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We report the presence of a rare cell type, the olfactory rod cell, in the developing

zebrafish olfactory epithelium. These cells each bear a single actin-rich rod-like apical

projection extending 5–10 µm from the epithelial surface. Live imaging with a ubiquitous

Lifeact-RFP label indicates that the olfactory rods can oscillate. Olfactory rods arise

within a few hours of the olfactory pit opening, increase in numbers and size during

larval stages, and can develop in the absence of olfactory cilia. Olfactory rod cells differ in

morphology from the known classes of olfactory sensory neuron, but express reporters

driven by neuronal promoters. A sub-population of olfactory rod cells expresses a

Lifeact-mRFPruby transgene driven by the sox10 promoter. Mosaic expression of this

transgene reveals that olfactory rod cells have rounded cell bodies located apically in the

olfactory epithelium and have no detectable axon. We offer speculation on the possible

function of these cells in the Discussion.

Keywords: olfactory rod cell, olfactory placode, olfactory epithelium, actin, actin-rich projection, Lifeact,

zebrafish

INTRODUCTION

The vertebrate olfactory epithelium (OE) is a multimodal sensor. The functions of this epithelium,
which derives from paired cranial neurogenic placodes (Whitlock and Westerfield, 2000),
are mediated by a diverse set of cells. Two broad classes of sensory receptor—ciliated and
microvillous—have been identified in the OE on the basis of morphology, receptor expression, and
projection pattern (reviewed in Elsaesser and Paysan, 2007). Olfactory sensory neurons (OSNs),
which express G-protein-coupled odorant receptors (ORs) and give rise to the sense of smell, are
bipolar neurons that extend a dendrite to the apical surface of the OE and an axon to the olfactory
bulb (OB; reviewed in Axel, 1995). Other sensory cells, some of which have no detectable axon, are
also present. In mammals, these include microvillous cells that express TrpM channels and other
taste components (Hansen and Finger, 2008; Lin et al., 2008; Genovese and Tizzano, 2018); such
solitary chemosensory cells (SCCs) also exist in alligators (Hansen, 2007). A subset of OSNs can act
as mechanosensors (Grosmaitre et al., 2007; Brinkmann and Schild, 2016; Iwata et al., 2017). Thus,
the wide range of cell types in the OE allows for the detection of mechanical and other chemical
stimuli in addition to sensing odours.

This variety of receptors is seen not only in terrestrial (air-breathing) animals, but also in aquatic
vertebrates. In zebrafish, five classes of OSN have been identified. Each occupies a stereotyped
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position within the pseudostratified OE, with the dendrite
bearing a distinct and characteristic specialisation projecting
into the environment (Hansen and Zeiske, 1998; Hansen and
Zielinski, 2005; Sato et al., 2005; reviewed in Maier et al., 2014).
Ciliated neurons, which express olfactory marker protein (OMP)
and OR genes, have a cell body that lies deep within the OE,
an axon that projects to dorsal and medial regions of the OB,
and a slender dendrite extending to the surface of the olfactory
pit. Here, the dendritic knob bears a cluster of primary cilia
that project into the olfactory cavity (Hansen and Zeiske, 1998;
Hansen and Zielinski, 2005; Sato et al., 2005). Microvillous
OSNs, characterised by the expression of TrpC2 and vomeronasal
(VR)-type pheromone receptors, have cell bodies that lie in the
intermediary layer of the OE, an axon that projects to the lateral
part of the OB, and a dendrite bearing a tuft of short, actin-
rich microvilli (Hansen and Zeiske, 1998; Hansen and Zielinski,
2005; Sato et al., 2005). Crypt neurons, less abundant than
ciliated or microvillous OSNs, have rounded cell bodies that
sit apically in the OE, with both cilia and microvilli extending
from a crypt within the cell body (Hansen and Zeiske, 1998;
Hansen and Zielinski, 2005; Parisi et al., 2014; Biechl et al., 2016;
Bettini et al., 2017; Sepahi et al., 2019). Kappe neurons lie in
the superficial layers of the adult zebrafish OE and are named
for their apical actin-rich cap, presumed to be microvilli (Ahuja
et al., 2014). Pear-shaped neurons are also positioned superficially
in the adult OE and have short apical dendrites, but express
some markers in common with ciliated neurons (Wakisaka et al.,
2017). Aside from these OSNs, it is not known what other sensory
cell types exist.

The OE is directly exposed to the environment, and is thus
continually subject to damage and infection. Numerous
mechanisms enable efficient sampling of stimuli while
maintaining tissue integrity and defence. These functions
are provided by non-sensory cells in the OE, which include basal
(stem) cells that replenish the OSNs, sustentacular (support)
cells, and goblet cells, which produce mucus containing anti-
microbial peptides (Hansen and Zeiske, 1993, 1998; Byrd and
Brunjes, 1995; Demirler et al., 2019; reviewed in Olivares and
Schmachtenberg, 2019). Multiciliated cells, located around the
rim of the olfactory pit in fish, each bear multiple long motile
cilia. These have a characteristic 9+2 axoneme and beat at
around 24 Hz, resulting in an asymmetric flow that draws water
and odorants into the olfactory cavity and flushes them out again
(Reiten et al., 2017). Additional cell types with critical functions,
such as immune cells, also populate the OE (Sepahi et al., 2019;
Kraus et al., 2020).

We report here the existence of a rare cell type, the olfactory
rod cell, in the OE of larval zebrafish. Olfactory rod cells are
characterised by a single actin-rich apical projection, and were
initially observed in whole-mount phalloidin stains, which we
use routinely to visualise the actin-rich stereociliary bundles
on sensory hair cells of the inner ear and lateral line. It was
unclear what these olfactory cells were, as they did not resemble
previously described OSNs. The morphology of the olfactory rod
matches descriptions of similar structures in the OE of several
other fish species (Bannister, 1965; Schulte, 1972; Breipohl et al.,
1973; Ichikawa and Ueda, 1977; Yamamoto and Ueda, 1978;

Rhein et al., 1981; Hernádi, 1993; Datta and Bandopadhyay,
1997), many of which were previously dismissed either as
senescent forms of OSNs or as fixation artefacts (Muller and
Marc, 1984; Moran et al., 1992). Using a variety of transgenic
lines and imaging techniques, including live imaging, we show
that zebrafish olfactory rod cells are present in living fish and can
be detected from early stages of larval development.

MATERIALS AND METHODS

Zebrafish Husbandry
Zebrafish strains used in this study were wild type (AB
strain—ZFIN), ift88tz288b (Tsujikawa and Malicki, 2004),
sox10m618 (Dutton et al., 2001), Tg(actb2:Lifeact-RFP)e115

(Behrndt et al., 2012), Tg(actb2:Lifeact-GFP)e114 (Behrndt
et al., 2012), Tg(Xla.Tubb:jGCaMP7f)sq214 (Chia et al., 2019),
Tg(elavl3:GCaMP6f)jf 1 (Dunn et al., 2016), Tg(elavl3:H2B-
GCaMP6s)jf 5 (Dunn et al., 2016), Tg(pou4f3:GAP-GFP)s356t

(Xiao et al., 2005) and Tg(sox10:Lifeact-mRFPruby)sh630 (this
study). Homozygous sox10−/− mutant larvae were identified
by their lack of body pigmentation at 5 days post-fertilisation
(dpf). Adult zebrafish were kept in a 10 h dark/14 h light cycle at
28.5◦C and spawned by pair-mating or marbling (Aleström et al.,
2019). Eggs were collected and staged according to standard
protocols (Kimmel et al., 1995; Nüsslein-Volhard and Dahm,
2002), and raised in E3 medium (5 mM NaCl, 0.17 mM KCl,
0.33 mM CaCl2, 0.33 mMMgSO4, with 0.0001% methylene blue
at early stages) at 28.5◦C. For controlling the developmental
rate to obtain embryos at stages 34–46 h post-fertilisation (hpf),
embryos were incubated at 25◦C or 34◦C in accordance with
Kimmel’s formula, HT=h÷(0.055T−0.57) (Kimmel et al., 1995).
For live imaging, zebrafish were anaesthetised with 0.5 mM
tricaine mesylate in E3.

Generation of the
Tg(sox10:Lifeact-mRFPruby) Transgenic
Line
The -4725sox10:Lifeact-mRFPruby construct was generated using
the Gateway Tol2 kit (Kawakami, 2007; Kwan et al., 2007).
The p5E -4725sox10 promoter (Dutton et al., 2008; Rodrigues
et al., 2012), pME-Lifeact-mRFPruby (Riedl et al., 2008), and p3E
polyA sequences were cloned into pDestTol2pA3 through an
LR Clonase reaction. The 12.1 kb final plasmid was sequenced
and injected into the AB strain. Injected embryos were grown
to adulthood and crossed to AB. Transgenic progeny from one
founder male were selected based on mRFPruby expression in
the inner ear and grown to adulthood to generate a stable line.
Embryos with bright fluorescence, presumed to be homozygous
for the transgene, were chosen for imaging.

Immunohistochemistry and Phalloidin
Staining
Zebrafish embryos and larvae were fixed in 4% paraformaldehyde
(PFA) in phosphate-buffered saline (PBS) for 2 h at room
temperature or overnight at 4◦C. Zebrafish were washed three or
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more times with PBS, and permeabilised by incubation in PBS-
Triton X-100 (0.2% Triton for 36–48 hpf embryos, 1% Triton for
later stages) for several hours at 4◦C until staining.

To visualise F-actin, zebrafish were stained with either Alexa
Fluor 488 phalloidin (Cell Signaling Technology; 1:150), Alexa
Fluor 568 (Invitrogen ThermoFisher; 1:50), or Alexa Fluor 647
phalloidin (Invitrogen ThermoFisher; 1:50) in PBS overnight at
4◦C. After staining, zebrafish were washed four times in PBS over
two or more hours before imaging.

For antibody staining, after fixing and washing, zebrafish were
washed a further three times in PBS-0.2% Triton and incubated
in blocking solution (10% sheep serum in PBS-0.2% Triton)
for 60 min at room temperature. The primary antibody was
mouse IgG1 anti-acetylated α-tubulin antibody (Sigma-Aldrich;
1:100). Staining was carried out in blocking solution containing
1% dimethyl sulfoxide (DMSO; Sigma-Aldrich) overnight at
4◦C. Zebrafish were washed three times in PBS-0.2% Triton,
and a further four times over two or more hours. The
secondary antibody was Alexa 647-conjugated goat anti-mouse
IgG1 (Invitrogen ThermoFisher; 1:200). For double stains with
phalloidin, Alexa Fluor 488 phalloidin (1:150) and DMSO (1%)
were added together with the secondary antibody in blocking
solution overnight at 4◦C. Zebrafish were then washed four times
in PBS-0.2% Triton and stored at 4◦C until imaging. Controls
with no primary antibody yielded no staining (not shown).

Neomycin Treatment
For neomycin treatment, a concentration of 500 µMwas chosen,
as it was an effective concentration used by Harris et al. (2003) for
minimum lateral line hair cell survival, as measured by DASPEI
staining. A 5 mM solution was made by adding neomycin
trisulfate salt hydrate (Sigma-Aldrich) to MilliQ water and used
at a 1:10 dilution in E3 fish medium. Tg(pou4f3:GFP) transgenic
zebrafish were treated for 60min at 28.5◦C. An equivalent volume
of MilliQ water in E3 was used for the control group. Zebrafish
were washed three times in fresh E3 and left at 28.5◦C for 2 h.
GFP signal was screened using widefield fluorescence microscopy
to analyse hair cell damage. Zebrafish were fixed and stained with
Alexa Fluor 647 phalloidin as above.

Fluorescence Imaging
For confocal imaging, fixed zebrafish embryos and larvae were
mounted in 1.5% low melting point (LMP) agarose in PBS, and
live zebrafish were mounted in 1.5% LMP agarose in E3 in
WillCo glass-bottomed dishes (mounted in frontal view for 36–
48 hpf, dorsal view for later stages). Zebrafish were imaged on
a Zeiss LSM880 Airyscan confocal microscope equipped with a
Plan-Apochromat 20 × /0.8 M27 air objective, LD LCI Plan-
Apochromat 40 × /1.2 Imm Korr DIC M27 water immersion
objective, or Plan-Apochromat 63 × /1.4 oil DIC M27 objective.
Images were acquired in Airyscan SR mode, Airyscan Fast scan
mode with SR sampling, or Airyscan Fast scan mode with
Opt sampling. Zebrafish were also imaged on a Zeiss LSM 800
attached to an upright microscope with a W Plan-Apochromat
40× /1.0 DICM27 or 63× /1.0M27 water dipping objective. The
laser lines used were 488, 561, and 633 nm.Widefield imaging was
performed on a Zeiss Axio Zoom.V16 fluorescence stereo zoom

microscope equipped with a Zeiss 60N-C 1” 1.0 × C-mount and
AxioCam MRm camera. For light-sheet imaging, live zebrafish
larvae were mounted in 0.9% LMP agarose in E3 and imaged
on a Zeiss Z1 Light-sheet microscope, with 4% tricaine in E3
in the sample chamber. Imaging was performed with a W Plan-
Apochromat 20 × objective using brightfield illumination and
the 561 nm laser line.

Scanning Electron Microscopy
For scanning electron microscopy, ift88 homozygous mutant
and phenotypically wild-type sibling larvae at 4 dpf were fixed
overnight in 2.5% glutaraldehyde/0.1M sodium cacodylate buffer.
Samples were washed in buffer, post-fixed in 2% aqueous osmium
tetroxide for 1 h, washed in buffer again and then dehydrated
through a graded ethanol series (50, 75, 95, 100%) before being
dried in amixture of 50% hexamethyldisilazane (HMDS) in 100%
ethanol. Final drying was in 100% HMDS. After removal of the
final HMDS wash, samples were left to dry in a fume hood
overnight. Samples were mounted onto a pin stub using a Leit-
C sticky tab and Leit-C mounting putty, gold-coated using an
Edwards S150B sputter coater, and examined in a Tescan Vega3
LMU Scanning ElectronMicroscope at an operating voltage of 15
kV and imaged using a secondary electron detector.

Image Processing, Quantification, and
Statistical Analyses
Zeiss LSM880 Airyscan confocal images were subjected to
Airyscan processing on Zen Black 2.3 software (Zeiss) using
“Auto” Airyscan processing parameters. Further processing was
performed on Fiji (Schindelin et al., 2012). 3D rendering was
performed using the 3D Viewer plugin (Schmid et al., 2010)
on Fiji. Olfactory rod projection lengths were measured in 3D
from confocal images using Fiji, and calculated inMicrosoft Excel
using the PyT method (based on the Pythagorean theorem) from
Dummer et al. (2016). All quantifications were exported into
GraphPad Prism 8, which was then used for performing statistical
analyses and making graphs.

Statistical analyses were carried out in GraphPad Prism 8.
Datasets were considered normally distributed if they passed at
least one of four normality tests (Anderson-Darling, D’Agostino
& Pearson, Shapiro-Wilk, and Kolmogorov-Smirnov tests).
Statistical tests used are stated in the figure legends. Bars on
graphs indicate mean ± standard error of the mean (S.E.M.),
unless stated otherwise. P values are indicated as follows: P> 0.05
(not significant, ns), P < 0.05 (∗), P < 0.01 (∗∗), P < 0.001 (∗∗∗),
P < 0.0001 (∗∗∗∗).

For mapping spatial distributions of olfactory rod cells within
the olfactory pit, 2D maximum intensity projection images were
imported into the Desmos Graphing Calculator (desmos.com).
The positions and sizes of the images were adjusted to align
the rims of olfactory pits with an ellipse to fit the shape of the
rim, defined by (x−35)2

5 +
(y−33)2

10 =7.62
. The positions of the base

of each olfactory rod, relative to the ellipse, were plotted as
coordinates onto the graph. The resulting graphs were exported
as .png image files.
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Figures were prepared using Adobe Photoshop and
Affinity Designer.

RESULTS

Actin-Rich Rod-Like Apical Projections,
Distinct From OSN Microvilli and Cilia,
Are Present in the Olfactory Epithelium
of Larval and Juvenile Zebrafish
Staining of the wild-type larval and juvenile zebrafish OE with
fluorescently conjugated phalloidin, which binds to F-actin,
reveals the presence of several actin-rich rod-like projections
(“olfactory rods”) in each olfactory pit (Figures 1A–B′). These

projections differ in number, distribution, size and morphology
from any of the described apical projections of zebrafish OSNs.
The projections extend from below the apical surface of the OE
and project about 5–10 µm above it, tapering to a point. This
is an order of magnitude longer than OSN microvilli, which
are typically 0.5–0.8 µm in length (Hansen and Zeiske, 1998).
Olfactory rods are shorter than the surrounding phalloidin-
negative olfactory cilia (Figures 1C–D′), and do not label with an
anti-acetylated α-tubulin antibody (Figures 1C–C′′′). Olfactory
rods are not evenly distributed across the OE, but are mostly
clustered posterolaterally in each olfactory pit, although there is
variation between individuals (Figure 1E). At low magnification,
the olfactory rods appear similar to the actin-rich stereociliary
bundle of mechanosensory hair cells of the inner ear and
lateral line. However, higher magnification images reveal that

FIGURE 1 | Phalloidin staining reveals the presence of actin-rich rod-like projections, distinct from OSN microvilli and cilia, in the zebrafish larval and juvenile olfactory

epithelium. (A) Maximum intensity projection of an Airyscan confocal image of phalloidin stain in an olfactory pit of a 5 dpf wild-type larva; anterior to the top right,

lateral to the bottom right. Arrowhead marks one example olfactory rod. Scale bar = 20 µm. (A′) Enlargement of olfactory rods in panel (A). Scale bar = 5 µm.

(B) Dorsal view low power image of phalloidin stain in the head of an 18 dpf (5 mm) wild-type juvenile zebrafish; anterior to the top. Arrowhead marks the position of

two olfactory rods in an olfactory pit. Scale bar = 50 µm. (B′) Enlargement of OE in panel (B). Arrowhead marks two olfactory rods. Scale bar = 10 µm. (C–C′′)

Airyscan confocal image of Alexa-phalloidin signal (C), acetylated α-tubulin immunohistochemistry signal (C′), and merged signals (C′′) in an olfactory pit of a 4 dpf

wild-type larva; anterior to the top, lateral to the right. Arrowhead marks one example olfactory rod. Scale bar = 20 µm. (C′′ ′) Enlargement of olfactory rod in panel

(C′′). Scale bar = 5 µm. (D) Differential interference contrast (DIC) image and phalloidin stain (red) in an olfactory pit of a 5 dpf wild-type larva; anterior to the top,

lateral to the right. Arrowhead marks one example olfactory rod. Scale bar = 20 µm. (D′) Enlargement of olfactory rods in panel (D). Surrounding olfactory cilia are

visible and unlabelled by Alexa-phalloidin. Scale bar = 5 µm. (E) A map of the positions of olfactory rod cell projection bases in olfactory pits of 4 dpf wild-type larvae

(N of olfactory pits = 5), based on 2D maximum intensity projections of confocal images of phalloidin stains; anterior “A” to the top, lateral “L” to the right. One dot

represents one olfactory rod. Different coloured dots represent olfactory rods from different larvae. (F) Airyscan confocal image of phalloidin stain in an inner ear crista

of a 5 dpf wild-type larva. Hair cell stereocilia are labelled with Alexa-phalloidin, and are arranged in a stepped array. In the stereociliary bundle on the extreme left,

four different stereociliary lengths are visible [compare with panel (A′)]. Scale bar = 5 µm.
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the olfactory rod is not oligovillous, but appears to be a single
structure (Figures 1B′,C′′′,D′). This contrasts with the stepped
array of multiple stereocilia present on the apical surface of
mechanosensory hair cells (Figure 1F).

To characterise the timing of appearance and development of
the olfactory rods during embryonic and larval stages, we stained
fixed samples from 36 hpf, just after formation of the olfactory
pits (Hansen and Zeiske, 1993), to 5 dpf. Occasional olfactory
rods were present in olfactory pits at 36 hpf, but were only
consistently present beyond 46 hpf (Figures 2A,B). Although
the number of olfactory rods per pit varied at each stage, the
average number increased over time. By 5 dpf, each pit contained
10.7 ± 2.9 (mean ± standard deviation, SD) olfactory rods

(Figure 2B). After measuring the olfactory rods in 3D, we found
an increase in projection length (from the base of the phalloidin-
positive projection to the tip) from 36 hpf to 5 dpf, with the
most significant increase occurring by 48 hpf, despite a relatively
large range in length at each stage. At 5 dpf in fixed samples, the
mean projection length was 10.4 ± 2.2 (SD) µm, with the largest
measuring 17.5 µm (Figure 2C).

Olfactory Rod Cell Projections Can
Develop in the Absence of Olfactory Cilia
As described above, olfactory rods differ from olfactory cilia in
terms of size, shape, cytoskeletal composition, and distribution

FIGURE 2 | Olfactory rod cells arise early during zebrafish olfactory pit development. (A) Maximum intensity projections of Airyscan confocal images showing the

wild-type development of olfactory pit and olfactory rod cells at various embryonic and larval stages, using Alexa-phalloidin as a marker; anterior “A” to the top, lateral

“L” to the right. Grayscale values from the original fluorescence image have been inverted. Arrowhead marks one example olfactory rod. Scale bar = 20 µm.

Selected inserts show olfactory rods at higher magnification. (B) The change in number of olfactory rod cells per olfactory pit during embryonic development—36 hpf

(N of olfactory pits = 4), 38 hpf (N = 5), 40 hpf (N = 7), 42 hpf (N = 4), 44 hpf (N = 7), 46 hpf (N = 6), 48 hpf (N = 9), 3 dpf (N = 5), 4 dpf (N = 10), and 5 dpf (N = 7).

Bars indicate mean ± SEM for each stage. Linear regression analysis; ∗ ∗ ∗∗ indicates P < 0.0001. (C) The change in lengths of olfactory rod cell projections during

embryonic development—36 hpf (N of olfactory pits = 2, n of olfactory rods = 4), 38 hpf (N = 4, n = 17), 40 hpf (N = 6, n = 11), 42 hpf (N = 3, n = 7), 44 hpf (N = 5,

n = 7), 46 hpf (N = 6, n = 20), 48 hpf (N = 9, n = 20), 3 dpf (N = 5, n = 32), 4 dpf (N = 10, n = 82), and 5 dpf (N = 8, n = 71). Bars indicate mean ± S.E.M. for each

stage. Linear regression analysis; ∗ indicates P = 0.0251, ∗ ∗ ∗ indicates P = 0.0009.
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in the OE. We therefore hypothesised that olfactory rod cell
projections would not be affected by mutations that disrupt the
formation of cilia. To test this, we examined fish mutant for
ift88, which codes for a component of the intraflagellar transport
machinery necessary for the normal formation and maintenance
of cilia (Tsujikawa andMalicki, 2004). A phalloidin stain revealed
that olfactory rods were present in the OE of ift88−/− mutants at
5 dpf (Figures 3A,B).

The absence of cilia in ift88−/− mutants allowed us to
examine morphology of the olfactory rods using scanning

electron microscopy (SEM). In the phenotypically wild-type
sibling OE, the olfactory rods were almost completely obscured
by olfactory cilia, with only the occasional tip of a projection
visible (Figures 3C–E′′). However, SEM images of the olfactory
pit of ift88−/− mutants at 4 dpf, which lack cilia, revealed the
presence of rod-like projections with a similar size, number,
smoothly tapering morphology, and spatial distribution to the
actin-rich projections described above (Figures 3F–I). At their
base, olfactory rods are wider in diameter (about 0.6µm) than the
olfactory cilia in wild-type larvae (0.2µm in diameter, as is typical

FIGURE 3 | Olfactory rod cells are present in the olfactory epithelia of ift88−/− zebrafish mutants, which lack cilia. (A,B) Maximum intensity projections of Airyscan

confocal images of phalloidin stains of a 5 dpf wild-type (A) and ift88−/− mutant (B) larva; dorsal views, anterior to the top. Grayscale values from the original

fluorescence image have been inverted. Abbreviations: nm, cranial neuromast; op, olfactory pit. Several olfactory rods (arrowheads mark examples) are visible in

each olfactory pit. Scale bar = 50 µm. (C) SEM of the head of a 4 dpf wild-type larva. Scale bar = 100 µm. (D,E) SEM of 4 dpf larval wild-type olfactory pits

[enlarged from panel (C)]. Scale bars = 10 µm. Insert in panel (D) shows enlarged view of boxed area in panel (D). Arrowhead marks the tip of an olfactory rod cell

apical projection surrounded by olfactory cilia. (E′) Enlarged view of boxed area in panel (E). Arrowhead marks one olfactory rod. Scale bar = 5 µm. (E′′)

Enlargement of olfactory rod in panel (E′) (arrowhead). Scale bar = 1 µm. (F) Frontal view SEM of the head of a 4 dpf ift88−/− mutant larva. Scale bar = 100 µm.

(G) A map of the positions of olfactory rod cell projection emergence through the OE in ift88−/− mutant larvae (N of olfactory pits = 3), based on SEM images at 4

dpf; anterior “A” to the top, lateral “L” to the right. One dot represents one olfactory rod. Different coloured dots represent olfactory rods from different larvae.

(Compare with Figure 1E). (H) SEM of 4 dpf larval ift88−/− mutant olfactory pit [enlarged from panel (F)]. Scale bar = 10 µm. (H′) Enlarged view of boxed area in

panel (H). Arrowhead marks one example olfactory rod cell projection present despite the loss of cilia. Scale bar = 5 µm. (I) Enlarged SEM of olfactory rods

(arrowhead marks example) in 4 dpf larval ift88−/− mutant olfactory pit (from a different individual). Scale bar = 1 µm.
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for many cilia). We conclude that olfactory rods can develop in
the absence of cilia.

Olfactory Rods Can Be Labelled in the
Live Larva
To visualise olfactory rods in live larvae, we imaged the
Tg(actb2:Lifeact-RFP) transgenic line at 4 and 6 dpf, and
Tg(actb2:Lifeact-GFP) at 5 dpf (Behrndt et al., 2012). We found
fluorescent apical projections in the olfactory pits of live larvae
in all cases (N of fish = 4; Figures 4A–C, Supplementary

Movie 1). These matched the size, shape, and posterolateral
distribution of olfactory rod cells present in fixed samples
(Figures 4D,E). Despite potential shrinkage due to fixation, there
was no overall difference in the lengths of projections between
live and fixed samples (Figure 4E). The zig-zag pattern exhibited
by RFP-positive olfactory rods in raster-scanned images of live
larvae suggested that olfactory rods were moving during image

capture (Figure 4B). Fast-capture time series imaging of the
Tg(actb2:Lifeact-RFP) transgenic line allowed us to observe that
the projection oscillates (Supplementary Movie 2), possibly as a
result of ciliary beating.

Neuronal Promoters Drive Reporter
Expression in Olfactory Rod Cells
To test whether olfactory rod cells have features of neuronal
cells, we imaged two transgenic lines that have broad
neuronal expression of cytoplasmic fluorescent reporters—
Tg(Xla.tubb:jGCaMP7f) (Chia et al., 2019) (N of olfactory
pits = 4) and Tg(elavl3:GCaMP6f) (Dunn et al., 2016)
(N = 5). Dendrites and dendritic knobs of OSNs were
clearly labelled by both lines. In some examples, we
observed faintly labelled projections extending from below
the surface of the OE, with a similar length and morphology to
olfactory rods (Figures 5A–B′). Imaging of double-transgenic

FIGURE 4 | Olfactory rods are labelled in the olfactory epithelia of live zebrafish larvae by the Tg(actb2:Lifeact-RFP) transgene. (A) Maximum intensity projection of

dorsal view image of the olfactory pits of a live 6 dpf Tg(actb2:Lifeact-RFP) transgenic larva; anterior to the top. Arrowhead marks one example olfactory rod positive

for the Lifeact-RFP transgene. Scale bar = 50 µm. (B) Enlargement of olfactory rods in panel (A) [arrowhead in panel (A)] oscillating during raster-scanned image

capture. (Raster scanning was performed from top to bottom in the image, as it has been rotated 90◦ clockwise) (see Supplementary Movie 2). Scale bar = 5 µm.

(C) Maximum intensity projection image of a live 4 dpf Tg(actb2:Lifeact-RFP);Tg(elavl3:H2B-GCaMP6s) double-transgenic larval olfactory pit; anterior to the top,

lateral to the right. Arrowhead marks one example olfactory rod positive for the Lifeact-RFP transgene (magenta). Neuronal nuclei are labelled in green. Larvae were

fully mounted in agarose, so olfactory rods were not moving. Scale bar = 20 µm (see Supplementary Movie 1). (D) A map of the positions of olfactory rod cell

projection bases in olfactory pits of 4 dpf Tg(actb2:Lifeact-RFP);Tg(elavl3:H2B-GCaMP6s) double-transgenic larvae (N of olfactory pits = 2), based on 2D maximum

intensity projections of confocal images; anterior “A” to the top, lateral “L” to the right. One dot represents one olfactory rod. Different coloured dots represent

olfactory rods from different larvae, with purple corresponding to panel (C). (Compare with Figure 1E). (E) A quantitative comparison of the lengths of olfactory rod

cell projections in fixed larvae, using Alexa-phalloidin as a marker (N = 10, n of olfactory rods = 82) versus live larvae, using Lifeact-RFP as a marker (N = 2, n = 43).

Violin plot; bars indicate the median and lower and upper quartiles for each group. Mann-Whitney U test; ns, not significant (P = 0.232).
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FIGURE 5 | Olfactory rod cells are labelled by the cytoplasmic neuronal markers Tg(Xla.Tubb:jGCaMP7f) and Tg(elavl3:GCaMP6f). (A) Olfactory pit of a 4 dpf

Tg(Xla.Tubb:jGCaMP7f) larva; anterior to the top, lateral to the right. Arrowhead marks one example olfactory rod, albeit faintly labelled. Scale bar = 20 µm. (A′)

Enlargement of olfactory rod marked by arrowhead in panel (A) (grayscale values inverted). Scale bar = 10 µm. (B) Olfactory pit of a 5 dpf Tg(elavl3:GCaMP6f) larva;

anterior to the top, lateral to the right. Arrowhead marks one example olfactory rod, albeit faintly labelled. Scale bar = 20 µm. (B′) Enlargement of olfactory rod

marked by arrowhead in panel (B) (grayscale values inverted). Scale bar = 10 µm. (C–C′′) Lifeact-RFP signal (C), GCaMP6f signal (C′), and merged signals (C′′) in

an olfactory pit of a 5 dpf Tg(elavl3:GCaMP6f);Tg(actb2:Lifeact-RFP) double-transgenic larva; anterior to the top, lateral to the right. The trace shows levels of red

and green fluorescence along the dotted line, which passes through three olfactory rods positive for both Lifeact-RFP and GCaMP6f. The olfactory rod highlighted

with the arrowhead shows similar levels of fluorescence in both the red and green channels. Scale bar = 20 µm.

Tg(elavl3:GCaMP6f);Tg(actb2:Lifeact-RFP) larvae at 5 dpf
suggests that olfactory rod cells are GCaMP6f-positive (N of
fish = 3; Figures 5C–C′′). While some of the green fluorescence
may be caused by bleed-through from RFP, this cannot
account for all the signal, as we observed rods where the green
fluorescence was detected even with dim red fluorescence
(arrowhead, Figures 5C–C′′; see trace of RFP and GCaMP6f
levels); we also noted bright red pixels with no corresponding
green signal. These observations suggest that olfactory rod cells
may be a type of neuron.

Olfactory Rod Cells Are Not
Hair-Cell-Like Cells
We initially observed the presence of olfactory rods when
performing whole-mount phalloidin stains for the actin-rich
stereociliary bundles of sensory hair cells in the inner ear

and lateral line. Given the superficial similarity in appearance
of olfactory rods to hair-cell stereocilia in low-magnification
phalloidin stains (see, for example, Figure 3A), and a report

of a rare cell type bearing stereocilia-like microvilli in the rat
OE (Menco and Jackson, 1997), we were interested to test
whether there is any similarity between olfactory rod cells and
mechanosensory hair cells of the inner ear and lateral line. As

shown in Figures 1 and 3, the zebrafish olfactory rod appears

to be a single structure rather than a collection of microvilli or
stereocilia. To test whether olfactory rod cells express sensory hair
cell markers, we performed an Alexa-phalloidin co-stain on the
Tg(pou4f3:GFP) transgenic line, a known marker for hair cells
(Xiao et al., 2005). At 5 dpf, the stereociliary bundle of lateral

line neuromast hair cells was clearly marked by both GFP and

phalloidin, which acted as our positive control (Figures 6A–A′′).
However, the GFP did not co-localise with the phalloidin signal
in the olfactory rods, or in the cell body beneath a phalloidin-

positive olfactory rod (Figures 6B–B′′).
Mechanosensory hair cells, including those of the

zebrafish lateral line, are susceptible to oxidative damage by
aminoglycoside antibiotics, which can preferentially enter hair
cells via mechanotransduction channels, and cause cell death
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FIGURE 6 | Olfactory rod cells in the zebrafish olfactory epithelium are not hair-cell-like. (A–A′′) Maximum intensity projection of Airyscan confocal image of

Alexa-phalloidin signal (A), Tg(pou4f3:GFP) signal (A′), and merged signals (A′′) in a cranial neuromast of a 5 dpf larva. Scale bar = 10 µm. (B–B′′) Airyscan confocal

image of Alexa-phalloidin signal (B), Tg(pou4f3:GFP) signal (B′), and merged signals (B′′) in an olfactory pit of a 5 dpf larva; anterior to the top, lateral to the right.

Arrowhead marks one olfactory rod. Scale bar = 20 µm. (C,F) Widefield imaging of 3 dpf Tg(pou4f3:GFP) larvae showing the damaging effects of 500 µM neomycin

treatment for 60 min on lateral line neuromast hair cells. Fluorescence is lost or greatly reduced in both trunk (arrowhead) and cranial neuromasts, whereas

fluorescence in hair cells of the inner ear maculae and cristae (arrow) is unaffected. Scale bars = 500 µm. (D,G) Maximum intensity projections of Airyscan confocal

images showing the damaging effects of 500 µM neomycin treatment for 60 min on hair cells in a cranial neuromast of a 3 dpf larva, using Tg(pou4f3:GFP) (green)

and Alexa-phalloidin (magenta) as markers. Scale bars = 10 µm. (E,H) Maximum intensity projections of Airyscan confocal images showing no effect of 500 µM

neomycin treatment for 60 min on olfactory rods, using Alexa-phalloidin as a marker; anterior to the top, lateral to the right. Arrowheads mark olfactory rods. Scale

bars = 20 µm. (I) The number of olfactory rod cell projections per olfactory pit of 3 dpf Tg(pou4f3:GFP) larvae after 500 µM neomycin treatment for 60 min (N of

olfactory pits = 4), compared with an untreated group (N = 4). Bars indicate mean ± SEM. Welch’s unpaired two-tailed t-test; ns, not significant (P = 0.8018).

following a calcium flux and release of reactive oxygen species
by mitochondria (Esterberg et al., 2013, 2016; Pickett et al.,
2018). To test whether olfactory rod cells are similarly sensitive,
we investigated whether treatment with the aminoglycoside
neomycin has the same damaging effect on olfactory rod cells
as on lateral line hair cells. Following neomycin treatment at
500 µM for 60 min on 3 dpf Tg(pou4f3:GFP) larvae, lateral
line hair cells were lost or severely damaged, as determined
by a decrease in the number of GFP-positive cells (together
with loss of their phalloidin-positive stereocilia) in both cranial
and trunk neuromasts and a change in morphology of any
remaining cells (Figures 6C,D,F,G). By contrast, olfactory rods
appeared unaffected (Figure 6E,H), with no significant change
in the number of olfactory rods present in each olfactory pit
(Figure 6I). Taken together, the smooth appearance of the

olfactory rods, lack of hair cell marker expression, and resistance
to neomycin indicate that olfactory rod cells are not closely
related to hair cells.

A Sub-population of Olfactory Rod Cells
Expresses a Lifeact Transgene Driven by
the sox10 Promoter
Sox10 is a known marker of both neural crest and otic
epithelium (Dutton et al., 2001). Robust transgene expression
driven by the sox10 promoter has been reported in the OE
and other tissues in the zebrafish (Mongera et al., 2013; Saxena
et al., 2013). We have generated a Tg(sox10:Lifeact-mRFPruby)
transgenic line to visualise actin localisation and dynamics in
the live embryo in sox10-expressing tissues. As reported for the
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Tg(sox10:eGFP) transgene (Saxena et al., 2013), we observed
OSNs expressing Tg(sox10:Lifeact-mRFPruby) in the OE at 4
and 5 dpf; based on morphology, most of these cells were
microvillous OSNs. However, staining with Alexa-phalloidin on
fixed samples revealed the co-expression of Lifeact-mRFPruby
in a sub-population of phalloidin-positive olfactory rod cell
projections (Figures 7A–B′′). Not all olfactory rod cells expressed
the transgene; an average of 64.4% of olfactory rod cells
marked by phalloidin (N of olfactory pits = 5, n of olfactory
rods = 59) also expressed Lifeact-mRFPruby (Figure 7C). As for
the olfactory rods labelled with Lifeact-RFP, rods labelled with
Lifeact-mRFPruby oscillated (Supplementary Movie 3).

The sparse expression of the Tg(sox10:Lifeact-mRFPruby)
transgene allowed us to visualise the morphology of the cell body
of olfactory rod cells and ask whether they have an axon. Lifeact-
mRFPruby-expressing cell bodies were positioned apically in the
OE and were rounded in shape (Figures 7B–B′′,E). They were
morphologically distinct from the well-described microvillous
OSNs (Figures 7D,E) as well as ciliated and crypt OSNs. The
axons of microvillous OSNs were visible in those cells labelled
by the transgene (Figure 7D). However, with this marker, we
were unable to observe an axon extending from the cell body
of olfactory rod cells (N of olfactory pits = 5, n of cells = 9;
Figure 7E).

To test whether the development of olfactory rod cells is
dependent on sox10 function, we stained sox10−/− homozygous
mutants (Dutton et al., 2001) with Alexa-phalloidin. Olfactory
rods were present in sox10−/− mutants at 5 dpf, but variable
in number (N of olfactory pits = 8, n of olfactory rods = 53;
Figure 8). Taken together, the data from Tg(sox10:Lifeact-
mRFPruby) transgenic and sox10−/− mutant larvae indicate
that sox10 function is not essential for the formation of
olfactory rod cells.

DISCUSSION

The zebrafish is a key model organism for the study of the
olfactory system (reviewed in Kermen et al., 2013; Calvo-Ochoa
and Byrd-Jacobs, 2019), and a complete inventory of the cell
types present in the zebrafish OE will be an important resource
and reference point for further study. Through the use of
phalloidin staining, immunohistochemistry, transgenic zebrafish
lines, SEM and high-resolution fluorescence confocal imaging,
we have identified a rare cell type, the olfactory rod cell, in the
zebrafish larval and juvenile OE. Olfactory rod cells, which have
not previously been described in zebrafish to our knowledge, are
morphologically distinct from the well-characterised OSNs and
other known cell types in terms of their apical projections, cell
shape, and distribution and positioning within the OE.

The Olfactory Rod: An Actin-Rich Apical
Projection
The spectacular actin-rich projection of the olfactory rod cell
adds to the rich repertoire of known F-actin-based cellular
specialisations, which includemicrovilli, stereocilia, lamellipodia,
filopodia, cytonemes and microridges (reviewed in Heath and

Holifield, 1991; Theriot and Mitchison, 1991; Ramírez-Weber
and Kornberg, 1999; Pinto et al., 2019; Inaba et al., 2020). Many
sensory cell types, in both fish and mammals, bear actin-rich
mechano- or chemosensory microvillous projections, including
the stereocilia of sensory hair cells (Tilney et al., 1980; reviewed
in Gillespie and Müller, 2009; Barr-Gillespie, 2015), and the
microvilli of olfactory and vomeronasal microvillous neurons,
SCCs of the skin and barbel (Kotrschal et al., 1997; Finger
et al., 2003; Hansen and Finger, 2008), taste bud cells (Hansen
et al., 2002; Zachar and Jonz, 2012), spinal cerebrospinal fluid-
contacting neurons (CSF-cNs; Djenoune et al., 2014; Desban
et al., 2019), Merkel cells, retinal Müller glia (Sekerková et al.,
2004), and the brush and tuft cells of mammalian respiratory
and intestinal epithelia, respectively (reviewed in Reid et al.,
2005; Schneider et al., 2019). As a single structure with a
smoothly taperingmorphology, the zebrafish olfactory rod differs
from these oligovillous structures. Adult zebrafish SCCs, found
distributed over the entire body surface (Kotrschal et al., 1997),
and mature light cells of the zebrafish taste bud (Hansen et al.,
2002) each bear a single microvillus, but at 1–3 µm in length,
these are much shorter than the olfactory rods we describe.

Olfactory rod cells are distinct from rodlet cells, which have
been reported in many different epithelial tissues of marine
and freshwater fish, including zebrafish, and contain several
intracellular electron-dense rodlets within a thick cuticular-like
wall (Bannister, 1966; reviewed in Morrison and Odense, 1978;
Hansen and Zeiske, 1998; Dezfuli et al., 2007; DePasquale, 2020).
Recently, phalloidin staining has demonstrated that the rodlets,
which can be extruded from the cell, are not composed of F-actin
(DePasquale, 2020). Thus, zebrafish olfactory rod cells, which are
unique to the OE at the larval stages we have described, are not
related to rodlet cells.

Olfactory Rod Cells in Other Teleost
Species
Previous studies have provided descriptions of cell types similar
to the olfactory rod cell in other teleost species, including
the common minnow (Bannister, 1965), several eel species
(Schulte, 1972; Yamamoto and Ueda, 1978), goldfish (Breipohl
et al., 1973; Ichikawa and Ueda, 1977), rainbow trout (Rhein
et al., 1981), common bleak (Hernádi, 1993), catfish (Datta and
Bandopadhyay, 1997), and several cave fish and cave loach species
(Waryani et al., 2013, 2015; Zhang et al., 2018).

Using transmission electron microscopy (TEM), Bannister
(1965) reported sparsely populated rod-shaped protrusions,
approximately 4 µm in length and shorter than surrounding
sensory and non-sensory olfactory cilia, in the OE of adult
(3.7 cm) common minnow (Phoxinus phoxinus). Here, the rod-
like projection consisted of several bundles of fibres, consistent
with the appearance of F-actin, extending from deep within
the cell (Bannister, 1965). Similarly, using TEM and SEM
respectively, Schulte (1972) and Yamamoto and Ueda (1978)
reported the presence of olfactory rod cells in the OE of several
adult eel species: European eel (Anguilla anguilla), Japanese
eel (A. japonica), white-spotted conger (Conger myriaster),
buffoon snake eel (Microdonophis erabo), and brutal moray
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FIGURE 7 | Olfactory rod cells are apically located in the zebrafish olfactory epithelium, with a rounded cell body and no detectable axon. (A–B′′) Airyscan confocal

image of Alexa-phalloidin signal (A,B), Tg(sox10:Lifeact-mRFPruby) signal (A′,B′), and merged signals (A′′,B′′) in olfactory pits of 4–5 dpf larvae; anterior to the top,

lateral to the right. Arrowhead marks one olfactory rod negative for Lifeact-mRFPruby. Arrow marks one olfactory rod positive for Lifeact-mRFPruby. Scale bars = 20

µm. (C) Number of olfactory rod cells positively marked by Alexa-phalloidin (n of olfactory rods = 59), compared with the number of those also marked by

Tg(sox10:Lifeact-mRFPruby) (n = 38), in olfactory pits of 4–5 dpf larvae (N of olfactory pits = 5). Connecting lines indicate olfactory rods from the same olfactory pit.

Paired two-tailed t-test; ∗ indicates P = 0.0146. (D) Enlargement of two microvillous OSNs, expressing Lifeact-mRFPruby, in the OE of a 4 dpf larva; Alexa-phalloidin

signal (green), Tg(sox10:Lifeact-mRFPruby) signal (magenta). Arrowhead marks the microvillous apical projections. The gamma value for the magenta channel in the

bottom half of the panel has been set to 0.5 to show the axon from one of the cells (arrow). Scale bar = 5 µm. (E) Enlargement of olfactory rod cells (of which both

the apical actin projections and cell bodies are labelled by the Tg(sox10:Lifeact-mRFPruby) transgene) in the OE of a 4 dpf larva; Alexa-phalloidin signal (green),

Tg(sox10:Lifeact-mRFPruby) signal (magenta). Arrowhead marks an olfactory rod cell apical projection, positive for both markers. The gamma value for the bottom

half of the panel has been set to 0.5 as in panel (D); no axon is visible. Scale bar = 5 µm. See also Supplementary Movie 3.
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FIGURE 8 | Olfactory rod cells are present in the olfactory epithelia of sox10−/− zebrafish mutants. (A) Maximum intensity projection of Airyscan confocal image of

phalloidin stain in a 5 dpf larval wild-type olfactory pit; anterior to the top, lateral to the right. Arrowhead marks one example olfactory rod. Scale bar = 20 µm.

(B) Airyscan confocal image of phalloidin stain in a 5 dpf larval sox10−/− mutant olfactory pit; anterior to the top, lateral to the right. Arrowhead marks one example

olfactory rod. Scale bar = 20 µm.

(Gymnothorax kidako). In European eels, the cells were described
as a receptor with a single rod-shaped appendage, measuring
0.8 µm in diameter and extending 4 µm above the apical
surface of the epithelium (Schulte, 1972). Olfactory rods in the
other four species measured 1 µm in diameter and 10 µm
in length. Olfactory rods were either found to exist solitarily
or in a group; interestingly, it was noted that olfactory cilia
were sparse in areas where olfactory rods occurred in a group
(Yamamoto and Ueda, 1978).

More recent reports include comparisons of the surface
structures of olfactory epithelia in different adult cave fish and
loaches. SEMs in Sinocyclocheilus jii and S. furcodorsalis cave
fish, and in Oreonectes polystigmus and O. guananensis cave
loaches revealed that olfactory rods were clustered in different
regions of olfactory rosette lamellae (Waryani et al., 2013, 2015).
Another SEM study on the variations in olfactory systems of
adult cave fish species of different habitats reported not just one,
but three different cell types all classified as “rod cilia” in the
olfactory epithelia of S. anshuiensis and S. tianlinensis. The first
cell type had a long base with an oval apex, the second contained
an oval base with a thin apex, while the third was rod-shaped
and thin from base to tip, measuring 2.01–3.08 µm in length
(Zhang et al., 2018). Despite the shorter length, this third type
appeared morphologically consistent with zebrafish olfactory rod
cells. Unlike other teleosts, olfactory rod cells were reported as
the dominant cell type over ciliated and microvillous OSNs in the
OE of S. jii (Waryani et al., 2013). This may be an example of
the known compensatory enhancement of the olfactory system
in blind morphs of cave fish (Bibliowicz et al., 2013; reviewed in
Krishnan and Rohner, 2017).

Although there appear to be variations in the numbers and
sizes of olfactory rod cells reported in these other teleost species,

some of these cells may be homologous to the olfactory rod cells
we describe in zebrafish larvae. However, all of these previous
studies were limited to fixed adult samples by means of TEM
and SEM, and none have tested or confirmed the cytoskeletal
composition of the olfactory rod.

Olfactory Rod Cells Differ From Known
Olfactory Sensory Neurons
We have detected weak expression of cytoplasmic fluorescent
markers driven by neuronal promoters in olfactory rod cells.
However, we were unable to detect an axon in nine individual
olfactory rod cells imaged with a Lifeact-mRFPruby transgene at
4–5 dpf. Of note, Ichikawa and Ueda (1977) performed olfactory
nerve bundle transection in adult goldfish to determine which
cell types are OSNs. As expected, transection caused retrograde
degeneration of both ciliated and microvillous OSNs. Olfactory
rod cells, however, were still identifiable by SEM in theOE 10 days
after nerve transection. The authors concluded that adult goldfish
olfactory rod cells are not OSNs. This is similar to the observation
that OB ablation did not lead to death of a subset of microvillous
cells in the rat OE (Carr et al., 1991). It now appears that such
microvillous cells are a class of sensory paraneuron, as they are
cholinergic and express components of the taste transduction
pathway (Genovese and Tizzano, 2018). Whether olfactory rod
cells express similar genes remains to be determined.

Zebrafish Olfactory Rod Cells Are Not
Artefacts
Since the first report of olfactory rod cells, several studies have
proposed that they may represent senescent forms of OSNs or
fixation artefacts (Muller and Marc, 1984; Moran et al., 1992;
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reviewed in Hansen and Zielinski, 2005). A study in the goldfish
(Carassius auratus) and channel catfish (Ictalurus punctatus),
using TEM, SEM and filling with horseradish peroxidase,
concluded that olfactory rods are most likely a result of fusion of
olfactory cilia or microvilli—an indicator of ageing OSNs (Muller
and Marc, 1984). A later study on the ultrastructure of olfactory
mucosa in brown trout (Salmo trutta) also classified olfactory
rods as products of the fusion of olfactory cilia during fixation
(Moran et al., 1992). Indeed, TEM images in this study showed
multiple ciliary axonemes surrounded by a single membrane
(Moran et al., 1992). The presence of such fixation artefacts has
led to frequent dismissal of olfactory rod cells in the literature,
for example in juvenile and adult European eels (Sola et al.,
1993). In the zebrafish, however, the olfactory rods we describe
are clearly not a fixation artefact, as they are present in the
live larva. Moreover, they are not formed by fusion of cilia,
as the olfactory rods are F-actin-positive, do not stain with an
anti-acetylated α-tubulin antibody, and are present in ift88−/−

mutants which lack cilia.

Possible Functions of Olfactory Rod
Cells
Actin-rich projections on sensory cells are known to have
mechanosensory (reviewed in Gillespie and Müller, 2009),
chemosensory (Höfer andDrenckhahn, 1999; Hansen et al., 2002;
Zachar and Jonz, 2012), or multimodal functions (for example
in CSF-cNs in zebrafish; Djenoune et al., 2014; Desban et al.,
2019). A mechanosensory role for zebrafish olfactory rod cells,
for example in detecting ciliary movement or ciliary-driven fluid
flow, or a chemosensory role in detecting odorants, could aid
olfactory perception in the larva. They may function similarly
to microvillous cells that lack axons in the mammalian OE, and
participate in volume release for local modulation of OSNs or
non-sensory cells (Genovese and Tizzano, 2018), thereby acting
as paraneurons (reviewed in Fujita, 1989). The activity of the
tubb promoter in olfactory rod cells is consistent with this
interpretation, as expression of neuronal tubulin has previously
been detected in paraneurons (Iwanaga et al., 1982). Another
possibility is that olfactory rod cells could correspond to brush
or tuft cells in air-breathing mammals, which have important
roles in immunity (Andres, 1975; reviewed in Reid et al., 2005;
Howitt et al., 2016; reviewed in Schneider et al., 2019). These ideas
remain to be tested.

Possible Origins of Olfactory Rod Cells
Our work does not address the developmental origin of olfactory
rod cells, but it is of interest that they express a sox10-driven
transgene, albeit in a mosaic fashion. Sox10 mRNA is frequently
described as a neural crest marker, but is also expressed strongly
in otic epithelium (Dutton et al., 2001), a placodally derived
tissue. The use of sox10-driven transgenic lines to identify
neural crest derivatives remains controversial. Expression of a
sox10:eGFP transgene together with photoconversion studies
has led to the conclusion that a subpopulation of microvillous
OSNs in the OE is derived from neural crest (Saxena et al.,
2013), and use of an inducible sox10:ERT2-Cre transgenic line

has identified previously “contested” neural crest derivatives,
including cells in the sensory barbels (Mongera et al., 2013).
However, using lineage reconstruction through backtracking and
photoconversion experiments, Aguillon et al. (2018) have argued
that all olfactory neurons, including OSNs and gonadotropin-
releasing hormone 3 (GnRH3) cells, are derived entirely from
preplacodal progenitors. Given this controversy, we are unable to
conclude whether olfactory rod cells are derived from the placode
or neural crest.

The Tg(sox10:Lifeact-mFRPruby) line is expressed in a
subset of both olfactory rod cells and of microvillous OSNs,
with variation in the proportion of expressing cells between
individuals. This could reflect true heterogeneity in the olfactory
rod cell and microvillous OSN populations, or it could be
a result of mosaic or leaky expression of the transgene.
Mosaic expression is typical for many transgenes (Mosimann
et al., 2013), while leaky expression, which can be explained
through the lack of appropriate silencer elements (Jessen et al.,
1999), is suspected for the sox10 promoter fragment used
in our transgenic construct (reviewed in Tang and Bronner,
2020). Nevertheless, the Tg(sox10:Lifeact-mRFPruby) line has
proved a fortuitous tool for visualising olfactory rod cells
in the live larva.

Concluding Remarks
A detailed understanding of the vertebrate olfactory system is
important both from a cellular and developmental perspective
and for its clinical relevance. Olfactory dysfunction can signify
underlying cellular disorders and can also be implicated
in neurodegenerative diseases (reviewed in Whitlock, 2015;
Bergboer et al., 2018). OSNs project directly to the OB, and
thus provide an entry route for pathogens to the brain (reviewed
in Dando et al., 2014). Cells in the OE can themselves be
damaged by viral infection, leading to a reduction, change, or
loss of sense of smell (Brann et al., 2020; Gupta et al., 2020;
Kraus et al., 2020). The identification of zebrafish olfactory
rod cells, with their unique flexible actin-rich protrusion, offers
new opportunities to explore the biology of these cells in a
genetically tractable model organism, and thus to understand
their contribution to the multimodal sensory functions of the
vertebrate olfactory epithelium.
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Supplementary Movie 1 | Olfactory rods are labelled in the olfactory epithelia of

live zebrafish by the Tg(actb2:Lifeact-RFP) transgene. 3D rendering of a confocal

image of a 4 dpf Tg(actb2:Lifeact-RFP);Tg(elavl3:H2B-GCaMPs)

double-transgenic larval olfactory pit; anterior to the top. Olfactory rods are

labelled in magenta; neuronal nuclei are labelled in green.

Supplementary Movie 2 | Olfactory rods labelled with Lifeact-RFP in the

olfactory epithelia of live zebrafish larvae oscillate. Fast-capture time series

confocal imaging (5.98 frames per second, fps) of olfactory rods in a 6 dpf

Tg(actb2:Lifeact-RFP) larva; anterior to the top, lateral to the left. Playback speed

of the movie is 6 fps. Scale bar = 10 µm.

Supplementary Movie 3 | Olfactory rods labelled with Lifeact-mRFPruby in the

olfactory epithelia of live zebrafish larvae oscillate. Fast-capture time series

light-sheet imaging (50.04 fps) of a 5 dpf Tg(sox10:Lifeact-mRFPruby) larval

olfactory pit; anterior to the top left, lateral to the top right. Beating olfactory cilia

are visible in brightfield (grayscale), and oscillating olfactory rods are labelled by

Lifeact-mRFPruby (magenta). Playback speed of the movie is 7 fps. Scale

bar = 20 µm.
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