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Connected Search for a Lazy Robber

Isolde Adler∗ Christophe Paul†‡§ Dimitrios M. Thilikos†‡§¶

Abstract

The node search game against a lazy (or, respectively, agile) invisible robber has been introduced
as a search-game analogue of the treewidth parameter (and, respectively, pathwidth). In the
connected variants of the above games, we additionally demand that, at each moment of the
search, the clean territories are connected. The connected search game against an agile and
invisible robber has been extensively examined. The monotone variant (where we demand
that the clean territories are progressively increasing) of this game, corresponds to the graph
parameter of connected pathwidth. It is known that the price of connectivtiy to search for an
agile robber is bounded by 2, that is the connected pathwidth of a graph is at most twice (plus
some constant) its pathwidth. We investigate the study of the connected search game against
a lazy robber. A lazy robber moves only when the cops’ strategy threatens the vertex that he
currently occupies. We introduce two alternative graph-theoretical formulations of this game,
one in terms of connected tree decompositions and one in terms of (connected) layouts, leading
to the graph parameter of connected treewidth. We observe that connected treewidth parameter
is closed under contractions and prove that for every k ≥ 2, the set of contraction obstructions of
the class of graphs with connected treewidth at most k is infinite. Our main result is a complete
characterization of the obstruction set for k = 2. We also show that, in contrast to the agile
robber game, the price of connectivity is unbounded.

Keywords: Graph Searching, Cops and Robbers Game, Connected Treewidth, Contraction Ob-
structions, Price of Connectivity.

1 Introduction

In a graph search game the competing parts are a group of cops and a robber that move in a graph
while having opposite goals. The goal of the cops is to capture the robber, while the robber is trying
to avoid capture. Typically, the robber is assumed to be omniscient, implying that he/she always
makes the best possible move towards avoiding capture. Numerous and quite diverse variants of
this game can be defined, depending on the rules that determine how the cops and the robber can
move and what the definition of “capture” is. A search strategy represents a series of moves that
eventually yields the capture of the robber. Given the rules of the game, the cost of a search strategy
is the maximum number of cops simultaneously present on the graph during the search. Then the
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corresponding search number of the graph is defined as the minimum cost of a search strategy. The
study of graph searching parameters is an active field of graph theory as several important graph
parameters have their search-game analogues that provides useful insights. For related surveys,
see [2, 3, 10,25,29,46].

Node-search against an invisible searcher. One of the most classic graph-search games is the
one of node-search introduced by Kirousis and Papadimitriou [38,39]. In this version, both the cops
and the robber occupy vertices of the graph and they play in turn. At the first round the robber
selects a vertex to occupy, and then, at his turn, he moves on any vertex that can be reached from
his position by a path whose vertices are not occupied by cops. The capture of the robber happens
when some cop and the robber simultaneously appear at the same vertex, meaning that the robber
cannot escape along a free path. The search number of a graph is the minimum number of cops
required to guarantee the capture of the robber.

In this paper we consider the variant of node-search where the robber is invisible, that is, while
a search strategy is being deployed, the cops do not have any knowledge of robber’s actual position.
This implies that the search strategy should provide, before the beginning of the game, the full
sequence of cops’ moves that will result to the capture of the robber. Thereby a search strategy is
independent of the reaction of the robber. As in this paper we exclusively deal with variants of the
node-search game against an invisible robber we simply use the term “search game" to refer to this
setting.

Several variants of the search game arise, depending on the rules imposed to the search strategy
and to the moves of the robber. We outline below the most classic ones. The formal definitions are
given in Section 2.

Monotonicity. A common feature of a search strategy is monotonicity: we say that a search
strategy is monotone if it does not permit the robber to move to vertices that have already been
occupied by cops. In other words, a monotone strategy should guarantee that, the “clean” territory
(i.e,. the set of vertices from which the robber has been expelled), is gradually increasing (and,
certainly, finally occupy the whole graph). The monotone search number is defined as the minimum
number of cops required to capture the robber by using a monotone search strategy. We say that a
search game is monotone when the corresponding search number is equal to the non-monotone one,
i.e,. monotone strategies are as good as the non-monotone ones.

Agility and laziness. Different variants of the game arise depending on the mobility rules of the
robber, e.g. a robber can be lazy or agile. A lazy robber residing on vertex v may move only if the
next move of the search strategy is a placement of a cop on v. In other words, the lazy robber stays
put, unless his position is threatened by the cop’s strategy. On the other hand, an agile robber
may always move no matter what the next move of the search strategy is. The distinction between
a lazy and an agile robber has been introduced for the first time in [16]. Parameterizations of the
game that oscillate between the lazy and agile variants have been studied in [48] (see also [27]).

There is an extensive amount of research on the four versions of the search game that are gen-
erated by the above variations. The reason for this is that they correspond to well-studied graph
theoretical parameters. The monotone search number of a graph G against an agile (resp. lazy)
robber is equal to the pathwidth (resp. treewidth) of G plus one [16, 36, 38, 39, 44, 51]. Also, it was
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proven that the non-monotone versions of the above variants are equal to their monotone counter-
parts [8,9,28,41,51]. This induced a clear landscape on how to connect treewidth and pathwidth to
graph searching and established the intuition that the qualitative difference between the two param-
eters is expressed by the agility or the laziness of the robber. Moreover, the monotonicity proofs were
based on min-max theorems and alternative definitions of the corresponding parameters [9, 28,51].

The connectivity issue. All the above variants are assuming that there is some place “somewhere
outside” the graph where the cops go when they are removed from the graph and they stay there
in order to readily be placed to some vertex, as required by the search strategy. For this reason,
such search games have also been called “helicopter search games” (as suggested in [51]). This is not
always realistic, as the search may take place in a building or in a system of caves where the cops
start their persecution from some particular vertex (the entry point) and they do not have the ability
of “teleporting themselves” to non-neighboring vertices. This natural restriction was considered and
studied for the first time in [5]. Α search strategy is connected when at each moment of the search
the clean territories induce a connected subgraph1. This inspired the question on the “price of
connectivity”, asking whether there is some universal constant c such that the connected search
number is no more than c times its non-connected counterpart. In its original form, this question
was made in [5] for the agile variant and, in the same paper, it was answered affirmatively for the
case of trees (see also [6, 22–24, 26, 30, 45] for related results). Later, it was proved for all graphs
by Dariusz Dereniowski in [17]. In particular, in [18], a connected counterpart of pathwidth was
suggested, called connected pathwidth, that is equivalent to the monotone connected agile search
number. Then it was proved that this parameter is always upper bounded by twice the pathwidth
plus one.

Much less is known about the non-monotone variants of the connected search game. The mono-
tonicity question for the connected search against an agile robber was resolved negatively in [52].
Analogous negative results have been derived in the case where the fugitive is visible and agile [31]
(which is equivalent to the invisible and lazy case).

Connected treewidth. This paper initiates the study of the monotone connected search against
a lazy robber. Our first step is to provide two alternative definitions of this parameter: one in terms
of tree decompositions and one in terms of layouts. Before we proceed, we need to give the formal
definition of tree decompositions and treewidth.

A tree-decomposition of a graph G = (V,E) is a pair (T,F) where T = (VT , ET ) is a tree and
F = {Xt ⊆ V | t ∈ VT } such that

1.
⋃

t∈VT
Xt = V,

2. for every edge e ∈ E, there exists a node t ∈ T such that e ⊆ Xt, and

3. for every vertex x ∈ V, the set {t ∈ VT | x ∈ Xt} induces a connected subgraph of T.

We refer to VT as the set of nodes of T and the sets of F as the bags of (T,F). The width of a
tree-decomposition (T,F) is width(T,F) = max

{

|X| − 1 | X ∈ F
}

and the tree-width of a graph

1Interestingly, the motivating story of one of the foundational articles on graph searching, authored by Torrence
Parsons [47] in 1976, was inspired by an earlier article of Breisch in Southwestern Cavers Journal [13] proposing a
“speleotopological” approach for the problem of finding an explorer lost in a system of dark caves. It is worth to
stress that that setting neglected the natural connectivity requirement.
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G is

tw(G) = min
{

width(T,F) | (T,F) is a tree-decomposition ofG
}

. (1)

A tree-decomposition (T,F) is connected if the following fourth condition is satisfied:

4. there is a node r ∈ VT such that for each subtree T ′ = (VT ′ , ET ′) of T that contains r, the set
⋃

t∈VT ′
Xt is inducing a connected subgraph of G.

Figure 1 illustrates the difference between connected and non-connected tree-decomposition.
If, in the above definitions, T is a path instead of a tree, then we define the notion of a path-
decomposition and the parameter of pathwidth which we denote by pw(G) accordingly.

Observe that none of the tree-decompositions of a disconnected graph is connected. So for now
on, we only consider connected graphs. The connected treewidth of a (connected) graph is defined
over the set of connected tree-decompositions as follows:

ctw(G) = min
{

width(T,F) | (T,F) is a connected tree-decomposition ofG
}

. (2)

1

2

3

a

b

b′

a′

c

c′

d

d′

e

e′

f

f ′

Figure 1: A series-parallel graph G with tw(G) = 2 and ctw(G) = 3. A connected tree-decomposition
of minimum width is given the path-decomposition (P,F) where V (P ) = {x1, . . . x8} and F =
{X1 = {1, a, b, 2}, X2 = {1, a′, b′, 2}, X3 = {1, 2, c, d}, X4 = {1, 2, d, 3}, X5 = {1, 2, 3, c′}, X6 =
{1, 3, c′, d′}, X7 = {1, 3, e, f}, X8 = {1, 3, e′, f ′}}, the root node being x1. The fact that ctw(G) ≥ 3
follows as G can be contracted to the graphW1 in Figure 8 that is one of the contraction obstructions
that we find in this paper.

In the case where T is a path and r is one of its endpoints, we obtain the corresponding notion of
a connected path-decomposition and the parameter connected pathwidth which we denote by cpw(G)
(this is the same as the connected pathwidth given in [18]).

Our first result is that connected treewidth is equal to the monotone, connected, and lazy search
number minus one. Our proof (see Section 3) comes together with a second equivalent definition,
given in terms of layouts. A layout is connected if every prefix induces a connected subgraph. If we
apply the standard layout-based definition of treewidth, given in [16] (see also [14]) to connected
layouts, then we again obtain the monotone, connected, and lazy search number minus one. We
stress that both equivalences constitute natural adaptations of known definitions of treewidth to the
connected setting. They also provide a useful combinatorial background for further investigations.

Alternative notions of connected treewidth. We now make a short deviation as this is not
the first time a “connected” counterpart of treewidth is proposed. We give two alternative definitions
below.
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• In [30], Fraigniaud and Nisse consider tree-decompositions with the following additional con-
nectivity property: for every edge e of the tree-decomposition (T,F), if T1 and T2 are two
connected components created after removing e from T, then, for every i ∈ {1, 2}, the union
of the bags of Ti induce a connected subgraph of G. The main result of [30] was that if we
define connected treewidth under this condition, then the resulting parameter is again equal
to treewidth. Interestingly, this equality breaks if we transfer this definition to pathwidth.

To see this, take the graph K
(2)
1,3 in Figure 2 and observe that pw(K

(2)
1,3) = 2 while, under the

connectivity restriction of [30], its connected pathwidth is 3.

Figure 2: The graph K
(2)
1,3 .

• Another way to define connected treewidth is to consider tree decompositions where for every
t ∈ VT , the bag Xt induces a connected subgraph of G. Let us call the variant bag-connected
treewidth. This definition was introduced independently, in different contexts, by Jégou and
Terrioux in [33] and by Diestel and Müller in [20]. The definition of bag-connected treewidth
is quite natural and defines a different parameter that has been the subject of several investi-
gations both in theory and in applications.

The results in [33] used bag-connected tree-decompositions in the context of solving Constraint
Satisfaction Problems (CSPs) and they show experimentally that this leads to significant
improvements in the resolution of CSPs by decomposition methods. On the other hand, [20]
initiated a combinatorial study of bag-connected treewidth and revealed interesting relations
with graph-geometric parameters such as the geodesic cycle number, graph hyperbolicity (see
also [32]).

It follows from the definitions that, for connected graphs, the connected treewidth is sand-
wiched between treewidth and bag-connected treewidth. Moreover the three parameters can
be different. Observe that the bag-connected treewidth of the graph G of Figure 1 is 4 while
as noticed before tw(G) = 2, ctw(G) = 3.

Contraction obstructions. We say that a graph H is a contraction of G, denoted by H � G, if
a graph isomorphic to H can be obtained from G by a series of edge contractions (see definition in
Subsection 2.1). We also say thatH is a minor of G, denoted byH ≤ G, ifH is a contraction of some
subgraph ofG.We say that a graph class G is closed under minors (contractions, respectively) if every
minor (contraction, respectively) of a graph in G belongs to G. We also define the minor obstructions
(contraction obstructions, respectively) of G, denoted by obs≤(G) (obs�(G), respectively), as the
set of all minor (contraction, respectively) minimal graphs that do not belong to G. It is easy to
see that when G is minor (contraction, respectively) closed, then obs≤(G) (obs�(G), respectively)
provides a complete characterization of a minor closed class G: a graph belongs to G if and only
if it excludes all graphs in obs≤(G) (respectively obs�(G)) as minors (contractions, respectively).
Moreover, in the case of the minor relation, we know from the theorem of Roberston and Seymour
[49] (that was the main outcome of the Graph Minors series) that the set obs≤(G) is always finite
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and therefore the aforementioned characterization provides a finite characterization of any minor
closed class in terms or forbidden minors. To identify (or even to compute) obs≤(G) for different
instantiations of minor closed graph classes is an interesting topic in graph theory (see [1,42]). For
instance, if Tk is the class of graphs with treewidth at most k, then obs≤(Tk) is known for every
k ≤ 3 [4] and remains unknown for k > 3 (see [50] for some partial results for the case where
k = 4). Similarly, if Pk is the class of graphs with pathwidth at most k, then obs≤(Pk) is known
for k ≤ 2 [37] and remains unknown for k > 2. Bounds for the size of the graphs in obs≤(Tk) and
obs≤(Pk) have been proved in [40].

Unfortunately, the landscape is more obscure for the contraction relation as contraction ob-
struction sets are not finite in general. Contraction obstruction sets are only known for a few
contraction-closed classes. For instance, the contraction obstruction set for planar graphs is de-
scribed in [15]. A more elaborate example of a finite contraction obstruction set was identified
in [7], containing 177 graphs, for the class of graphs whose connected mixed search number (for
an agile and invisible robber) is at most 2. A class characterized by an infinite set of contraction
obstructions is discussed in [34].

{y, x, u}

{y, x′
, u}

{y, u′
, z}

{y, x′′′
, u

′}{y, x′′
, u

′}{z, v, 3}

{z, 1, 3} {z, 1′, 3}

{1, 3, 2} {1′, 2′′, 3}

{y, u, z}

{1, 2′′′, 3}{1, 3, 2′}

v z

1
2

2
′

2
′′′

2
′′

3

u

u
′

x

x
′′

x
′′′

yx
′

1
′

Figure 3: A graph G ∈ T c
2 such G− uv /∈ T c

2 and G− v /∈ T c
2 . The fact that G ∈ T c

2 is certified by
the above connected tree decomposition where the bag corresponding to the root is {y, x, u}. We
depict by bold edges in G the connected subgraph induced by the vertices in the bags of the path
(also depicted in bold) between the root bag and the bag {z, 1, 3}. The fact that G− uv /∈ T c

2 and
G − v /∈ T c

2 follows from the fact that G − v /∈ T c
2 is a contraction of G − uv /∈ T c

2 and the fact
that G− v /∈ T c

2 is one of the contraction obstructions that we find in this paper (in particular, the

graph 2×Y
(2)
x – see Figure 7 for the definition of Y

(2)
x and Subsection 2.1 for the definition of ×).

Let k ∈ N. By T c
k , we denote the class of all (connected) graphs with connected treewidth at

most k. We observe that T c
2 is not minor closed. Indeed, removing a vertex or an edge (as illustrated

by the graph G of Figure 3) may increase the connected treewidth. Therefore, no characterization
via minor obstruction exists. However, T c

k is contraction-closed, for every k, and it is a challenging
problem to identify obs�(T

c
k ) for distinct values of k, especially since we have no guarantee that this

set is finite. Moreover, in case obs�(T
c
k ) is infinite, we are essentially looking for a finite description

of this set.
To warm up, it is easy to observe that obs�(T

c
1 ) = {K3} where K3 is the complete graph on

3 vertices. As ctw(K3) = 2, every graph that can be contracted to K3 has connected treewidth at
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least 2, while if G is a tree, then it has an obvious tree decomposition of width 2, that is also a
connected one. The identification of obs�(T

c
2 ) is a much harder problem. The main result of this

paper is a proof that obs�(T
c
2 ) is an infinite set that we completely describe in Section 5. As a

preliminary part of our results we prove several properties for the contraction obstructions of every
T c
k that are later used to identify obs�(T

c
2 ). Additionally to our results we give for every k ≥ 2 an

infinite subset of obs�(T
c
k ) consisting of graphs of treewidth 2 (Section 6). Consequently, the price

of connectivity on treewidth is unbounded and this makes a sharp contrast with the corresponding
result on pathwidth. To conclude, for monotone search, the price of connectivity is bounded when
we are searching for an agile robber while this price goes to infinity when the robber is lazy.

2 Formal definitions of the search game and its variants

2.1 Preliminaries

Numbers and sequences. All numbers in this paper are integers. Given a number n, we define
[n] = {1, . . . , n} and, given two numbers n,m where n ≤ m, we define [n,m] = {n, . . . ,m}. Given
a set U and a collection U of subsets of U, we set

⋃

U = ∪U ′∈UU
′. We also denote by 2U the set of

all subsets of U.
Given a finite set U, a sequence σ over U is a bijection σ : U → [|U |]. For x ∈ U, σ(x) is the

position of x in σ. For two elements x and y ∈ U, we write x <σ y if σ(x) < σ(y). To simplify the
notation we define σi = σ−1(i). We also define the sets σ<i = {x ∈ U | σ(x) < i}. The subsets σ6i,
σ>i and σ>i are defined similarly and, for i, j ∈ [|U |], we denote σi,j = σ≥i ∩ σ≤j . Alternatively, we
also denote a sequence by σ = 〈σ1, . . . , σn〉. We define the concatenation of two sequences σ and
σ′ over the sets U and U ′ respectively, as the sequence σ ⊙ σ′ over U ∪ U ′ such that for x ∈ U,
(σ ⊙ σ′)(x) = σ(x) and for y, z ∈ U ′ \ U, y <σ⊙σ′ z if and only if y <σ′ z.

Let v ∈ U be such that σ(v) = i. Then we denote by σ \ v the sequence σ<i ⊙ σ>i. If S ⊆ U , we
define σ \ S as the sequence σ′ that is recursively defined as follows: If |S| = 1 and S = {v}, then
σ′ = σ \ v. If |S| > 2 and v ∈ S, then σ′ = (σ \ (S \ {v})) \ v. We finally define σ∩S as the sequence
σ \ (U \ S).

Graphs. We consider undirected, simple graphs. Given a graph G, we let V (G) and E(G) denote
its vertex and edge set, respectively. We set |G| = |V (G)|. We use the shortcut xy for an edge {x, y}
of G, agreeing that xy and yx denote the same edge. Let S ⊆ V (G) be a vertex subset of G. Then
NG(S) is the set of vertices of G that do not belong to S and are adjacent to some vertex in S. The
subgraph induced by S, denoted G[S], has vertex set S and edge set {yx ∈ E | x, y ∈ S}. We say
that S is connected in G if G[S] is connected.

A vertex subset S ⊆ V (G) is a separator if G\S= G[V \ S] contains more connected components
than G. A connected component H of G\S is a full S-component of G if NG(V (H)) = S. We denote
by C(G,S) the set of all full S-components of G. We denote by F(G,S) the set containing every
induced subgraph G[S∪C] with C ∈ C(G,S). A separator S is a minimal separator if |F(G,S)| ≥ 2.
A minimal separator S is a minimal 〈x, y〉-separator if x and y belong to different full S-components.
A vertex x ∈ V (G) is a cut-vertex if {x} is a separator. The set of cut-vertices of a graph G is
denoted C(G). A graph G is biconnected if it is connected and C(G) = ∅. A biconnected component
of a graph is any biconnected subgraph of G that is vertex-maximal. A bridge in a graph G is an
edge whose removal increases the number of connected components. A separating edge is an edge
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xy ∈ E(G) such that {x, y} is a minimal separator of G. Observe that a bridge is not a separating
edge.

Given a tree T and x, y ∈ V (T ), we denote by xTy the unique path in T that has endpoints x
and y.

Rooted graphs. Let q be a non-negative integer. A q-rooted graph is a pair G = (G,R) where
G is a graph and R is a sequence of q pairwise distinct vertices of G. We say that G is rooted on
R and we call G the underlying graph of G. We let V (R) denote the set of roots of G. We also
set |R| = |V (R)|. A rooted graph is any q-rooted graph, where q ≥ 0. The rooted graph (G,R) is
connected if either G is connected or if every connected component of G contains at least one vertex
from V (R). It is biconnected if the graph obtained from G by adding an edge between every pair
of root vertices (if such an edge does not already exist) is biconnected. The gluing of two q-rooted
graphs (G1,R1) and (G2,R2) results in the graph (G1,R1) ⊕ (G2,R2) obtained by identifying the
vertex R1(i) with R2(i) for every i ∈ [q]. Given a collection K = {K1, . . . ,Kq} of rooted graphs, all
rooted on the same tuple R, we recursively define their union, denoted as ⊕K as the rooted graph
(K1 ⊕ K′,R) where K′ is the union of the rooted graphs in K \ {K1}. Observe that the gluing
operation yields a graph while the union operation yield a rooted graph. If K is a rooted graph and
k ≥ 2 is an integer, then we denote k×K = ⊕K where K is a set of k disjoint copies of K. Given a
rooted graph G = (G,R) and some x ∈ V (R), we define G[x] = (G, 〈x〉), i.e,. we reroot G to some
singleton of its root. Also, we define G+ = (G+,R) where G+ is the graph obtained from G if we
add all possible edges between the vertices in V (R).

We treat every graph G as the 0-rooted graph (G, 〈〉). For simplicity we denote each 0-rooted
graph (G, 〈〉) by its underlying graph G. We say that two q-rooted graphs (G1,R1) and (G2,R2)
are isomorphic if there is an isomorphism ψ from G1 to G2 that sends each vertex of V (R1) to the
equally indexed vertex of V (R2).

Layouts of rooted graphs. A layout σ of a rooted graph G = (G,R) is a sequence over V (G)
such that for every 1 ≤ j ≤ |R|, σ−1(j) ∈ R. We say that σ is connected if, for every i ∈ [|R|, |G|],
every connected component of (G[σ≤i],R) contains a root vertex of R. We denote by L(G) the set
of all layouts of G and by Lc(G) the set of all connected layouts of G.

2.2 Node search

We now give the formal definition of the node search game and its variants.

Search strategies. Given a graph G, a search strategy on G is a sequence S = 〈S1, . . . , Sr〉, with
r ∈ N, over the set of subsets of vertices of V (G) where

• |S1| = 1.

• For all i ∈ [r − 1], the symmetric difference of Si and Si+1 has cardinality one.

Notice that a search strategy S indicates a sequence of moves of cops on G. Such a move may be
either a placement of a cop to a vertex or the removal of a cop from a vertex. To see this, consider
consecutive elements Si−1 and Si of S for some i ∈ [r]. If Si \ Si−1 = {v}, then the corresponding
move is the placement of a cop on vertex v. If Si−1 \ Si = {v}, then the corresponding move is the
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removal of a cop from vertex v. The cost of a search strategy S is max{|Si| | i ∈ [r]} and is denoted
by costcost(S).

Let S = 〈S1, . . . , Sr〉 be a search strategy on G. We define the sequence of robber spaces of an

agile robber with respect to S as the sequence F
(a)
S = 〈F1, . . . , Fr〉 where

• F1 = V (G) \ S1.

• For i ∈ [2, r], let Fi = (Fi−1 − Si) ∪ {v ∈ V − Si : there is a path from a vertex u ∈ Fi−1 to v
whose vertices except u belong to V − Si}.

Similarly, we define the sequence of robber spaces of a lazy robber with respect to S as the

sequence F
(l)
S = 〈F1, . . . , Fr〉 where

• F1 = V (G)\S1.

• For i ∈ [2, r], let Fi = (Fi−1 − Si) ∪ {v ∈ V − Si : there is a path from a vertex u ∈
Fi−1 ∩ (Si − Si−1) to v whose vertices except u belong to V − Si}.

Properties of search strategies. Given the type t ∈ {a, l} of the robber (agile or lazy) and a

search strategy S on G, where F
(t)
S = 〈F1, . . . , Fr〉, we define by F̄

(t)
S = 〈F̄1, . . . , F̄r〉 as the set of

clean territories, where F̄i = V (G) \Fi, i ∈ [1, r]. Notice that for every i ∈ [2, r], |F̄i \ F̄i−1| ≤ 1. We
say that the search strategy S is

• complete, if Fr = ∅ (or, alternatively F̄r = V (G)),

• connected, if for each i ∈ [r], F̄i is connected in G, and

• monotone, if for each i ∈ [r − 1], Fi+1 ⊆ Fi.

Observe that connected strategies only exist if the graph is connected. We define

ans(G) = min{cost(S) | S is a complete search strategy on G against an agile robber} and

lns(G) = min{cost(S) | S is a complete search strategy on G against a lazy robber}.

If in the above definitions we consider only monotone strategies, then we obtain the parameters
mans and mlns. In the context of connected graphs, restricting to connected searches yields to the
definition of the cans, clns, mcans and mclns parameters.

Search strategies of rooted graphs. A search strategy on a rooted graph G = (G,R) is defined
as a search strategy on G with the difference that S1 = V (R) (i.e,. the cops first occupy the root

vertices). The set of robber space and clean territories (F
(t)
S and F̄

(t)
S , for t ∈ {a, l}) is defined as in

the case of unrooted graphs with the difference that now F1 = V (R). The notions of monotonicity,
connectivity, and completeness of a search strategy are defined as in the case of unrooted graphs
(where connectivity is interpreted as connectivity of rooted graph).
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2.3 Vertex separations.

Supporting sets. Let σ be a layout of G on n vertices. For every i ∈ [n], we define the tree-
supporting set of position i as

S(t)
σ (i) =

{

x ∈ V (G) | σ(x) < i and there exists a (x, σi)-path whose

internal vertices belong to σ>i}

We also define the path-supporting set of position i as

S(p)
σ (i) = NG(σ≥i).

Notice that S
(p)
σ (i) contains all vertices in σ<i with a neighbour in σ>i and that S

(t)
σ (i) ⊆ S

(p)
σ (i).

σ2 σ3 σ4 σ5 σ6 σ7σ1 σ8 σ9 σ10 σ11 σ12

Figure 4: A connected layout σ of a graph G. Notice that Sp
σ(8) = {σ1, σ4, σ5, σ6} while St

σ(8) =
{σ6, σ5}. Also, pcost(G, σ) = 4 and tcost(G, σ) = 3.

We define tcost(G, σ) = max{
∣

∣S
(t)
σ (i)

∣

∣ | i ∈ [n]} and pcost(G, σ) = max{
∣

∣S
(p)
σ (i)

∣

∣ | i ∈ [n]} (see
Figure 4 for an example). We also define the tree vertex separation number of G and the path vertex
separation number of G as

tvs(G) = min
{

tcost(G, σ) | σ ∈ L(G)
}

and (3)

pvs(G) = min
{

pcost(G, σ) | σ ∈ L(G)
}

(4)

respectively2. It is known that, for every graph G, tvs(G) = mlns(G) = lns(G) = tw(G) [16,51] and
pvs(G) = mans(G) = ans(G) = pw(G) [9, 36,38,39,41,44].

In the context of connected graphs, if we restrict in (3) and (4) the set of layouts to be con-
nected (i.e,. we replace L(G) by Lc(G)), then the defined parameters are the connected tree vertex
separation number of G and the connected path vertex separation number of G denoted ctvs(G) and
cpvs(G) respectively.

All the definitions of this subsection are extended to rooted graphs accordingly to the definition
of rooted layout and connectivity of rooted graphs. For this, we replace G by (G,R) and we define
tvs(G,R), pvs(G,R), ctvs(G,R), and cpvs(G,R).

Contractions. Let G be a graph. Contracting an edge e = xy ∈ E(G) yields the graph G/e
obtained by removing x and y from G, introduce a new vertex and make it adjacent with all
vertices in NG({x, y}) \ {x, y}. Notice that contraction of an edge does not create multiple edges
and the resulting graph remains simple. If e is incident to a degree-2 vertex x, then contracting e
is equivalent to dissolving x, that is removing x from the vertex set and adding an edge between

2In the literature [36] the path vertex separation number is known as the «vertex separation number». This
alternative term is adopted in this paper in order to make clear the distinction with the concept of «tree separation
number».
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its two neighbours. If F is a subset of edges of G, then G/F is the graph obtained by contracting
the edges of F. Observe that the order of the contraction does not matter. We present below an
extension of contraction to rooted graphs.

Given two q-rooted graphs (H,T) and (G,R), where T = 〈t1, . . . , tq〉 and R = 〈r1, . . . , rq〉,
and a surjection ρ : V (G) → V (H), we say that (H,T) is a ρ-contraction of (G,R), denoted by
(H,T) �ρ (G,R), if

• ∀x ∈ V (H), the subgraph G[ρ−1(x)] is connected.

• ∀x, y ∈ V (H), we have xy ∈ E(H) iff the subgraph G[ρ−1(x) ∪ ρ−1(y)] is connected.

• ∀i ∈ [q], ri ∈ ρ−1(ti).

We say that (H,T) is a contraction of (G,R), denoted by (H,T) � (G,R), if (H,T) �ρ (G,R)
for some surjection ρ : V (G) → V (H). We say that a graph G1 is a contraction of a graph G2 if
(G1,∅) � (G2,∅). Notice that (H,T) � (G,R) holds if a rooted graph isomorphic to (H,T) can be
obtained after a series of edge contractions on G, under the constraint that no path between two
vertices of V (R) can be contracted to a single vertex. We say that (H,T) is a proper contraction
of (G,R) if (H,T) � (G,R) and (H,T) is not isomorphic to (G,R). For an edge e incident to at
least one non-root vertex, we let G/e denote the rooted graph obtained by contracting the edge e.
Similarly, if F is a set of edges not containing the edge set of a path between to root vertices, then
G/F is the rooted graph resulting from the contraction of the edges in F. Observe that if the vertex
v ∈ V (H) results from the contraction of an edge incident to a root vertex of R, then v is a root
vertex of T.

Let k ≥ 0. Given a set C of k-rooted graphs and a k-rooted graph G, we say that G is C-free if
for every H ∈ C, H 6� G. If C = {H} we say that G is H-free to denote that G is {H}-free.

Lemma 1. Let (G1,R1) and (G2,R2) be two q-rooted graphs such that (G1,R1) � (G2,R2). Then
ctvs(G1,R1) ≤ ctvs(G2,R2).

Proof. Let n be the number of vertices of G2. Let e = xy be an edge of G2 such that x /∈ V (R2)
or y /∈ V (R2). We denote (G′,R) = G2/e. Let us consider an arbitrary connected layout σ ∈
Lc(G2,R2). Let ve be the vertex resulting from the contraction of e and let i = σ(x) and j = σ(y),
where i < j. We construct the following layout σ′ of G′: for h < i, set σ′h = σh; set σ′i = ve; for
i < h < j, set σ′h = σh; for j < h, set σ′h−1 = σh. As contracting an edge does not disconnect a
graph, the fact that σ is connected implies that every subgraph induced by a prefix of σ′ is connected
and henceforth, σ′ ∈ Lc(G′,R)

We claim that tcost(G′,R, σ′) 6 tcost(G,R, σ). To see this, observe that for 0 < h 6 i, S
(t)
σ (h) =

S
(t)
σ′ (h). For i < h < j, if ve ∈ S

(t)
σ′ (h), then x ∈ S

(t)
σ (h). As S

(t)
σ′ (h) \ {ve} ⊆ S

(t)
σ (h) \ {x}, it follows

that |S
(t)
σ′ (h)| ≤ |S

(t)
σ (h)|. Similarily, for j ≤ h ≤ n− 1, if ve ∈ S

(t)
σ′ (h), then either x ∈ S

(t)
σ (h+1) or

y ∈ S
(t)
σ (h+ 1). As S

(t)
σ (h+ 1) \ {x, y} = S

(t)
σ′ (h) \ {ve}, we have that |S

(t)
σ′ (h)| 6 |S

(t)
σ (h+ 1)|.

3 Equivalence of parameters

In this section, we prove the following theorem.

Theorem 1. For every connected graph G, it holds that ctw(G) = ctvs(G) = mclns(G)− 1.
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The proof is a consequence of the next three lemmata.

Lemma 2. Let G be a connected graph. Then ctvs(G) + 1 ≤ mclns(G).

Proof. Let n be the number of vertices of G. Let S = 〈S1, . . . , Sr〉 be a connected, monotone, and
complete strategy against a lazy robber certifying that mclns(G) ≤ k + 1. We associate with S the
layout σ of G defined as the ordering in which the vertices are first occupied by a cop. More formally,

consider the sequence F
(l)
S = 〈F1, . . . , Fr〉 of rober spaces. We let ji for i ∈ [n] be the sequence of

indices such that j1 = 1 and for i > 1, ji ∈ [r] is the i-th index such that |Fji−1 \ Fji | = 1. As S is
complete and monotone, the sequence of indexes ji for i ∈ [n], is well-defined. Then σi, for i ∈ [n],
is the unique vertex in Fji−1 \ Fji = Sji \ Sji−1. Observe that, for every i ∈ [n], as S is monotone,
F̄ji = σ6i, and since S is connected, F̄ji = σ≤i is connected in G. This implies that every prefix of
σ induces a connected subgraph of G, and thereby σ is a connected layout of G.

We now prove that tcost(G, σ) ≤ k or, equivalently, that, for every i ∈ [n], the tree-supporting

set S
(t)
σ (i) has size at most k. By definition of a tree-supporting set, S

(t)
σ (i) ⊆ σ<i and for every

y ∈ S
(t)
σ (i), G contains a (σi, y)-path whose internal vertices belong to σ>i = Fji . It follows that

vertices of S
(t)
σ (i) have to be occupied by a cop before a new cop is placed on σi. This implies

that S
(t)
σ (i) ⊆ Sji−1. As |Sji | = |Sji−1| + 1 and |Sji | ≤ k + 1, we have that |Sji−1| ≤ k, therefore

|S
(t)
σ (i)| ≤ k, as required.

Lemma 3. For every connected graph G, ctw(G) ≤ ctvs(G).

Proof. Let n be the number of vertices of G. Suppose without loss of generality that n > 1. Let

σ ∈ Lc(G) be a connected layout such that tcost(G, σ) ≤ k. For i ∈ [n], we set Bi = S
(t)
σ (i) ∪ {σi}.

Consider the graph Ĝ obtained from G by completing, for every i ∈ [n], Bi into a clique. Observe
that by construction of Ĝ, σ is a connected layout of Ĝ such that tcost(Ĝ, σ) ≤ k. For i ∈ [n], we
set Ĝi = Ĝ[σ≤i] and Gi = G[σ≤i].

To prove the statement, we show by induction on i ∈ [n] that Ĝi has a tree decomposition
(Ti,Fi) of width at most k that is also a connected tree-decomposition of Gi. We assume that for
some i ∈ [n− 1], (Ti,Fi) is a tree-decomposition of Ĝi such that:

(1) V (Ti) = [i],

(2) Fi = {Bj | j ∈ [i]},

(3) ∀j ∈ [i], σj ∈ Bj

(4) for every subtree T ′ of Ti containing node 1, ∪t∈VT ′
Xt induces a connected subgraph of G.

Clearly by construction, if Conditions (1)–(4) hold, then width(Ti,Fi) ≤ k. For the induction base,
the four conditions trivially hold for i = 1, by setting T1 = ({1}, ∅), and F1 = {{σ1}}.

Notice that Bi+1 \ {σi+1} ⊆ σ≤i and that Bi+1 induces a clique in Ĝi+1. This implies that

S
(t)
σ (i) = Bi+1 \ {σi+1} induces a clique in Ĝi. So Ti contains a node h ∈ [i] such that S

(t)
σ (i) ⊆ Bh

(see e.g,. Lemma 4 in [12]). We construct a tree-decomposition (Ti+1,Fi+1) of Ĝi+1 as follows: we
set V (Ti+1) = V (Ti) ∪ {i+ 1} = [i+ 1], E(Ti+1) = E(Ti) ∪ {{h, i+ 1}} and Fi = Fi−1 ∪ {Bi+1}. It
is easy to verify that (Ti+1,Fi+1) is a tree-decomposition of Ĝi+1 that satisfies Conditions (1)–(3)
when we replace i by i+ 1.
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Let us now prove that (Ti+1,Fi+1) satisfies (4). For every j ∈ [j + 1], let Pj denote the
unique path in Ti+1 between nodes 1 and j and set V j = ∪t∈VPj

Xt. Observe that by the induction

hypothesis, if V h induces a connected subgraph of G, then for every subtree T ′ of Ti+1 containing
node 1, ∪t∈VT ′

Xt induces a connected subgraph of G. To see this, recall that σ is a connected layout

of G and therefore σi+1 has some neighbour, say x, that belongs to σ≤i. Clearly x ∈ S
(t)
σ (i) ⊆ Bh.

As Ph is a subtree of Ti, by induction hypothesis, V h induces a connected subgraph of G. Since
Bj+1 = Bh ∪ {σj+1}, it follows that V i+1 induces a connected subgraph of G.

Lemma 4. For every connected graph G, mclns(G) ≤ ctw(G) + 1.

Proof. Let (T,F) with F = {Xt | T ∈ V (T )} be a connected tree-decomposition of G such that
width(T,F) ≤ k. We set q = |V (T )|. As a connected-tree decomposition T has a root node r such
that

∀ subtree T ′ of T containing r, G[∪{Xj | j ∈ V (T ′)}] is connected. (5)

Let us consider a connected layout σ of the tree T where σ1 = r. For every i ∈ [q], we set li = |Xi|,
Ti = T [σ≤i], Vi =

⋃

j∈[i]Xσi . Observe that because of (5), for every i ∈ [q], the subgraph Gi = G[Vi]
is connected.

We define the following three operations that generate a sequence of sets:

• remove(Y, Y ′), defined for two subsets Y and Y ′ of vertices such that Y ′ ⊆ Y with Y \ Y ′ =
{y1, . . . yq}, returns the sequence of subsets 〈Y \ {y1}, Y \ {y1, y2}, . . . , Y

′〉;

• re-position(Y ′, Y ), defined for two subsets Y and Y ′ of vertices such that Y ′ ⊆ Y with Y \Y ′ =
{y1, . . . yq}, returns the sequence of subsets 〈Y ′ ∪ {y1}, Y

′ ∪ {y1, y2}, . . . , Y 〉;

• place(G,R), with (G,R) a n vertex connected rooted graph with |R| = q, returns the sequence
of subsets 〈δ≤q+1, δ≤q+2, . . . δ≤n〉 where δ is an arbitrary connected layout of (G,R).

The proof goes by induction on i ∈ [q], proving that Gi has a search strategy Si = 〈S11 , . . . , Sili 〉
against a lazy robber such that tcost(Si) ≤ k + 1 and

(1) Si is monotone and connected,

(2) Siℓi = Xσi , and

(3) F̄iℓi
= Vi (it is complete for Gi).

For, i = 1, consider an arbitrary vertex x ∈ Xr = V1. Observe that (G1, 〈x〉) is a connected
rooted graph and that |V1| ≤ k + 1. Then S1 = 〈{x}〉 ⊙ place(Gr, 〈x〉) is a search strategy of G1

satisfying the above conditions.
Assume now that for some i ∈ [q − 1], Si = 〈S11 , . . . , Siℓi 〉 is a search strategy of Gi against

a lazy robber satisfying Conditions (1)–(3) such that tcost(Si) ≤ k + 1. We extend Si to a search
strategy Si+1 = 〈S1, . . . , Si+1ℓi+1

〉 of Gi+1 against a lazy robber such that tcost(Si+1) ≤ k + 1 and

Conditions (1)–(3) hold if we replace i by i+ 1.
For this, notice first that σi+1 is a leaf of Ti+1 and let σh be its unique neighbor in Ti+1. Let

Bi+1 be the rooted graph (G[Xσi+1
],Ri+1) where Ri+1 is any ordering of Xσh

∩Xσi+1
. Observe that

as Gi+1 is connected, Bi+1 is connected as well. We construct the following search strategy of Gi+1:

Si+1 = Si⊙remove(Xσi , Xσi∩Xσi+1
)⊙re-position(Xσi∩Xσi+1

, Xσh
∩Xσi+1

)⊙place(G[Xσi+1
],Ri+1).
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σh

σi+1

σ1 = r

σ2

σ3 σ4 σi

Xσh

Xσi+1

Xσi

Ti

Figure 5: The sets Xσi , Xσh
, and Xσi+1

in the proof of Lemma 4.

We set j1 = |Xσi \Xσi+1
|, j2 = |(Xσh

∩Xσi+1
) \Xσi |, j3 = |Xσi+1

\Xσh
| and ℓi+1 = j1 + j2 + j3

(see Figure 5 for a visualization of the sets Xσi , Xσh
, and Xσi+1

). Observe that the last subset
of vertices of Si is Siℓi = Xσi and the clean territory is F̄iℓi

= Vi. The next j1 moves consists in
removing cops from Xσi \Xσi+1

one by one in an arbitrary order. Observe then that the current set
of cops is Xσi ∩Xσi+1

⊆ Xσh
∩Xσi+1

. If some vertices of Xσh
∩Xσi+1

are not currently occupied by a
cop, then the next j2 moves consists in placing them back one by one in an arbitrary order. Observe
that, by the laziness of the robber, after each of theses j1 + j2 moves, the clean territory remains
unchanged, that is for every j ∈ [iℓi , iℓi + j1 + j2], F̄j = Vi. Now that Siℓi+j1+j2 = Xσh

∩Xσi+1
, we

can complete the search strategy Si+1 by adding the cops of Xσi+1
\ Xσh

one by one following a
connected search strategy of the connected rooted graph Bi+1.

By construction Si+1 is a complete search of Gi+1 such that Si+1ℓi+1
= Xi+1. To prove the

monotonicity of Si+1, it suffices to observe that Xσh
∩Xσi+1

is a separator between every vertex of
Xσi+1

\ Vi and every vertex of Vi \Xσi+1
. As Siℓi+j1+j2 = Xσh

∩Xσi+1
and Fiℓi+j1+j2 = Xσi+1

\ Vi,
cops can be safely placed on vertices of Xσi+1

\ Vi. The fact that Si+1 is connected follows from the
fact that Si is connected and that vertices of Xσi+1

\ Vi are searched with respect to a connected
layout δ of (G[Xσi+1

],Ri+1). Finally as width(T,F) ≤ k, we have that |Xσi+1
| 6 k+1. Moreover for

every Sj ∈ Si+1 with j ∈ [iℓi , i+1ℓi+1
], we have that |Sj | ≤ max{|Xσi |, |Xσi+1

|}. As tcost(Si) ≤ k+1,
we also have that tcost(Si+1) ≤ k + 1.

We stress that if in the proofs of the above three lemmata, we use connected path decompositions
instead of connected tree decompositions, we obtain the following counterpart of Theorem 1.

Theorem 2. For every connected graph G, it holds that cpw(G) = cpvs(G) = mcans(G)− 1.

4 General properties of obstructions

We let denote Ok = obs�(T
c
k ). Recall that Ok contains every graph G where ctvs(G) > k and where

for every proper contraction H of G it holds that ctvs(H) ≤ k. A graph belonging to Ok is called an
obstruction for ctvs at most k. We extend this definition of obstruction to rooted graphs: for every

q ≥ 1, we define O
(q)
k as the set containing every q-rooted graph G = (G,R), where ctvs(G) > k

and for every proper contraction G′ of G, ctvs(G′,R′) ≤ k.
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4.1 General structure of Ok

Let x ∈ C(G) be a cut-vertex of G. The pair (G, x) is called an s-pair. If Z ∈ F(G, {x}), then the
1-rooted graph (Z, 〈x〉) is a 1-component of the s-pair (G, x). Given a vertex subset U ⊆ V (G)\{x},
the 1-component (Z, 〈x〉) of the s-pair (G, x) is U -avoiding if U ∩ Z = ∅. We make the convention
that when U = {u}, then we say u-avoiding instead of U -avoiding.

Similarly, if {x, y} is a minimal separator of G, then the triple (G, x, y) is called an s-triple. A
2-rooted graph (H, 〈x, y〉) is a 2-component of the s-triple (G, x, y) if {x, y} is a minimal separator
of G and H ∈ F(G, {x, y}) (notice that H is not necessarily 2-connected.). Given a vertex set
U ⊆ V (G)\{x, y}, we say that a 2-component (H, 〈x, y〉) of (G, x, y) is U -avoiding if U ∩V (H) = ∅.

In the rest of this paper, all profs are written using the layout definition of connected treewidth.
However, some times the reader may find it more intuitive (while less formal) to translate layouts to
searching strategies (an equivalence that is formally proved in Section 3). In this sense, it is helpful
to see the root vertices of s-pairs and s-triples as «departure points» of connected search strategies
restricted to the corresponding subgraphs.

A vertex v of a graph G is called k-simplicial if it has degree at most k and its neighborhood
induces a complete subgraph.

Lemma 5. If a connected graph G contains a k-simplicial vertex, then G /∈ Ok.

Proof. Suppose to the contrary that G ∈ Ok contains a k-simplicial vertex v. Observe that G− = G\
v is a proper contraction ofG and thereby ctvs(G′) 6 k. Let σ′ ∈ Lc(G−) such that tcost(G−, σ′) ≤ k.
We define σ = σ′ ⊙ 〈v〉 and we observe that σ ∈ Lc(G) and tcost(G, σ) ≤ k, a contradiction to the
fact that G ∈ Ok.

Lemma 6. Let v be a cut-vertex of a connected graph G. If ctvs(G) ≤ k for some k ∈ N, then there
exists C∗ ∈ F(G, {v}) such that for every C ∈ F(G, {v}) \ {C∗}, ctvs(C, {v}) ≤ k.

Proof. Let σ ∈ Lc(G) such that tcost(G, σ) ≤ k. We choose C∗ ∈ F(G, {v}) such that σ(1) ∈ V (C∗)
and we set {C1, . . . , Cr} := F(G, {v}) \ {C∗} (clearly, r ≥ 1). We also set σ(i) := σ ∩ V (Ci), i ∈ [r].
Observe that, as σ is connected, each σ(i) is a layout of Lc(Ci) which first vertex is v. Therefore
ctvs(Ci, {v}) ≤ k, for each i ∈ [r].

Lemma 7. Let G be a connected graph. If G ∈ Ok and contains a cut-vertex v, then the s-pair
(G, v) contains exactly two 1-components and v is the unique cut-vertex of G.

Proof. Let v be a cut-vertex of G. Suppose to the contrary that |F(G, {v})| ≥ 3 and let us consider
three subgraphs G0, G1, G2 ∈ F(G, {v}) with Gi = G[Ci ∪ {v}] for distinct Ci ∈ C(G, {v}) (0 ≤ i ≤
2). From Lemma 1 and the fact that G ∈ Ok,

∀i ∈ {0, 1, 2}, ctvs(G[Ci ∪ C(i+1) mod 3 ∪ {v}]) 6 k.

Lemma 6 along with above inequality imply that, for every i ∈ {0, 1, 2}, ctvs(Gi, {v}) ≤ k
or ctvs(G(i+1)mod 3, {v}) ≤ k. Combining these disjonctions implies that for some 0 ≤ i ≤ 2,
ctvs(Gi, {v}) ≤ k and ctvs(G(i+1)mod 3, {v}) ≤ k. W.l.o.g,. we assume that this holds when i = 1.

So for j = 1, 2, there exists σ(j) ∈ Lc(Gj) such that σ(j)(v) = 1, tcost(Gj , σ
(j)) ≤ k. As the induced

subgraph G′ = G[V (G) \ (C1 ∪ C2)], is a proper contraction of G, by Lemma 1 there is a layout

σ′ ∈ Lc(G′) such that tcost(G′, σ′) ≤ k. We define the layout σ = σ′ ⊙ σ
(1)
>1 ⊙ σ

(2)
>1. It is now easy
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to observe that σ ∈ Lc(G) and that tcost(G, σ) 6 k. It follows that ctvs(G) 6 k, a contradiction to
the fact that G ∈ Ok.

Suppose that G has two distinct cut-vertices, say x and y. Let Gx (resp. Gy) be the graph
in F(G, {x}) (resp. in F(G, {y})) that does not contain y (resp. x) and let Cx (resp. Cy) the
corresponding components of C(G, x) (resp. of C(G, y)). Notice that, by the discussion above, the
choice for Gx and Gy is unique. Let Gxy = G[V (G) \ (Cx ∪ Cy)]. Notice that, in case {x, y} is a
bridge, Gxy is the one-edge graph.

As G ∈ Ok, observe that the graph Ĝx, resp. Ĝy and Ĝxy, obtained after contracting in G all
the edges in Gx, resp. Gy and Gxy, satisfies ctvs(Ĝx) 6 k, resp. ctvs(Ĝy) 6 k, ctvs(Ĝxy) 6 k. As
before, from Lemma 6 applied to Ĝxy, Ĝy, Ĝx, we deduce that the following holds :

• ctvs(Gx, x) ≤ k or ctvs(Gy, y) ≤ k,

• ctvs(Gx, x) ≤ k or ctvs(Gxy, x) ≤ k, and

• ctvs(Gy, y) ≤ k or ctvs(Gxy, y) ≤ k.

We extract the following cases (see Figure 6):

x y

GxyGx Gy

x y

GxyGx Gy

x y

GxyGx Gy

Figure 6: The three cases of the proof of Lemma 7.

(1) ctvs(Gx, x) ≤ k and ctvs(Gxy, y) ≤ k: Let us consider σ(x) ∈ Lc(Gx) and σ(xy) ∈ Lc(Gxy)
such that the following holds: tcost(Gx, σ

(x)) ≤ k and σ(x)(x) = 1, tcost(Gxy, σ
(xy)) ≤ k and

σ(xy)(y) = 1. Observe that as Gy is a contraction of G, ctvs(Gy) ≤ k. Consider σ1 ∈ Lc(Gy)

such that tcost(Gy, σ
1) ≤ k. We define τ1 = σ1 ⊙ σ

(xy)
>1 ⊙ σ

(x)
>1 .

(2) If ctvs(Gxy, x) ≤ k and ctvs(Gy, y) ≤ k: Let us consider σ(xy) ∈ Lc(Gxy) and σ(y) ∈ Lc(Gy)
such that the following holds: tcost(Gxy, σ

(xy)) ≤ k and σ(xy)(x) = 1, tcost(Gy, σ
(y)) ≤ k and

σ(y)(y) = 1. Observe that as Gx is a contraction of G, ctvs(Gx) ≤ k. Consider σ2 ∈ Lc(Gx)

such that tcost(Gx, σ
2) ≤ k. We define τ2 = σ2 ⊙ σ

(x)
>1 ⊙ σ

(y)
>1 .

(3) If ctvs(Gx, x) ≤ k and ctvs(Gy, y) ≤ k: Let us consider σ(x) ∈ Lc(Gx) and σ(y) ∈ Lc(Gy)
such that the following holds: tcost(Gx, σ

(x)) ≤ k and σ(x)(x) = 1, tcost(Gy, σ
(y)) ≤ k and

σ(y)(y) = 1. Observe that as Gxy is a contraction of G, ctvs(Gxy) ≤ k. Consider σ3 ∈ Lc(Gxy)

such that tcost(Gxy, σ
3) ≤ k. We define τ3 = σ3 ⊙ σ

(x)
>1 ⊙ σ

(y)
>1 .
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It is easy to notice that, for every 1 ≤ i ≤ 3, τ i ∈ Lc(G) and that tcost(G, τ i) ≤ k, a contradiction
to the fact that G ∈ Ok.

Lemma 8. For every k ≥ 1 and every connected graph G, G ∈ Ok is not biconnected iff G ∈

{A⊕B | A,B ∈ O
(1)
k }.

Proof. (⇒) Let G be a graph in Ok that has a cut-vertex v. From Lemma 7, there exists two rooted
graphs H1 = (H1, 〈v〉) and H2 = (H2, 〈v〉) such that H1, H2 ∈ F(G, {v}) and G = H1 ⊕ H2. It

remains to prove that both H1 and H2 belong to O
(1)
k . We present the proof only for H1 as the

proof for H2 is symmetric.
We first prove that ctvs(H1) > k. Suppose to the contrary, that there is a σ1 ∈ Lc(H1)

such that tcost(H1, σ1) ≤ k. As H2 is a proper contraction of G and G ∈ Ok, there is a layout
σ2 ∈ Lc(H2) such that tcost(H2, σ

2) ≤ k. As v is the root of H1, σ
1(v) = 1. This impies that

σ = σ2 ⊙ (σ1 \ v) ∈ Lc(G) and tcost(G, σ) ≤ k, a contradiction to the fact that G ∈ Ok.
It remains to prove that if J = (J, 〈v〉) is a proper contraction of H1, ctvs(J

′) ≤ k. To that
aim, we prove that for any edge e of H1, the rooted graph J = (J, 〈v〉), where J = H1/e, satisfies
ctvs(J) ≤ k. Then the conclusion follows from Lemma 1.

Claim 1. If J = (J, 〈v〉) is the result of the contraction of some edge in H1, then ctvs(J) ≤ k.

Proof of claim: From Lemma 7, H1 is biconnected and from Lemma 5 H1 contains at least 3 vertices,
as otherwise it would contain a pendant vertex which is k-simplicial. This means that J has at
least two vertices, therefore v is a cut vertex also in G′ = J⊕H2. As G′ is a proper contraction of
G, it follows that ctvs(G′) ≤ k. We can now apply Lemma 6 on G′ and obtain that ctvs(J) ≤ k or
ctvs(H2) ≤ k. Applying the same arguments as those we used above for proving that ctvs(H1) > k,
we deduce that ctvs(H2) > k, therefore ctvs(J) ≤ k, as required. ⋄

(⇐) Consider a graph G such that G = H1⊕H2 where H1 = (H1, 〈v〉) ∈ O
(1)
k and H2 = (H2, 〈v〉) ∈

O
(1)
k . Observe that from Lemma 6, ctvs(H1) > k and ctvs(H2) > k implies that ctvs(G) > k. It

remains to prove that for any proper contraction G’ of G, ctvs(G′) ≤ k. To that aim, it suffices to
prove the following claim and conclude with Lemma 1.

Claim 2. If G′ is the result of the contraction of some edge e in G then ctvs(G′) ≤ k.

Proof of claim 2: Assume without loss of generality that e is an edge of H1, that is G′ = J ⊕H2,

where J = (H1/e, 〈v〉). As J is a proper contraction of H1 and H1 ∈ O
(1)
k we have that ctvs(J) ≤ k.

Therefore there exists σ ∈ Lc(J) such that tcost(J, σ) ≤ k. As H2 is a proper contraction of G,
ctvs(H2) ≤ k and there exists σ2 ∈ L(c)(H2) such that ctvs(H2, σ

2) ≤ k. As v is the root of J,
σ(v) = 1. Observe that σ′ = σ2 ⊙ σ ∈ Lc(G′) and tcost(G′, σ′) ≤ k implying that ctvs(G′) ≤ k, as
required. ⋄

Lemma 8 says that if G is a non-biconnected graph in Ok then it should have only one cut-vertex
and two biconnected components. Moreover, each biconnected component will be the underlying

graph of an 1-rooted obstruction in O
(1)
k rooted on the cut-vertex. This structural information will

be useful in the later sections.
We also observe the following.

Lemma 9. For every k ≥ 1 every graph G ∈ O
(1)
k has a biconnected underlying graph.
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Proof. Let G = (G, 〈v〉) ∈ O
(1)
k and let H = G⊕G. From Lemma 8, H ∈ Ok. As v is a cut-vertex

of H, from Lemma 7, G cannot contain any cut-vertex.

5 Obstructions for ctvs at most 2

This section is devoted to the proof of Theorem 3 that characterizes the set O2. To state this
characterization, a few more notations and definitions have to be introduced. First, Figure 7 depicts
some rooted graphs that will be central to the description of O2. Among those, there are three 2-
rooted graphs, namely Rxy = (R, 〈x, y〉), Ry

x = (R′, 〈x, y〉) and Rx
y = (R′, 〈y, x〉). Observe that R

y
x

and Rx
y are not isomorphic as their root vertices x and y are switched. Among the 1-rooted graphs

described in Figure 7, Yx and Y
(2)
x are to be distinguished. Indeed, observe that, for any k ≥ 2, we

have Y
(k)
x = (k ×R

y
x, 〈x〉).

x

y

x

R
y

x
Y

(2)
x

y

x

R
x

y

y

x

Rxy

x

Yx

x

Y
(3)
x

x

Y
(4)
x

Figure 7: The rooted graphs Rxy, R
y
x, Rx

y , Yx, Y
(2)
x , Y

(3)
x , and Y

(4)
x .

Figure 8 describes three biconnected graphs. As we will see later, these three graphs are the
only biconnected graphs belonging to O2. From the graphs of Figure 7 and Figure 8, we define the
following two sets respectively containing 1-rooted graphs and graphs:

B
(1)
2 = {Yx} ∪ {Y(k)

x | k ≥ 2]} and B2 = {K4,W1,W2} ∪ {A⊕B | A,B ∈ B
(1)
2 }

K4 W1 W2

Figure 8: The graphs K4,W1, and W2.

Let G = (G,R) be a rooted graph and let S ⊆ V (G). We say that S is a 2-twin family of G if
S ∩ V (R) = ∅, |S| ≥ 2 and there are two distinct vertices a, b ∈ V (G) such that ∀s ∈ S,NG(s) =
{a, b}. We call the vertices a, b the bases of the 2-twin family S. We say that a graph G′ = (G′,R′)
is a 2-twin expansion of G if R = R

′ and G′ is obtained from G by adding vertices such that each
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additional vertex is made adjacent with the base vertices of some of the 2-twin families of G. Given
a class of rooted graphs C we define its 2-twin expansion texp(C) as the class of rooted graphs
containing all 2-twin expansions of all the graphs in G. We say that a rooted graph G is simplified
if all its 2-twin families have size 2.

Given a rooted graph G we denote by G̃ the unique simplified rooted graph such that G ∈
texp({G̃}). Given a set C of rooted graphs, we define C̃ = {G̃ | G ∈ C}. Observe that every graph
of B2 is simplified.

All the above definitions apply to graphs as well as we treat graphs as a rooted graphs with
empty set of roots.

We are now ready to state the main result of this section.

Theorem 3. O2 = texp(B2).

Outline of the proof of Theorem 3. As a first step we show in Subsection 5.1 that the sets O2

and O
(1)
2 are closed under 2-twin expansion, thereby it is enough to prove that Õ2 = B2. For this

we show that {K4,W1,W2} are the biconnected graphs in Õ2 while {A⊕B | A,B ∈ B
(1)
2 } are the

non-biconnected graphs in Õ2. The conclusion of the first part appears in Subsection 5.6. Because

of Lemma 8, the non-biconnected case boils down to the identification of Õ
(1)
2 . This is achieved by

considering two cases. If the obstruction contains a separating edge, then we prove that it is the
1-rooted graph Yr, depicted in Figure 7 (this is concluded in Subsection 5.4). Otherwise, we prove

that the obstruction the graph Y
(k)
x , for some k ≥ 2, that is illustrated in Figure 7 (we prove that

in Subsection 5.5 and in Subsection 5.7).

5.1 The set O2 is closed under 2-twin expansion.

Lemma 10. Let G be a graph containing a 2-twin family S and such that ctvs(G) ≤ 2. Suppose G
contains a path P between the bases a and b of S, such that P is disjoint from S. If G′ is obtained
by adding a vertex z adjacent to a and b, then ctvs(G′) ≤ 2.

Proof. Observe that S′ = S ∪ {z} is a 2-twin family of G′. As ctvs(G) ≤ 2, there exists σ such
that tcost(G, σ) 6 2. Suppose without loss of generality that σ(a) < σ(b). Consider σ′ = σ ⊙ 〈z〉.
Clearly σ′ is a connected layout of G′. Observe that, by construction, for every vertex u 6= b,

S
(t)
σ′ (u) = S

(t)
σ (u) and that |S

(t)
σ′ (z)| = 2. We also observe that, as z is the mid vertex of a length-two

path between a and b, S
(t)
σ′ (σ′(b)) = S

(t)
σ (σ′(b)) ∪ {a}. However, we now argue that a ∈ S

(t)
σ (σ(b)),

implying that S
(t)
σ′ (σ′(b)) = S

(t)
σ (σ(b)) and thereby that tcost(G, σ′) 6 2. To see this, consider x and

y the first two vertices of S in σ (that is for every v ∈ S \ {x, y}, if any, max{σ(x), σ(y)} < σ(v)).

Suppose for a contradiction that a /∈ S
(t)
σ (b). Then σ(x) < σ(b), σ(y) < σ(b) and there exists a

vertex v ∈ P such that σ(v) < σ(b). But this would imply that |S
(t)
σ σ(b))| > 3: a contradiction to

the hypothesis that tcost(G, σ) 6 2.

Lemma 11. Let G ∈ O2 be a graph containing a 2-twin family S. If a and b are the bases of S,
then G contains a path P from a to b disjoint from S.

Proof. First observe that V (G) 6= {a, b}∪S and that G has a biconnected component C containing
{a, b} ∪ S. By Lemma 7, at least one of a and b, say a, is not a cut-vertex. Observe that (G[S ∪
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{a, b}], 〈b〉) does not belong to O
(1)
2 . It follows that C 6= {a, b} ∪ S and thereby G contains a path

P from a to b that is disjoint from S.

Lemma 12. A graph G belongs to O2 iff G̃ belongs to O2.

Proof. We may assume that G and G̃ are different graphs as otherwise it is trivial. This implies
that G contains a 2-twin family of size at least 3 and that for every such family S, |V (G̃) ∩ S| = 2.
In other words, there is a subset X ⊆ V (G) such that G̃ is the induced subgraph G[X].

Let us first assume that G ∈ O2. Let S be a 2-twin family of size at least 3 of G and let a and b
be the bases of S. By Lemma 11, G contains a path P from a to b disjoint from S. As G is a 2-twin
expansion of G̃, by Lemma 10, ctvs(G̃) ≤ 2 would imply that ctvs(G) ≤ 2, contradicting G ∈ O2.
To prove that G̃ ∈ O2, it remains to show that if e is an edge of G̃, then ctvs(G̃/e) ≤ 2. As e is
also an edge of G and as G ∈ O2, there exists σ ∈ Lc(G/e) such that tcost(G/e, σ) ≤ 2. The set X
such that G̃ = G[X] can be obtained by removing from V (G) every vertex z belonging to a 2-twin
family T such that T contains two vertices x and y distinct from z with max{σ(x), σ(y)} < σ(z).
Observe that e is an edge between to vertices u and v of X. Let w be the vertex resulting from the
contraction of e and setX/e = X\{u, v}∪{w}. Then the sequence σ̃ = σ∩X/e is a layout of G̃/e. As
removing vertices cannot increase the cost of a layout, tcost(G/e, σ) ≤ 2 implies tcost(G̃/e, σ̃) ≤ 2.
It remains to prove that the layout σ̃ of G̃/e is connected. This follows from the constuction of X.

Observe indeed that if, for some vertex u ∈ X/e, S
(t)
σ (σ(u)) contains a vertex z /∈ X, then S

(t)
σ (σ(u))

contains a vertex x ∈ X/e that belongs to the same 2-twin family as z. It follows that S
(t)
σ′ (σ′(u))

also contains x and thereby σ̃ is a connected layout of G̃.

Let us now assume that G̃ ∈ O2. As observed before G̃ contains a 2-twin family S. We prove the
statement for V (G) = V (G̃)∪{z}, that is there exist two vertices x and y such that S = {x, y, z} is
a 2-twin family of G. The fact that G ∈ O2 follows by applying inductively this argument to all the
vertices in |V (G) \ V (G̃)|. We first prove that ctvs(G) > 2. For the sake of contradiction, suppose
that there exists σ ∈ Lc(G) such that tcost(G, σ) ≤ 2. Observe that one can select such a layout σ
such that z is the last vertex of S in σ. Let us consider σ− = σ<i ⊙ σ>i, where i = σ(z). Observe

that tcost(G, σ) ≤ 2 implies tcost(G̃, σ−) ≤ 2. Moreover σ− ∈ Lc(G̃) since if z ∈ S
(t)
σ (σ(v)) for some

vertex v, then x and y, the twins of z, belong to S
(t)
σ (σ(v)) as well and the connectivity of σ− is

preserved. It follows that ctvs(G̃) 6 2: a contradiction to G̃ ∈ O2.
It remains to show that for every edge e ∈ E(G), ctvs(G/e) ≤ 2. We now examine two different

cases depending on e. We let a and b denote the bases of S.

• Suppose first that e is incident to one of the vertices of S, that is in G/e vertices a and b
are adjacent. Observe that G/e can be obtained from H = G̃/ẽ, where ẽ is incident to x
or y, by adding the degree-two vertex z adjacent to a and b. As H is a contraction of G̃,
there exists σH ∈ Lc(H) such that tcost(H,σH) ≤ 2. Consider σ/e = σH ⊙ 〈z〉. We claim that
tcost(G/e, σ/e) ≤ 2. Suppose without loss of generality that σ/e(a) < σ/e(b). Observe that,

by construction, for every vertex u 6= b, S
(t)
σH (σH(u)) = S

(t)
σ/e

(σ/e(u)). As a and b are adjacent

in H, we also have a ∈ S
(t)
σH (σH(b)), Thereby padding z at the end of σH does not augment

S
(t)
σH (σH(b)) and tcost(G/e, σ/e) = tcost(H,σH) ≤ 2.

• Suppose e is not incident to a vertex of S but is not the edge ab. Thereby e is an edge common
to G̃ and G and G/e is a twin-expansion of H = G̃/e. By Lemma 11, G̃ contains a path from
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a to b disjoint from S. Observe that H contains such a path P. As G/e is a 2-twin expansion
of H and ctvs(H) ≤ 2, by Lemma 10, ctvs(G/e) ≤ 2.

• Suppose e = ab and let ve be the result of the contraction of ab in G̃. Then ctvs(G̃/e) ≤ 2 and
it is easy to see that G/e is the graph obtained from G̃/e after adding in it the vertex z and the
edge zve. Notice that if σ ∈ Lc(G̃/e) such that tcost(G̃/e, σ) ≤ 2, then σ′ = σH⊙〈z〉 ∈ Lc(G/e)
and tcost(G/e, σ′) ≤ 2, as required.

Using Lemma 8, we can directly extend Lemma 12 to 1-rooted obstructions:

Lemma 13. Let H = (H, 〈v〉) be a 1-rooted graph. Then H ∈ O
(1)
2 if and only if H̃ ∈ O

(1)
2 .

Proof. From Lemma 8, H ∈ O
(1)
2 iff G = 2×H, where H ∈ O2. From Lemma 12, G ∈ O2 ⇔ G̃ ∈ Õ2

and the Lemma follows if we notice that G̃ = 2× H̃ and apply again Lemma 8.

5.2 Subsets of (rooted) obstructions

Recall the definition of the sets B
(1)
2 and B2 built from the graphs of Figure 7 and Figure 8. We

first show that these graphs (and their 2-twin expansions) are 1-rooted obstructions (Lemma 15)
and obstructions (Lemma 16) respectively. We will then study the set of 2-rooted obstructions.

Lemma 14. Let G, H ∈ O2 (resp. G, H ∈ O
(1)
2 ). If G is simplified and there exist some graph

(resp. rooted) graph F ∈ texp({H}) such that F is a contraction of G, then G is isomorphic to H.

Proof. We provide the proof for G,H ∈ O2. For the sake of contradiction, suppose that F is a proper
contraction of G. Then F /∈ O2 and thereby Lemma 12 implies that H /∈ O2: a contradiction. The

same arguments apply to G, H ∈ O
(1)
2 using Lemma 13.

Lemma 15. Let G = (G, 〈x〉) be a 1-rooted graph. If G ∈ texp(B
(1)
2 ), then G ∈ O

(1)
2 .

Proof. From Lemma 13, O
(1)
2 = texp(Õ

(1)
2 ). Therefore, it is enough to prove that B

(1)
2 ⊆ Õ

(1)
2 . Let

G = (G, 〈x〉) be Yx or Y
(ℓ)
x for some ℓ ≥ 2. Let y be the unique vertex of G at maximum distance

from x.
We first prove that ctvs(G) > 2. Observe that for every layout σ ∈ Lc(G), there exist adjacent

vertices a and b such that a is adjacent to x, b is adjacent to y (that is, {x, a, b, y} induces a path of
G) and σ(x) < σ(a) < σ(b) < σ(y). Indeed, this is a direct consequence of the fact that the layout
σ is connected and the distance in G between x and y is 3. Observe that G contains three disjoint

paths Pb from b to y, Pa from a to y and Px from x to y. Notice then that S
(t)
σ (y) contains one

vertex from each of Pa, Pb and Px, implying that tcost(G, σ) ≥ 3 and hence ctvs(G) > 2.
Let now consider G′ = (G′, 〈x〉) where G′ is the result of the contraction of an edge e in G. We

consider two different cases.

Case 1. Suppose the contraction of e creates a cut-vertex z, that is G = Yx, and e is the edge
between the two neighbours of x. Then observe that the connected layout σ = 〈x, z, a, y, b, c, d〉,
with a, b, c and d being the degree-two vertices, satisfies tcost(G′, σ) = 2.

Case 2. Suppose now that the contraction of e creates a path P of length two between x and y.
Let u be the mid vertex of P. Observe that {x, y, u} is a separator of G′. Let {H0, H1, . . . , Hq} be
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the connected components of G− {x, y, u}. Observe that exactly one of these components, say H0,
contains a single vertex z of degree two in G′ and, for every 1 ≤ i ≤ q, (G′[Hi ∪ {x, y}], 〈x, y〉) is
isomorphic to R

y
x. As ctvs(Ry

x) ≤ 2, for every i ∈ [q], there is a layout σ(i) ∈ Lc(Hi) such that

tcost(Hi, σ
(i)) ≤ 2. We set σ = 〈x, u, y, z〉 ⊙ σ

(1)
>2 ⊙ · · · ⊙ σ

(q)
>2. As {x, u, y, z} induces a 4-cycle, we

have |S
(t)
σ (y)| ≤ 2 and |S

(t)
σ (z)| ≤ 2. It follows that tcost(G′, σ)≤2 and hence ctvs(G′) ≤ 2.

Lemma 16. If a graph G belongs to texp(B2), then G belongs to O2.

Proof. From Lemma 13, O2 = texp(O2). Therefore, it is enough to prove that B2 ⊆ O2. For this, one

can verify that K4,W1,W2 ∈ O2 by exhaustive check. The fact that {A ⊕B | A,B ∈ B
(1)
2 } ⊆ O2

follows from Lemma 15 and Lemma 8.

Let us now study 2-rooted obstructions. We define the set M = {Rxy,Rxy+,Kxy−
4 ,Kxy

4 } of
2-rooted graphs depicted in Figure 9. We say that a biconnected 2-rooted graph H = (H, 〈x, y〉) is
elementary if it is texp(M)-free.

x y x y

R
xy

R
xy+

x y x y

K
xy−

4
K

xy

4
R

+
xy

Figure 9: The 2-rooted graphs Rxy,Rxy+,Kxy−
4 ,Kxy

4 and R+
xy.

Lemma 17. Let (G, x, y) be an s-triple of a graph G, and let H = (H, 〈x, y〉) be a 2-component
of (G, x, y). If G is K4-free, then either (H, 〈x, y〉) is isomorphic to Rxy or R+

xy, or G contains a
vertex z ∈ C(H) \ {x, y} and, for each such z, at least one of (G, z, x) and (G, y, z) is an s-triple.

Proof. We set H− = (V (H), E(H) \ {xy}) and H+ = (V (H), E(H) ∪ {xy}). We may assume that
H− contains at least two vertices different than x and y. Indeed if this is not the case, we are done
as then (H, 〈x, y〉) is isomorphic either to Rxy (if xy 6∈ E(G)) or to R+

xy (if xy ∈ E(G)).
We next prove that H− contains a cut-vertex z. Indeed if this is not the case then H− contains

two internally vertex disjoint paths P1 and P2 from x to y. As (H, 〈x, y〉) is a 2-component of
(G, x, y), it follows that H \ {x, y} and, therefore also H− \ {x, y}, is connected. This, in turn,
implies that there is a path in H− joining two internal vertices of P1 and P2, avoiding x and y
and containing no other internal vertices of P1 and P2. But then, H+ (and thus G as well) can be
contracted to K4, a contradiction.

Notice now that, as H− \ {x, y} contains at least two vertices different than x and y, then some
of (G, z, x) and (G, y, z) is an s-triple.

Lemma 18. If G is an elementary 2-rooted graph, then ctvs(G) ≤ 2.

Proof. Let G = (G, 〈x, y〉).Observe first that if xy ∈ E(G), then G− = ((V (G), E(G) \ {xy}), 〈x, y〉),
is an elementary 2-rooted graph. Moreover, if ctvs(G−) ≤ 2, then ctvs(G) ≤ 2. These observations
permit us to additionally assume that xy 6∈ E(G).
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Notice that every biconnected 2-rooted graph (with at least 3 vertices) contains G = Rxy or
G = R+

xy as a contraction. Also if G = Rxy or G = R+
xy the lemma holds trivially. Let G be a

2-rooted graph that is contraction minimal counterexample, that is:

(i) G is elementary (biconnected and M-free),

(ii) ctvs(G) > 2,

(iii) if G′ is a connected proper contraction of G, then ctvs(G) ≤ 2.

Observe that (i)–(iii) hold for G+ = (G+, 〈x, y〉) as well (recall that G+ if obtained from G after
making its roots adjacent, if they are not already so). We also set Z = Rxy⊕G. As G is M-free, Z
is K4-free. Let C = C(G) ∪ {x, y} and let P be a path in G between x and y. As G is biconnected
(from (i)), all vertices of C are vertices of P. Given a pair 〈a, b〉 ∈ C × C, we first observe that
(Z, a, b) is an s-triple and we denote by Gab = (Gab, a, b) the union of all V (Z) \ V (G)-avoiding
2-components of (Z, a, b). Notice that each Gab is biconnected and is a contraction of G or G+

(depending on whether ab ∈ E(G) or not). As both G and G+ are M-free, then each Ga,b is also
M-free.

Claim 1. |F(G, {x, y})| = 1.

Proof of Claim 1: Suppose that F(G, {x, y}) = {F1, . . . , Fq} with q ≥ 2. For every i ∈ [q], we define
the 2-rooted graph Fi = (Fi, 〈x, y〉). Observe that for every i ∈ [q], Fi is a proper contraction of
G+. As property (iii) holds for G+ as well, it holds that, for each i ∈ [q], there is a σ(i) ∈ Lc(Fi)

such that tcost(Fi, σ
(i)) ≤ 2. We set σ = σ(1) ⊙ σ

(2)
>2 ⊙ · · · ⊙ σ

(q)
>2. Observe that σ ∈ Lc(G) and

tcost(G, σ) ≤ 2, a contradiction to (ii). ⋄

Claim 2. If 〈a, b〉 ∈ C × C, then one of the following holds:

(a) |F(Gab, {a, b})| ≥ 2;

(b) ab ∈ E(G);

(c) there is a z ∈ C \ {a, b} such that z belongs to the subpath of P between a and b.

Proof of Claim 2: We assume that |F(Gab, {a, b})| = 1 and ab 6∈ E(G). This implies that Gab is the
unique V (Z) \V (G)-avoiding 2-component of (Z, a, b). As ab 6∈ E(G), R+

ab cannot be isomorphic to
Gab. If Rxy is isomorphic to G, then the claim follows trivially. We now apply Lemma 17 on Z and
Gab and obtain that there is some z ∈ C(Gab) \ {a, b} for which (c) holds. ⋄

From Claim 1 and Claim 2 (applied for a = x and b = y) we obtain that |C| ≥ 3. Let ax and ay
be two vertices of C \ {x, y} with the constraint that ay (resp. ax) is the one that is closest to the
vertex y (resp. x) in P. Notice that ax and ay may be the same vertex.

Claim 3. xax, ayy 6∈ E(G).

Proof of Claim 3: Suppose that xax is an edge of G. The proof for ayy is symmetric. We distinguish
two cases (see Figure 10):

Case 1. xax is a separating edge of G+.
Let Gx = (Gx, 〈x, ax〉) be union of the y-avoiding 2-components of (G+, x, ax). Notice that Gx is a
proper contraction of G+. Therefore, from (iii), there is a σ ∈ Lc(Gx) such that tcost(Gx, σ) ≤ 2.
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Figure 10: The two cases of the proof of Claim 3.

Let G′
x be the rooted graph obtained after removing from G all vertices in V (Gx) \ {x, ax}. Notice

that G′
x = (G′

x, 〈x, y〉) is also a proper contraction of G. Therefore, again from (iii), there is a
σ′ ∈ Lc(G′

x) such that tcost(G′
x, σ

′) ≤ 2. We observe that σ′′ = σ′⊙σ′>2 ∈ Lc and tcost(G, σ′′) ≤ 2.
Therefore ctvs(G) ≤ 2, a contradiction to (ii).

Case 2. xax is not a separating edge of G+.
Let us consider the graphs Gy = G\x and G̃ = G/xax. We let vxax denote the vertex of G̃ resulting
from the contraction of the edge xax. As ax is a cut-vertex and xax is not a separating edge, there
exists an isomorphism from Gy to G̃ that maps ax ∈ V (Gy) to vxax ∈ V (G̃) and y ∈ V (Gy) to
y ∈ V (G̃). It follows that G̃ = (G̃, 〈vxax , y〉) and Gy = (Gy, 〈ax, y〉) are isomorphic and thereby
ctvs(G̃) = ctvs(Gy). As G̃ is a proper contraction of G, because of (iii), we have that there exists
σ ∈ Lc(Gy), such that tcost(Gy, σ) ≤ 2. We now set σ′ = 〈x, y, ax〉 ⊙ σ>2. Observe that σ′ ∈ Lc(G)
and that tcost(G, σ′) ≤ 2. Therefore ctvs(G) ≤ 2, a contradiction to (ii). ⋄

Applying Claim 2 with 〈x, ax〉, we obtain that |F(Gxax , {x, ax})| ≥ 2 (notice that (b) is excluded
by Claim 3 and (c) is excluded by the choice of ax). Similarly, applying Claim 2 with 〈y, ay〉,
we obtain that |F(Gyay , {y, ay})| ≥ 2. It remains to observe that |F(Gxax , {x, ax})| ≥ 2 and
|F(Gyay , {y, ay})| ≥ 2 along with the fact that xax, ayy 6∈ E(G) (from Claim 3), imply that G can
be contracted to some graph in texp({Rxy,Rxy+}), a contradiction to (i).

The following corollary is an immediate consequence of Lemma 18. It constitutes a first step in

the characterization of the set O
(2)
2 of 2-rooted obstructions.

Corollary 1. The set of biconnected graphs in O
(2)
2 is texp(M).

Proof. It is easy to verify that for each of the 2-rooted graphs in texp(M) the value of ctvs is 3, while
this value becomes 2 for every proper contraction of a graph of this set. This proves that texp(M) ⊆

O
(2)
2 . Suppose now that there is an elementary 2-rooted graph G = (G, 〈x, y〉) ∈ O

(2)
2 \ texp(M).

As ctvs(G) > 3 and G is elementary, we have a contradiction to Lemma 18.

5.3 Structure of 2-rooted obstructions

Lemma 19. Let H = (H, 〈x, y〉) be a 2-rooted graph where x is not a cut-vertex and where H
contains a path from x to y. Let also G = H⊕ (2×Rxy) and G′ = H⊕R

y
x. Then ctvs(G) ≤ 2 ⇒

ctvs(G′) ≤ 2

Proof. The graphs G and G′ are depicted in Figure 11. We let denote x, y, a and a′ the vertices
of 2 × Rxy, and x, y, z, a, and a′ the vertices of Ry

x (see Figure 11). Observe that G is obtained
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by the contraction the edge xz of G′ into the vertex x of G. Let I be the set of vertices distinct
from x that belong to the connected component of H − y containing x. We also define the set of
vertices J as the union of the x-avoiding 1-components of (H, y) minus the vertex y. Observe that
{I, J, {y, a, a′}} is a partition of V (G).

y

x

a a′I

I

I

I

JJ

y

x

I

I

I

I

JJ

G G′

a a′

z

Figure 11: The graphs G and G′.

Let σ ∈ Lc(G) such that tcost(G, σ) ≤ 2. W.l.o.g,. we assume that σ(a) < σ(a′). We set

l = min{σ(x), σ(y)} and m = max{σ(x), σ(y)}. Notice that σ(a′) > m as otherwise S
(t)
σ (m) contains

a, a′ and a vertex of V (H) from a path between x and y. We distinguish four cases. In each of these
cases, we build from σ a connected layout σ′ ∈ L(c)(G′) such that tcost(G′, σ′) ≤ 2.

Case 1. y <σ a <σ x <σ a
′. As N(a′) = {x, y}, we can assume that σ(a′) = σ(x) + 1 = m + 1.

Notice that I ⊆ σ>σ(a′) = σ>m+1, i.e,. all the vertices in I appear after a′ in σ. Indeed, if this is

not the case, then the tree-supporting set S
(t)
σ (m) would contain vertices a, y and a vertex of I, a

contradiction. Notice also that the vertices of J do not appear in the tree-supporting set of a vertex
in I ∪{x, a, a′}. Therefore, we may assume that the vertices y, a, x, a′ appear consecutively in σ. See
Figure 12. We then observe that σ′ = σ<l ⊙ 〈y, a, z, x, a′〉 ⊙ σ≥l+4 is a connected layout of G′ and
that tcost(G′, σ′) = tcost(G, σ) ≤ 2.

σ =

y xa a′
J I ∪ J σ′

=

y xa a′
J I ∪ J

z

Figure 12: Case 1. y <σ a <σ x <σ a
′.

Case 2. a <σ y <σ x <σ a
′. Again we can assume that σ(a′) = m + 1 and, by the same argument

as in the previous case, we deduce that I ⊆ σ>m+1. As σ is connected, and N(a) = {x, y}, we have
that σ(a) = 1. As σ is a connected layout and as y separates J from the rest of the graph, a <σ y
implies that y is visited before all the vertices of J. We can thereby assume that J appears after a′

in σ. So we have σ>4 = I ∪ J . See Figure 13. We then observe that σ′ = 〈a, y, z, x, a′〉 ⊙ σ>4 is a
connected layout of G′ such that tcost(G′, σ′) = tcost(G, σ) ≤ 2.

Case 3. x <σ a <σ y <σ a′ or a <σ x <σ y <σ a′. Again, we can assume that σ(a′) = m + 1.
We reduce this case to the previous one. To that aim we prove that I ∪ J = σ>m+1. This implies
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σ =

y xa a′
I ∪ J σ′

=

y xa a′
I ∪ J

z

Figure 13: Case 2. a <σ y <σ x <σ a
′.

that the layout τ = 〈a, y, x, a′〉 ⊙ σ>4 belongs to L(c)(G) and that tcost(G, τ) ≤ 2. Observe that τ
satisfies the condition of case 2.

We now prove that I ∪ J = σ>m+1. First observe that as x <σ y and y separate the vertices of
J from those of I, the connectivity of σ implies that the vertices of J appear after y in σ. So we can
assume that J ⊆ σ>m+1. Suppose now that there exists a vertex v ∈ I such that v <σ y. As x is not
a cut-vertex, there exists a path P from v to y avoiding x. It then follows that the tree-supporting

set S
(t)
σ (m) contains a, x and a vertex of the path P, contradicting tcost(G, σ) ≤ 2. Therefore we

have σ>4 = σ>m+1 = I ∪ J.

Case 4. x <σ y <σ a <σ a
′ or y <σ x <σ a <σ a

′. We can assume that σ(a′) = σ(a) + 1 = m + 2.
See Figure 14. In both cases we observe that σ′ = σ≤m ⊙ 〈z〉 ⊙ σ>m is a connected layout of G′

such that tcost(G′, σ′) = tcost(G, σ) ≤ 2.

σ =

yx a a
′

σ
′
=

yx a a
′

z

σ
′
=σ =

xy a a
′

xy a a
′

z

Figure 14: Case 4. x <σ y <σ a <σ a
′ at the top line and y <σ x <σ a <σ a

′ at the bottom line.

We observe that in the previous lemma, the assumption that x is not a cut-vertex is only used
in the third case of the proof.

Lemma 20. Let (G, x, y) be an s-triple of a graph G ∈ O2. If (H, 〈x, y〉) is a 2-component of
(G, x, y) that is isomorphic to R

y
x, then x is a cut-vertex of G.

Proof. Let W = (W, 〈x, y〉) be the 2-rooted graph such that G = W ⊕ (H, 〈x, y〉). Notice that
G′ = W ⊕ (2 × Rxy) is a proper contraction of G, therefore ctvs(G′) ≤ 2. Suppose that x is not
a cut-vertex of G. Then it is not a cut-vertex in G′ neither. It follows that Lemma 19 applies,
implying that ctvs(G) ≤ 2, a contradiction.

5.4 Components with separating edges

Lemma 21. Let G be a K4-free graph and let H be a 2-component of the s-triple (G, x, y). If H is
not elementary, then H contains some graph in texp({Rxy,Rxy+}) as a contraction.

Proof. As {x, y} is a minimal separator, G contains a paths from x to y avoiding H. As G is K4-free
but H is not texp(M)-free, H contains some graph in texp({Rxy,Rxy+}) as a contraction.
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Lemma 22. Let G be a graph in Õ2. If G contains a separating edge xy, then either G is isomorphic
to W2 or G contains a cut-vertex r and the 1-component of the s-pair (G, r) containing xy is
isomorphic to Yr.

Proof. As the lemma holds trivially when G ∈ B2, we can assume that G is B2-free which implies
that G is K4-free and W2-free. We first prove the following:

Claim 1: If U = (U, 〈x, y〉) is a biconnected 2-component of the s-triple (G, x, y), then U is not
elementary.

Proof of Claim 1: Suppose U is elementary. Then, by Lemma 18, we have ctvs(U) ≤ 2. Observe
that as xy is an edge, the induced subgraph G− = G \ (V (U) \ {x, y}) is a proper contraction of G.
It follows that ctvs(G−) ≤ 2. Now consider σ ∈ Lc(U) such that tcost(U, σ) ≤ 2 and σ− ∈ Lc(G−)
where tcost(G−, σ−) ≤ 2. As xy is an edge of G, observe that σ′ = σ− ⊙ σ>2 belongs to Lc(G) and
that tcost(G, σ′) ≤ 2. Therefore ctvs(G) ≤ 2, a contradiction. ⋄

Claim 2: At most one 2-component of (G, x, y) is biconnected. Proof of Claim 2: Suppose (G, x, y)

contains at least two 2-components. By Claim 1, they are both not elementary. As G isK4-free, from
Lemma 21 and the fact that xy ∈ E(G), they both contain some 2-rooted graph in texp({Rxy+}) as
a contraction, therefore G can be contracted to some 2-rooted graph in texp({W2}) ∈ O2. Because of
Lemma 14, as G is simplified and W2, G ∈ O2, we have that G is isomorphic to W2, a contradiction.
⋄

x

y

r
H

Z

Figure 15: The graph G after Claim 2.

A direct consequence of Claim 2 is that every 2-component of (G, x, y) , but at most one, contains
a cut-vertex. By Lemma 7 G contains a unique cut-vertex. It follows that (G, x, y) contains two
2-components, one of which contains a cut-vertex r. Observe that the uniqueness of r implies that
neither x nor y is a cut-vertex. Recall that by Lemma 7, the pair s-pair (G, r) contains exactly two
1-components and, among them, let Z = (Z, 〈r〉) be the one containing the edge xy (see Figure 15).

Let H = (H, 〈x, y〉) be the biconnected 2-component of the s-triple (G, x, y).H is not elementary,
because of Claim 1. Recall that G is K4-free. From Lemma 21 and the fact that xy ∈ E(G), H
contains as a contraction some 2-rooted graph in texp({Rxy+}). As Z is biconnected, there is a
path between x and y that contains r as an internal vertex and with no internal vertex in H. This

means that Z contains some graph Y in texp({Yr}) as a contraction. As Z is simplified, Z ∈ O
(1)
2

and Y ∈ O
(1)
2 (because of Lemma 15), it follows, from Lemma 14, that Z is isomorphic to Yr, as

required.
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5.5 Components without separating edge

We say that a path in a graph G is long if all its internal vertices have degree 2 and if its length is
at least 3.

Lemma 23. Let G be a graph containing a long path P. If x and y are two adjacent internal vertices
of P, then ctvs(G) ≤ ctvs(G/xy).

Proof. We let vxy denote the vertex of G′ = G/xy resulting from the contraction of the edge xy in
G. Let σ′ ∈ Lc(G′) such that tcost(G′, σ′)=ctvs(G′). As σ′ is connected, vxy has a neighbor u such
that σ′(u) < σ′(vxy). Suppose without loss of generality that u is adjacent to x in G. We define
σ = σ′<i ⊙ 〈x, y〉 ⊙ σ′>i where i = σ′(vxy).

Observe that, by construction, σ is a connected layout of G such that tcost(G, σ) ≤ tcost(G′, σ′).
Therefore ctvs(G) ≤ ctvs(G′), as required.

Lemma 24. Let G be a graph that is biconnected, K4-free and has no separating edges. If (G, x, y)
is an s-triple and there exists a 2-component of (G, x, y) denoted by H = (H, 〈x, y〉) that is not
elementary, and the 2-rooted graph Z = (G \ (V (H) \ {x, y}), 〈x, y〉) can be contracted to ℓ ×Rxy

for some ℓ ≥ 2, then G can be contracted to some graph in texp({W1}).

Proof. Let (G, x, y) be a s-triple where G is K4-free graph and does not contain any separating
edge. For the sake of contradiction, suppose there exists a 2-component H = (H, 〈x, y〉) of (G, x, y)
such that H is not elementary, Z = (G \ (V (H) \ {x, y}), 〈x, y〉) can be contracted to ℓ ×Rxy for
some ℓ ≥ 2, and G = H⊕ Z cannot be contracted to some graph in texp({W1}).

Observe that as G is K4-free, the property of not being elementary implies that Rxy+ ≤
(H, 〈x, y〉) or Rxy ≤ (H, 〈x, y〉). If Rxy ≤ (H, 〈x, y〉), then H⊕Z contains some graph in texp({W1})
as a contraction and we are done. Therefore we have that:

(1) Rxy 6≤ (H, 〈x, y〉),

(2) Rxy+ ≤ (H, 〈x, y〉), and

(3) Z can be contracted to ℓ×Rxy, for some ℓ ≥ 2.

Suppose the s-triple (G, x, y) is chosen extremal with respect to H satisfying properties (1)–(3),
that is for every s-triple (G, x′, y′), containing a 2-component H′ = (H ′, 〈x′, y′〉) and such that H′ as
a proper contraction of H, the 2-rooted graphs (H ′, 〈x′, y′〉) and Z′ = (G\ (V (H ′)\{x′, y′}), 〈x′, y′〉)
do not satisfy properties (1)–(3).

As, by (2), H can be contracted to Rxy+, it cannot be isomorphic to Rxy, neither to R+
xy. So

from Lemma 17, there is vertex z ∈ C(H) \ {x, y} such that at least one of (G, x, z) and (G, y, z) is
an s-triple. Moreover, as G has no separating edges, xz /∈ E(G) and zy /∈ E(G). As z is a cut-vertex
of H and Rxy+ is biconnected, one of the 2-components of of the triples in {(G, x, z), (G, z, y)}
that is an s-triple contains Rxz+ as a contraction. W.l.o.g. assume that this 2-component is a
2-component of the s-triple (G, x, z) and we denote it by H′ = (H ′, x, z) (otherwise, we work with
a 2-component H′ = (H ′, z, y) of the s-triple (G, z, y)). Observe now that, because xz /∈ E(G), the
2-rooted graph (G \ (V (H ′) \ {x, z}), 〈x, z〉) can be contracted to ℓ ×Rxz, for some ℓ ≥ 2. By the
extremal choice of (G, x, y), one of the three Conditions (1), (2), and (3) does not hold for (G, z, x)
and H′. As we just verified that (2) and (3) hold, we obtain that Rxz ≤ (H ′, x, z). This, in turn,
implies that G contains some graph in texp({W1}) as a contraction, as yielding a contradiction.
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Lemma 25. Let G ∈ Õ2 and let (G, x, y) be an s-triple, where x, y 6∈ C(G). If H = (H, 〈x, y〉) is
an elementary C(G)-avoiding 2-component of (G, x, y), then H is isomorphic to Rxy.

Proof. We first examine the case where xy ∈ E(G). Then, from Lemma 22, either G is biconnected
and is isomorphic to W2 or G has a cut-vertex r and xy belongs to some 1-component of the s-pair
(G, 〈r〉) that is isomorphic to Yr. In both cases, by exhaustive checking, one may verify that the
lemma is correct in this case.

We now assume that xy 6∈ E(G). Suppose to the contrary that there is an s-triple (G, x, y) and an
elementary C(G)-avoiding 2-component H = (H, 〈x, y〉) of (G, x, y) such that H is not isomorphic
to Rxy. We choose the s-triple (G, x, y) to be extremal in the sense that there is no other minimal
separator {x′, y′} of G and an elementary C(G)-avoiding s-component (H ′, 〈x′, y′〉) of the s-triple
(G, x′, y′) such that (H ′, 〈x′, y′〉) is not isomorphic to Rxy and H ′ is proper contraction of H.

Recall that H is not isomorphic to Rxy and that, from Lemma 5, H is not isomorphic to R+
xy.

Therefore, from Lemma 17, G contains a vertex z ∈ C(H) \ {x, y} such that one of (G, z, x) and
(G, y, z) is an s-triple.

By the extremal choice of (G, x, y) and H, if (G, x, z) is an s-triple then each C(G)-avoiding
2-component of (G, x, z) is isomorphic to Rxz. By the same argument, if (G, z, y) is an s-triple then
all C(G)-avoiding 2-components of (G, z, y) are isomorphic to Rzy. We distinguish the following
cases:

• (G, y, z) is an s-triple but not (G, x, z). We observe that as (G, x, z) is not a s-triple and as z
is a cut-vertex of H, xz is an edge. So the existence of a unique C(G)-avoiding 2-component
of (G, y, z), isomorphic to Ryz, would imply the existence of a long path from x to y, a
contradiction to Lemma 23. If there are more than one C(G)-avoiding 2-components of
(G, y, z), then, as G is simplified, the union of those 2-components is isomorphic to 2×Ryz.
This implies that H is isomorphic to R

y
x. As by assumption {x, y} ∩ C(G) = ∅, we have a

contradiction to Lemma 20.

• (G, x, y) is an s-triple but not (G, z, y). This case is symmetric to the previous one.

• Both (G, z, x) and (G, y, z) are s-triples. Suppose that there exists a unique C(G)-avoiding
2-component H′ = (H ′, 〈x, z〉) of (G, x, z). Let a be the vertex of V (H ′)\{x, z}. Then observe
that (G, a, y) is a s-triple and that (H \ x, 〈a, z〉) is an elementary C(G)-avoiding component,
contradicting the extremal choice of (G, x, y). It follows that there are at least two C(G)-
avoiding 2-components of (G, x, z). Moreover, as G is simplified, there are exactly two such
components. By the same argument, there are exactly two C(G)-avoiding 2-components of
(G, y, z). As these 2-components are respectively isomorphic to Rxy and Rzy,we deduce that
H = Rxy, a contradiction to the fact that H is elementary.

Lemma 26. Let G = (G, 〈x〉) ∈ Õ
(1)
2 . There is no s-triple (G, x, y) such that one of its 2-components

is isomorphic to Rxy.

Proof. Let J = 2×G. From Lemma 8, J ∈ Õ2. As the lemma holds trivially when G ∈ B
(1)
2 , we as-

sume that G is B
(1)
2 -free. As the underlying graphs of the 1-rooted graphs in B

(1)
2 are {K4,W1,W2}-

free, Lemma 8 implies that J is B2-free. From Lemma 9, G is biconnected. Moreover G does not
contains separating edges. To see this observe first that by construction J is not isomorphic to W2.

Then by Lemma 22 G is isomorphic to Yx, contradicting the fact that G is B
(1)
2 -free.
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Let (G, x, y) be a s-triple and let H = {H0,H1, . . . ,Hq} be its 2-components. Suppose without
loss of generality that H0 = (H, 〈x, y〉) is isomorphic to Rxy. We denote by a the vertex of H that
is not x or y.

Claim 1 : There exists i ∈ [q] such that Hi is not elementary

Proof of Claim 1: Suppose to the contrary that for every i ∈ [q] Hi is elementary. From Lemma 18,
ctvs(Hi) ≤ 2 and therefore there is a σ(i) ∈ Lc(Hi) such that tcost(Hi, σ

(i)) ≤ 2. We now set

σ = 〈x, a, y〉 ⊙ σ
(1)
>2 ⊙ · · · ⊙ σ

(q)
>2. Observe that σ ∈ Lc(G) and tcost(G, σ) ≤ 2. This implies that

ctvs(G) ≤ 2, a contradiction, as G ∈ O
(1)
2 . ⋄

Suppose that H1 = (H1, 〈x, y〉) is not elementary.

Claim 2: H contains a 2-component distinct from H0 and H1, that is q ≥ 2.

Proof of Claim 2: Suppose to the contrary that H = {H0,H1}. Observe that H1 is not isomorphic
to Rxy nor R+

xy. Thereby by Lemma 17 applied on G and H1, there exists a vertex z ∈ C(H1)\{x, y}
such that one of (G, z, x) and (G, y, z) is an s-triple.

• Suppose that (G, y, z) is a not a s-triple. As z is a cut-vertex in H1, yz is an edge. It follows
that {z, y, a, x} induces a long path in J , a contradiction to Lemma 23.

• Suppose that (G, y, z) is a s-triple and all its x-avoiding 2-components are elementary. Then,
from Lemma 25, and the fact that x is distinct from y and z every x-avoiding 2-component
of (G, y, z) is isomorphic to Rzy. As J is simplified, there cannot be more that two such
2-components. If there is only one, then again J contains a long path, a contradiction to
Lemma 23. If they are two, then the s-triple (G, z, a) contains only one x-avoiding 2-component
that is isomorphic to Rz

a. As a is not a cut-vertex of J, we have a contradiction to Lemma 20.

• (G, y, z) is a s-triple and at least one, say A, of its x-avoiding 2-components is not elementary.
As J is K4-free and A is also a non-elementary 2-component of the s-triple (J, y, z), Lemma 21,

implies that A can be contracted to some Y in texp({Y
(2)
x }) (if Rxy ≤ A) or in texp({Yx}

(if Rxy+ ≤ A). This, in turn, implies that G could be contracted to some graph Y in

texp({Y
(2)
x ,Yx}. As G is simplified, G ∈ O

(1)
2 and Y ∈ O

(1)
2 (because of Lemma 15), it

follows, from Lemma 14, that G is isomorphic to Y
(2)
r , a contradiction. ⋄

From Claim 1 and Claim 2, the union of all the 2-components of the s-triple (G, x, y), except from
H1, can be contracted to ℓ×Rxy for some ℓ ≥ 2. Recall that G has no separating edges. Moreover,
G is B2-free and therefore K4-free. As H1 is not elementary we can apply Lemma 24 and deduce
that G can be contracted to some graph in texp({W1}). This means that J contains some graph in
texp({W1}) ∈ O2 as a proper contraction, a contradiction as J ∈ Õ2 ⊆ O2.

Lemma 27. Let G = (G, 〈x〉) ∈ Õ
(1)
2 . If H = (H, 〈x, y〉) is an elementary 2-component of an

s-triple (G, x, y), then H is isomorphic to R
y
x.

Proof. Let J = 2 × G. Copying the arguments in the beginning of the proof of Lemma 26, J is

B2-free, G is B
(1)
2 -free, and G is biconnected without separating edges.

Suppose in contrary that there is an s-triple (G, 〈x, y〉) and an elementary 2-component H =
(H, 〈x, y〉) of (G, 〈x, y〉) such that H is not isomorphic to R

y
x. We choose (G, 〈x, y〉) and H to be
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extremal in the sense that there is no other minimal separator {x′, y′} of G and an elementary bicon-
nected 2-component (H ′, 〈x′, y′〉) of the s-triple (G, x′, y′) such that (H ′, 〈x′, y′〉) is not isomorphic
to R

y
x and H ′ is proper subgraph of H.

As K4 ∈ O2, G cannot be contracted to K4. From Lemma 5, H is not isomorphic to R+
xy. Also,

from Lemma 26, H is neither isomorphic to Rxy. Therefore, we can apply Lemma 17, and deduce
that G contains a vertex z ∈ C(H) \ {x, y} such that one of (G, x, z) and (G, y, z) is an s-triple of
G.

Claim 1: If (G, y, z) is a s-triple, then the union Ux of all the x-avoiding 2-components of (G, y, z)
is isomorphic to 2×Ryz.

Proof of Claim 1: Let A = (A, 〈y, z〉) be a x-avoiding 2-component of (G, y, z). For the sake of
contradiction suppose that A is not elementary. Observe that A is also a 2-component of the
s-triple (J, y, z). As J is K4-free, Lemma 21 implies that A can be contracted to some 2-rooted
graph in texp({Ryx,Rxy+}). This, in turn, implies that G could be contracted to some graph Y

in texp({Y
(2)
x }) (if Rxy ≤ A) or in texp({Yx} (if Rxy+ ≤ A). As G is simplified, G ∈ O

(1)
2 and

Y ∈ O
(1)
2 (because of Lemma 15), it follows, from Lemma 14, that G is isomorphic to Y

(2)
r or Yr,

a contradiction as G is B
(1)
2 -free and Yr,Y

(2)
r ∈ B

(1)
2 .

So every x-avoiding 2-component of (G, y, z) is elementary. As none of z and y are cut-vertices of
J, by Lemma 25, each of these 2-components is isomorphic to Rzy. Observe that if A is the unique
x-avoiding component, then this would violate the extremal choice of (G, 〈x, y〉). Indeed, observe
that if v is the unique vertex of V (A) \ {y, z}, then (G, 〈x, v〉) and H certifies that (G, 〈x, y〉) and
H are not extremal. Finally, as G is simplified, (G, y, z) has at most two x-avoiding 2-components.
We conclude that if (G, y, z) is a s-triple, then Ux is isomorphic to 2×Ryz. ⋄

Claim 2: If (G, z, x) is a s-triple, then the union Uy of all the y-avoiding 2-components of (G, z, x)
is isomorphic to ℓ×Rz

x for some ℓ ≥ 1.

Proof of Claim 2: By the extremal choice of (G, 〈x, y〉) and H, every y-avoiding 2-component of the
s-triple (G, z, x) is isomorphic to Rz

x. This implies that Uy is isomorphic to ℓ×Rz
x for some ℓ ≥ 1.⋄

We arrive to a contradiction by distinguishing the following cases.

• Both (G, y, z) and (G, x, z) are s-triples. By Claim 1, Ux is isomorphic to 2 × Ryz. So if we
contract the z-avoiding 2-components of (G, x, y) to a single edge e = xy, then the union of e and
Ux is a 2-rooted graph B isomorphic to Rz

x. According to Claim 2, Uy is isomorphic to ℓ×R
y
x for

some ℓ ≥ 1. It follows that Yℓ+1
x ∈ B

(1)
2 , obtained as the union of Uy and B, is a contraction of G,

a contradiction.

• (G, y, z) is an s-triple but (G, x, z) is not. Recall that, by Claim 1, Ux is isomorphic to 2×Ryz.
As G does not have separating edges, xy is not an edge of G. Moreover as z ∈ C(H) and (G, x, z) is
not an s-triple, xz is an edge. It follows that H is isomorphic to R

y
x, a contradiction to the choice

of (G, 〈x, y〉) and H.

• (G, y, z) is not an s-triple but (G, x, z) is. From Claim 2, the union Uy = (Uy, 〈x, z〉) of the
y-avoiding 2-components of the s-triple (G, x, z) is isomorphic to ℓ×Rz

x for some ℓ ≥ 1. We prove
that ℓ ≥ 2. For the sake of contradiction, assume that Uy is isomorphic to Rz

x. Let z′ be the unique
neighbour of x in Uy. Observe that (G, y, z′) forms an s-triple of G. As z ∈ C(H) and (G, y, z) is
not an s-triple, yz is an edge. It follows that the unique 2-component of (G, y, z′) containing z is
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isomorphic to Rz′
y . As y is not a cut-vertex of J, this contradicts Lemma 20. It follows that ℓ ≥ 2

and that the vertex set of graph H is {y} ∪ V (Uy) and its edge set is {yz} ∪E(Uy) (see Figure 16,
where H is depicted outside the shadow area of the left handside graph). We let A = {a1, . . . , aq}
denote the neighbours of x in Uy and let B = {b1, b

′
1, . . . , bq, b

′
q} denote the vertices of Uy such that

for each i ∈ [q], bi, b
′
i are the common neighbors of ai and z.

Claim 3: There exists σ ∈ Lc(Uy) such that tcost(Uy, σ) ≤ 2.

Proof of Claim 3: Observe that σ = 〈x, z, a1, b1, b
′
1, . . . , aq, bq, b

′
q〉 is the claimed layout. ⋄

y

x

A

B

y

x

A

B

z

G G−

Q

Figure 16: The 1-rooted graphs G and G−.

Let G− = (G−, 〈x〉) be the 1-rooted graph where G− is obtained from G by contracting the edge
zy to the vertex y. We denote by Q = (Q, 〈x, y〉) the 2-component of (G−, x, y) that avoids the
vertices in A∪B (in the rightmost graph of Figure 16, Q is represented by the shadowed part). As
G− is a proper contraction of G, ctvs(G−) ≤ 2. Let σ′ ∈ Lc(G−) where tcost(G−, σ′) ≤ 2. Recall
that σ′ starts with x.

Claim 4: Every vertex of A ∪B appears after y in σ′.

Proof of Claim 4: Suppose that some vertex of A ∪ B appears in σ′ before y and we denote by a
the first such vertex that appears in σ′. Notice that a ∈ A as the vertices of A are the only vertices
of Uy that are adjacent to x in Uy (recall that σ′ is connected).

Let X be a set containing at most one of the vertices of B that appear before y in σ′. Notice
that X is empty or a singleton, depending whether there are vertices of B appearing before y in σ.

Notice that there is a path P in G− from x to y and a path P ′ in G− from a to y such that
V (P ) ∩ V (P ′) = {y} and such that none of the internal vertices of P and P ′ belongs to V (Q).
Notice that P and P ′ can be chosen so that they avoid all vertices (if any) in X.

Let also I = NQ(y) and i = σ′(y).

Case 1: |B| = 1. Then S
(t)
σ′ (i) contains one vertex in V (P ) \ {y}, one vertex in V (P ′) \ {y}, and the

unique vertex of X. This means that |S
(t)
σ′ (i)| > 2, therefore tcost(G−, σ′) > 2, a contradiction.

Case 2: |B| = 0. As σ′ is connected there exists some vertex m ∈ Q \ {x, y} that appears before y
in σ′. Then let P ′′ be a path in G− from m to y whose internal vertices belong to Q \ {x, y}. As

V (P )∩ V (P ′)∩ V (P ′′) = {y} we have that S
(t)
σ′ (i) contains one vertex in V (P ) \ {y}, one vertex in

V (P ′)\{y}, and one vertex in V (P ′′)\{y}. This means that |S
(t)
σ′ (i)| > 2, therefore tcost(G−, σ′) > 2,

a contradiction. ⋄

Consider the layout σ∗ obtained by removing the vertices of A ∪ B from σ′, that is σ∗ =
σ′ \ (A ∪ B). Observe that by Claim 4, σ∗ ∈ Lc(Q, 〈x〉). We set σ′′ = σ∗ ⊙ σ>2. Observe that
σ′′ ∈ Lc(G) and that, by Claim 3, tcost(G, σ′′) ≤ 2. It follows that ctvs(G) ≤ 2, a contradiction as

G ∈ O
(1)
2 .
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5.6 Biconnected graphs in O2.

Let G be a graph and let e = xy be an edge of G. We say that e is a marginal edge of G if it is not
a separating edge and there is a vertex z such that both (G, x, z) and (G, y, z) are s-triples. We call
z the base of the marginal edge xy.

Lemma 28. If G is a biconnected graph in Õ2, then G does not contain marginal edges.

Proof. From Lemma 22, if G is biconnected and has separating edges then it is isomorphic to W2

and, as W2 has no marginal edges, we are done. We can now assume that G has no separating
edges. As the lemma holds for all biconnected graphs in B2, we can assume that G excludes all of
them as a contraction.

Suppose to the contrary that xy is a marginal edge of G. We denote by Ux the union of the y-
avoiding 2-components of (G, x, z) and by Uy the union of the x-avoiding 2-components of (G, y, z).

Notice that it is not possible that both Ux and Uy are non-elementary. Indeed, if this is the
case, then Ux can be contracted to Rxz or Rxz+ or Kxz−

4 or Kxz
4 and Uy can be contracted to

Ryz or Ryz+ or K
yz−
4 or K

yz
4 . This means that G contains one of K4, W1, W2 as a contraction, a

contradiction.
W.l.o.g,. we assume that Ux is elementary. This means that all 2-components of (G, x, z) are

elementary. From Lemma 25, all of them are isomorphic to Rxz. If they are only one, then G
contains a long path, a contradiction to Lemma 23. If they are more than one, then they are two
as G is simplified. But then the 2-component of (G, y, z) that contains x is isomorphic to Rz

y while
y is not a cut-vertex, a contradiction to Lemma 20.

Lemma 29. The biconnected graphs in Õ2 are the graphs K4, W1, and W2.

Proof. Suppose to the contrary that there is a biconnected graph G ∈ Õ2 \ {K4, W1,W2}. Notice
that G has no separating edges, because, otherwise, from Lemma 22 it is isomorphic to W2, a
contradiction.

As G excludes K4 as a contraction, it contains some vertex a of degree 2. Let x and y be the
neighbors of a. Observe that (G, x, y) is an s-triple. We let H = {H0, . . . ,Hq} be the 2-components
of (G, x, y) with H0 = (H0, 〈x, y〉) and V (H0) = {x, a, y}. As G is biconnected, every 2-rooted graph
in H is biconnected.

Claim. Exactly one of the 2-rooted graphs {H1, . . . ,Hq} is not elementary.

Proof of claim. Suppose that for every i ∈ [q], Hi is elementary. From Lemma 18, ctvs(Hi) ≤ 2, for

i ∈ [2, q] therefore, there is a σ(i) ∈ Lc(Hi) where tcost(Hi, σ
(i)) ≤ 2. Let σ = 〈x, a, y〉⊙σ

(2)
>2 ⊙ · · ·⊙

σ
(q)
>2. Observe that tcost(G, σ) ≤ 2, therefore ctvs(G) ≤ 2, a contradiction. So there exists i ∈ [q]

such that Hi is elementary.
Suppose there exist distinct i ∈ [q] and j ∈ [q] such that Hi and Hj are not elementary. As G

is K4-free, Lemma 21 implies that both Hi and Hj can be contracted to some 2-rooted graph in
texp({Ryx,Rxy+}). But then G can be contracted to some graph in texp({W1,W2}). As G ∈ Õ2

and texp({W1,W2}) ⊆ O2 (because of Lemma 16), it follows, from Lemma 14, that G is isomorphic
to a graph in {W1,W2}, a contradiction. ⋄

Assume without loss of generality that H1 is not elementary. From Lemma 25, every Hj ∈ H,
distinct from H1, is isomorphic to Rxy. As G is simplified, we have q ≤ 2.
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• Suppose that q = 2. Then the union of H0 and H2 is isomorphic to 2×Rxy. As G is K4-free,
H1 is not elementary and G does not contain a separating edge, Lemma 24 implies that G is
either W1 or it can be properly contracted to some graph in texp({W1}) ∈ O2, a contradiction
as G ∈ Õ2 ⊆ O2.

• Suppose that q = 1. From Lemma 17, H1 contains a cut-vertex z such that one of (G, z, x)
and (G, y, z) is an s-triple. W.l.o.g,. we assume that (G, z, x) is an s-triple. But then the edge
xa would be a marginal edge (with base z), a contradiction to Lemma 28.

5.7 Non-biconnected graphs in Õ2.

The class of all 2-trees is recursively defined as follows. K3 is a 2-tree and a graph H with more
than 3 vertices is a 2-tree if it contains some vertex v of degree 2 such that its two neighbours are
adjacent and H \ v is a 2-tree. Given a 2-tree G and an edge e ∈ E(G), we say that e is a simplicial
edge of G if it is incident to a simplicial vertex.

Lemma 30. Let G be a 2-tree. Then sets of marginal, simplicial, and separating edges of G form
a partition of E(G).

Proof. Let G be a counterexample with a minimum number of vertices. Clearly G cannot be
isomorphic to K3 as every edge of K3 is simplicial. A 2-tree that is not isomorphic to K3 contains
a vertex v such that G− = G \ v is a 2-tree. By the minimality of G, the edge set of G− can be
partitioned to the sets of the marginal, simplicial, and separating edges. Let x, y be the neighbors
of v and let e ∈ E(G). If e = vx or e = vy, then e is a simplicial edge of G. If e = xy, then it
is a separating edge of G. So suppose that e /∈ {xy, vx, vy}. In that case, observe that e has the
same type in G as in G−. It follows that the marginal, simplicial, and separating edges of G form
a partition of E(G).

Lemma 31. Every biconnected K4-free graph G is the spanning subgraph of a 2-tree T with the
following properties:

(D1) If an edge is marginal in T then it is also marginal in G.

(D2) If an edge is simplicial in T then one of its endpoints has degree 2 in G.

(D3) If an edge is a separating edge of G, then it is also a separating edge in T.

Proof. It is known that each K4-free graph is the spanning subgraph of a 2-tree (this fact can be
easily derived by Dirac’s theorem [21], asserting that every K4-free graph contains some vertex of
degree ≤ 2). Let T be such a 2-tree. All properties (D1)-(D3) follow directly by the fact that G is
biconnected.

Lemma 32. The non-biconnected graphs in Õ2 are the graphs in {A⊕B | A,B ∈ B
(1)
2 }.

Proof. Let J = 2 × G. Copying the arguments in the beginning of the proof of Lemma 26, J is

B2-free, B
(1)
2 -free, and G is biconnected without separating edges.

From Lemma 8 and Lemma 15, it is enough to prove that O
(1)
2 ⊆ B

(1)
2 . We assume, towards a

contradiction, that there is some 1-rooted graph G = (G, 〈r〉) ∈ O
(1)
2 \ B

(1)
2 . Clearly, G is B

(1)
2 -free

and, from Lemma 9, G is biconnected. From Lemma 22, we can assume that G does not have
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separating edges. As the underlying graphs of the 2-rooted graphs in B
(1)
2 are {K4,W1,W2}-free,

Lemma 8 implies that J is B2-free. We will make use the fact that J is K4-free.

Claim 1: r has more than two neighbors.

Proof of Claim 1: Suppose to the contrary that r has only two neighbors, say x and y in G. Let
H = G \ {r} and H = (H, 〈x, y〉) and let A be the set of all r-avoiding 2-component of the s-triple
(G, x, y).

We first claim that every 2-rooted graph in A is elementary. For the sake of contradiction,
suppose some A ∈ A is not elementary. As J is K4-free and A is an r-avoiding 2-component
of the s-triple (J, x, y), Lemma 21 implies that A can be contracted to some 2-rooted graph in
texp({Ryx,Rxy+}). We now observe that applying the same contractions in G and contracting every
2-rooted graphs in A \ {A} to a single edge yields some graph Y in texp({Yr}) as a contraction of

G. As G is simplified, by Lemma 15, G ∈ O
(1)
2 and Y ∈ O

(1)
2 . It follows, from Lemma 14, that G

is isomorphic to Y
(2)
r , a contradiction as G is B

(1)
2 -free and Y

(2)
r ∈ B

(1)
2 .

Let H1, . . . ,Hq be the r-avoiding 2-components of the s-triple (G, x, y). As G is biconnected,
each Hi is biconnected. We can now apply Lemma 18 and deduce that ctvs(Hi) ≤ 2, for every i ∈ [q],

therefore there is some σ(i) ∈ Lc(Hi) where tcost(Hi, σ) ≤ 2. We set σ′ = 〈r, x, y〉⊙σ
(1)
>2 ⊙ · · · ⊙σ

(q)
>2

and observe that σ′ ∈ Lc(G) and tcost(G, σ′) ≤ 2, a contradiction. ⋄

Because of Claim 1, r has at least 3 neighbors in G. Let T be a 2-tree that contains G as
a spanning subgraph and satisfies properties (D1)–(D3) of Lemma 31. Let z be a neighbor of r.
Because of (D3), the edge e = rz is either a marginal or a simplicial edge of T. We claim that e is
marginal. Indeed, if e is simplicial, then from (D2) z has degree 2. Let w be the other neighbor of
z. Notice that one of the 2-components of the s-triple (G, r, w) is isomorphic to Rrw, a contradition
to Lemma 26.

We now know that e = rz is a marginal edge. Let t be the base of e. Clearly (G, r, t) is an
s-triple and tr 6∈ E(G) as G does not have separating edges. We denote by U = U1, . . . ,Uq the
2-components of (G, r, t).

Claim 2: All 2-rooted graphs in U are simple.

Proof of Claim 2: Suppose to the contrary that one, say U1, of the 2-rooted graphs in U is non-
simple and let U′ be the union of all the rest. Notice that as q > 2, U′ can be contracted to
ℓ ×Rr,t for some ℓ ≥ 2. Notice that (J, r, t) is an s-triple such that one of its 2-components is U1

(that is non-simple) and the union of the rest is U′ which can be contracted to ℓ ×Rxy for some
ℓ ≥ 2. Therefore, Lemma 24 applies on G and yields that G can be contracted to some graph in
texp({W1}). This means that J contains some graph in texp({W1}) ∈ O2 as a proper contraction,
a contradiction as J ∈ Õ2 ⊆ O2. ⋄

From Lemma 27 and Claim 2, all graphs in U are isomorphic to Rt
r. This implies that G

contains as a contraction some Y
(ℓ)
t for some ℓ ≥ 3. As each such Y

(ℓ)
t belongs to B

(1)
2 we have a

contradiction.

Proof of Theorem 3. From Lemma 29, and Lemma 32, we obtain that Õ2 = B̃2. The result follows
from Lemma 13.
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6 Members of Ok for every k

In this section we make some observations on the general structure of the graphs in Ok and O
(1)
k

for higher values of k.
Let Yk, k ≥ 2, be a set containing every 1-rooted graph that can be constructed as follows: take

a tree, rooted at r, where the distance of all its leaves from the root is k, and where each non-leaf
vertex has at least two children. Then make all its leaves adjacent with a new vertex z (we call
z top vertex) and we root the resulting graph to r. The graph with the least possible number of
vertices in Y4 is depicted in Figure 17.

r

z

r2r1

1

2

3

4

v

Figure 17: A 1-rooted graph in Y4.

Lemma 33. For every k ≥ 2, Yk ⊆ O
(1)
k .

Proof. Let Y = (Y, 〈r〉) be a 1-rooted graph in Yk for some k ≥ 2. For each such Y, we define
Ȳ = (Ȳ , 〈r, z〉) as the 2-rooted graph obtained if in Y we also root the top vertex z. We also
denote by dr the degree of r. We can easily verify that, for k ≥ 3, Y can be constructed if we take
dr 1-rooted graphs Y1, . . . ,Ydr (for some dr ≥ 2) in Yk−1, rooted to r1, . . . , rdr respectively, then
identify their top vertices to a single vertex z, add a new root r, and make it adjacent to ri, i ∈ [dr].

Claim 1: ctvs(Ȳ) ≤ 2, for every k ≥ 2.

Proof of Claim 1: Suppose to the contrary that this is not the case for some k ≥ 2 and let k be
the minimum such integer. It is easy to verify that if Y ∈ Y2, then ctvs(Ȳ) ≤ 2, therefore, k ≥ 3.
Moreover, by the minimality of k, ctvs(Ȳi) ≤ 2, for every i ∈ [dr], therefore there is a σi ∈ Lc(Ȳi),
where tcost(Ȳi, σi) ≤ 2, i ∈ [2]. We now consider the layout σ = 〈r, z〉⊙(σ1\{z})⊙· · · ,⊙(σdr \{z})
and observe that σ ∈ Lc(Ȳ) and that tcost(Ȳ, σ) ≤ 2, a contradiction.

Claim 2: ctvs(Y) > k, for every k ≥ 0.

Proof of Claim 2: Let σ ∈ Lc(Y) and assume that z = σi. As Y [σ≤i] is connected, it contains a
path, say P, from r to z. Clearly P has k + 2 vertices (including its endpoints). We call the first
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k + 1 vertices r = v1, . . . , vk+1. Notice that there are k + 1 internally vertex disjoint paths from z
to these vertices. We call these paths P1, . . . , Pk+1. For each j ∈ [k+ 1], let xj be the last vertex of

Pj , that appears in σ<i. Notice that {x1, . . . , xk+1} ∈ S
(t)
σ (i), therefore tcost(Y, σ) > k. As σ has

been chosen arbitrarily, we conclude that ctvs(Y) > k.

Claim 3: For every e ∈ E(Y ), ctvs(Y/e, 〈r〉) ≤ k, for every k ≥ 1.

Proof of Claim 3: Let Y ′ = Y/e be the result of the contraction of an edge e in Y and let Y′ =
(Y ′, 〈r〉). Notice that Ȳ′ is a contraction of Ȳ. From Lemma 1 and Claim 1, it follows that
ctvs(Ȳ′) ≤ 2. Let σ′ ∈ Lc(Ȳ′), where tcost(Ȳ′, σ′) ≤ 2. We also agree that if e has r or z as an
endpoint, then the result of its contraction is also r or z, respectively. Notice that because of the
contraction of e, the distance in the resulting Y ′ between z and r is k. Therefore Y ′ contains a
path P on k edges from z to r (clearly this path passes from the vertex that is created because
of the contraction of e). Let I = {v0, v1, . . . , vk−1, vk} be the vertices of this path, agreeing that
v0 = r and vk = z. We now define σ = 〈v0, . . . , vk〉 ⊙ (σ′ \ I) and observe that σ ∈ Lc(Y′), where
tcost(Y′, σ) ≤ k. Therefore, ctvs(Y′) ≤ k, as required.

Using now Claims 2 and 3, we have that Y ∈ O
(1)
k and we are done.

Consider now the graph class Bk = {2×Y | Y ∈ Yk} (see Figure 18 for an example of a graph
in Qk). Because of Lemma 8, we conclude to the following.

Lemma 34. For every k ≥ 2, Bk ⊆ Ok.

Figure 18: A member of B4.

As all graphs in Bk have treewidth 2, the above lemma has the following consequence.

Corollary 2. For every k ≥ 2, Ok contains infinitely many graphs of treewidth 2.

7 Open problems

The main result of this paper was the identification of obs�(T2). As this set is infinite, we provided
a “regular description” of this set where parts of the identified graphs can be “multiplied” arbitrarily.
It is interesting to investigate whether similar behavior is met for other contraction obstruction sets
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of contraction-closed graph classes, for instance, those where the bag-connected treewidth by [20]
and [33] is bounded. Is there a way to systematize this notion of “regular description”? Are there
natural graph parameters that are contraction-closed and whose contraction obstruction have no
such description?

In [31], Fraigniaud and Nisse studied the connected variant of the node search game where the
robber is agile and visible. In this variant the search strategy is not an ad-hoc sequence of the cop’s
positions. Instead it is a function that, given the current position of the cops and the robber, returns
the next move of the cops. As proved in [16], the search game against an agile and visible robber is
equivalent to the one against an inert and invisible robber that is considered in the present paper.
Also, because of the monotonicity results in [51], the graph searching parameters corresponding to
both these two versions of graph searching are also equal to treewidth plus one. It is easy to prove
that this equivalence, under the monotonicity assumption, transfers also to the connected versions
of both agile & visible and lazy & invisible variants that are both equivalent to connected treewidth
plus one. This means that all of our results can be transferred to the agile and visible setting, under
the monotonicity assumption. Using this, the discrepancy of treewidth and connected treewidth
can also be certified by a construction given in [31]. On the other hand, it is interesting to examine
whether the equivalence of the two variants (agile/visible and inert/invisible) transfers also in the
non-monotone setting. The results of [31] could be a good starting point in this direction.

Another interesting question is the algorithmic complexity of connected treewidth. Treewidth
can be straightforwardly reduced to connected treewidth: given a graph G we denote by G∗ the
graph obtained from G after adding a new vertex and making it adjacent to all the vertices of G.
It is easy to see then tw(G) = ctw(G∗). Therefore, the problem of deciding, whether the connected
treewidth of a graph G is at most k is NP-complete. An interesting question is whether this problem,
when parameterized by k, is fixed parameter tractable, i.e,. it can be answered in f(k) · nO(1) time
for some function f. Notice that the non-connected counterpart of this problem is fixed parameter
tractable. Actually, for both treewidth and pathwidth we immediately know that there are f(k) · n
step algorithms, because of the finiteness of obs≤(Tk) and obs≤(Pk), for every k [11]. However, we
cannot proceed like this for the connected treewidth or the connected pathwidth, as obs�(T

c
k ) and

obs�(P
c
k) are not finite in general (here Pc

k is the class of graphs with connected pathwidth at most
k). Very recently, an O(f(k) · n) time algorithm has been devised in [35] for connected pathwidth
(see also [19] for earlier results).

Lastly, it is an interesting question whether the ideas of this paper can lead to the identification,
for every k, of the set of all obstructions that have treewidth at most 2, i.e., the set Dk = obs�(T

c
k )∩

T2. From the constructions behind Corollary 2 we already know an infinite subset of this set. We
believe that Bk is not far from Dk. Based on the proof ideas of this paper, we conjecture that
the whole D̃k is generated if we enhance the construction of Yk so that, in case dr = 2, an edge
may be added between the two neighbors of r (visualized by the dotted edge in Figure 18). From
the algorithmic point of view, it was recently proved that connected treewidth can be computed in
O(n2 log n) time on graphs of treewidth at most 2 [43].
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