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The Use of Blockchain to Support Distributed AI

Implementation in IoT Systems
Subhi Alrubei, University of Sheffield, Edward Ball, University of Sheffield, and Jonathan Rigelsford, University

of Sheffield

Abstract—This paper presents a distributed and decentralized
architecture for the implementation of Distributed Artificial
Intelligence (DAI) using hardware platforms provided by the
Internet of Things (IoT). A trained DAI system has been
implemented over the IoT, where each IoT device acts as one or
more of the neurons within the DAI layers. This is accomplished
through the utilization of decentralized, self-managed blockchain
technologies that allow trusted interactions and information to be
exchanged between distributed neurons. The platform was built
and customized to be used within the IoT system, and it is capable
of handling DAI-related tasks. A new consensus mechanism based
on Proof of Authority (PoA) and Proof of Work (PoW) has
been designed and implemented, along with bespoke block and
transaction formats. The proposed architecture was analyzed,
implemented, and tested using a dedicated testbed with low-
cost IoT devices. A quantitative measurement and performance
evaluation of the system based on a real-world IoT application
was conducted. The implemented DAI is found to have an
accuracy of 92%-98%, with an energy cost of 0.12 joules (J)
when utilizing a Raspberry Pi to run one neuron. The measured
hash per joule (h/J) when using a Raspberry Pi for mining
is 13.8Kh/J compared to 54Kh/J using an ESP32. The results
showed that it is feasible to implement a DAI system utilizing the
IoT hardware platform while maintaining the system’s accuracy.
The integration of the blockchain has added an element of
security and trust to the data and the interaction between system
components.

Index Terms—Distributed Artificial Intelligence (DAI),
Blockchain, IoT, Consensus Mechanisms, Performance
Evaluation.

I. INTRODUCTION

THE Internet of Things (IoT) is a major source of big

data, which is generated from the huge number of

smart devices connected to the internet. This data provides

users with the ability to generate valuable information and

knowledge. One promising technology in this context is ar-

tificial intelligence (AI) that can be utilized within the IoT

to provide an intelligent means of processing data to produce

valuable insights and predictions, and to enhance the process

of decision-making automation. Depending on the application

and its requirements, the processing of this data by an AI

system may be in the cloud layer, in an edge layer, and/or in

the sensing layer (the smart devices). However, such intelligent

implementation of AI into the IoT realm faces challenges,
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especially the implementation into the edge and sensing layers.

In particular, these devices often lack adequate computational

resources [1].

A distributed system may be a collection of autonomous

nodes communicating with each other over a communication

channel. It has the ability to run software in parallel among

these nodes closer to where computing is needed [2]. This

attractive ability of the distributed approach helps process data

in near real-time and reduces the communication overhead

needed to transfer data from end devices to a central entity,

such as cloud computing. To realize the benefits of true

parallelism and distribution offered by AI in a fully distributed

computing system, a scalable hardware platform is required.

The distributed nature of the IoT, where thousands of smart

devices are available and can communicate with each other,

offers such a platform [3].

Distributed computing requires each node in the system

to carry out a parallel computation every round [4]. The

number of rounds needed to complete the task and the number

of messages exchanged between the nodes will result in a

complex and undesirable situation. To avoid this complexity

and reduce latency by providing the AI system with historical

data to facilitate future decisions, the IoT system requires

implementation in an architecture that combines both decen-

tralization and distribution. Blockchain technology is an ideal

solution that enables distributed computing and achieves data

storage in a large number of devices over a wide area network.

The integration of blockchain into IoT can provide reliable

control of the IoT network’s ability to distribute computation

over a large number of devices, improve overall security by

enhancing data integrity, ensure accountability, and provide a

way to implement better access control [5]. It also allows the

AI system to use trusted data for analyses and forecasts while

utilizing the available IoT hardware to coordinate the execution

of tasks in parallel, using a fully distributed approach.

The contributions of this paper are summarized as follows:

• A novel, and secure blockchain architecture for support-

ing DAI on low-power and low-cost IoT devices.

• Practical implementation of DAI using scalable and dis-

tributed IoT hardware platform.

• Prediction and measurements of DAI using blockchain

in IoT devices with a performance analysis that includes,

accuracy, energy consumption, and overall system latency

utilizing data from trusted and robust platforms.

• A blockchain protocol that includes a new consensus

mechanism, and transaction and block formats that help
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nodes handle DAI-based transactions and prediction re-

quests.

The rest of the paper is organized as follows. Section II

presents the related work, followed by the proposed archi-

tecture design in Section III. Section IV presents the system

analysis; this is followed by the system implementation and

deployment in Section V. Details of the results are in section

VI, and finally, the paper is concluded in Section VII.

II. RELATED WORK

Blockchain platforms are usually built around one of two

main approaches: On-Chain and Off-Chain. On-chain is a

transparent approach where transactions are executed and

stored on the public blockchain. It is implemented by most

of the well-known blockchain platforms, such as Bitcoin [6]

and Ethereum [7]. This means all transactions and communi-

cations between the nodes are executed on the blockchain, and

each transaction is stored on the chain. While this approach

can result in increased latency, it provides a trusted method

that makes AI predictions traceable and easy to understand,

allowing users and organizations to determine how and why

any decisions were made.

Off-chain, as described by [8], is intended to move some

of the computational efforts from the main chain to an off-

chain platform. The transactions are executed by the nodes

off-chain, and only the final outcome is committed to the main

chain. There are different implementations of the off-chain

methods, e.g., Bitcoin’s Lightning network [9] and Plasma

of Ethereum [10]. While this approach reduces latency, it

does not provide the complete trusted and transparent process

intended by blockchain nor does it allow for full traceability. It

may not provide validations for all transactions, which could

compromise the system’s security.

In terms of combining blockchain, AI, and IoT, [11] pro-

posed a platform named NeuRoNt based on the Ethereum

blockchain and an edge layer hosted a smart contract. The

platform consists of multiple agents powered by smart con-

tracts that can solve complex problems. Ethereum and smart

contract-based mobile edge sharing systems were proposed

by [12]. AI was used for data processing, and blockchain and

cloud platforms were used to facilitate the sharing of services

in IoT-enabled smart cities. ModelChain, proposed by [13],

aims to maintain the privacy of health records while allowing

multiple institutions to train the medical health prediction

framework using blockchain and machine learning.

In [14] the BlockDeepNet framework was proposed, which

combined the implementation of deep learning, blockchain,

and smart contracts for data analyses in IoT. Blockchain was

used to securely exchange local and global updates of the deep

learning model. The work by [15] proposed the DeepCoin

framework for smart grids based on blockchain and deep learn-

ing. The deep learning used is an intrusion detection systems

(IDS) scheme for detecting fraudulent transactions and attacks

in the blockchain-based network. Another framework proposed

by [16] is based on deep learning, SDN, and blockchain

for enabling high-performance and cost-effective computing

resources for smart city applications. Nevertheless, both [15]

and [16] frameworks suffer from centralization issues.

The authors of [17] introduced a distributed AI system en-

abled by multiple layers of fog networking for smart shopping

advertisements. They offloaded some of the AI analyses and

data processing to fog layers while utilizing cloud platforms to

perform the main analyses and choose advertisements based on

age and gender. The works in [18]–[20] provided a framework

and a simulation study to deploy a distributed Hopfield neural

network through the use of a Wireless Sensor Network (WSN)

as a hardware platform. While this work provided a robust

architecture for utilizing an IoT system for the implementation

of distributed AI, validation in the form of practical deploy-

ment and a real-world use case is needed. The authors of

[21] have proposed distributed deep neural networks (DDNNs)

architecture, which consists of the cloud, the edge, and IoT end

devices. Another work by [22] proposed a distributed machine

TABLE I
COMPARISON BETWEEN THIS PROPOSED ARCHITECTURE AND OTHER RELATED WORKS

Paper Main Contribution Technologies Utilized
Distributed and Decentralized

Implementation
Prototype and System

Deployment
Measurement and

Performance Analyses

Distributed Neurons

Implementation on
IoT devices

[12]

Blockchain and smart contract
based framework for sharing
economy in smart cities

Fog, IoT, AI,
Blockchain and
cloud

No, blockchain for
distributed data sharing but
relies on central AI engine

Yes, using smartphone,
private blockchain and
Amazon AWS

Yes, system’s latency No

[13]

Blockchain-based framework to improve
the robustness and security of distributed
healthcare predictive modeling

Blockchain and
Machine learning

No No No No

[14]
Blockchain based Deep Learning
collaborative algorithms for IoT.

Blockchain,
Smart Contract,
Edge, IoT, and AI

Partially, IoT devices rely
on central edge server

Yes, using edge, clustering,
access point, Ethereum blockchain,
and smart contracts

Yes, Accuracy, Latency, and
memory and CPU Usage

No

[15]

Framework for smart grids
based on deep learning (as IDS)
and blockchain

Blockchain and
Recurrent neural
Networks (RNNs)

No, uses central RNN
Yes, using private
blockchain

Yes , IDS detection
rate and accuracy

No

[16]

Framework for enabling high
performance and cost-effective computing
resources for smart city applications.

Blockchain, Deep
Learning, and IoT

No, central
cloud for AI

Partial implementation, Corda
and CordaDApp to simulate
blockchain nodes setups

Yes, Latency and
Scalability

No

[17]
AI-based smart shopping
advertisements.

AI, Fog, and
cloud computing

Partially, still relies on central
cloud for AI implementation

Yes, using OM2M IoT platform
and central cloud

Yes, latency and
Data transfer

No

[18]–[20]
Framework to deploy a distributed
Hopfield neural network using WSN

AI and WSN Distributed AI No, simulation only Simulated results only Yes

[21]

Distributed deep neural networks (DDNNs)
architecture which consists of the cloud,
the edge, and IoT enddevices.

AI, Cloud,
Edge, and IoT

Partially, needs aggregator and
cloud for some processing

Yes, using six IoT
devices and a cloud

Yes , measured
accuracy

No

[22]

Machine learning (ML) architecture called
Parallel Channel Artificial Neural Networks
(PCANN) for image recognition on IoT devices

AI and IoT

Partially, IoT
devices rely
on a controller

No, simulation only
Yes, classification
accuracy

No

This Paper

A novel and secure blockchain architecture
for supporting fully distributed AI on low-power
and low-cost IoT devices

Blockchain, AI,
Edge, and
IoT-end devices

Decentralized and fully
distributed AI based
on blockchain

Yes, using customized-built blockchain
that includes IoT-centric consensus
mechanism and DAI over IoT devices
(23 Raspberry Pis and six ESP32)

Yes, latency, accuracy,
devices hash power,
and energy consumption

Yes



ALRUBEI et al.: THE USE OF BLOCKCHAIN TO SUPPORT DISTRIBUTED AI IMPLEMENTATION IN IOT SYSTEMS 3

learning (ML) architecture called Parallel-Channel Artificial

Neural Networks (PCANN) for image recognition tasks on

IoT devices. It works by dividing the ML model into small

models distributed on these devices, with one designated as a

controller to control the process.

The work by [23] proposed a Federated Learning (FL) sys-

tem for helping manufacturers develop smart home systems.

It uses consumer’s data for training an ML model to assesses

home appliance manufacturers. Blockchain is used to ensure

accountability within the system, especially when a model

performs an update operation. The authors of [24] proposed

BAFFLE, a blockchain-based FL environment that leverages

smart contracts for coordinating the model aggregation.

Although each of these proposed frameworks and architec-

tures provides different advantages, none has yet exploited the

potential provided by blockchain technology for supporting

and facilitating the implementation of AI in a decentralized

and fully distributed approach through IoT systems. Table I

shows a comparison between the architecture proposed in this

paper and related research.

III. PROPOSED ARCHITECTURE DESIGN

Artificial neural networks are a branch of artificial in-

telligence, and a multilayer perceptron (MLP) is a type of

neural network. An MLP is usually made up of at least one

input layer, one hidden layer, and an output layer [25]. The

number of neurons in the input layer is equal to the features

of the dataset, while the number in the hidden and output

layers can vary depending on multiple factors, such as training

and the type of implementation and problem at hand (e.g.,

regression or classification). Layers are fully connected, and

neurons communicate their values to each other using synaptic

connections represented by weights [25].

MLP is based on supervised learning techniques, and one

of the learning algorithms that is used to train MLPs is the

back-propagation algorithm. In this algorithm, the first step is

to initialize network weights to random values, then present

the first input values from a training dataset to the network.

This data is propagated through the network, and each node

produces an output that is a function of the sum of the input

values to the node and its weights, modified by an activation

function, such as the sigmoid function (S(x) = 1/1 + e−x).
This is done by each neuron in the network until a final output

is produced, then an error is calculated that compares the

actual output to the target output. This error propagates back

through the network and weights are adjusted to minimize the

overall error. These steps are repeated until the overall error

is satisfactorily small.

A. Design Overview

Distributed Artificial Intelligence (DAI) is an approach

to exploit the resources provided by large-scale distributed

computing. The aim of this design is to develop a blockchain

platform that can support the implementation of a DAI that

utilizes the capabilities of IoT systems. The general workflow

of the proposed architecture is presented in Fig. 1. In this

design, with the integration of a blockchain that is trustworthy,
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Fig. 1. Proposed Architecture - General Workflow.

self-managed, and self-regulated, the DAI engine will have a

platform that provides a secure way to handle and protect

data, yielding a better decision-making process. Regardless

of the type of DAI implemented, the data flow will be the

same. Devices and nodes will also be able to interact and

communicate with each other in a secure way that will ensure

efficient processing and flow of data through the system’s

different layers.

While the architecture has the ability to support any form

of DAI implementation, for this paper the implemented DAI

is in the form of Distributed Multilayer Perceptrons (DMLP).

The main idea is to build an architecture that supports DAI

implementation in general, and DMLP was selected as an ex-

ample because it will allow deployment up to the neuron level,

allowing for more focus on the evaluation of the blockchain

aspects of this architecture. For DMLP, the exploitation of

the resources provided by large-scale distributed IoT systems

can be achieved by hosting one or more neurons on an IoT

device. Each device would then act independently and utilize

the blockchain platform to ensure the integrity of the processed

data and its transfer to other devices. Processed data will then

flow from one layer to another until the desired outcome is

achieved. A trained DMLP will be implemented and tested

over this blockchain platform.

In this design, the on-chain approach has been chosen where

all transactions are executed, validated, and committed on the

main chain. This method allows the blockchain platform to

record all the AI transactions and variables that are used by

the trained AI engine to make decisions. As the AI engine

becomes smarter as a result of continuous training and is

able to process large amounts of data, it becomes more

difficult for scientists to understand how the AI systems came

to specific conclusions and decisions. However, through the

implementation of AI on blockchain platforms, they will have

immutable records of all the data and variables used by AI for

its decision-making processes. This will provide data scientists

with the ability to easily audit and trace the entire process.

B. System Components

The system proposed in this designed as a decentralized

and fully distributed architecture, which provides added value

to the computational ability of an AI system through the uti-

lization of a scalable IoT-hardware platform. This architecture
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takes advantage of the IoT sensing capabilities, blockchain

immutability and trustworthiness, and the capabilities of DAI

intelligence. This results in the design of a computationally in-

telligent, scalable, distributed, and decentralized DMLP archi-

tecture based on the blockchain (see Fig.2). The architecture

consists of five main components.

• Worker Nodes (WN ): These are low-cost and low-power

devices, such as the Raspberry Pi and ESP32 microcon-

trollers. When a node joins the network for the first time,

it will join as a worker node. All worker nodes are able to

participate in the mining process by carrying out mining

tasks on the network. By submitting correct answers to

any task and behaving honestly on the network, these

nodes can build up their honesty. Once they achieve the

required honesty level and have enough resources, they

can be promoted to the Leader Node category. Leader

nodes will also perform mining tasks as required to

maintain their honesty and ensure sufficient computation

power is available in the network.

• Leader Nodes (LN ): These are low-cost devices, such as

the Raspberry Pi, that form the heart of the blockchain

network by acting as miners and validators. They store

a full copy of the blockchain locally that is then synced

with the latest block in the network. They have a high

enough honesty level to act as coordinators of the mining

process, validate the work of workers, sign and propa-

gate blocks, and validate each other’s newly propagated

blocks. Leader nodes are the only nodes with an honesty

level that allows them to run a blockchain network and

handle all the tasks related to the DMLP engine in the

network, which adds further trust to the handling of the

data and prediction operations.

• Input Layer / Sensing Layer: This is where many small,

low-power sensors can be used for monitoring and data

collection. These sensors can be directly connected to

other devices from the WNs or LNs. They can sense

and collect data, which will then be locally prepared

and submitted to the network for processing. These

sensors are part of the blockchain network in the form

of lightweight nodes that can submit transactions through

the nodes they are connected to. They are the data feeder

to the DMLP engine and the first layer in it.

• Hidden Layer: These are low-cost devices, that will act

individually as one or more neurons in the hidden layer.

In this proposed architecture, there can be more than one

hidden layer, but for the proof of concept implementation,

only one hidden layer was deployed where each device

acts as one neuron.

• Output layer: This is the final layer of the DMLP, and

it also consists of low-cost devices. Each device can act

as one or more neurons of the output layer. This design

allows for the implementation of multiple output layers,

where each one implements different activation functions

and produces its own final predictions. This enhances the

forecasting ability and allows for better performance.

Another important part of this architecture is the prop-

agation of transactions and blocks. Broadcast is the most

commonly used network operation in blockchain networks,

where nodes issue transactions and blocks by broadcasting

them in the network. In this architecture, we assume that

all transactions and blocks that are related to the DMLP are

broadcast to secure channels that are only accessed by the

honest and trusted leader nodes. However, depending on the

IoT application under consideration, there might be a need for

the integration of suitable encryption algorithms such as AES-

128 [26] into the architecture to encrypt the DMLP-related

data within transactions (i.e., transaction’s payload).

C. Blockchain Platform

Designing a blockchain platform that is reliable, secure, and

has acceptable latency is an essential part of this design. All

transactions are executed on-chain, ensuring full traceability,

and the validation of all transactions before processing en-

hances the system’s security. A public blockchain platform,

including its consensus mechanism, transactions, and block

formats, was designed.

1) Consensus Mechanism: The main objective is to design

a consensus mechanism that is suitable for non-financial IoT

applications based on the concept of resources in exchange

for services. We have considered different algorithms such

as Proof of Stack (PoS), Proof of Stake (PoW) [6], and

Byzantine Fault Tolerance (BFT) and its variation Proof of

Authority (PoA) [27]. PoS have lately gained a lot of hype

within the financial blockchain platforms. In PoS the trust is

bounded on digital/currency assets, where the miners stake

their coins to the network to be able to mine and validate

blocks. However, it is vulnerable to Nothing-at-Stake attack

[28] and Coin Age Accumulation attack [29], and constitutes

a consensus disadvantage to nodes that do not have a high

stake in the currency. This would result in rich nodes becoming

richer.

PoA implemented by [30] is a lightweight consensus algo-

rithm, offering two key advantages, it does not require much

energy to mine a block, and it has lower latency as it does

not require confirmation rounds as shown by [31] making it

suitable for IoT implementations. However, one disadvantage
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is that it is intended for permission and private blockchain

platforms, which is against the decentralized approach.

Proof of Work (PoW) is one of the most secure consensus

algorithms for a public blockchain, yet it suffers from a long

transaction confirmation time, approximately six blocks on

Bitcoin. Many authors including [32]–[34] shown through

their works it is possible to integrate PoW into IoT-blockchain

applications.

In this paper, the security advantages provided by PoW have

been realized while its long confirmation time was mitigated

by combining it with PoA in a single consensus mechanism

called Honesty-based Distributed Proof of Authority via Scal-

able Work (HDPoA). PoA depends on a number of trusted

nodes called authorities, that are supposed to be honest (at

least 51% of them) to mine and validate blocks. In classical

PoA, leader or authorities nodes are assigned and authorized

by the owner of the network. In the proposed HDPoA leaders

nodes have to perform works and build their honesty level to

earn the privilege of mining and validating blocks. The work

can be in any form such as by carrying a small work of the

PoW. The detailed implementation of HDPoA is provided in

Section V.

2) Block and Transaction Formats: Another key aspect

of this blockchain platform was the format of blocks and

transactions. First, block headers were designed to allow for

the inclusion of both the worker node’s public key and the

leader’s signature. It was also adapted to distinguish between

blocks that carry DMLP related transactions and those that do

not. This will help the neurons in each layer deal with the

blocks accordingly. The transaction format is an essential part

and was designed to allow for different transaction types; the

different fields of both block headers and transactions will be

discussed in detail in section V.

D. Data Flow in the System

The data flow in the system is illustrated by Fig. 3. The data

is propagated through the network from one layer to another

as follows:

1) First, the sensor nodes in the sensing layer collect data

and pass it to the first neuron in the input layers. Neurons
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Fig. 3. The Data Flow Between the System Different Components.

then process this data locally and create and submit their

input transactions.

2) Transactions arrive at the miners’ transaction pool. The

first leader node in the round-robin (e.g., LN1) then

collects all transactions, validates them, and adds them

into a new block.

3) Next, LN1 creates mining tasks and sends them to the

assigned WNs.

4) Once a worker node accepts the work, it will conduct the

mining until either the node finds a solution, it receives

an abort message from LN1, or it completes the iteration

through all of the nonces assigned to it. If it finds a

solution, it will submit its finding to all of the leader

nodes.

5) When LN1 receives the WN solution (i.e., the nonce)

to the task, it will validate the work (see sub-subsection

V-A-1). If valid, it will send an abort message to all

WNs. It will then sign and propagate the new block to

the network.

6) When neurons in the Hidden Layer receive the new

block, they will open the block, extract the relevant

input values, perform the required calculation, and apply

the activation functions. Their hidden values are then

included in a new transaction and propagated through

the broadcast channel to the miner nodes.

7) The next leader node in the round-robin (e.g., LN2)

validate transactions and adds them into a new block.

It will then create mining tasks and send them to the

assigned WNs.

8) Once a worker node accepts the work, it will start the

mining process until it either finds a solution, it receives

an abort message from LN2, or it completes the iteration.

If it finds the target nonce, it will submit its finding to

all of the leader nodes.

9) Once LN2 receives the WN solution, it will validate

the work. If valid, it will send an abort message to all

WNs. It will then sign and propagate the new block to

the network.

10) After neurons in the Output Layer receive the new

block, they will open the block, extract the relevant

hidden values, perform the required calculation, and

apply the activation functions. They then include their

output value, which is the prediction of the DMLP expert

engine, in a new transaction and propagates it through

to the LNs.

11) The next leader node in the round-robin (e.g., LN3)

validate transactions and adds them into a new block.

It will then create mining tasks and send them to the

assigned WNs.

12) Once a worker node accepts the work, it will start the

mining process until it either finds the correct nonce, it

receives an abort message from LN3, or it completes the

iteration. If it finds the target nonce, it will submit its

finding to all of the leader nodes.

13) Once LN3 receives the WN nonce, it will validate the

work. If valid, it will send an abort message to all WNs.

It will then create and sign the block, and propagate it

to the network.
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14) Finally, once the new block arrives and is validated in the

network, the final outcome of the DMLP expert engine

is now available to all interested nodes.

IV. SYSTEM ANALYSES

The system under consideration is based on blockchain

technology where multiple nodes are connected in a peer-to-

peer network via wireless links. Two types of nodes are on

the blockchain network: leader nodes (LN ) and worker nodes

(WN ). Only trusted LN can be utilized as a neuron in any of

the DMLP layers, ensuring added security. The difficulty level

D of the blockchain network is at its lowest (i.e D = 1) when

the target hash value hv = 2232. The data traffic generated on

the network is from two main processes; both are broadcast

transmissions: propagation of transactions and propagation of

blocks to all nodes. Different types of transactions can be

generated on the network; where DMLP related transactions

always have the highest priorities when adding transactions

into a new block. For systems analysis and implementation

two different cases regarding the processing of DMLP related

transactions were considered:

• Case I: In this case, the LN that is assigned to perform the

next block mining process; once it receives a new block it

will immediately start the mining process without waiting

(see Fig. 4a).

• Case II: In this case, the LN that is assigned to perform

the next block mining process; once it receives a new

block will not immediately start the mining process of

the next block. A waiting time, ∆T , is introduced, which

can be calculated by: ∆T = tpd + tp + α. Where

tpd is the transactions propagation time, tp is the time

needed by the neurons in the network to process DMLP

related transactions, and α is the time needed to validate

transactions by the LNs. This is to allow neurons to

perform necessary processing and submit their finding

in new transactions, with the aim of reducing the overall

system latency (see Fig. 4b).

All the system’s parameters are defined and explained in Table

II.

(a)

(b)

Fig. 4. Block Mining Process. (a) Case I: Mining immediately Without
Waiting. (b) Case II: Mining After Waiting for Time equal to ∆T

A. Overall Confirmation Time (OCT )

The probability of the final DMLP outcome arrival in the

network is based on the Poisson process with arrival rate, λ.

P (T ≤ t) = 1− e−λt (1)

We let λ represent the rate at which blocks are added to

the network and, since there is no need for extra time for

confirmations, we use trusted leader nodes for validating the

blocks λ = 1
Tm

block/sec where Tm = D×224

hp(i)×I
. The time

t depends on the number of blocks (n) for which we need

to wait before the final outcome arrives in the network, the

block propagation delay bpd, the block validation time bvt,
and most importantly the total number of DMLP layers NL.

Two different cases were considered in the design as stated

above, for both cases, OCT has been analyzed as follows:

1) Case I: As shown in Fig. 4a, in this case, LN starts the

mining process immediately, and the probability of the DMLP

final outcome confirmation can be calculated by:

P (n) =











1− e
−



( 1
D×224

hp(i)×I

)×
(

n
NL+1×( D×224

hp(i)×I
+bvt+bpd)

)





if n ≥ (2NL)

0 if n < (2NL)
(2)

This represents the probability of confirming the outcome of

the DMLP including the confirmation of the input values and

all hidden values. The total time for this confirmation process

(OCT) can be calculated by:

OCT = (2×NL)×





ln(1− P (n))
−1

D×224

hp(i)×I



 (3)

2) Case II: As shown in Fig. 4b, in this case, we force

LN to wait for DMLP related transactions to be processed, by

introducing the waiting time, ∆T . This means the probability

of the AI final outcome confirmation can be calculated by:

TABLE II
DESCRIPTION OF THE SYSTEM’S PARAMETERS

Parameter Description

D Mining Difficulty

bit Interval time between two consecutive blocks

Tm
Time to mine a block

(i.e time workers need to find the target hash)

bvt Block validation time by LNs.

Overall Confirmation

Time (OCT )

The time from the initiation of the prediction process

(i.e inputs neurons submit their reading) until the final outcome

from the output neurons is confirmed on the blockchain network.

hp(i) The hash per seconds produced by node i

I Total number of worker nodes needed to mine a block

P (n) Probability that AI output confirmed after n blocks

tpd Transactions propagation delay

bpd Block propagation delay

tp
The time needed by each neuron to process DMLP-related

transactions and produce its own new value.

α
The time each LN needs to process and validate every transaction

before adding it to a new block

NL Total Number of Layer in the DMLP network
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P (n) =











1− e
−



( 1
D×224

hp(i)×I

)×
(

n
NL

×( D×224

hp(i)×I
+bvt+bpd+∆T )

)





if n ≥ (NL + 1)

0 if n < (NL + 1)
(4)

This represents the probability of confirming the outcome of

the DMLP including the input and hidden values. The total

time for this confirmation process (OCT) can be calculated

by:

OCT =



(NL + 1)×





ln(1− P (n))
−1

D×224

hp(i)×I







+[∆T × (NL − 1)]

(5)

B. Energy Cost

For a system where Ps is the power consumption during the

sleep mode, Pt is the power consumption during data trans-

mission, Pr is the power consumption during data reception

and preparation, and PAI is the power consumption during

the processing of DMLP transactions. Then the total power

consumption of one node in the DMLP prediction process is:

Pn = Ps + Pt + Pr + PAI (6)

These powers depend on the time for each event assuming

that: Tr is the total time for receiving the block and extracting

AI data. Tt is the time required to prepare and transmit the

transaction TAI the processing time of the DMLP data taking

a node to produce its own final calculation. Then the total

energy of a node En can be calculated as:

En = (Ps ×Ts)+ (Pr ×Tr)+ (Pt ×Tt)+ (PAI ×TAI) (7)

Therefore the total energy required for the DMLP process is:

EAI =

n=N
∑

n=1

En (8)

The amount of energy consumed depends on the node’s

state, the node will be in one of five different states. Idle State

(i) where the node is on and not connected to the wireless

channel, and energy consumed in this state is defined by Ei,

this is the reference state. Connection State (cx) where the

node is on and connected to the available wireless channel

(i.e. Wi-Fi connectivity), and energy consumed in this state

is defined by Ecx. Blockchain State (bc), where the node is

connected to the blockchain network but is not performing any

actions apart from submitting transactions and receiving and

adding blocks to its internal storage, and energy consumed in

this state is defined by Ebc. AI State (AI), this is where the

node, in addition to the actions performed in the blockchain

state, is acting as one neuron of any of the DMLP layers, and

energy consumed in this state is defined by EAI . Mining State

(m) where the node, in addition to the actions performed in

the blockchain state, acts as a worker node and carries out

some of the mining calculation; the energy consumed in this

state is defined by Em.

Based on these states, the difference in energy consumption

between two states δE can be calculated by:

δE = Estate1 − Estate2 (9)

The i state represents the reference state, this will allow for

the calculation of the energy consumed by a node when in

any state in comparison to the reference state, for example,

the energy consumed by a node when in the mining state is:

δEm = Em − Ei (10)

V. SYSTEM IMPLEMENTATION AND DEPLOYMENT

For practical trial purposes, we have developed a proof of

concept system. It consists of our own public blockchain plat-

form and DMLP engine. The following subsections describe

the implemented system.

A. Blockchain Implementation

A customized blockchain platform that implements the

proposed consensus mechanism HDPoA discussed above was

created. Currently, the network consists of 23 Raspberry Pi

devices used for both blockchain and DMLP implementations

and six ESP32 microcontrollers used only for blockchain

implementation as WNs. Below is a description of the im-

plementation of the essential parts of the blockchain.

1) Consensuses Mechanism: Leader nodes, as stated above,

coordinate and manage the consensus process. Leader node

selection is based on a round-robin process. Before each block

mining process, one leader node is elected as a primary miner

and another as a secondary miner. This is to ensure that a

block is propagated to the network in each round. All other

nodes apart from the elected primary and secondary miners

will act as worker nodes. The consensus process begins with

the leader nodes and takes place over four phases before the

release of a new block to the network as follows:

• First, LN1 will start the process by executing the initia-

tion phase, which includes adjusting the difficulty level,

validating transactions and adding them to a new block,

preparing the work for the WNs, assigning WNs, and

then sending the work to the assigned WNs.

• Multiple WNs will then conduct the hashing work. The

worker node that finds the target nonce that satisfies the

required difficulty level will submit the nonce along with

its public key to all LNs currently available; this will

allow other LNs to validate the current LN proposed

block.

• Next, LN1 will conduct the validation of the worker-

reported results. This is done by executing a single hash

of the new block’s header, combined with the received

nonce. If the resulting hash satisfies the target difficulty,

then it is a valid solution. Otherwise, it is rejected and

LN1 should wait for other WNs. If valid, it will send an

abort message to all WNs, then create and sign the block,

and propagate it to the network.

• Finally, other leader nodes will validate the propagated

block. This is achieved by ensuring the LN1 is one of
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the trusted LNs, by validating the block’s hash and all

transactions in the block.

Honesty Level: First, the node joins the network with an

honesty level of zero and becomes a WN. As the node behaves

honestly, obeys system rules, is available to perform any

required work, and ensures it only submits correct answers to

any work it carries out, its honesty value increases, giving the

node the chance to be promoted to the leader node category.

We define that node n has honesty level value of Hn and the

target honesty level or threshold of the network is HT . Node

n can be leader only if Hn > HT .

All work has a value of honesty Wv , and any correct answer

to any work carries a positive honesty value of HP , and a

wrong answer carries a negative value of HN . The honesty

level for each node can be calculated by:

Hn = HP +HN (11)

Once a node becomes a leader node, it can coordinate the

mining process, validate the worker results, and sign and

propagate new blocks when it is its turn to lead. For more

details and the main concept of the algorithm please see our

previous work in [35].

Scalable Work: the introduction of this concept provides

three important advantages to the design. First, it allows the

nodes to increase their honesty level, whereby if all nodes

behave according to the network rules they all can be promoted

to the Leader Nodes category; realizing the full potential of the

decentralization concept. Secondly, it allows for the integration

of mining tasks to incorporate the security advantages provided

by PoW facilitating a public blockchain platform. Finally, it is

used to increase the security of the network in the case of miss

behaving WNs. By majority vote, leader nodes can penalize

these nodes by increasing the work required from them.

The workload can be defined as WL, the node hash power

factor can be defined as HPF , and the total work is defined

as WT . The node’s honesty factor HF can be calculated by:

HF (i) =

{

HT−Hn

HPF
if HT > Hn

1
HPF

if HT ≤ Hn

(12)

The assigned WL to any node i can be calculated by:

WL(i) = WT ×
HF (i)

∑k=N

k=1 HF (k)
(13)

As the node’s honesty level increases, the work assigned to

that node decreases, helping the node save energy. Conversely,

if the node’s honesty level decreases, more mining work will

be assigned to it.

2) Block and Transactions Format: Table III shows the

different fields of both transaction and block headers. Different

fields have been introduced within the block header and the

transaction to allow neurons within the DMLP engine to

distinguish between different values and easily extract relevant

values to process them.

Different types of transactions have been identified. These

include DMLP-related transactions such as input-layer trans-

actions, hidden-layer transactions, output-layer transactions,

notifications transactions, and parameter update transactions

(administrative transactions). Non-DMLP related transactions

include data transfer between nodes, payment transactions, and

reward transactions. The transaction type field is designed to

allow the assigning of relevant types to each transaction. If the

transaction is from an input neuron, then the type will have

a value of one. Similarly, if the transaction is from a neuron

in the first hidden layer then the value will be 2.0 etc. In this

implementation, only one hidden layer was utilized, however,

the transaction was designed to allow for a distinction between

neurons if the system has more than one hidden layer.

The block header was also designed with the DMLP in

mind. The DMLP Flag field will be used by the LN in case

the block carries any DMLP-related transactions, alerting other

LNs and neurons once they receive the block.

B. DMLP Implementation

A multilayer perceptron AI system was developed as a proof

of concept and to test the validity of the architecture. It consists

of three layers: input, hidden, and output. The process of

developing the DMLP system spans over three phases. The

first phase encompasses the implementation and testing on

a standalone PC running i5-8250U CPU @ 1.60GHz. This

is then followed by the implementation and testing using a

Raspberry Pi 3 Model B+ (1.4GHz 64-bit quad-core processor)

as a standalone system. The trained DMLP was finally imple-

mented as a distributed system on the blockchain network,

where Raspberry Pi devices are used to act as individual

neurons.

TABLE III
FORMAT OF THE BLOCK HEADER AND THE TRANSACTION

Field Description Size

Block Header

Block Height Number of blocks in order 4 bytes

Previous Hash The hash of the previous/ parent block 32 bytes

Merkle Root Merkle root of all transactions 32 bytes

Block Time Time of the creation of the block 4 bytes

Difficulty The difficulty level. 4-byte

Nonce
The target nonce that produced

the desired difficulty level
4-byte

DMLP Flag
Indicate the presence of DMLP data.

Optional, always 1 if used
2 byte

Hash The hash of this block produced by the LN 32 bytes

Public Key The public key of the WN 33 bytes

Signature LN should sign the block for validation 64 bytes

Transaction

Transaction-ID Unique transaction identifier 128 bits

Transaction Type

0, default. 1, DMLP input values.

2.0, DMLP values from the first hidden layer.

2.1, DMLP values from the second hidden layer.

3, DMLP values form the output layer. etc.

4 bytes

Reading Value Sensors /Input reading, hidden, output values 1-4 bytes

Recipient
The address of the receiver of the transactions, if

it is intended for DMLP then the layer’s name is used
2-33 bytes

Node Type Distinguish between different neurons in different layers 1-4 bytes

Node Name
To help distinguish the flow of DMLP

values from one layer to another
1-4 bytes

Timestamp Time of the creation of the transaction 4 bytes

Signature Sender should sign the transactions for validation 64 bytes
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C. Dataset Tested

For practical trial and testing purposes, we have used three

different datasets; the Iris flower dataset [36], air quality

dataset [37] and the Bot-IoT dataset from [38]. First, the

DMLP system was utilized to forecast the type of flower

from the iris dataset; the system consists of four neurons in

the input layer, five neurons in the hidden layer, and three

neurons in the output layer; each neuron was deployed on

a Raspberry Pi. The dataset contained 150 instances, with 4

features and one output. Then the system was configured to

test future occurrences of air pollution that could affect air

quality. It consists of 12 neurons in the input layer, 15 neurons

in the hidden layer, and three neurons in the output layer. This

dataset contains a total of 9,358 instances with 12 features,

it has been prepared and normalized for the purpose of this

implementation. A Raspberry Pi was used to emulate all input

nodes, 15 Raspberry Pis used for the hidden neurons, and one

Pi for the output neurons.

Finally, the system was configured to classify the type of

attacks either Denial of Service (DoS), Distributed Denial

of Service (DDoS), or Reconnaissance based on the Bot-IoT

dataset. The configured system consists of 10 neurons in the

input layer, 12 neurons in the hidden layer, and three neurons

in the output layer. The dataset we used contained 10,000

instances with 10 features and three outputs, and this data

has been prepared and normalized for the purpose of this

implementation, the complete description of this dataset can

be found in [38]. Ten Raspberry Pis used as neurons for the

input layer, 12 used for the neurons in the hidden layer, and

one used for the neurons in the output layer.

VI. RESULTS

The system was tested while the nodes were deployed over

two cities in the UK, Sheffield and Edinburgh, separated by a

distance of about 310km. The following sections include the

results and their evaluation.

A. Overall Confirmation Time

In both cases (see Fig. 4), the system was tested using a

different number of workers, three leader nodes, and different

difficulty levels. As shown by Fig. 5, the system was tested

for two difficulties (D=1 and D=2). Both the predicted (using

3 and 5) and the measured OCT indicated that the overall

system end-to-end confirmation time can be reduced as the

network grows in size without compromising its security by

reducing the mining difficulties. In a network of 24 WNs with

a difficulty of one, the OCT for Case I was 3.4 minutes

and 2.16 minutes for Case II. For the same network with a

difficulty of two, the measurements were 6.8 and 4.1 minutes,

respectively. The Tm of the block has the most effect on

the OCT , nevertheless, the block and transaction propagation

delays are important parameters. The results shown in Table

IV indicate that since the test was conducted with reliable Wi-

Fi connectivity, the average of bpd and tpd have little effect

on the OCT . However, as shown by our previous study in

[31], the bpd is expected to have more influence on the OCT

TABLE IV
LATENCY MEASUREMENTS OF MOST IMPORTANT SYSTEM PARAMETERS

Parameter Average Maximum Minimum

bpd 295 ms 682 ms 227 ms

tpd 66 ms 99 ms 41 ms

Pt 200 ms 220 ms 190 ms

if the size of the block is increased or different communication

methods, such as 3G and LoRaWAN, are used.

The network is small with regards to the number of workers;

nevertheless, within IoT, with the presence of thousands of

devices, the difficulty can be increased according to the

number of available nodes in the network while maintaining

an acceptable OCT according to the application. To better

understand the effect on the OCT in the presence of hundreds

of devices, OCT was calculated for different difficulty levels

(1-16) using 3 and 5 and a different number of WNs, ranging

from 100 to 1,000. A network that has more than 500 WNs

can achieve OCT in less than two minutes for Case I and less

than a minute for Case II. It is clear from Fig. 6 that as the

number of WNs increases, the OCT would be significantly

lowered.

Another test was conducted to measure OCT using a

network consisting of 20 workers for four different difficulties

(D = 1, D = 2, D = 4, D = 8, and D = 16). As shown by

Fig. 7, when the difficulty increases, the OCT also increases;

however, if more devices were available to use, the time could

be lowered while maintaining an acceptable level of D.

B. DMLP Accuracy

For each dataset, the system was first trained and tested

on a standalone PC and on a Raspberry Pi. Each dataset was

divided into 70% for training, 10% for testing on the PC,

10% for testing on the Raspberry Pi, and 10% for testing

on the blockchain network, with the aim of comparing the

resulting accuracies. This is to ensure the trained DMLP

accuracy results are consistent with the results from both

implementations on the standalone PC and Raspberry Pi. The

results showed that the accuracy resulting from testing over

the blockchain is in line with both tests on the individual

Raspberry Pi and the PC. All tests produced the same accuracy,

98% for the iris dataset, 96% for the air quality dataset, and

92% for the Bot-IoT dataset. This means it is practically

possible to implement DAI engines on IoT devices based on

blockchain technology with the accuracy unaffected.

C. Computational Power and Energy Consumption

Energy consumption is a vital aspect of this system; the

system was designed with the intention of allowing low-power

devices to be part of the blockchain and benefit from the

DMLP services offered. This is done in exchange for a small

amount of power, where these devices participate in the mining

process and ensure blockchain network security. The hash

power of devices used in the implementation was measured
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(a) (b)

Fig. 5. Overall Confirmation Time of the DMLP outcome. (a) Case I: Mining immediately. (b) Case II: Mining After Waiting for Time equal to ∆T

(a) (b)

Fig. 6. Predicted OCT for different Difficulties and WNs. (a) Case I: Mining immediately. (b) Case II: Mining After Waiting for Time equal to ∆T

Fig. 7. Overall Confirmation Time Using 20-WNs when Mining in Different
Difficulties.

based on the number of hashes the device can perform per

second (h/s). The Raspberry Pi average hash power was 35

Kh/s while the ESP32 averaged 17.4 Kh/s.

The energy consumption was measured for each of the

different system states when the system is implemented on

different devices: a Raspberry Pi 3 Model B+ and an ESP32.

Figure. 8a shows the average energy consumption of both

devices for different states. Most of the energy consumed is

due to running the device’s operating system (idle state). Using

9, it can be seen that the Raspberry Pi consumes 0.12 joules

per second (J/s) when the system only performs DMLP-related

tasks. However, when the system is in the mining state, it

consumes 0.53 J/s, compared to only 0.15 J/s when mining

using an ESP32 (see Fig. 8b).

Based on the above measurements of the hash power and

the energy consumption, the hash per joule was calculated and

is shown in Fig. 8c. When using a Raspberry Pi, a total of up

to 13.8 Kh can be performed at the cost of one joule, and when

using an ESP32, up to 54 Kh can be achieved per joule. This

demonstrates that the ESP32 microcontroller is more efficient

in terms of power when it is used for blockchain mining

in comparison with the Raspberry Pi, which provides faster

operations but with a slight increase in energy cost.

D. Evaluation

The DMLP performance on the blockchain network was

not affected, and the results showed that it achieved the same

accuracy as both of the standalone implementations. Measure-

ments and prediction showed that a network with thousands of

available workers can achieve a reasonable difficulty to secure

the network while managing the mining work between the

workers to save energy and significantly reduce the OCT .

The network currently consists of 23 Raspberry Pis and six

ESP32, nevertheless, all of the measured results, especially

those related to OCT , were almost identical to the predictions

that were based on the system analyses in section IV (see Fig.

5 and Fig. 6). This indicates that the proposed architecture is

valid and the blockchain platform can support the distributed

implementation of AI using IoT hardware capabilities.
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(a) (b) (c)

Fig. 8. Energy and Hash Power Measurements For Raspberry Pi and ESP32 when the system is in idle (i), connection (cx), blockchain (bc), AI, and mining
(m) states. (a) Average energy Consumption. (b) Energy Cost δE During Different States, (c) Hash Power per Energy (During Mining State)

In terms of computational power, the results showed that

low-cost devices such as Raspberry Pi and ESP32 have the

hashing power required to participate in the mining process

of the HDPoA consensus mechanism. This is because the

implemented consensus mechanism was designed based on

sharing the computational power among IoT devices, and it

can efficiently utilize the power from these devices. This is

reflected in the power consumption results above.

In this paper the energy cost during different system states

including during executing DAI-related tasks and the mining

process have been measured, however, it was difficult to

compare these measurements with any of the related works

because all of them have not provided such measurements.

An added contribution of our paper in comparison to other

works in its class. In our HDPoA, when running a mining

task for 82.9 sec on a Raspberry Pi, the total energy cost

was 43.9 J and for the ESP32 it was 12.4 J, this compares

to 54.9 J energy cost measured by [39] when executing PoW

on a Raspberry Pi. This indicates that the proposed consensus

mechanism of HDPoA is more efficient than PoW in terms

of energy consumption and that nodes can participate in the

mining process while also being used for data analysis and

sharing without substantial power cost. As the number of

participating nodes increases, the effect on their individual

power will decrease. In a network with a few thousand IoT

devices, a node might spend a day without executing tasks.

In terms of security and user trust, this architecture provides

a distributed public blockchain platform that ensures the secu-

rity of data through the proposed HDPoA that is suitable for

implementation within the IoT realm. Users can see that this

is a trustworthy platform because it relies on an immutable,

transparent, and secure blockchain. Malicious or misbehaving

leader nodes that try to sign and propagate an invalid block

can be dealt with. First, the network implements a mechanism

that only accepts a block from any leader node every N blocks,

where N is equal to the total number of active leaders at the

time. Second, each new block in the network will be validated

by every LN in the network, both the hash of the block and

all the transactions in it.

The consensus mechanism can adjust the mining difficulty

according to the available mining power on the network and

the required mining rate (interval between blocks). As the

number of nodes in the network increases, mining power will

also increase as more WNs participate in the mining process.

Accordingly, the difficulty will be increased. For example, with

a total of 20 WNs, the network was able to increase the mining

difficulty up to 16 and mine blocks; the only downside was

the increase in the mining time (see Fig. 7). When coupled

with the added security of the presence of LNs running the

mining process, this prevents dishonest nodes from breaching

the consensus rules of the network or harming it. In terms

of robustness and redundancy, this proposed architecture does

not rely on a third-party central entity to process and share

data, which eliminates a single point of failure by leveraging

distributed architecture.

Table V provides a detailed performance comparison be-

tween our paper and other related works in four performance

metrics; communication overhead, risk of a single point of fail-

TABLE V
PERFORMANCE COMPARISON WITH RELATED WORKS

Paper Communication Overhead
Risk of Single

Point of Failure?

Data Security

(Integrity and Availability)
Accuracy

14

Local learning model

processing (+)

Blockchain used to distribute

parameters (+)

PS = 2

Yes, need cloud offloading

PS = 1

Blockchain is utilized to ensure

the protection of data starting

from IoT devices (++)

PS = 2

75%

PS = 1

[16]

Utilized blockchain for

data handling from the edge layer

only (+)

No local processing

PS = 1

Yes, relies on cloud

and data center

PS = 1

Blockchain is utilized to ensure

the protection of data starting

from the edge (+)

PS = 1

Not

measured

PS = 0

[17]

Uses two levels of

fog processing in a

hierarchical structure (++)

PS = 2

Yes, relies on central

cloud for some of the AI

Implementation

PS = 2

No mechanism in place

PS = 0

Not

measured

PS = 0

[18-20]

Nodes need to connect

to each other from layer to

another to exchange data

PS = 0

Yes, clusters’ heads could

be a problem

PS = 2

No mechanism in place

PS = 0

Not

measured

PS = 0

[21]

Some local processing but there

is a need to exchange data with

aggregator and prone to

bottleneck (+)

PS = 1

Yes, needs an aggregator

and cloud

PS = 0

No mechanism in place

PS = 0

Up to 97%

PS = 2

[22]

Much local processing but

devices need to exchange data

with a controller (++)

PS = 2

Yes, devices rely

on a controller

PS = 0

No mechanism in place

PS = 0

Vary

between

90%-96.7

PS = 2

This

Paper

Some local processing (+)

Blockchain utilized to handle data

starting from sensing layer (+)

Devices only need to propagate

transactions once to

leader nodes (+)

PS = 3

Fully decentralized (+)

Any IoT devices can be utilized

as a neuron (+)

It also allows for the processing

of the same data by multiple

DAI models (+)

PS = 3

Blockchain is utilized to ensure

the protection of data integrity

and ensures its availability

starting from the sensing

layer (++)

PS = 2

Vary

between

92%-99%

PS = 2

PS = Performance Score. For each category, the score is assigned between 0 to 3 where 0 is the worst in class and 3 best in class.
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Fig. 9. Illustration of Comparative Performance Showing Relative Best in
Class/Worst in Class for Different Metrics as Listed in Table V. Numbers in
[ ] are the Paper’s References.

ure, data integrity and availability, and DAI engine measured

accuracy. Figure 9 shows the score for each architecture in

both data integrity and availability and communication over-

head metrics along with the risk associated with each one of

them. Our proposed architecture is the best for communication

overhead and has the lowest risk of a single point of failure. It

also ranked among the best architectures in both data integrity

and availability and measured accuracy metrics. Finally, this

architecture provides a trustworthy, self-managed, and self-

regulated, public platform that can be utilized to integrate DAI

into IoT hardware.

VII. CONCLUSION

A distributed, decentralized, and secure blockchain-based

architecture for supporting DAI on low-power and low-cost

IoT devices was proposed. A practical implementation of

DMLP using a distributed IoT hardware platform was accom-

plished using a real-world example application. The results

showed that, in terms of prediction accuracy, it is possible

to implement a DAI system over an IoT platform based on

blockchain technology. It also showed that this architecture

provides a secure, scalable, and distributed approach that

utilizes IoT devices as a platform for AI implementation with

a minimal impact on their computational resources.

Currently, the proposed architecture is implemented based

on an on-chain approach; future work will include exploring

the viability of utilizing an off-chain approach, which may

be ideal for applications with near real-time response require-

ments. Additional future research will include the integration

of an encryption algorithm into the system and the deployment

of another type of AI, such as a Convolutional Neural Net-

work (CNN). The evaluation of the system performance over

different communication links, such as 4G and LoRaWAN,

will also be investigated.
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[30] P. Szilágyi “EIP-225: Clique proof-of-authority consensus protocol,”
(2017), [Online]. Available:https://eips.ethereum.org/EIPS/eip-225. Ac-
cessed on: Aug. 3, 2020.

[31] S. M. Alrubei, E. A. Ball, J. M. Rigelsford and C. A. Willis, “Latency
and Performance Analyses of Real-World Wireless IoT-Blockchain Ap-
plication,” in IEEE Sensors Journal, vol. 20, no. 13, pp. 7372-7383, 1
July1, 2020, doi: 10.1109/JSEN.2020.2979031.

[32] L. Bahri and S. Girdzijauskas. 2018. “When Trust Saves Energy:
A Reference Framework for Proof of Trust (PoT) Blockchains”.
In Companion Proceedings of the The Web Conference 2018
(WWW ’18). International World Wide Web Conferences Steer-
ing Committee, Republic and Canton of Geneva, CHE, 1165–1169.
DOI:https://doi.org/10.1145/3184558.3191553.

[33] J. Huang, L. Kong, G. Chen, M.-Y. Wu, X. Liu, and P. Zeng, “Towards
Secure Industrial IoT: Blockchain System with Credit-Based Consensus
Mechanism,” IEEE Trans. Ind. Informatics, vol. 15, no. 6, pp. 1–1, 2019.

[34] G. Sagirlar, B. Carminati, E. Ferrari, J. D. Sheehan, and E. Ragnoli,
“Hybrid-IoT: Hybrid Blockchain Architecture for Internet of Things -
PoW Sub-blockchains,” pp. 1–10, 2018.

[35] S. Alrubei, E. Ball and J. Rigelsford, ”A Secure Distributed Blockchain
Platform for Use in AI-Enabled IoT Applications,” 2020 IEEE Cloud
Summit, Harrisburg, PA, 2020, pp. 85-90, doi: 10.1109/IEEECloudSum-
mit48914.2020.00019.

[36] Iris Dataset, UCI Machine Learning Repository, [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/iris. Accessed on: Jan. 15, 2021.

[37] Air quality Dataset, UCI Machine Learning Repository, [Online]. Avail-
able: https://archive.ics.uci.edu/ml/datasets/Air+quality. Accessed on: Jul.
5, 2020.

[38] N. Koroniotis, N. Moustafa, E. Sitnikova and B. Turnbull, “Towards
the development of realistic botnet dataset in the Internet of Things for
network forensic analytics: Bot-IoT dataset”, arXiv:1811.00701, 2018.

[39] A. Elsts, E. Mitskas and G. Oikonomou, “Distributed Ledger Technology
and the Internet of Things: A Feasibility Study,” Proc. 1st Wksp.
Blockchain-Enabled Networked Sensor Systems, pp. 7-12, 2018.

Subhi M. Alrubei graduated in 2003 with a Bach-
elor of Engineering in Communication Systems
Engineering from the University of Portsmouth,
Portsmouth, United Kingdom. Later in 2012 Subhi
received a Master of Science with Distinction in
Networks and Security from the University of Kent,
Canterbury, United Kingdom. He has worked for
over 10 years as a communication engineer in Saudi
Arabia, where he has managed and executed many
communications systems projects. Since 2018 he
joined the Department of Electronic and Electrical

Engineering, University of Sheffield, Sheffield, UK as a PhD student. His
research interest includes blockchain technology, the Internet of Things IoT,
cyber security, and AI. He investigates the integration of blockchain, and AI
into future IoT application for better security, privacy and performance.

Edward Ball (M 2008–present) Edward (Eddie)
became a Member of IEEE in April 2008 and was
born in Blackpool, United Kingdom in November
1973. Eddie graduated in 1996 with a 1st Class
Master of Engineering Degree in Electronic Systems
Engineering, from the University of York, York,
United Kingdom. After graduating, he worked in
industry for 20 years, first spending 15 years work-
ing as Engineer, Senior RF Engineer and finally
Principal RF Engineer at Cambridge Consultants
Ltd in Cambridge, UK. He then spent 5 years as

Principal RF Engineer and Radio Systems Architect at Tunstall Healthcare Ltd
in Whitley, UK. In November 2015 he joined the Department of Electronic
and Electrical Engineering at the University of Sheffield, Sheffield, United
Kingdom, where he now works as Reader in RF Engineering. His research
interests cover all areas of radio technology, from RF system design, RF
circuit design (sub-GHz to mm-wave) and the application of radio technology
to real-world industrial and commercial problems. He has a particular passion
for RF hardware design. Mr. Ball is a member of the IET and is a Chartered
Engineer.

Jonathan M. Rigelsford (SM’13) received the
MEng and PhD degrees in Electronic Engineering
from the University of Hull, Hull, UK in 1997 and
2001 respectively. From 2000 to 2002, he worked
as Senior Design Engineer at Jaybeam Limited.
From late 2002, until 2014 he was a Senior Ex-
perimental Officer for the Communications Group
within the Department of Electronic and Electrical
Engineering, University of Sheffield, Sheffield, UK.
He then became a Senior Research Fellow at the
same institution. In 2019 Dr Rigelsford moved to

Sensata Technologies as RF Engineering Lead and maintains a Visiting
position in Sheffield. His research interests have included RF propagation,
biomedical electromagnetics, adaptive antennas, RFID and cyber security


