictive variables identified by MLR were AAM modes 2 and 8. When the 415 

influence of AAM mode 8 was studied independently it was found to have a substantial 416 

influence on femoral neck strength (figure 5), similar to AAM mode 3 (ranging from 592 N to 417 

2077 N and 1502 N to 3074 N for the fracture and non-fracture cohorts respectively). In 418 

comparison, AAM mode 2 (figure 3) only had a moderate influence of neck strength. The 419 

higher ranking of AAM mode 2 by the MLR models may be due to the percentage of variability 420 

explained by this mode, which was 6.6% as compared to 1.8% by AAM mode 8.  AAM modes 421 

7 and 9 were also found to have a moderate effect on neck strength and were identified by 422 

the MLR models which include more initial modes, whereas AAM modes 4, 5, 6, and 10 had 423 

negligible influence. 424 

Only ASM modes 4 and 5 were shown to be of importance both through the statistical 425 

comparison of the PC scores and through the MLR. ASM mode 4 only accounts for 5% of the 426 

variation, but appears to describe the geometry of the femoral neck in terms of its length and 427 

diameter (figure 1). ASM mode 4 was shown to have a moderate influence on femoral neck 428 

strength. ASM mode 5 was identified as a predictive variable through MLR but when studied 429 

in isolation was found to have negligible influence on femoral neck strength. ASM modes 1 430 

and 2 both have a moderate influence on femoral neck strength, but their contribution was 431 

small in comparison to the AAM modes with a moderate effect (AAM 2, 7 and 9). ASM modes 432 

1 and 2 were not selected through MLR as predictive variables. This is noteworthy, particularly 433 
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with respect to ASM mode 1. This is a scaling mode and essentially describes the overall size 434 

of the femur. Hence the MLR suggests that size is not a determinant of femur strength. The 435 

remaining shape modes (3, 6, 7, 8, 9 and 10) all had a negligible influence on strength. 436 

This study has demonstrated, through independent analysis of the ASM and AAM modes and 437 

MLR of fracture strength, that the density distribution contributes more to fracture strength 438 

than the external size and morphology of the femur. Both Whitmarsh et al. (Whitmarsh et al., 439 

2011) and Carballido-Gamio et al. (Carballido-Gamio et al., 2019) have reported similar 440 

findings. Whitmarsh et al. (Whitmarsh et al., 2011) found that the first 3 AAM modes were 441 

most important in the development of a Fisher linear discriminant model to differentiate 442 

between fracture and non-fractured femurs. Carballido-Gamio et al. (Carballido-Gamio et al., 443 

2019) reported that inclusion of AAM based variable always improved fracture risk 444 

classification. Carballido-Gamio et al. (Carballido-Gamio et al., 2019) noted that AAMs capture 445 

cortical bone thickness and that these may be surrogates measures of bone strength. Through 446 

this study, we have been able to demonstrate that this is indeed the case. Only ASM mode 4 447 

was identified as a predictive variable by MLR and found to have a moderate influence on 448 

strength, perhaps explaining why studies that have incorporated discrete anatomical 449 

measurements into logistic regression models have resulted in no or minor improvements in 450 

the prediction of fracture risk (Baker-Lepain et al., 2011; Cody et al., 2000a; Gnudi et al., 2002; 451 

Gregory et al., 2004; Michelotti and Clark, 1999; Partanen et al., 2001; Pulkkinen et al., 2004). 452 

Logistic classifiers were built using the predictive variables. The AUROC score for the aBMD 453 

model (0.719) and the best predictive model (AUROC = 0.865) are within the ranges reported 454 

in the literature (Carballido-Gamio et al., 2019; Whitmarsh et al., 2012) and the improvement 455 

in the AUROC score of 0.146 is of a similar order of magnitude. Using just 5 modes (ASM 456 

modes 4 and 5, AAM modes 1, 3 and 5) resulted a similar level of performance as the best 457 

performing fracture risk model. Four of these variables (AAM modes 1 and 3 and ASM modes 458 

4 and 5) were identified by MLR and shown to have moderate to substantial influence on 459 

femoral neck strength.  Only AAM mode 5 was not identified as a predictor of femoral neck 460 
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strength.  A logistic regression model built using just AAM mode 1 (table 4) resulted in an 461 

AUROC score better than that generated by aBMD, similar to that reported by Whitmarsh et 462 

al. (Whitmarsh et al., 2012). Areal BMD is only a measure of bone density, whereas AAM 463 

mode 1 captures both the variation in bone density as well as the cortex thickness (figure 2), 464 

leading to a better prediction of fracture risk. The addition of AAM mode 3 further enhances 465 

the AUROC (0.799) and precision (75.2) of the fracture risk model.   466 

There are a number of limitations associated with this study. The examined cohort is based 467 

on an all-female dataset. Cody et al. (Cody et al., 2000b) reported that there were differences 468 

in the variables associated with fracture risk between men and women.  Therefore, further 469 

work is required to establish if similar trends are maintained in a mixed gender cohort. The 470 

study is based on a sample of 94 subjects, evenly divided between fracture cases and 471 

matched controls. The ratio of fractured femurs to controls used in comparable studies 472 

developing logistic regression models varies from 0.53:1 (Carballido-Gamio et al., 2019b)  to 473 

1:10 (Bredbenner et al., 2014).  Regardless of the ratio of fractured femurs to controls, clinical 474 

studies have routinely demonstrated that the bone mineral density is statistically significantly 475 

lower in the fractured cohort (Baker-Lepain et al., 2011a; Cody et al., 2000b; Gnudi et al., 476 

2002; Gregory and Aspden, 2008; Pulkkinen et al., 2004).  In this study, mode 1 of the AAM 477 

captures the global magnitude and distribution of bone density and clear differences were 478 

observed between the fracture and control groups.  Therefore, it is unlikely that changing the 479 

ratio of fractured femurs to controls will change this in our study.   ASM mode 4 was shown to 480 

be a minor contributor to the prediction of femoral neck strength.  Increasing ratio of control to 481 

fractured femurs may further reduce its contribution. In terms of developing ASMs and AAMs, 482 

a larger training set is always desirable. The active shape model is compact and extending 483 

the size of the training cohort is unlikely to improve its quality. In comparison, the compactness 484 

of the active appearance model is poor. Although the number of training sets does have an 485 

influence on the quality of an active appearance model, PCA based methodologies do not 486 

appear to be able to generate a compact model (Bonaretti et al., 2014; Bredbenner et al., 487 
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2014; Bryan et al., 2010; Sarkalkan et al., 2014). Alternative statistical approaches are needed 488 

to better describe the variation in bone density distribution. This may also require the separate 489 

segmentation of cortical and cancellous bone and of the bone marrow cavity. A number of 490 

logistic regression models were built and the key findings summarised in Table 4.  An 491 

exhaustive search was not performed.  There may be a combination of variables that result in 492 

a minor improvement, but it is unlikely there will be a significant improvement in prediction of 493 

fracture risk. Only two load cases were investigated, simulating stance and a fall.  Finite 494 

element analysis using these load cases successfully identified 4 out of the 5 variables 495 

necessary to predict fracture risk.  Expanding the study to explore more load cases may help 496 

to identify the contribution of AAM mode 5 to the prediction of fracture strength and hence, 497 

fracture risk.  Finally, the logistic regression models have not been adjusted for age, body 498 

weight or other factors.  However, previous studies have shown that this only marginally 499 

improves the prediction of femoral neck fracture risk (Bredbenner et al., 2014; Carballido-500 

Gamio et al., 2019). 501 

The findings of this study further demonstrate that bone density and cortex thickness are the 502 

primary determinants of femoral neck strength and fracture risk and bone size and morphology 503 

are secondary factors. Depending on the number of input variables, MLR identified between 504 

6 and 17 variables which could be included in the development of a logistic regression model. 505 

Of the variables finite element identified as predictors of femoral neck strength, 4 contributed 506 

to the performance of the best fracture risk model. A reasonable level of performance can be 507 

achieved using just two AAM modes as input variable.  508 

To address the question of whether we are reaching the limits of what can be extracted from 509 

an image, the findings of this study would suggest that we are. The power of ASMs and AAMs 510 

is their ability to capture all of the available information within the image. As has been shown, 511 

a substantial proportion of the modes do not contribute to femoral neck strength and hence, 512 

from a causality standpoint, the inclusion of these modes is unlikely to improve the prediction 513 

of fracture risk. There are many other external factors that cannot be accounted for with the 514 
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limited information contained within an image, including comorbidities; activity levels; 515 

propensity to fall; type of fall etc.  In the absence of this data, it appears that we are reaching 516 

the plateau of what can be achieved from an image alone. 517 

 518 

Acknowledgements 519 

This study was funded, in part, by the EPSRC Frontier Engineering Awards, MultiSim and 520 

MultiSim2 projects (Grant Reference Numbers: EP/K03877X/1 and EP/S032940/1), European 521 

Commission H2020 programme through the CompBioMed and CompBioMed2 Centres of 522 

Excellence and the SANO European Centre for Computational Medicine (Grants N. H2020-523 

EINFRA-2015-1/675451, H2020-INFRAEDI-2018-1/823712 and H2020-WIDESPREAD-524 

2018-01/857533).  525 



28 
 

References 526 

Amin, S., Kopperdhal, D.L., Melton, L.J., Achenbach, S.J., Therneau, T.M., Riggs, B.L., 527 

Keaveny, T.M., Khosla, S., 2011. Association of hip strength estimates by finite-element 528 

analysis with fractures in women and men. J. Bone Miner. Res. 26, 1593–1600. 529 

https://doi.org/10.1002/jbmr.347 530 

Baker-Lepain, J.C., Luker, K.R., Lynch, J.A., Parimi, N., Nevitt, M.C., Lane, N.E., 2011a. 531 

Active shape modeling of the hip in the prediction of incident hip fracture. J. Bone Miner. 532 

Res. 26, 468–474. https://doi.org/10.1002/jbmr.254 533 

Baker-Lepain, J.C., Luker, K.R., Lynch, J.A., Parimi, N., Nevitt, M.C., Lane, N.E., 2011b. 534 

Active shape modeling of the hip in the prediction of incident hip fracture. J. Bone Miner. 535 

Res. 26, 468–474. https://doi.org/10.1002/jbmr.254 536 

Black, D.M., Bouxsein, M.L., Marshall, L.M., Cummings, S.R., Lang, T.F., Cauley, J.A., 537 

Ensrud, K.E., Nielson, C.M., Orwoll, E.S., 2008. Proximal femoral structure and the 538 

prediction of hip fracture in men: A large prospective study using QCT. J. Bone Miner. 539 

Res. 23, 1326–1333. https://doi.org/10.1359/jbmr.080316 540 

Bonaretti, S., Seiler, C., Boichon, C., Reyes, M., Büchler, P., 2014. Image-based vs. mesh-541 

based statistical appearance models of the human femur: Implications for finite element 542 

simulations. Med. Eng. Phys. 36, 1626–1635. 543 

https://doi.org/10.1016/j.medengphy.2014.09.006 544 

Bousson, V.D., Adams, J., Engelke, K., Aout, M., Cohen-Solal, M., Bergot, C., Haguenauer, 545 

D., Goldberg, D., Champion, K., Aksouh, R., Vicaut, E., Laredo, J.D., 2011. In vivo 546 

discrimination of hip fracture with quantitative computed tomography: Results from the 547 

prospective European Femur Fracture Study (EFFECT). J. Bone Miner. Res. 26, 881–548 

893. https://doi.org/10.1002/jbmr.270 549 

Bredbenner, T.L., Mason, R.L., Havill, L.M., Orwoll, E.S., Nicolella, D.P., 2014. Fracture risk 550 

predictions based on statistical shape and density modeling of the proximal femur. J. 551 



29 
 

Bone Miner. Res. 29, 2090–2100. https://doi.org/10.1002/jbmr.2241 552 

Bryan, R., Mohan, P.S., Hopkins, A., Galloway, F., Taylor, M., Nair, P.B., 2010. Statistical 553 

Modelling of the Whole Human Femur Incorporating Geometric and Material Properties. 554 

Med. Eng. Phys. 32, 57–65. https://doi.org/10.1016/j.medengphy.2009.10.008 555 

Carballido-Gamio, J., Yu, A., Wang, L., Su, Y., Burghardt, A.J., Lang, T.F., Cheng, X., 2019a. 556 

Hip Fracture Discrimination Based on Statistical Multi-parametric Modeling (SMPM). Ann. 557 

Biomed. Eng. 47, 2199–2212. https://doi.org/10.1007/s10439-019-02298-x 558 

Carballido-Gamio, J., Yu, A., Wang, L., Su, Y., Burghardt, A.J., Lang, T.F., Cheng, X., 2019b. 559 

Hip Fracture Discrimination Based on Statistical Multi-parametric Modeling (SMPM). Ann. 560 

Biomed. Eng. https://doi.org/10.1007/s10439-019-02298-x 561 

Cheng, X., Li, J., Lu, Y., Keyak, J., Lang, T., 2007. Proximal femoral density and geometry 562 

measurements by quantitative computed tomography: Association with hip fracture. Bone 563 

40, 169–174. https://doi.org/10.1016/j.bone.2006.06.018 564 

Cody, D.D., Divine, G.W., Nahigian, K., Kleerekoper, M., 2000a. Bone density distribution and 565 

gender dominate femoral neck fracture risk predictors. Skeletal Radiol. 29, 151–161. 566 

https://doi.org/10.1007/s002560050585 567 

Cody, D.D., Hou, F.J., Divine, G.W., Fyhrie, D.P., 2000b. Femoral structure and stiffness in 568 

patients with femoral neck fracture. J. Orthop. Res. 18, 443–448. 569 

https://doi.org/10.1002/jor.1100180317 570 

Crabtree, N.J., Kroger, H., Martin, A., Pols, H.A.P., Lorenc, R., Nijs, J., Stepan, J.J., Falch, 571 

J.A., Miazgowski, T., Grazio, S., Raptou, P., Adams, J., Collings, A., Khaw, K.T., 572 

Rushton, N., Lunt, M., Dixon, A.K., Reeve, J., 2002. Improving risk assessment: Hip 573 

geometry, bone mineral distribution and bone strength in hip fracture cases and controls. 574 

The EPOS study. Osteoporos. Int. 13, 48–54. https://doi.org/10.1007/s198-002-8337-y 575 

Dall’Ara, E., Luisier, B., Schmidt, R., Kainberger, F., Zysset, P., Pahr, D., 2013. A nonlinear 576 



30 
 

QCT-based finite element model validation study for the human femur tested in two 577 

configurations in vitro. Bone 52, 27–38. https://doi.org/10.1016/j.bone.2012.09.006 578 

Daruwalla, Z.J., Courtis, P., Fitzpatrick, C., Fitzpatrick, D., Mullett, H., 2010. An application of 579 

principal component analysis to the clavicle and clavicle fixation devices. J. Orthop. Surg. 580 

Res. 5, 1–8. https://doi.org/10.1186/1749-799X-5-21 581 

Draper, C.E., Fredericson, M., Gold, G.E., Besier, T.F., Delp, S.L., Beaupre, G.S., Quon, A., 582 

2012. Patients with patellofemoral pain exhibit elevated bone metabolic activity at the 583 

patellofemoral joint. J. Orthop. Res. 30, 209–213. https://doi.org/10.1002/jor.21523 584 

Frost, S.A., Nguyen, N.D., Center, J.R., Eisman, J.A., Nguyen, T. V., 2013. Excess mortality 585 

attributable to hip-fracture: A relative survival analysis. Bone 56, 23–29. 586 

https://doi.org/10.1016/j.bone.2013.05.006 587 

Gnudi, S., Ripamonti, C., Lisi, L., Fini, M., Giardino, R., Giavaresi, G., 2002. Proximal femur 588 

geometry to detect and distinguish femoral neck fractures from trochanteric fractures in 589 

postmenopausal women. Osteoporos. Int. 13, 69–73. https://doi.org/10.1007/s198-002-590 

8340-2 591 

Goodyear, S.R., Barr, R.J., McCloskey, E., Alesci, S., Aspden, R.M., Reid, D.M., Gregory, 592 

J.S., 2013. Can we improve the prediction of hip fracture by assessing bone structure 593 

using shape and appearance modelling? Bone 53, 188–193. 594 

https://doi.org/10.1016/j.bone.2012.11.042 595 

Grassi, L., Hraiech, N., Schileo, E., Ansaloni, M., Rochette, M., Viceconti, M., 2011. Evaluation 596 

of the generality and accuracy of a new mesh morphing procedure for the human femur. 597 

Med. Eng. Phys. 33, 112–120. https://doi.org/10.1016/j.medengphy.2010.09.014 598 

Gregory, J.S., Aspden, R.M., 2008. Femoral geometry as a risk factor for osteoporotic hip 599 

fracture in men and women. Med. Eng. Phys. 30, 1275–1286. 600 

https://doi.org/10.1016/j.medengphy.2008.09.002 601 



31 
 

Gregory, J.S., Testi, D., Stewart, A., Undrill, P.E., Reid, D.M., Aspden, R.M., 2004. A method 602 

for assessment of the shape of the proximal femur and its relationship to osteoporotic hip 603 

fracture. Osteoporos. Int. 15, 5–11. https://doi.org/10.1007/s00198-003-1451-y 604 

Griffith, J.F., Genant, H.K., 2008. Bone mass and architecture determination: state of the art. 605 

Best Pract. Res. Clin. Endocrinol. Metab. 22, 737–764. 606 

https://doi.org/10.1016/j.beem.2008.07.003 607 

Hambli, R., Allaoui, S., 2013. A robust 3D finite element simulation of human proximal femur 608 

progressive fracture under stance load with experimental validation. Ann. Biomed. Eng. 609 

41, 2515–2527. https://doi.org/10.1007/s10439-013-0864-9 610 

Leslie, W.D., Pahlavan, P.S., Tsang, J.F., Lix, L.M., 2009. Prediction of hip and other 611 

osteoporotic fractures from hip geometry in a large clinical cohort. Osteoporos. Int. 20, 612 

1767–1774. https://doi.org/10.1007/s00198-009-0874-5 613 

Li, G.W., Chang, S.X., Xu, Z., Chen, Y., Bao, H., Shi, X., 2013. Prediction of hip osteoporotic 614 

fractures from composite indices of femoral neck strength. Skeletal Radiol. 42, 195–201. 615 

https://doi.org/10.1007/s00256-012-1473-7 616 

Lu, R.-S., Dennison, E., Denison, H., Cooper, C., Taylor, M., Bottema, M.J., 2017. Texture 617 

analysis based on Gabor filters improves the estimate of bone fracture risk from DXA 618 

images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 1163, 1–12. 619 

https://doi.org/10.1080/21681163.2016.1271726 620 

Michelotti, J., Clark, J., 1999. Femoral neck length and hip fracture risk. J. Bone Miner. Res. 621 

14, 1714–1720. https://doi.org/10.1359/jbmr.1999.14.10.1714 622 

Partanen, J., Jämsä, T., Jalovaara, P., 2001. Influence of the upper femur and pelvic geometry 623 

on the risk and type of hip fractures. J. Bone Miner. Res. 16, 1540–6. 624 

https://doi.org/10.1359/jbmr.2001.16.8.1540 625 

Pulkkinen, P., Partanen, J., Jalovaara, P., Jämsä, T., 2004. Combination of bone mineral 626 



32 
 

density and upper femur geometry improves the prediction of hip fracture. Osteoporos. 627 

Int. 15, 274–280. https://doi.org/10.1007/s00198-003-1556-3 628 

Qasim, M., Farinella, G., Zhang, J., Li, X., Yang, L., Eastell, R., Viceconti, M., 2016. Patient-629 

specific finite element estimated femur strength as a predictor of the risk of hip fracture: 630 

the effect of methodological determinants. Osteoporos. Int. 27, 2815–2822. 631 

https://doi.org/10.1007/s00198-016-3597-4 632 

S, B., C, S., C, B., P, B., M, R., 2011. Mesh-based vs. Image-based Statistical Appearance 633 

Model of the Human Femur: a Preliminary Comparison Study for the Creation of Finite 634 

Element Meshes. Mesh Process. Med. Image Anal. https://doi.org/978-3-642-15948-0 635 

Sarkalkan, N., Weinans, H., Zadpoor, A.A., 2014. Statistical shape and appearance models 636 

of bones. Bone 60, 129–140. https://doi.org/10.1016/j.bone.2013.12.006 637 

Schileo, E., Ara, E.D., Taddei, F., Malandrino, A., Schotkamp, T., Ã, M.B., Viceconti, M., 638 

2008a. An accurate estimation of bone density improves the accuracy of subject-specific 639 

finite element models 41, 2483–2491. https://doi.org/10.1016/j.jbiomech.2008.05.017 640 

Schileo, E., Balistreri, L., Grassi, L., Cristofolini, L., Taddei, F., 2014. To what extent can linear 641 

finite element models of human femora predict failure under stance and fall loading 642 

configurations? J. Biomech. 47, 3531–3538. 643 

https://doi.org/10.1016/j.jbiomech.2014.08.024 644 

Schileo, E., Taddei, F., Cristofolini, L., Viceconti, M., 2008b. Subject-specific finite element 645 

models implementing a maximum principal strain criterion are able to estimate failure risk 646 

and fracture location on human femurs tested in vitro 41, 356–367. 647 

https://doi.org/10.1016/j.jbiomech.2007.09.009 648 

Taylor, M., Perilli, E., Martelli, S., 2017. Development of a surrogate model based on patient 649 

weight, bone mass and geometry to predict femoral neck strains and fracture loads. J. 650 

Biomech. 55, 121–127. https://doi.org/10.1016/j.jbiomech.2017.02.022 651 



33 
 

Treece, G.M., Gee, A.H., Tonkin, C., Ewing, S.K., Cawthon, P.M., Black, D.M., Poole, K.E.S., 652 

2015. Predicting Hip Fracture Type with Cortical Bone Mapping (CBM) in the 653 

Osteoporotic Fractures in Men (MrOS) Study. J. Bone Miner. Res. 30, 2067–2077. 654 

https://doi.org/10.1002/jbmr.2552 655 

van Smeden, M., Moons, K.G.M., de Groot, J.A.H., Collins, G.S., Altman, D.G., Eijkemans, 656 

M.J.C., Reitsma, J.B., 2019. Sample size for binary logistic prediction models: Beyond 657 

events per variable criteria. Stat. Methods Med. Res. 28, 2455–2474. 658 

https://doi.org/10.1177/0962280218784726 659 

Whitmarsh, T., Fritscher, K.D., Humbert, L., Del Rio Barquero, L.M., Roth, T., Kammerlander, 660 

C., Blauth, M., Schubert, R., Frangi, A.F., 2011. A statistical model of shape and bone 661 

mineral density distribution of the proximal femur for fracture risk assessment. Lect. 662 

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 663 

6892 LNCS, 393–400. https://doi.org/10.1007/978-3-642-23629-7_48 664 

Whitmarsh, T., Fritscher, K.D., Humbert, L., Luis, M., Barquero, R., Roth, T., Kammerlander, 665 

C., Blauth, M., Schubert, R., Frangi, A.F., 2012. Hip fracture discrimination from dual-666 

energy X-ray absorptiometry by statistical model registration. Bone 6–11. 667 

https://doi.org/10.1016/j.bone.2012.08.114 668 

Yang, L., Palermo, L., Black, D.M., Eastell, R., 2014. Prediction of incident hip fracture with 669 

the estimated femoral strength by finite element analysis of DXA scans in the study of 670 

osteoporotic fractures. J. Bone Miner. Res. 29, 2594–2600. 671 

https://doi.org/10.1002/jbmr.2291 672 

Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G., 2006. 673 

User-guided 3D active contour segmentation of anatomical structures: Significantly 674 

improved efficiency and reliability. Neuroimage 31, 1116–1128. 675 

https://doi.org/10.1016/j.neuroimage.2006.01.015 676 

Zysset, P., Pahr, D., Engelke, K., Genant, H.K., McClung, M.R., Kendler, D.L., Recknor, C., 677 



34 
 

Kinzl, M., Schwiedrzik, J., Museyko, O., Wang, A., Libanati, C., 2015. Comparison of 678 

proximal femur and vertebral body strength improvements in the FREEDOM trial using 679 

an alternative finite element methodology. Bone 81, 122–130. 680 

https://doi.org/10.1016/j.bone.2015.06.025 681 

 682 

 683 


