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ABSTRACT 

This paper presents a theoretical study on a hybrid fabric evolution law for modelling 

anisotropic behaviour of granular media. In the hybrid evolution law, the rate of a contact 

normal-based fabric tensor is related to the rates of both stress ratio tensor and plastic strain. 

Assumptions and principles that were adopted for the development of the fabric evolution law 

are presented and discussed at first. Its accuracy is then examined by comparing with discrete 

element modelling (DEM) results under proportional loading and experimental data under 

complex loading and unloading processes. It is found that fabric evolution at low stress ratios 

is closely related to the stress-rate driven term of the hybrid law, while the strain-rate driven 

term dominates at high stress ratios. The hybrid evolution law satisfies the uniqueness 

requirement of fabric at the critical state by introducing an ‘attractor’ concept. Overall, fabric 

evolutions predicted by the hybrid law show a close agreement with DEM simulation results 

and experimental data. 

Keywords: Anisotropy; Fabric evolution; Anisotropic critical state; Granular material; 
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1. Introduction 1 

The arrangement and organisation of particles and other features of microstructures within a 2 

soil mass are usually termed as its Fabric. In granular materials, it is associated with various 3 

microstructural quantities such as the elongated particle orientation direction, contact normal 4 

vectors, branch vectors, and void vectors. It has been widely observed (in both experimental 5 

tests [1-8] and numerical simulations [9-21]) that the fabric of granular materials is of 6 

anisotropic nature, which may be produced in the process of deposition (i.e. initial anisotropy) 7 

and/or upon anisotropic loading (i.e. induced anisotropy). Fabric anisotropy and its evolution 8 

may exert significant effects on the strength and deformation properties of discrete granular 9 

materials [1, 4, 17, 22-24], for example, the shear strength [20, 25-27], elastic moduli [28], 10 

non-coaxial plastic flow [29-32] and dilatancy [10, 33-35]. These behaviours of granular 11 

materials are closely associated with the stability and buckling of force chains at a mesoscopic 12 

scale and sliding and rolling at contacts, thus governed by the grain-scale structural 13 

characteristics and processes. To capture the fabric features, numerous fabric tensors describing 14 

the spatial distribution of different microstructural quantities, statistical representation of the 15 

microstructural fabric, have been developed in the literature (e.g. reviewed by Li et al. [36]), 16 

and many of them have been incorporated into constitutive models for granular materials as 17 

essential internal variables [31, 34, 35, 37-45]. 18 

Under shearing, the fabric of granular materials may be regarded as unchanged only at a very 19 

low level of strain, typically at the order of 10-5 [46]. Beyond this level, the material fabric 20 

would reorganise as particles slide and roll across each other, namely the fabric evolves during 21 

loading. Results of physical tests [1, 3, 5-7, 47, 48] and numerical simulations [13, 15, 49-54] 22 

revealed the following characteristics of fabric evolutions under monotonic shear loading: 23 

 The principal directions of the fabric tensor tend to align with those of the stress tensor. As 24 

the principal directions of the stresses rotate, the principal axes of the fabric tensor rotate 25 

in a manner that they gradually become coaxial with the loading direction at large strain. 26 

 An ultimate fabric state, i.e. the critical state, which is independent of the initial fabric 27 

(void ratio and fabric anisotropy), tends to be achieved at large strain, at which influences 28 

of the initial state of the fabric are totally erased. 29 

In order to reproduce the observations of fabric during loading, various evolution laws have 30 

been proposed, for example, by connecting the rate of a fabric tensor to either stress/elastic 31 
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strain rate [38, 44, 55, 56] or plastic strain rate [3, 10, 14, 34, 40, 57, 58]. The former types of 32 

fabric evolution laws are broadly categorised as stress-rate driven evolution laws as stresses 33 

and elastic strains can be readily related by elastic models, and the latter is named as strain-rate 34 

driven evolution laws in this paper. An overview of the commonly used fabric evolution laws 35 

refers to the reference of [59]. Due to the lack of quantitative measurements of relevant grain-36 

scale features and processes, the development of early phenomenological fabric evolution laws 37 

heavily relied on the stress-strain information at the macro level. 38 

Benefitting from the advancements of non-destructive imaging technologies, such as X-ray 39 

computed tomography [1, 7], and particle-based numerical simulation techniques, such as the 40 

discrete element method (DEM) [21], the understanding of anisotropic fabric and its evolution 41 

in granular materials has been greatly deepened and many fabric evolution laws have been 42 

examined, proposed or improved based on observed particle-scale characteristics [9, 31, 34, 59, 43 

60]. Motivated by micromechanical and experimental studies, Li and Dafalias [34] proposed 44 

an Anisotropic Critical State Theory (ACST), which represents a milestone in the constitutive 45 

modelling of anisotropic fabric for granular media. Hu et al. [31] examined the performance of 46 

typical stress-rate driven and strain-rate driven evolution laws of material fabric in constitutive 47 

modelling by comparing with DEM simulation results. It was shown that: (a) evolution laws 48 

associated with the stress (or elastic strain) rate alone can capture the characteristics of peak 49 

strength under monotonic shearing with various loading directions, but they rarely predict a 50 

unique anisotropic critical state; (b) on the contrary, fabric evolution laws associated with the 51 

plastic strain rate alone tend to give a unique critical value of the fabric tensor, but they cannot 52 

capture the characteristics of peak strength easily. The latter issue has also been recognised by 53 

Li and Dafalias [34] while modelling the anisotropic fabric of sand with a simple strain-rate 54 

driven evolution law. To capture the peak characteristics during fabric evolution, Yang et al. 55 

[40], Wang et al. [10] and Zhao and Kruyt [59], among others, made valuable attempts to 56 

improve the strain-rate driven evolution laws based on DEM observations as discussed later in 57 

this paper. Alternatively, Hu [61] proposed a hybrid fabric evolution law, assuming the 58 

evolution of the fabric tensor in granular materials under monotonic shearing is dependent on 59 

the rates of both stress ratio and plastic strain. Yuan et al. [9] extended the hybrid evolution 60 

law to incorporate the effects of the intermediate stress ratio on the evolution of fabric. In this 61 

paper, the assumptions, procedure and principles that were adopted in the development of the 62 

hybrid fabric evolution law are elaborated and discussed for the first time. This is followed by 63 

comparison and validation analyses of the fabric evolution laws based on direct grain-scale 64 
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observation and measurement from DEM simulations and experimental data in the literature. 65 

This paper is outlined as follows. Section 2 defines the fabric tensor and the anisotropic critical 66 

state. Sections 3 and 4 introduce and analyse some general types of stress-rate driven and strain-67 

rate driven fabric evolution laws, respectively, according to the requirements of the principle 68 

of material frame-indifference together with assumptions of rate-independence and uniqueness 69 

of critical fabric tensor. In Section 5, the hybrid fabric evolution law of Hu [61] is presented 70 

and briefly discussed. Then the performance of the hybrid evolution laws is examined by 71 

comparing with results of DEM simulations and experimental data in Sections 6 and 7, 72 

respectively. Finally, some conclusions are drawn in Section 8. 73 

2 Uniqueness of critical state fabric tensor 74 

2.1. Definition of the fabric tensor 75 

Contacts at where particles interact with each other are often regarded as the fundamental fabric 76 

information of granular materials [15, 62]. For a granular assembly of 𝑁𝑃  particles and 𝑁𝑐 77 

contact points, the relative frequency distribution of contact normals 𝒏 may be described by a 78 

probability density function 𝐸(𝒏). In most cases, it can be truncated [9, 26, 52, 63] as: 79 𝐸(𝒏) = 14𝜋 (1 + 𝑭: 𝒏⨂𝒏) (1) 80 

by second-order spherical harmonic series for three-dimensional (3D) materials, or 81 𝐸(𝒏) = 12𝜋 (1 + 𝑭: 𝒏⨂𝒏) (2) 82 

by second-order Fourier series for two-dimensional (2D) materials. The symbol ⨂ denotes a 83 

dyadic product. The traceless tensor 𝑭 in Eqs. (1) and (2) is known as the second-order fabric 84 

tensor of the third kind in terms of unit contact normal [46]. It is used to characterise the fabric 85 

anisotropy in this study as it renders to capture the most essential microstructural features that 86 

govern the material behaviour with a small number of parameters [33, 62]. Note that higher-87 

order terms are omitted in Eqs. (1) and (2) for simplicity as the contributions of higher-order 88 

terms are usually negligible compared to those from the second-order terms in most cases for 89 

various loading paths [26, 64]. Practically, the fabric tensor 𝑭 can be estimated from the 90 

second-order tensor 𝑵 [10, 13, 26, 65] as follows: 91 𝑭 = 152 (𝑵 − 13 𝑰)    for 3D case (3) 92 
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𝑭 = 4 (𝑵 − 12 𝑰)    for 2D case (4) 93 

where 𝑰 denotes the unit second-order tensor; 𝑵 is a function of the discrete directional contact 94 

normals 𝒏 of a granular assembly as: 95 𝑵 = 1𝑁𝑐 ∑ 𝒏𝑐⨂𝒏𝑐𝑐∈𝑁𝑐  (5) 96 

2.2. The fabric tensor at the critical state 97 

In classical critical state theory (CST), granular materials under a monotonic shearing will 98 

achieve a critical state characterised by stationary values of stresses and void ratio with an 99 

unlimited development of the shear strain [13, 53, 66-68], and the critical state can be fully 100 

described by two analytical equations in a three-dimensional space: 101 𝑒 = 𝑒𝑐 = 𝛤(𝑝) (6a) 102 𝜂 = 𝜂𝑐 = (𝑞 𝑝⁄ )𝑐 = 𝑀(𝑏) (6b) 103 

where 𝑝 = 1 3⁄ 𝑡𝑟(𝝈) is the mean effective stress; 𝑞 = √3 2⁄ ‖𝑺‖ is the stress deviator where 104 𝑺  is the deviatoric stress tensor, and 𝜂  is the stress ratio. The operator ‖∗‖  denotes the 105 

Euclidean norm. The intermediate principal stress ratio 𝑏 is defined as (𝜎2 − 𝜎3) (𝜎1 − 𝜎3)⁄ , 106 

in which 𝜎1, 𝜎2 and 𝜎3 are the major, intermediate and minor principal stresses respectively. 107 

Compressive stresses are treated as positive in this paper. Eq. (6a) assumes that the critical void 108 

ratio 𝑒𝑐 is only dependent on the mean effective stress 𝑝. Eq. (6b) defines that the critical state 109 

stress ratio is only dependent on the shear mode (i.e. 𝑏 value). The function 𝑀(𝑏) represents 110 

the effect of the shear mode on the critical state friction angle in the 𝜋 plane. 111 

The kernel of the idea in the CST is that the critical state line is unique for a given soil regardless 112 

of the stress paths and the initial conditions. It has been realized that the two conditions of CST 113 

(i.e. Eqs. (6a) and (6b)) may be necessary but are not sufficient to maintain the critical state 114 

[34, 69, 70]. Considerable microstructural studies revealed that material fabric at the critical 115 

state is anisotropic in nature [9, 11, 13, 34, 50, 53, 57]. Accordingly, Li and Dafalias [34] 116 

proposed the ACST, enhancing the two CST conditions by a third, i.e. a critical state value of 117 

the fabric. Following this concept, one more condition, specifying the fabric tensor at the 118 

critical state, is added to secure the sufficiency of reaching and maintaining the critical state. 119 

The critical state fabric tensor 𝑭𝑐 is assumed to be proportional to the deviatoric stress ratio 120 

tensor 𝜼 at the critical state as: 121 
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𝑭𝑐 = 𝐶𝐹(𝑏)𝜼𝑐 = 𝐶𝐹(𝑏) (𝑺𝑝)𝑐 (6c) 122 

where 𝐶𝐹 is a proportional coefficient that is dependent on the 𝑏 value [9, 13, 16]. According 123 

to the definition of the stress ratio in Eq. (6b), we have 𝜂 = √3 2⁄ ‖𝜼‖ . 𝜼 = 𝑺 𝑝⁄  is the 124 

(deviatoric) stress ratio tensor. If we define the deviator of the critical state fabric tensor as 125 𝐹𝑞𝑐 = √3/2‖𝑭𝑐‖ = 𝑀𝐹 , Eq. (7) can be deduced from Eq. (6c) as: 126 𝑀𝐹 = 𝐶𝐹(𝑏)𝑀(𝑏) (7) 127 

The additional constraint of Eq. (6c) characterises the anisotropic feature of granular materials 128 

at the critical state. The critical state fabric tensor specifies a boundary condition on the 129 

evolution of the fabric. In other words, a unique critical state fabric tensor will be achieved 130 

during fabric evolution, independent of the initial conditions and the stress path through which 131 

the critical state is reached. The deviator of 𝑭𝑐 is equal to 𝐶𝐹(𝑏)𝑀(𝑏), varying with the shear 132 

mode. These features of the critical state fabric tensor are consistent with DEM simulation 133 

findings [9, 10, 13, 17, 31, 49, 53, 71, 72] as will be elucidated later. 134 

3. Stress-rate driven evolution laws 135 

3.1. A general type of stress-rate driven fabric evolution laws 136 

The spatial distribution of contact normals keeps evolving to achieve mobilised strength. Both 137 

experimental observations [3, 47, 48] and numerical simulations [18-20] indicated that the 138 

distribution of contact normals is closely related to the applied stresses, and the material fabric 139 

tends to align with the applied stresses. In micromechanics, the stress tensor can be directly 140 

related to a fabric tensor through the stress-force-fabric relationship [20, 64]. According to 141 

these findings, Yu [55] proposed a general type of evolution laws in which the rate of the fabric 142 

tensor (i.e. �̇�) was related to the stress tensor 𝝈 and the stress rate �̇� as 143 �̇� = 𝑩(𝝈, �̇�) (8) 144 

In this work our attention is restricted to rate-independent material behaviour. The rate-145 

independence requires that the tensor-valued function 𝑩 is a homogeneous function of degree 146 

one in �̇�. As such, one can obtain a rate-independent form of the evolution law as follows: 147 

�̇� = 𝑩 (𝝈, �̇�‖�̇�‖) ‖�̇�‖ (9) 148 
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More details of the derivation of Eq. (9) refer to Gurtin et al. [73]. 149 

3.1.1. Uniqueness of the critical state fabric tensor 150 

At first, we examined whether evolution laws in the form of Eq. (8) are compatible with the 151 

condition of Eq. (6c). The answer is negative. In rate-independent granular materials, although 152 

the fabric tensor predicted by Eq. (8) will be ‘saturated’ at the critical state, namely it does not 153 

develop further with unlimited shear strain, it varies with the initial fabric conditions (explained 154 

in detail in Appendix A). In other words, Eq. (8), in which �̇� is purely dependent on 𝝈 and �̇�, 155 

cannot satisfy the requirement of the uniqueness of the critical state fabric tensor for rate-156 

independent media. Therefore, Eq. (8) is not suitable for describing the evolution of fabric 157 

tensors near the critical state. Nevertheless, it does not mean that Eq. (8) is not suitable for 158 

other situations. In fact, Eq. (8) is able to describe the evolution of fabric tensor under rotational 159 

shearing as well as in the case when the stress ratio is below the critical state stress ratio [61]. 160 

3.1.2. Requirements of the principle of material frame-indifference 161 

The principle of material frame-indifference requires that the function 𝑩 must be a tensor-162 

valued isotropic function on both stress rates and stress tensors. This feature of function 𝑩 is 163 

useful to develop evolution laws for internal variables and fabric tensors by using the 164 

representation theorem of isotropic functions. According to the representation theorem for a 165 

tensor-valued function of two symmetric tensors in a three-dimensional space [74], evolution 166 

laws of the fabric tensor, satisfying the form of Eq. (8), can be generally expressed as: 167 �̇� = 𝑎0𝑰 + 𝑎1𝝈 + 𝑎2𝝈2 + 𝑎3�̇� + 𝑎4�̇�2 + 𝑎5(𝝈�̇� + �̇�𝝈) + 𝑎6(𝝈2�̇� + �̇�𝝈2) +168          𝑎7(𝝈�̇�2 + �̇�2𝝈) (10) 169 

where 𝑎𝑘(𝑘 = 0, ⋯ ,7) are scalar-valued functions of basic invariants listed as follows: 170 

 Invariant Group A: 𝑡𝑟(𝝈), 𝑡𝑟(𝝈2), 𝑡𝑟(𝝈3) 171 

 Invariant Group B: 𝑡𝑟(�̇�),   𝑡𝑟(𝝈�̇�),   𝑡𝑟(𝝈2�̇�) 172 

 Invariant Group C:  𝑡𝑟(�̇�2), 𝑡𝑟(�̇�3), 𝑡𝑟(𝝈�̇�2), 𝑡𝑟(𝝈2�̇�2) 173 

Although Eq. (10) exactly represents the constraints imposed by the principle of material 174 

frame-indifference, it is too general for practical use. In many cases, low-order terms may be 175 

of sufficient accuracy, and the constraint imposed by such simplified relations would generally 176 

be stronger than the full description of Eq. (10). We give several specific cases in which high-177 
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order terms can be assimilated or dropped in the following subsection. 178 

3.2. Specific cases of Eq. (10) 179 

It is natural to further assume that �̇� is linear with �̇� as it is the simplest way to satisfy the 180 

requirement of rate-independence, i.e. Eq. (9). With the assumption of linearity, Eq. (10) can 181 

be simplified as: 182 �̇� = 𝑎0𝑰 + 𝑎1𝝈 + 𝑎2𝝈𝟐 + 𝑎3�̇� + 𝑎5(𝝈�̇� + �̇�𝝈) + 𝑎6(𝝈2�̇� + �̇�𝝈2) (11) 183 

As the fabric tensor 𝑭 defined in Eq. (3) is traceless, only the deviatoric part of the fabric tensor 184 

rate needs to be kept. Hence, Eq. (11) can be expressed more explicitly as: 185 �̇� = (𝑎3𝑡𝑟(�̇�) + 𝑎4𝑡𝑟(𝝈�̇�) + 𝑎5𝑡𝑟(𝝈2�̇�))𝑺 + (𝑎6𝑡𝑟(�̇�) + 𝑎7𝑡𝑟(𝝈�̇�) + 𝑎8𝑡𝑟(𝝈2�̇�))(𝝈2)′ +186           𝑎9�̇� + 𝑎10(𝝈�̇� + �̇�𝝈)′ + 𝑎11(𝝈2�̇� + �̇�𝝈2)′ (12) 187 

where 𝑎𝑘(𝑘 = 3, ⋯ ,11)  are new single scalar-valued functions, which are dependent on 188 

Invariant Group A only. (∗)′  represents deviatoric part of a second-order tensor ∗, i.e. dev(∗). 189 

Obviously, �̇�(𝝈, �̇�) in Eq. (12) is an odd function of the stress rate �̇�. 190 

3.2.1. Evolution laws for specific loading paths 191 

Under a proportional loading, the direction of deviatoric stresses 𝒍 remains constant (e.g. for 192 

triaxial compression and triaxial extension). By applying the Cayley-Hamilton theorem, Eq. 193 

(12) can be equivalently expressed as: 194 �̇� = (𝑎3𝑡𝑟(�̇�) + 𝑎4𝑡𝑟(𝝈�̇�))𝑺 + (𝑎6𝑡𝑟(�̇�) + 𝑎7𝑡𝑟(𝝈�̇�))(𝑺2)′ (13) 195 

Under a coaxial loading, the principal axes of stresses are fixed (e.g. the true axial shearing). 196 

Since the stress tensor and its rate are coaxial, �̇� can be equivalently expressed as 197 �̇� = (𝑎3𝑡𝑟(�̇�) + 𝑎4𝑡𝑟(𝝈�̇�) + 𝑎5𝑡𝑟(𝝈2�̇�))𝑺 + (𝑎6𝑡𝑟(�̇�) + 𝑎7𝑡𝑟(𝝈�̇�) + 𝑎8𝑡𝑟(𝝈2�̇�))(𝑺2)′198 

 (14) 199 

Under a purely rotational shearing where the principal axes rotate but all stress invariants are 200 

kept constant, the rate of stress tensor and the stress tensor satisfy the following equations: 201 𝑡𝑟(�̇�) = 0;   𝑡𝑟(�̇�𝝈) = 0;   𝑡𝑟(�̇�𝝈2) = 0 (15) 202 

Combining Eq. (18) with Eq. (15) leads to: 203 
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�̇� = (𝑎9�̇� + 𝑎10(𝑺�̇� + �̇�𝑺) + 𝑎11(𝑺2�̇� + �̇�𝑺2))′
 (16) 204 

The above example cases clearly show that different terms in Eq. (12) represent the effects of 205 

different components of the stress tensor and the stress rate on fabric evolution. According to 206 

the problem of stress paths in hand, specific forms of the stress-rate driven fabric evolution law 207 

can be obtained by tailoring the terms in Eq. (12). 208 

3.2.2. A simple evolution law for proportional loading 209 

According to the DEM simulation results of tests under proportional loading by Yang [51], 210 

which showed the second invariant of fabric tensor 𝐹𝑞 = √3/2‖𝑭‖ varied non-linearly with 211 

the stress ratio 𝜂, a simple non-linear evolution law is proposed in Eq. (17) as: 212 �̇� = 𝐶1(1 + 𝐶2‖𝜼‖)�̇� = 𝐶1(1 + 𝐶2‖𝜼‖) (�̇�𝑝 − 𝑺𝑝2 �̇�) (17) 213 

where 𝐶1 and 𝐶2 are material constants controlling the pace of fabric evolution. Note that Eq. 214 

(17) is a special case of Eq. (12) while designating: 215 𝑎3 = − 𝐶1(1+𝐶2‖𝜼‖)3𝑝2 ;  𝑎9 = 𝐶1(1+𝐶2‖𝜼‖)𝑝 ;   𝑎𝑘(𝑘≠3,9) = 0 (18) 216 

In Eq. (18), two terms of Eq. (12) are kept. In this simple evolution law, the rate of the fabric 217 

tensor is assumed to be proportional to the rate of stress ratio tensor. Setting 𝐶2 = 0, Eq. (17) 218 

reduces to the fabric evolution law proposed by Wan and Guo [38], that is: 219 �̇� = 𝐶1�̇� (19) 220 

Eq. (19) relates the rate of the fabric tensor to the rate of the stress ratio. It predicts that the 221 

fabric tensor stops evolving at the critical state as the stress ratio ‘saturated’ [38]. Integrating 222 

Eq. (19) under a proportional loading leads to a linear relation between ||𝑭| and ||𝜼|| from an 223 

initial isotropic fabric tensor. This disadvantage is eliminated by Eq. (17). 224 

Satake [65] assumed that the fabric tensor is proportional to the stress tensor normalised by the 225 

mean effective stress, i.e. 226 �̇� = 𝐶1(𝝈 𝑝⁄ )̇ = 𝐶1(�̇�𝑝 − 𝝈𝑝2 �̇�) = 𝐶1(�̇�𝑝 − 𝑺𝑝2 �̇�) (20) 227 

This evolution law is essentially identical to that of Eq. (19). The dependence of the fabric 228 

tensor on the stress rate has been observed in physical tests [47, 48], in which the distribution 229 
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of contact normals was closely related to the applied stresses (e.g. Eqs. (19) and (20)). It has 230 

also been argued that the fabric evolution depends on the elastic rate of deformation rather than 231 

the plastic rate of deformation as they presumed that only the elastic deformation gives rise to 232 

a change in stresses and causes distortion of the fabric [44, 56]. However, this is not necessarily 233 

true as many recent studies [9, 10, 31, 34] showed that the fabric evolution may also closely 234 

associate with the development of plastic strains prior to the critical state. 235 

4. Strain-rate driven evolution laws 236 

Strain-rate driven type of evolution laws were initially proposed to describe kinematic 237 

hardening of internal state (hardening) parameters for metals (e.g. [75]) and then applied to 238 

describe the rotational hardening of soils (e.g. [76-78]). Based on some existing fabric 239 

evolution laws for granular materials in the literature (e.g. [3, 14, 34, 40, 57, 58]), a general 240 

type of the strain-rate driven evolution laws is given at first in Eq.(21). 241 �̇� = 𝐶1𝑎(𝝈, 𝑭)(𝑩(𝝈, 𝑭) − 𝑭)Λ̇ (21) 242 

where 𝐶1 is a material constant controlling the pace of fabric evolution; Λ̇ is a plastic index 243 

defined as the norm of deviatoric plastic strain rates, i.e. Λ̇ = ‖𝒆�̇�‖; 𝑎(𝝈, 𝑭)  is a positive 244 

isotropic scalar-valued function of the stress tensor 𝝈 and the fabric tensor 𝑭; 𝑩(𝝈, 𝑭) is an 245 

isotropic tensor-valued function. Eq. (21) meets the requirement of the principle of material 246 

frame-indifference as both 𝑎(𝝈, 𝑭)  and 𝑩(𝝈, 𝑭)  are isotropic functions, and it is also 247 

compatible with the assumption of rate-independence according to the definition of Λ̇. 248 

4.1. Uniqueness of the critical state fabric tensor 249 

Taiebat and Dafalias [76] introduced an ‘attractor’ concept to ensure that the anisotropic state 250 

parameter, which macroscopically reflects material anisotropy, will reach and rest on the pre-251 

defined limit surface (normally in the stress spaces) under continuously monotonic shearing. 252 

Following this concept, we proposed a general attractor in the form of 𝑩(𝝈, 𝑭) − 𝑭 in Eq. (21), 253 

which implies a relationship between the critical state fabric tensor and the stress tensor and 254 

ensures a unique critical state fabric tensor. Specifically, the plastic index Λ̇ in Eq. (21) is 255 

always positive under monotonic shearing, hence the rate of evolution of the fabric tensor 256 

reduces to be zero when the attractor (𝑩(𝝈, 𝑭) − 𝑭)  approaches zero at the critical state. 257 

During shearing, the fabric tensor evolves towards the fixed point that is defined in Eq. (22). 258 𝑩(𝝈𝑐, 𝑭𝑐) − 𝑭𝑐 = 𝟎 (22) 259 



12 

where 𝝈𝑐 and 𝑭𝑐 represent the critical state stress and fabric tensors, respectively. Eqs. (21) 260 

and (22) specify that the fabric tensor may evolve from an arbitrary initial value of 𝑭𝒊 towards 261 

the critical state fabric tensor 𝑭𝒄, and 𝑭𝒄 will stay the same with further development of plastic 262 

strains. According to the representative theorem of isotropic tensor-valued function, it is found 263 

that 𝑭𝑐 must be coaxial with 𝝈𝑐 as 𝑩 is an isotropic tensor-valued function of them. 264 

Following Eqs. (6c) and (22), various forms of the function 𝑩 can be specified, for example: 265 𝑩(𝝈, 𝑭) = 𝐶𝐹(𝑏)𝜼 (23a) 266 𝑩(𝝈, 𝑭) = 𝑀𝐹(𝑏)𝒏;   𝒏 = 𝜼‖𝜼‖ ;   𝒏: 𝒏 = 1 (23b) 267 

𝑩(𝝈, 𝑭) = 𝑀𝐹(𝑏)𝒏;   𝒏 = 𝜼−𝑭‖𝜼−𝑭‖ ;   𝒏: 𝒏 = 1 (23c) 268 

Note that, although the above 𝑩 functions are all compatible with Eq. (6c) at the critical state, 269 

they define different paces of fabric evolution towards the critical state. The ‘attractor’ concept 270 

here may be explained from different perspectives. According to Ma and Zhang [79] and Kuhn 271 

[80], the evolution of contact normals in granular assembly can be treated as transport 272 

phenomena. At grain scales, the movement of the contacts is characterized by the generation, 273 

disruption, convection and diffusion of contact normals on a unit sphere. Correspondingly, the 274 

evolution of the spatial distribution of contact normals is governed by Fokker-Planck equations 275 

on a unit sphere including source, convective and diffuse terms. Under monotonic shearing, 276 

the fabric evolves towards the critical state that corresponds to the steady state of the Fokker-277 

Planck equations. The attractor is a similar description of the evolution of Fokker-Planck 278 

equations towards the critical state in the form of fabric tensor. At a meso-scale, the existence 279 

of an attractor is closely associated with the fact that the buckling of the force chain cannot 280 

continue unlimitedly. During monotonic shearing, especially after the peak, the force chain is 281 

in a metastable state and the force network evolves towards a ‘dynamic’ equilibrium state. 282 

4.2. A simple strain-rate driven evolution law 283 

If we choose 𝑎(𝝈, 𝑭) = 1  and 𝑩(𝝈, 𝑭)  in the form of Eq. (23a) and assume that 𝐶𝐹(𝑏) is 284 

independent of the b value for simplicity, a simple evolution law is obtained from Eq. (21) as: 285 �̇� = 𝐶1(𝐶𝐹𝜼 − 𝑭)Λ̇ (24) 286 

This is similar to the evolution law that was proposed by Li and Dafalias [34] (i.e. Eq. (25)), in 287 

which a traceless void vector-based fabric tensor 𝒏𝑙 was used. 288 
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�̇� = 𝐶𝑐(𝒏𝑙 − 𝑟𝑭)Λ̇;   𝒏𝑙: 𝒏𝑙 = 1 (25) 289 

where 𝒏𝑙 represents a direction along which the loading is applied. 𝐶𝑐 and 𝑟 dictate the pace of 290 

fabric evolution and its peak value, respectively. 291 

The critical state fabric tensor 𝑭 in Eq. (25) is normalised by its norm ‖𝑭𝒄‖ and hence there 292 

always is 𝑭𝑐: 𝑭𝑐 = 1. Instead, the contact normal based-fabric tensor is attracted by 𝐶𝐹𝜼 in Eq. 293 

(24) so that the deviator of the critical state fabric tensor can be defined simultaneously (e.g. 294 

Eqs. (6c) and (7)). 𝑟 = 1 was assumed by Li and Dafalias [34] for simplicity in the constitutive 295 

formulation with Eq. (25). In this case, this evolution law can be recovered by using a 𝑩(𝝈, 𝑭) 296 

function in the form of Eq. (26c). However, Li and Dafalias [34] noticed that this simplification 297 

is not able to capture the peak characteristics of the deviator of the fabric tensor in dense sand. 298 

Instead of being constant, 𝑟 should be able to evolve nonlinearly, whose value is smaller than 299 

the unity before reaching the critical state and equals 1 at the critical state. For this reason, 300 

Yang et al. [40] incorporated the material dilatancy into the evolution of 𝑟; Wang et al. [10] 301 

related 𝑟 to the evolution of the particle orientation fabric tensor. Similarly, Zhao and Kruyt 302 

[59] related the coefficient of Λ̇ with a nonlinear function of the state parameter for modelling 303 

the peak characteristics of fabric evolution. 304 

5. The hybrid fabric evolution law of Hu [61] 305 

In order to avoid the aforementioned limitations existing in purely stress-rate driven and simple 306 

strain-rate driven evaluation laws, Hu [61] proposed to combine Eqs. (17) and (24) for 307 

characterising fabric evolution of granular materials under proportional loading. By doing so, 308 

the rate of the fabric tensor is related to the rates of both stress ratio and plastic strain as: 309 �̇� = 𝐶1(1 + 𝐶2‖𝜼‖)�̇� + 𝐶3(𝐶4𝜼 − 𝑭)Λ̇ (26) 310 

Comparing to Eqs. (17) and (24), two additional material parameters are involved in Eq. (26). 311 

Eq. (26) satisfies both the uniqueness requirement of the fabric tensor at the critical state and 312 

the requirement of the principle of material frame-indifference as Eqs. (17) and (24) do. Based 313 

on the stress-force-fabric relationship in micromechanics, the fabric tensor can be incorporated 314 

into a yield surface through the concept of back stress [42, 55]. As a result, fabric evolutions 315 

predicted by Eq. (26) will result in rotational hardening of the yield surface, which will be 316 

‘saturated’ at a unique critical state [31]. This suggests that the rotational hardening law, widely 317 

used in constitutive modelling of granular materials [77, 81], phenomenally represents the 318 
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fabric evolution at the grain scale [43]. Moreover, the incorporation of the fabric evolution in 319 

the plastic flow rule will lead to non-coaxial plastic deformation as the fabric tensor is generally 320 

not coincident with the stress tensor [31, 35]. 321 

The first (stress rate) and second (strain rate) terms in Eq. (26) may be associated with different 322 

microscopic mechanisms of fabric evolution [9, 31]. At the initial stage of shearing with rapid 323 

increases in the stress ratio, contacts are forced to reorganise to support the applied stresses. 324 

The change of distribution of contact normals, hence the evolution of the fabric tensor, is 325 

mainly due to the net creation of the contacts. At this stage, the plastic strain rate is relatively 326 

small, the fabric evolution can thus be effectively related to the stress ratio rate as expressed in 327 

the first term of Eq. (26). As shearing continues (especially after the peak strength), the net rate 328 

of contact creation decreases considerably, and the change of the contact normal distribution is 329 

predominantly controlled by the migration of contact points through sliding and rolling of 330 

particles across each other, accompanied by rapid increases of plastic deformation. Hence, the 331 

fabric evolution can be effectively related to the plastic strain rate at large shear strains [14, 28] 332 

as approximated by the second term of Eq. (26), which ensures that the fabric tensor evolves 333 

towards a unique critical state. 334 

6. Performances of fabric evolution laws under proportional monotonic shearing 335 

This section examines the performance of the hybrid fabric evolution law (i.e. Eq. (26)) under 336 

monotonic shearing with constant mean stress 𝑝 and 𝑏 value. The predicted fabric evolutions 337 

are compared with the DEM simulation results obtained by Yang [51]. In the meanwhile, 338 

individual influences of the stress-rate driven term (i.e. setting 𝐶3 = 0 and 𝐶4 = 0 in Eq. (26)) 339 

and the strain-rate driven term (i.e. setting 𝐶1 = 0 and 𝐶2 = 0 in Eq. (26)) of the hybrid law on 340 

the evolution of material fabric are also discussed. 341 

6.1 DEM model 342 

The DEM simulations were performed using the commercial package of PFC3D (2004). Non-343 

spherical particles (clumps) were used, which were formed by two identical and overlapping 344 

spheres. The distance between two spheres in a clump was 1.4 times of the radius of each 345 

sphere Rs, and Rs randomly distributed in the range of 0.3 mm and 0.5 mm. The local contact 346 

behaviour was described by the linear contact model. Sliding occurs when the tangential 347 

contact force exceeds the maximum allowable tangential force 𝐹𝑚𝑎𝑥𝑡  (𝐹𝑚𝑎𝑥𝑡 = 𝜇𝐹𝑛𝑡, where  is 348 
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the frictional coefficient and 𝐹𝑛𝑡 is the normal stress at contacts). Contact cohesion and crushing 349 

mechanism have not been considered. The model parameters used are summarised in Table . 350 

Table 1 DEM simulation details 351 

Particle 

solid 

density  

Normal 

stiffness for 

sphere kn 

Tangential 

stiffness for 

sphere ks 

Friction 

coefficient for 

sphere 
Time-step t 

Damping 

coefficient 

 

2700kg/m3 1×105 N/m 1×105 N/m 0.5 1.02×10-6 s 0.7 

Initially, anisotropic samples of non-spherical particles were generated by the gravitational 352 

deposition method in a cubic box of dimensions of 0.0912m×0.0912m×0.133m. After the 353 

deposition process, the polyhedral boundary walls were generated by selecting n=8 and 354 

Rw0.0066m, where n is the number of sides of the top regular polygon wall surface and Rw is 355 

the radius of the polyhedron inscribed sphere. The boundary surfaces were rigid walls with the 356 

same mechanical properties as the granular particles. More details about the polyhedral 357 

specimen refer to references of [51] and [82]. Each specimen consisted of 5188 particles, and 358 

Yang [51] verified that the number of particles is great enough to serve as a representative 359 

volume element using the polyhedral specimen. Afterwards, the anisotropic samples were 360 

sheared to the deviatoric strain of 10% under triaxial compression, followed by unloading to 361 

the isotropic stress state (see Fig. 1). The pre-loaded dense samples (i.e. No. CDED_TC_TT in 362 

[51]) had an initial void ratio e0 of 0.65. Finally, true triaxial tests were performed on the 363 

samples. During the monotonic shearing, the mean stress 𝑝 was kept as constant at 500kPa and 364 𝑏 = 0.4 ; the direction of the major principal stress was fixed at different angles to the 365 

deposition direction, ranging from 0o to 90o at an interval of 15o (see Fig. 1a). 366 

 367 

Fig. 1 (a) Definition of loading direction; (b) Definition of principal fabric direction; (c) 368 

Loading history of the pre-sheared DEM samples. 369 
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The fabric tensor can be fully characterised by the fabric deviator 𝐹𝑞 = √3/2‖𝑭‖ , the 370 

intermediate fabric ratio 𝐹𝑏 = (𝐹1 − 𝐹2) (𝐹1 − 𝐹3)⁄  (where 𝐹1, 𝐹2  and 𝐹3  are the major, 371 

intermediate and minor principal values of the fabric tensor respectively) and the major 372 

principal direction of the fabric tensor 𝛾𝐹 (see Fig. 1b). The initial fabric before the monotonic 373 

shearing in the DEM tests was characterised as 𝐹𝑞𝑖 = 0.72, 𝐹𝑏𝑖 = 0.0192, 𝛾𝐹𝑖 = 0o . The 374 

critical state stress ratio 𝜂𝑐 was equal to 0.95, and the critical state fabric deviator 𝐹𝑞𝑐 = 1. 375 

6.2 Comparison with DEM simulation results 376 

Model parameters required by the hybrid evolution law are summarized in Table 2, which were 377 

calibrated by fitting results of the DEM simulations. The evolution laws were integrated using 378 

an implicit Euler algorithm [9, 61] with values of the stress tensor and the strain tensor that 379 

were obtained from the DEM tests. Note that Λ̇ was calculated using the total strain rate as the 380 

elastic strain rate is negligibly small compared with the plastic strain rate.  381 

Table 2Model parameters for the hybrid fabric evolution law 382 

Evolution law 
Parameters 𝐶1* 𝐶2 𝐶3 𝐶4* 

Eq. (26) 0.32 1.3 9 1/0.95 

* Note that 𝐶1 and 𝐶4 may be dependent on the 𝑏 value [9]. As the 𝑏 value was set as constant in the 383 

DEM simulations under monotonic shearing, they were set as constant accordingly here. 384 

Figs. 2 and 3 compared fabric deviators obtained from the DEM simulations and theoretical 385 

predictions, plotted against stress ratio 𝜂  and deviatoric strain q, respectively. Simulation 386 

results in Fig. 2 (a) show that before reaching the peak strength, there is a non-linear functional 387 

relationship between the stress ratio and the fabric deviator as also observed in experimental 388 

investigations [47]. After the peak strength, the fabric deviator evolves with the stress ratio in 389 

a totally different manner. For tests performed under different loading directions, 𝐹𝑞 evolves 390 

consistently towards a unique critical value with increasing strains (e.g. Fig. 3(a)). Figs. 4 and 391 

5 present simulated and predicted evolutions of 𝐹𝑏 and 𝛾𝐹 respectively, plotted against stress 392 

ratio. The DEM simulation results show that the fabric tensor (i.e. the value of 𝐹𝑏) tends to 393 

have the same 𝑏 value and be coaxial with the stress tensor towards the critical state, as what 394 

we have assumed for the critical state fabric tensor in Eq. (6c). The comparisons indicate that 395 

the above features of fabric evolution can be well captured by the hybrid evolution law although 396 

the predicted peace to reach the critical state is slightly quicker than the DEM measurements. 397 
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At low stress ratios (or small shear strains), the material is more likely to behave elastically. 398 

Figs. 2-5 indicate that, with a stress ratio up to 0.6, the fabric evolution is closely related to the 399 

stress-rate driven term of Eq. (26). This is in line with experimental observations in which the 400 

fabric evolution shows a strong link with the stress ratio and the material fabric attempts to 401 

align with stresses [47, 83]. Beyond this stage, Eq. (26) is no longer suitable for predicting the 402 

fabric evolution if only the stress-rate driven term is involved, particularly at the post-peak 403 

stage. For example, the purely stress-rate driven term predicted the 𝜂 − 𝐹𝑞  curves in the 404 

softening regime return exactly along the paths they came along (i.e. 𝜂 varies from the peak 405 

value 𝜂𝑝 to the critical state value 𝜂𝑐) (see Fig. 2(b)), the critical state fabric deviators are 406 

different in loading directions (see Fig. 3(b)), and the principal direction of the fabric only 407 

rotates a small angle (see Fig. 5(b). All these features are against the DEM observations (e.g. 408 

Figs. 2(a) and 3(a)). Those findings also echoed the conclusion made in Section 3.1.1 that the 409 

purely stress-rate driven evolution laws cannot warrant a unique critical state fabric tensor. 410 

At higher stress ratios (or larger shear strains), the fabric evolution tends to be more related to 411 

the (plastic) strain-rate driven term of Eq. (26) as the material becomes more likely in the plastic 412 

state. By introducing the ‘attractor’ concept, a unique critical state is predicted, and this is 413 

consistent with the DEM results (Figs. 2(c, d) and 3(c, d)). Nevertheless, Figs. 2-5 shows that, 414 

if excluding the stress-state term, Eq. (26) becomes much less accurate at low stress ratios, 415 

especially for tests at small loading angles (e.g. 𝛼 = 0o), compared to the DEM results. The 416 

evolution of fabric in the entire range of stress ratios can be well reproduced by the hybrid law 417 

that incorporates both a stress-rate driven term and a strain-rate driven term. It may be assumed 418 

that, when the granular material transits from an elastic state to plasticity under monotonic 419 

shearing, that governs the fabric evolution gradually transfers from the stress-rate driven term 420 

to the plastic-strain-rate driven term in Eq. (26). 421 
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Fig. 2 Simulated and predicted fabric evolution: stress ratio 𝜂 vs. fabric deviator 𝐹𝑞. (a) DEM; 424 

(b) Stress-rate driven term of Eq. (26); (c) Strain-rate driven term of Eq. (26); (d) Eq. (26). 425 
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   427 

Fig. 3 Simulated and predicted fabric evolution: deviatoric strain q vs. fabric deviator 𝐹𝑞. (a) 428 

DEM; (b) Stress-rate driven term of Eq. (26); (c) Strain-rate driven term of Eq. (26); (d) Eq. 429 

(26). 430 
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Fig. 4 Simulated and predicted fabric evolution: stress ratio 𝜂 vs. intermediate fabric ratio 𝐹𝑏. 433 

(a) DEM; (b) Stress-rate driven term of Eq. (26); (c) Strain-rate driven term of Eq. (26); (d) 434 

Eq. (26). 435 
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Fig. 5 Simulated and predicted fabric evolution under proportional loading: principal fabric 438 

direction 𝛾𝐹 vs. stress ratio 𝜂. (a) DEM; (b) Stress-rate driven term of Eq. (26); (c) Strain-rate 439 

driven term of Eq. (26); (d) Eq. (26). 440 

7. Comparison with experimental tests 441 

The hybrid evolution law is further compared against experimental data in the literature to 442 

examine its accuracy in describing the evolution of fabric tensors. As contact normals of 443 

granular materials under three dimensional (3D) conditions were rarely detected in physical 444 

tests at this moment, test results on samples made of 2D (Schneebeli) granular materials were 445 

used here. The sample types and model parameters involved in the validation are listed in Table 446 

2. Like the 3D cases, notations for the 2D cases are defined as follows. 447 𝑝 = 𝑡𝑟(𝝈) 2⁄ ;    𝑺 = 𝝈 −  𝑝𝑰;   𝜼 = 𝑺𝑝 (27) 448 

where 𝑝, 𝑺 and 𝜼 are the mean effective stress, the deviatoric stress, and the stress ratio tensor, 449 
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respectively. 450 𝜂 = ‖𝜼‖;  𝜀𝑞 = ‖𝒆𝑝‖;   Λ̇ = ‖�̇�𝑝‖;  𝐹𝑞 = ‖𝑭‖;   tan(2𝛾𝐹) = 2𝐹21𝐹22−𝐹11 (28) 451 

where 𝜂, 𝜀𝑞 , Λ̇, 𝐹𝑞 and 𝛾𝐹 are the stress ratio, the plastic strain deviator, the plastic index, the 452 

fabric deviator and the major principal direction of fabric tensors with respect to the axis 2, 453 

respectively. In the 2D case, the fabric tensor can be completely expressed by the fabric 454 

deviator 𝐹𝑞 and the major principal direction of the fabric tensor, 𝛾𝐹, as the fabric tensor is 455 

traceless. The fabric deviator characterises the degree of concentration of contact normals in 456 

preferred directions, i.e. 𝛾𝐹. Note that the elastic strain was ignored while calculating the plastic 457 

index in the following model predictions. 458 

Table 1 Test samples, loading types and model parameters. 459 

No. Materials Test type 
Model parameters 

Reference 𝐶1 𝐶2 𝐶3 𝐶4 

1 
Polydisperse oval 

photoelastic rods 

Biaxial 

compression 
0.35 0.13 3 1 Oda et al. [4] 

2* 

Polydisperse 

circular wooden 

rods 

CHCV1 

0.1 0 10 1.2 Calvetti et al. [3] 
UVUH1 

UDUG1 

CHCD1 

* V represents vertical compression; H represents horizontal compression; D and G represent 460 

right shear and left shear respectively; C is used for tests with constant normal stress; and U 461 

is used for constant volume tests. For instance, CHCD1 is a test in which the specimen is first 462 

loaded in horizontal compression (H) (𝜀ẋ=constant) under constant vertical stress (C), and 463 

then subjected to right shear (D) (�̇�=constant > 0) under constant vertical stress (C). 464 

7.1. Comparison with tests of Oda et al. [4] 465 

Biaxial compression tests were performed on 2D assemblies of oval cross-sectional rods 466 

(polyurethane rubber) by Oda et al. [4]. The photoelastically sensitive rods were lubricated, 467 

leading to the interparticle friction angle was about 26o. As a result, the internal friction angles 468 

of the assemblies are comparable to those of natural sands [47]. The assemblies were tilted and 469 

held at a desired angle 𝛼 (so-called the bedding angle) in the frame, followed by stacking the 470 

rod-like particles by hand with the long axes of their cross-section horizontally. After the 471 

completion of the assembly, the frame was brought back (see Fig. 6). A series of assemblies 472 

with different bedding angles, i.e. initial fabrics, were tested. The assemblies were sheared by 473 

increasing the vertical displacement incrementally with a constant lateral force. The contact 474 

normals and their evolution for the assembly of 𝛼 = 0o and 60o were measured, respectively. 475 
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More details of the tests refer to [22]. Noted that the second-order fabric tensor of the second 476 

kind in terms of unit contact normal [63] that was used by Oda et al. [4] was converted to the 477 

fabric tensor defined in this paper (i.e., Eq. (4)) for direct comparison. 478 

Figs. 6 and 7 present measured and predicted results of fabric evolutions for assemblies with 479 

different initial fabrics in terms of fabric deviator and major principal fabric direction, 480 

respectively. Under displacement-controlled biaxial compression, the fabric anisotropy, 481 

represented by the fabric deviator, increases with the development of shear strains until a peak 482 

value is reached, responding to the increase in the stress ratio, then drops with decreases in the 483 

stress ratio (Fig. 6). The principal axes of the fabric tensor rotated gradually towards the 484 

principal axes of the stress tensor regardless of the initial fabric tensor being coaxial or non-485 

coaxial with the stress tensor (Fig. 7). The comparison results indicate that the above features 486 

of fabric evolution under biaxial compression for assemblies with different initial fabrics can 487 

be well reproduced by the present hybrid evolution law. 488 
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Fig. 6 Measured and predicted evolutions of the fabric deviator 𝐹𝑞 with axial strain 𝜀1 for 490 

assemblies with different initial fabrics. 491 



23 

Axial strain, 1 (%)

0 1 2 3 4 5 6 7
60

70

80

90

100

110

120

130

140

Measured, a60o

Measured, a0o

Predicted, 

a60o

Predicted, a0o

Major principal 

fabric direction

x

P
ri

n
ci

p
a
l f

a
b
ri

c
 d

ir
e
c
ti
o
n
,

F
(o

)

γF 

1

 492 

Fig. 7 Measured and predicted evolutions of major principal fabric direction 𝛾𝐹 with axial 493 

strain 𝜀1 for assemblies with different initial fabrics. 494 

7.2. Comparison with tests of Calvetti et al. [3] 495 

Several laboratory tests on 2D material specimens composed of wooden roller stacks were 496 

performed by Calvetti et al. [3] to analyse the material behaviour under complex loading 497 

conditions, involving loading-unloading cycles and principal axes rotations. It has been shown 498 

that the macroscopic behaviour of this 2D material, whose internal friction angle was about 28o 499 

(±2o), was qualitatively similar to that of real granular materials (e.g. sands) under loading 500 

paths such as compression, shear, and constant volume tests. The fabric tensor, used by Calvetti 501 

et al. [3], was normalised by the initial distribution of contact normal and defined by a 502 

distribution function of the contact normal truncated by second-order Fourier series. This is 503 

similar to Eq. (4). Hence, the evolution of this fabric tensor reflects the underlying mechanisms 504 

of evolution of contact normal, and it can be reasonably assumed that the hybrid evolution law 505 

is able to capture the evolution of the fabric tensor. The rearrangement anisotropy 𝑑, defined 506 

by Calvetti et al. [3], can be linked to the fabric deviator 𝐹𝑞 by: 507 𝐹𝑞 = √2𝑑 (29) 508 

As listed in Table 3, results from four different types of tests were used to validate the hybrid 509 

evolution law. In summary, during the CHCV1 test (Fig. 8), the specimen was first loaded and 510 
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unloaded in horizontal compression under constant vertical stress (part CH), followed by 511 

vertical compression under constant horizontal stress (part CV); during the UVUH1 test (Fig. 512 

9), the specimen was first loaded in vertical compression, then unloaded and finally loaded in 513 

horizontal compression, keeping the volume constant; the UDUG1 shear test (Fig. 10) was 514 

performed under constant volume conditions, in which the boundary strains were imposed 515 

controlling the rotation g of the loading device lateral plates; in the CHCD1 test (Fig. 11) the 516 

specimen was first loaded in horizontal compression (CH part) and then subjected to right shear 517 

(CD part), as the vertical stress was kept constant. The stress and strain control conditions 518 

applied in each of the tests are also briefly summarised in Figs. 8-11, respectively. More details 519 

of the tests refer to [41]. 520 

The measured and predicted evolutions of the fabric tensor, in terms of the fabric deviator and 521 

major principal fabric direction, are compared in Figs. 8-11. Overall, a close agreement is 522 

shown between theory and tests under complex loading and unloading processes, although 523 

slight overpredictions on the fabric deviator are made by the hybrid evolution law for the 524 

UVUH1 and UDUG1 tests. One of the advantages of the proposed hybrid evolution law is that 525 

the evolution of the distribution of contact normals is attributed to two different mechanisms 526 

that are related to the stress rate and the plastic strain rate, respectively. Fig. 8 (a) shows that 527 

the trajectory of the fabric deviator was mostly reversible during the loading-unloading cycle 528 

from step 3 to step7. In other words, the material response was more elastic-like and the plastic 529 

strain rate was very low during the unloading process. Similar features were observed during 530 

loading and unloading processes in the UVUH1 and the UDUG1 tests as shown in Figs. 9 and 531 

10. In these processes, the fabric evolutions were mainly related to the stress rate. On the other 532 

hand, the strain-rate driven mechanism was triggered and dominated at large shear strains. 533 

comparisons in Figs. 9 and 10 indicate that the evolution law is applicable to the undrained 534 

conditions featured by the constant volume. In addition, it is shown that the fabric evolution in 535 

CHCD1 test, where principal axes rotations were involved, can also be generally captured by 536 

the hybrid evolution law using the same set of material parameters. 537 
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Fig. 8 Measured and predicted evolutions of fabric tensor against shear strain 𝜀x − 𝜀y under 540 

CHCV1 test: (a) fabric deviator; (b) major principal fabric direction. 541 
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Fig. 9 Measured and predicted evolutions of fabric tensor against shear strain 𝜀y − 𝜀x under 544 

UVUH1 test: (a) fabric deviator; (b) major principal fabric direction. 545 
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Fig. 10 Measured and predicted evolutions of fabric tensor against shear strain γ under 548 

UDUG1 test: (a) fabric deviator; (b) major principal fabric direction. 549 
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Fig. 11 Measured and predicted evolutions of fabric deviator Fq against strain deviator εq 551 

under CHCD1 test. 552 

8. Concluding remarks 553 

This paper focuses on the development and assessment of a generic hybrid fabric evolution law 554 

for modelling of anisotropic behaviour of granular materials. The evolution law is formulated 555 

at the macroscopic level within the general framework of rate-independent elastoplasticity, 556 

which is not related to any particular model. Its features and performances are discussed by 557 

comparing with DEM simulation results under proportional monotonic shearing and 558 

experimental data under complex loading and unloading conditions. The following remarks 559 

can be made: 560 

 Evolution laws that assume the rate of the fabric tensor is dependent on stress rate and 561 

stress tensor only (e.g. Eq. (9)) violate the uniqueness requirement of the critical state. 562 

Strain-rate driven evolution laws in the form of Eq. (21) with an ‘attractor’ that satisfies 563 

Eq. (6c) at the critical state (e.g. Eq. (22)) can ensure a unique critical fabric tensor 564 

independent of initial fabric. These two types of evolution laws satisfy the requirements 565 

of the principle of material frame-indifference and the assumption of rate-independence. 566 

 Fabric evolution predicted by the hybrid evolution law coincides well with DEM 567 

simulations for granular materials under monotonic shearing at various directions. The 568 

fabric evolution at low stress ratios is primarily governed by the stress-rate driven term 569 
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of the hybrid law, while the strain-rate driven term dominates at high stress ratios and 570 

ensures that the fabric tensor evolves towards a unique anisotropic critical state. 571 

 A close agreement between the model predictions and experimental data is shown, 572 

which suggests that the hybrid evolution law is also applicable to complex loading 573 

conditions involving loading-unloading cycles and rotations of stress axes while the 574 

axes rotate by an angle less than 180o. 575 

The accuracy and applicability of the proposed evolutions laws may vary in tests performed 576 

under different control conditions (e.g. under purely rotational shearing) [61]. This needs to be 577 

further investigated in future studies. 578 
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Appendix A. 595 

A monotonic proportional loading path under mixed control is considered. In this specific 596 

loading path, the mean effective stress 𝑝 and the 𝑏 value are kept constant and the principal 597 
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directions of the stress tensor are fixed, while the vertical strain increases gradually. An initially 598 

isotropic stress state is assumed for clarity. One example of this type of loading in laboratory 599 

tests is the drained constant 𝑝 triaxial shear test after an isotropic consolidation. 600 

The stress tensor 𝝈 can be decomposed as: 601 𝝈 = 𝑝𝑰 + 𝑺 = 𝑝𝑰 + 𝜆𝒍 (A 1) 602 

where 𝜆 and 𝒍 denote the norm and the direction of the deviatoric stress tensor 𝑺 respectively. 603 𝜆 = ‖𝑺‖;   𝒍 = 𝑺‖𝑺‖ ;   ‖𝒍‖ = 1 (A 2) 604 

This specific proportional loading can be equivalently described as: 605 �̇� = 𝟎;  �̇� = 0 (A 3) 606 

Hence, the following relationships can be obtained. 607 �̇� = �̇�𝒍 + 𝜆�̇� = �̇�𝒍;   ‖�̇�‖ = |�̇�|;  �̇�‖�̇�‖ = �̇�‖�̇�‖ = �̇�|�̇�| 𝒍 (A 4) 608 

Using the relationships in Eq. (A 4), Eq. (9) reduces to: 609 �̇� = 𝑩 (𝑝𝑰 + 𝜆𝒍, �̇�|�̇�| 𝒍) |�̇�| (A 5) 610 

Before integrating Eq. (A 5), it is instructive to discuss the stress paths in detail. It can be 611 

expected that a sample of granular material, either initially ‘dense’ or ‘loose’, will reach the 612 

same critical state that is described by Eqs. (6a), (6b) and (6c) at large shear strains, along a 613 

such loading path. Note that the critical state stresses for different samples are the same 614 

according to Eq. (6b) and hence the critical state fabric tensors should also be identical 615 

according to Eq. (6c). In other words, the critical state fabric tensor should be unique under this 616 

type of loading irrespective of the initial fabric or density of the sample. Fig. A.1 illustrates the 617 

stress paths for both ‘dense’ and ‘loose’ samples. Terms ‘loose’ and ‘dense’ used here are 618 

referred to as whether a peak stress ratio exists. It is well known that for ‘loose’ samples during 619 

a monotonic shearing the stress norm 𝜆 = ‖𝑺‖ will increase monotonically from 0 to the 620 

critical value 𝜆𝑐(𝑝), along the stress path O-C. While for ‘dense’ samples, 𝜆 will increase up 621 

to a peak value 𝜆𝑝(𝑝) due to strain hardening, and then decrease gradually towards the critical 622 

value 𝜆𝑐(𝑝) due to strain softening, namely along the path of O-C-P-C. 623 
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Figure A.1. Illustration of stress paths in a deviatoric stress space 625 

For ‘loose’ samples, along the stress path O-C there is �̇� |�̇�|⁄ = 1. For ‘dense’ samples, �̇� |�̇�|⁄ =626 1 along O-C-P, whereas �̇� |�̇�|⁄ = −1 after the peak strength along the path P-C. Since |�̇�| 627 

approaches zero while reaching the critical state, it can be seen from Eq. (A 5) that the critical 628 

fabric tensor will be ‘saturated’, which means that the fabric tensor will no longer change as 629 

the shear strain develops further. Thus, the critical state fabric tensor 𝑭𝒄 can be obtained by 630 

integrating Eq. (A 5) along the stress path O-C-P-C as: 631 𝑭𝑐 − 𝑭𝑖 = ∫ 𝑩(𝑝𝑰 + 𝜆𝒍, 𝒍)𝜆𝑝0 𝑑𝜆 − ∫ 𝑩(𝑝𝑰 + 𝜆𝒍, −𝒍)𝜆𝑐𝜆𝑝 𝑑𝜆 (A 6) 632 

where 𝑭𝑖 is the initial fabric tensor. Rewriting Eq. (A 6) leads to: 633 𝑭𝑐 = 𝑭𝑖 + 𝑭𝑐1 + 𝑭𝑐2 (A 7) 634 𝑭𝑐1 = ∫ 𝑩(𝑝𝑰 + 𝜆𝒍, 𝒍)𝜆𝑐0 𝑑𝜆 (A 8) 635 𝑭𝑐2 = ∫ (𝑩(𝑝𝑰 + 𝜆𝒍, 𝒍) + 𝑩(𝑝𝑰 + 𝜆𝒍, −𝒍))𝜆𝑝𝜆𝑐 𝑑𝜆 (A 9) 636 

Note that the stress direction 𝒍 remains unchanged in this loading path. The term 𝑭𝑐1 is the 637 

stress-induced fabric tensor along the stress path O-C, and the term 𝑭c2 is the stress-induced 638 

fabric tensor along the stress path C-P-C. 639 

Eq. (6b) specifies that the critical state stresses are unique and independent of the initial state. 640 

Hence, the stress-induced fabric tensors 𝑭c1 should be the same for ‘loose’ and ‘dense’ samples. 641 
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For ‘loose’ samples, there are no peak stress states, i.e. 𝜆𝑐 = 𝜆𝑝, hence 𝑭𝑐2 is always zero. Eq. 642 

(A 7) shows 𝑭c will not be unique for samples with different initial fabric tensors, dependent 643 

on 𝑭𝑖 instead, which means that Eqs. (9) and (6c) are not compatible for ‘loose’ samples at the 644 

critical state. For ‘dense’ samples, providing that 𝑩 is an odd function in terms of the stress 645 

rate �̇�, e.g. 𝑩 is linear with �̇� (see Section 3.2), there is 𝑩(𝑝𝑰 + 𝜆𝒍, −𝒍) = −𝐵(𝑝𝑰 + 𝜆𝒍, 𝒍), thus 646 𝑭𝑐2 = 0 . This situation is the same as that of ‘loose’ samples. For the case where 647 𝑩(𝑝𝐼 + 𝜆𝒍, −𝒍) ≠ −𝑩(𝑝𝑰 + 𝜆𝒍, 𝒍), 𝑭𝑐2  may vary with the peak strength 𝜆𝑝  which is also 648 

dependent on the initial void ratio [84]. Consequently, 𝑭𝑐 will not be unique either as both 𝑭𝑖 649 

and 𝑭𝑐2 are dependent on the initial state of the material. Overall, Eqs. (9) and (6c) are not 650 

compatible at the critical state for ‘dense’ samples.  651 
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