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ABSTRACT The demand for ocean exploration and exploitation is rapidly increasing and this has led to

rapid growth in the market of mobile vehicles. Given the mobility, the key challenge is to design a highly

adaptive solution with minimal signalling (and the associated delays) which current techniques have not

fully addressed. Therefore, the mobility and associated challenges in the underwater channel necessitates

the design of a new approach to Medium Access Control (MAC) which provides the capability to adapt to

rapidly changing conditions with no reliance on signalling which causes delays. This paper proposes the

UW-ALOHA-QM protocol, which uses reinforcement learning to allow nodes to adapt to the time varying

environment through trial-and-error interaction and thereby improve network resilience and adaptability.

Simulations are carried out in four distinct scenarios in which node mobility patterns are significantly

different. Simulation results demonstrate that UW-ALOHA-QM provides up to 300% improvement in

channel utilisation with respect to existing protocols designed for mobile networks.

INDEX TERMS Medium access control, mobile sensor networks, reinforcement learning, Q-learning,

underwater acoustic networks.

I. INTRODUCTION

The marine environment is becoming increasingly important

to a vast diversity of industries and is subject to rising

scientific interest. There are a huge range of applications

for underwater networks, such as: pollution monitoring

(e.g. ocean plastics [1]), seismic detection (Tsunami warning

system [2]), military (notably underwater surveillance [3]),

and managing food stocks (e.g. fish farms [4]). However,

most of the ocean has not yet been explored, since ocean

exploration is hampered by the hostile and harsh underwater

environment. The traditional approach to underwater moni-

toring is highly inefficient. Sensor nodes need to be carried

to the sea by ship and deployed to collect data for the mission

period. At the end of the mission, sensors typically need to

be retrieved and taken back to the shore, so the collected

data can then be analysed. Underwater communication offers

the potential for continuous long-term monitoring from land,

at much lower cost, but amongst many other things, it is

reliant on efficient and adaptable networking.

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Esposito .

The use of Wireless Sensor Networks (WSNs) to monitor

and collect data in the terrestrial environment has been

intensively researched. Unfortunately, well established radio

technologies cannot be directly applied to the underwater

environment since radio signals are heavily absorbed by

water. Acoustic signals are the most feasible means of com-

municating underwater due to their ability to propagate over

long distances compared to alternative signals. However,

acoustic signals have a slow propagation speed (≈ 1,500 m/s)

in water compared to radio signals in the air (≈ 3 × 108 m/s).

The long propagation delays that result make it difficult

to achieve high channel utilisation in underwater networks.

In addition, the limited and distance dependent bandwidth

results in low fundamental channel capacity [5]. Furthermore,

any reliance on time synchronisation for data communication

is costly and complex in the underwater environment since

GPS signals are not available.

The objective of the Medium Access Control (MAC) layer

is to make effective use of shared a channel by coordinating

the multiple access of nodes to provide high channel utilisa-

tion and good Quality of Service (QoS). Therefore, the MAC

layer plays a vital role in underwater acoustic networks in
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an effort to maximise channel utilisation in the presence of

the slow propagation speed. MAC protocols can generally

be categorised as centralised or distributed. Centralised pro-

tocols can often achieve good channel utilisation through

collision-free scheduling but require infrastructure such as

a coordinating central node. Distributed MAC protocols do

not require such infrastructure, but distributed scheduling or

reservation schemes incur significant overheads for processes

such as neighbour discovery, schedule exchange, and asso-

ciated handshaking techniques. Techniques based on carrier

sensing are less effective for underwater acoustic commu-

nication due to the long and variable propagation delays,

often requiring long guard bands. Centralised protocols are

more appropriate for static networks where a coordinating

node knows (or is able to gather) information from all nodes

such as their locations, transmission priorities, or individ-

ual traffic loads. Therefore, transmission scheduling can

be relatively static and potentially pre-defined by a central

node. Distributed protocols are necessary for networks where

centralised scheduling is not feasible. The problem is that

the signalling overheads of distributed protocols can impair

channel utilisation, especially when the propagation delay is

significant as it is in underwater acoustic networks.

Reinforcement learning is a form of machine learning

which enables agents (nodes) to learn an optimal action at

each unit of time (called an epoch) through trial-and-error

interactions in a dynamic environment [6]. The underwater

environment continually changes and thus underwater nodes

need to be capable of adapting to such time-varying changes.

Therefore, it is expected that a reinforcement learning

based protocol can offer underwater networks this capabil-

ity by interacting with the underwater channel. Previously,

the authors designed a reinforcement learning based pro-

tocol for quasi-stationary networks and the initial stud-

ies [7], [8] have shown that the distributed protocol can

achieve collision-free access without the need for time syn-

chronisation in underwater networks comprising fixed nodes.

Therefore, it is of interest to explore the use of reinforce-

ment learning for mobile underwater networks. Although

such learning algorithms will be unable to converge in

such dynamic environments, they have the potential to track

changes in the environment at a rate which can significantly

reduce the probability of collision with respect to alternatives

such as random access. This capability, combined with mini-

mal overheads and low complexity, is favourable with respect

to more complicated distributed protocols.

Specific contributions of this paper include:

• This is the first paper to the authors’ knowledge to

explore the use of reinforcement learning for mobile

underwater networks.

• This paper introduces a reinforcement learning based

protocol (UW-ALOHA-QM) to provide resilience and

adaptability in response to environmental changes in

mobile underwater networks.

• This paper demonstrates that reinforcement learning

techniques are a powerful means of providing a flexible

TABLE 1. Comparision between UW-ALOHA-QM and existing protocols
for mobile underwater networks.

topology agnostic solution for medium access con-

trol in underwater networks without the need for time

synchronisation.

• It is shown that UW-ALOHA-QM can provide signifi-

cantly enhanced channel utilisation in a range of distinct

scenarios compared to alternative existing protocols

designed for mobile underwater networks.

Compared to other non-reinforcement learning methods,

the key strength of UW-ALOHA-QM is that it is: 1) a fully

distributed algorithm which allows nodes (and a network) to

self-organise and 2) It provides a level of resilience and adapt-

ability to cater for node mobility and the constantly changing

environment. A potential weakness is that UW-ALOHA-QM

requires sufficient iterations to learn the environment oth-

erwise, it cannot achieve the desirable channel utilisation.

The protocols performance and ability to support mobil-

ity are evaluated and demonstrated for a wide range of

scenarios in section IV. Table 1 compares key features of

UW-ALOHA-QM and current MAC protocols designed for

mobile networks.

Section II of this paper provides a literature review on

protocols designed for mobile underwater networks and

reinforcement learning based protocols for fixed underwa-

ter networks. In section II, subsections A to E describe

the design process and related parameter settings and sub-

section B in particular presents the reinforcement learning

algorithm used in UW-ALOHA-QM. Section III introduces

UW-ALOHA-QM for mobile networks. This section dis-

cusses node mobility in underwater networks and analyses

the impact of node mobility on the reinforcement learn-

ing process. Section IV presents a comparative performance

evaluation through simulation, showing the key performance

characteristics of UW-ALOHA-QM under various network

configurations. Finally, section V concludes the paper.

II. PREVIOUS WORK

This section reviews existing protocols in two parts. First, a

brief review of state of art protocols for mobile underwater

networks is provided. Node mobility is a critical issue to

consider in protocol design since some new considerations

and tasks arise due to time varying node locations and the

need to provide resilience [9] to rapidly changing environ-

mental conditions. Secondly, existing reinforcement based

MAC protocols are reviewed and it is observed that the
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majority of them consider only pseudo static networks due

to the emphasis on reaching a converged state.

Location based TDMA MAC (LTM-MAC) [10] is an

extended version of Location Based MAC (LT-MAC) [11].

LT-MAC is designed for fixed networks and LTM-MAC is

designed to support the use of Autonomous Underwater Vehi-

cles (AUVs) in conjunction with fixed nodes. LTM-MAC

assumes time synchronisation and adds carrier sensing to

support data packet transmission from the AUVs. First, the

reliance on time synchronisation in the underwater environ-

ment is potentially costly and complex since GPS signals are

not available. Although it may be feasible in some instances

to synchronise nodes prior to development, clock drift is

likely to be a problem for the envisaged long-termmonitoring

applications. Moreover, the carrier sensing mechanism added

to cope for AUV mobility requires long guard bands due

to the long propagation delays, otherwise it cannot oper-

ate effectively. This represents a significant overhead with

respect to channel utilisation.

Delay-aware Opportunistic Transmission Scheduling

(DOTS) [12] is a distributed protocol which is designed

primarily for fixed node deployments, but the study in [12]

investigates the protocol in mobile networks as well. Nodes

overhear one-hop neighbour transmissions for neighbour

discovery and build a propagation delay map. Using the

map, the protocol is able to appropriately schedule concurrent

transmissions. The map quickly becomes out of date if a node

moves continuously, hence DOTS uses guard bands in the

scheduling to accommodate some changes after the map is

updated. It uses RTS-CTS handshaking for channel reserva-

tion and requires time synchronisation across all nodes in a

network. AdaptiveMAC [13] uses RTS-CTS handshaking but

one CTS packet can correspond to multiple RTS messages

received during a RTS waiting period in order to reduce

the number of control messages exchanged. Load-adaptive

CSMA/CA MAC [14] is designed for single hop networks

and uses RTS-CTS handshaking. It has two operational

modes based on traffic load. In the high-load mode, one

node can send two data packets after one handshaking pro-

cess to decrease the number of control message exchanges.

As the protocol name suggests, this protocol uses carrier

sensing. If the channel is sensed busy, a Binary Exponential

Back-off (BEB) algorithm is used which reduces achievable

channel utilisation. Juggling like Stop and Wait (JSW) based

MAC [15] also uses RTS-CTS handshaking and assumes

multi-channel use.

Asymmetric PropagationDelay aware TDMA (APD-TDMA)

[16] is designed for AUV networks and is an extension of

TDMA without clock synchronisation MAC (TDA-MAC)

[17] for static networks. This protocol estimates the future

locations of AUVs using the data packet arrival times in the

previous cycle. Therefore, this protocol is appropriate for

networks comprising nodes moving at a constant velocity,

rather than those comprising nodes with dynamically varying

speed or direction changes.

Most protocols [10]–[15] use handshaking processes to

reserve the channel, but the duration of such procedures

means that this process can struggle to keep up with the topol-

ogy changes in networks comprising mobile nodes. Also,

frequent control message exchanges for neighbour discovery

or channel reservation can lead to long idle times in the chan-

nel, high overheads, and low channel utilisation, especially

in underwater acoustic networks due to the slow propagation

speed. Moreover, in the case of JSW [15], the required multi-

channel operation is not easily realisable for underwater

acoustic networks since the usable channel bandwidth is so

limited, especially over longer distances. APD-TDMA [16]

is a distinct protocol because it estimates the future locations

of nodes, however it is not an efficient scheme when nodes

move at variable speeds or in different directions because it

estimates future locations of AUVs based on the latest data

packet arrival time at the central node.

There have been a number of studies applying reinforce-

ment learning to themedium access control problem in terres-

trial WSNs and the results are promising [18]–[24]. However,

there have been few publications on such approaches for

underwater networks. A few papers propose routing algo-

rithms [25]–[29] andwe have only found four studies recently

published [30]–[32], [43] for fixed node underwater networks

excluding our own prior work [7], [8].

A conference paper [30] discusses the use of slotted

ALOHA in distributed networks comprising fixed nodes.

It assumes time synchronisation across the network. A large

enough slot is divided into a data transmission phase and an

acknowledgement (ACK) phase. Using reinforcement learn-

ing, each node learns a suitable transmission order, which

means an individual node finds a distinct slot to send a data

packet in a frame in a slotted time system. Once the order

is determined, the protocol omits the ACK phase and can

increase channel utilisation. However, the protocol is highly

vulnerable to any future changes because the protocol cannot

be aware of such changes without feedback (ACKs) about the

data transmissions.

Two conference papers [31], [32] were published in 2019.

They are inspired by a journal paper [24] which discusses

Deep Reinforcement Learning (DRL) for heterogeneous

wireless networks. Underwater and terrestrial environments

are totally different and it is not therefore efficient if the

wireless techniques are directly used in underwater net-

works. First, the journal paper [24] considers a heteroge-

neous wireless network including LTE user equipment and

WiFi devices. Time synchronisation and high propagation

speeds are considered in the wireless network which are not

appropriate to underwater networks. Lastly, DRL increases

complexity and wastes computing resources in determining

only a transmission order for fixed nodes in the underwater

networks.

One of the conference papers [31] suggests a time syn-

chronised mode and two non-synchronised modes to setup

different simulation scenarios and the synchronised network
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shows the best performance in terms of the average chan-

nel throughput. This paper ignores the propagation delay of

ACK packets from the sink nodes, which is not a practical

assumption. The paper does not describe how the required

propagation distance information (estimates) can be obtained,

yet the information is a prerequisite for data transmission.

Another conference paper [32] assumes time synchronisa-

tion and acquires estimates of the distances between a sink

node and sensor nodes before data transmission subsequently

takes place through beacon message exchanges. Due to the

long propagation delay, the scope of the learning history for

the current action does not include recent feedback. This

reward approach can work in fixed networks, but it cannot

work properly in mobile networks since the environmen-

tal conditions associated with the previous experience has

significantly changed.

The most recent study [43] has been published in Septem-

ber 2020. It proposes to use deep learning for channel

selection in a multi-channel system. The protocol uses a

slotted ALOHA structure and assumes time synchronisa-

tion. Simulation compares results obtained with the learning

scheme, random selection, and optimised traditional selection

which requires the network information in advance. Random

selection shows the worst channel utilisation and the opti-

mised selection shows the best performance. The learning

approach does not achieve the best throughput at the begin-

ning of the simulation, however it approaches the optimised

throughput after sufficient learning iterations. The study also

wastes computing resources in that it merely selects one

channel in a slot. Moreover, the acoustic signalling channel

is very limited so that the multi-channel system is not ideal

for the underwater communication.

In summary, most of the existing protocols for mobile

underwater networks are extended versions of MAC proto-

cols designed for networks comprising fixed nodes where

time synchronisation is assumed. Most of them add extra

functions such as frequent control message exchange or car-

rier sensing with long guard bands to handle node mobility.

However, these solutions incur high propagation delay or

low channel utilisation hence they are not efficient in mobile

underwater networks. Rather than these supplementary mea-

sures to deal with node mobility, the learning approach pro-

vides network adaptability which can achieve good channel

utilisation, low overheads, and low complexity in the face of

changes in the network. Moreover, all existing reinforcement

learning based protocols designed for underwater networks

consider networks comprising fixed nodes. Reinforcement

learning is potentially effective in a time-varying environment

since it provides inherent adaptability based on continued

interaction with an environment. With regard to underwater

networks comprising mobile nodes, we cannot seek conver-

gence. The effectiveness of such an approach boils down to

whether the learning algorithm is able to adapt at a suffi-

cient speed with respect to the key environmental changes.

We propose what we believe to be the first reinforcement

learning basedMAC protocol (UW-ALOHA-QM) for mobile

underwater networks and investigate its potential to provide

a topology agnostic approach to medium access control.

III. UW-ALOHA-QM

Mobility always causes complexity in a network since it

brings a lot of variability to the network including more

significant time-varying channel conditions, changes in con-

nectivity and propagation delays. Therefore, node mobility

represents a specific challenge which needs to be addressed

in the design of MAC protocols [9].

For static topologies, it has been shown that it is possible

to achieve a scheduled outcome from initial random access,

through the learning process, to achieve a high channel util-

isation. The merit of employing such an approach lies in

the inherently distributed nature of typical algorithms such

that there is no reliance on infrastructure, making it a useful

approach for a wide range of network topologies and poten-

tially those with changing connectivity over time. Typical

algorithms are also characterised by low signalling overheads

and low complexity. In a mobile network, convergence is

unlikely to be achieved, and it would otherwise be very short

lived. Therefore, network resilience needs to be considered

in the mobile network. We consider network resilience to be

the ability to provide and maintain a good level of service in

the face of changes to normal operation [33]. Reinforcement

learning provides a means of adapting to a time-varying envi-

ronment, with nodes learning from their experience. If the

learning process can be sufficiently rapid with respect to

the changing environment, then reinforcement learning based

MAC protocols can provide useful adaptation in dynamic

environments and achieve superior performance with respect

to the alternative approaches that are known in the literature.

The desired capability of a reinforcement learning based

MAC protocol for mobile networks is to provide more effec-

tive adaptation to the time-varying environmental conditions

such that an improved level of performance (e.g. in terms of

channel utilisation) can be achieved with respect to baseline

protocols that do not incorporate learning. Superior chan-

nel utilisation performance can be potentially achieved with

respect to alternative state of the art protocols owing to

the minimal signalling overheads and absence of inefficient

handshaking procedures.

In Fig. 1, it is expected that a standard distributed protocol

which is designed with the appropriate guard time is able to

withstand any envisaged changes in environments.

For example, if the propagation delay changes through

mobility, it is expected that the protocol has sufficient guard

bands to deal with that mobility. On the other hand, with

the learning scheme, it is expected that the learning process

iterates for nodes in a static or pseudo-static environment and

the learning approach is able to converge on a stable solu-

tion. However, if there are any changes in the environment

convergence cannot be maintained. Fig. 1 shows an example

where there are quite significant changes in the environment

at discrete times. This will cause the learning process to be

disturbed and the performance would be expected to drop.
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FIGURE 1. Adaptability and resilience.

FIGURE 2. The fundamental frame structure used for UW-ALOHA-QM.

However the learning approach can then start to improve the

situation again until there is another significant change in the

network.

A. UW-ALOHA-QM FRAME STRUCTURE

Time is divided into repeating frames where each frame

comprises a number of slots as depicted in Fig. 2. The main

idea of UW-ALOHA-QM is to apply reinforcement learning

to enable each node (agent) to independently learn a preferred

slot in the repeating frame structure based on past experience

and to send data packets in the preferred slots of successive

frames. For UW-ALOHA-QM, nodes are not assumed to be

synchronised and the frame start times are therefore consid-

ered to be randomly distributed.

An example of an UW-ALOHA-QM network is a simple

topology where four different sensor nodes (N1, N2, N3, and

N4) are deployed at different distances from a sink node.

The four nodes collect data and transmit the information

to the single sink node. Each node in UW-ALOHA-QM is

permitted to transmit in one slot per frame. For this example

network, each frame comprise four slots (the frame size, S

= 4) for the four nodes in the network (N = 4) shown in

Figs. 3 and 4.

Therefore, each node has an opportunity to transmit col-

lected data once per frame and needs to select one of four

slots in each successive frame to transmit a data packet.

In the example shown, N1 uses slot2 and N2 uses slot2.

(Note that data transmission flows for N3 and N4 are omitted

in Fig. 3 for the purpose of simplicity).

FIGURE 3. An example of UW-ALOHA-QM timing for a four-node network.

FIGURE 4. Example of Q-table of UW-ALOHA-QM.

Each individual slot is designed to support the transmission

of a data packet to the sink node and reception of an acknowl-

edgement (ACK) packet back. To achieve this, the slot dura-

tion needs to account for the maximum propagation delay

from a mobile node to a receiver in both directions and incor-

porate a guard band. This very small guard band is merely

for the case that the maximum delay is underestimated. One

slot duration (Ts) is sufficient to accommodate a data packet

(Tdp), twice the propagation delay (τp), an ACK packet (Ta),

and guard time (Tg). The slot duration (Ts) can be calculated

by Eq. (1).

Ts = (Tdp + Ta + Tg) + 2×τp (1)

UW-ALOHA-QMuses ACKs to determine if data packets are

delivered. This serves to provide reliable communication but

is additionally a key requirement for operation of the learning

algorithm. After sending a data packet, if the generating node

does not receive an ACK from the sink node before the guard

time ends, the transmission is assumed to have failed and a

retransmission must be initiated.

The most significant element which impacts upon slot

duration (Ts) is the propagation delay (τp) as Eq. (1) shows.

Therefore, the duration becomes large in typical underwater

networks because of the slow propagation speed. During the

propagation of a data packet and ACK, the channel remains

in an idle state as shown in Fig. 3. This overhead is a potential

problem and a key difference in applying this frame structure

to underwater acoustic networks with respect to terrestrial

radio networks. It can be overcome, however, as described

in subsequent sections of this paper.

B. Q-LEARNING

UW-ALOHA-QM is based on stateless Q-learning [6], which

is used where an environment does not have to be represented

by state. In the UW-ALOHA-QM protocol, nodes use the

learning scheme to choose a distinct slot in each frame to
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FIGURE 5. Example of Q-table update process of N3 for the first 3 frames.

transmit one data packet. All nodes maintain a Q-table which

contains individual Q-values (one for each slot in the frame)

as Fig. 4 shows.

Eq. (2) is used to determine how Q-values are updated:

Qt+1(i, k) = Qt (i, k) + a(r − Qt (i, k)) (2)

where, the ith node has sent a data packet in the kth slot

in a frame. Qt is the Q-value at time t , t is a time epoch

(i.e. a frame), a is the learning rate, and r is the reward

value. A standard implementation of ALOHA-Q [21] uses

a = 0.1 and r = 1 if the transmission is successful (i.e.

a generating node successfully receives an ACK) otherwise,

r = −1.

Consider the example shown in Fig. 5, depicting the

Q-table at a single node. Since all Q-values in the Q-table

are initially zero, the node randomly selects a slot in the

next frame for data packet transmission. If the node receives

a positive ACK before the guard time ends, meaning the

transmission was successful, the Q-value for the 1st slot in

the Q-table becomes updated to 0.1 as shown through the

application of Eq. (2). Thus, after one frame, the Q-table has

Q-values of 0.1/ 0/ 0/ 0 and the 1st slot has the highest Q-value

in the node’s Q-table.

At the start of the second frame, the node will transmit a

data packet in the 1st slot since the Q-value of the slot has

the highest value (i.e. 0.1) in the node’s Q-table. If the node

does not receive an ACK packet before the guard time ends,

the node assumes that the transmission has failed and the

Q-value for the 1st slot in the Q-table is updated to -0.01.

Therefore, after the second frame, the Q-values of the Q-table

are -0.01/ 0/ 0/ 0.

At the beginning of the third frame, the node chooses

between the 2nd, 3rd, and 4th slots at random, with equal

probability since they all have the same highest Q-value of

zero. By repeating this trial-and-error learning, and as long

as there are sufficient slots in a frame, it can be shown that

individual nodes are able to find distinct slots to transmit in,

and thereby avoid collisions with other nodes in networks

where the environment is sufficiently stationary [8].

C. ASYNCHRONOUS OPERATION

Asynchronous operation is proposed for UW-ALOHA-QM

since GPS signals are not available underwater. Reliance

on time synchronisation in the underwater environment is

potentially costly and complex and clock drift is likely to be a

problem for the envisaged long-termmonitoring applications.

TABLE 2. Channel utilisation according to the frame size (s) in a network
of 100m radius (r) comprising 25 nodes.

Fig. 3 provides an example of the asynchronous timing of

UW-ALOHA-QM. The two generating nodes N1 and node

N2 start their frames at different moments and the sink

node does not need to work to a frame structure. Therefore,

all nodes in the network (including the sink node) do not

need to synchronise to other nodes and each node operates

completely independently.

It is expected that collisions occur at the sink node in the

absence of time synchronisation, since data packets sent from

sensor nodes will arrive at a sink node at random times, but

UW-ALOHA-QM can achieve an identical channel utilisa-

tion with and without time synchronisation in the underwa-

ter environment where there are the large number of nodes

with relatively large propagation delays. This is observed

from the intensive simulation for networks comprising more

than 25 nodes and the full details are shown in [8]. This is

achievable as the significant idle time at the sink node is large

enough to accommodate data packets sent from all sensor

nodes in a frame. In addition, reinforcement learning allows

nodes to learn the distinct slot in which a data packet can be

successfully received in the idle time at the sink node when

there are sufficient slots in a frame.

D. REFINEMENT OF FRAME SIZE

The standard implementation of ALOHA-Q schemes where

the frame size (S) is set equal to the number of nodes (N) is not

efficient for this underwater network due to the long slot dura-

tion and the different and time varying propagation delays

from mobile nodes. Therefore, it is useful to explore how

we can refine the frame size (S) to improve the theoretical

channel utilisation. Table 2 shows the difference in achievable

channel utilisation according to the frame size (S) from [8].

For each result shown in the Table 2, 100 simulations were

carried out and each simulation run had different and random

frame start times for all nodes. The theoretical maximum

channel utilisation values in the table refer to the channel

utilisation which UW-ALOHA-QM achieves in a network

comprising fixed nodes.

The index ratio (B) is introduced in the previous study [8]

and represents the ratio between ‘the total available time

which can be used for the sink node to receive in a frame’

and ‘the sum of data packet durations generated by all nodes

in a frame’. The index (B) can be expressed by Eq. (3). This

index represents the theoretical available space at the sink
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node to be used for reception of data packets related to the

duration within a frame that is used for data bits. For example,

in Table 2, when N = S = 25, the sink node theoretically has

8.98 times more space than the duration required to receive

one packet from each of the 25 nodes in a frame.

B =
S × (2 × τp + Tdp)

N × T dp
(3)

Table 2 shows a trade-off between frame size (S) and the

average channel utilisation. In the table, as the frame size

(S) is reduced, the average channel utilisation is improved.

However, at a certain threshold, the channel utilisation

decreases because the level of contention increases. It refers

to the fact that more slots in a frame wastes channel capacity

because there will be a number of unused slots in each frame

whereas an insufficient frame size (S) will not provide a

sufficient duration for the contending nodes to find collision

free spaces. Therefore, it is necessary to find an optimum

frame size to maximise the average channel utilisation.

Referring to the simulation results of [8], it is found that

channel utilisation of UW-ALOHA-QM can be improved by

reducing the frame size (S) up to an index ratio (B) value

of 1.5 when 25 nodes are used in a network sized from 100 m

to 1000 m [8], otherwise (i.e. B<1.5) the channel utilisa-

tion decreases due to collisions. For example, in Table 2,

UW-ALOHA-QM shows the highest channel utilisation

using 5 slots in a frame (B=1.8>1.5) and the channel util-

isation decreases when 4 slots per frame (B=1.44<1.5) is

used since the index (B) value is under 1.5. Therefore, this

paper proposes to use the optimum frame size called Sm which

is the smallest frame size for maximum channel utilisation

under a condition that the index (B) is equal to or greater than

1.5 with given network size (R) and the number nodes in a

network (N). This is a generally applicable approach, and in

order to aid understanding, some very specific parameters are

described in this paper to serve a specific example.

E. UNIFORM RANDOM BACK-OFF

Although a small number of slots per frame (S) is desirable

with respect to higher channel utilisation, an additional mech-

anism is required to achieve this. A small number of slots cor-

responds to a limited action space and distinct transmission

timings for a relatively large number of nodes. For example,

in Table 2, the optimum frame size (Sm) is 5 for 25 nodes.

In this case, all nodes have only 5 slots in a frame and this

implies that there is high possibility of residual contention at

the sink node with only five transmission time options. It is

necessary to allow nodes to additionally adjust their frame

start times, such that they can offset themselves with respect

to other nodes and fill the idle time at the sink node. In other

words, each node also needs to learn an appropriate frame

start time and not only the distinct slot to avoid collisions.

A Uniform Random Back-off (URB) scheme is proposed

to provide the opportunity for nodes to adjust their frame start

time. URB can improve the flexibility of UW-ALOHA-QM

in mobile networks by adjusting frame timing according to

FIGURE 6. Concept of Uniform Random Back-off (URB).

the constantly changing network environment caused by node

movement.

Fig. 6 shows the concept of URB. Note that data trans-

mission flows for N3 and N4 are omitted in Fig. 6 for the

purpose of simplicity. URB provides chances nodes to adjust

their frame start time, but significantly decreases the channel

utilisation because of two reasons. First, the action currently

taken is based on learning conducted in different network

circumstances in the past, which means neighbour nodes

have moved so that their locations have changed. Therefore,

the largest Q-value (Qt ) in the Q-table is not always the best

action for a node, so transmitting a data packet in the selected

slot can generate collisions in the mobile network. Moreover,

mobility makes learning of UW-ALOHA-QM ‘myopic’ [34].

Every collision initiates URB and moving the frame start

time brings about a new network configuration for a node.

This frequent URB wastes historical experience since the

optimal action is based on heuristic awards and punishment.

Consequently, URB (the new frame start time) causes a situ-

ation that all nodes must learn the new environment from the

scratch at every frame resulting in inefficient and unnecessary

learning processes.

Therefore, a new URB design is required to achieve the

more efficient learning. TheURBmust be initiated only when

a node can determine that the current highest Q-value is not

the optimum action. Using Eq. (2), we can calculate when

a node needs to trigger a new learning process. Assuming a

node experiences collisions at every transmission because of

mobility and setting the initial Q-value to 1 (i.e. Q0 = 1),

the Q-value is changed from 1 → 0.8 → 0.62 → 0.458 →

0.3122 → 0.18098 → 0.062882 and to −0.043406 at a 7th

consecutive collision. Seven consecutive failures cause the

Q-value to return to ≈ zero at a learning rate (a) of 0.1. The

previous study [35] carried out the analysis of Q-value in a

radio wireless network and shows the same result.

Therefore, this paper proposes the 7-Uniform Random

Back-off (7-URB) scheme which raises the URB scheme

after a seven consecutive collision for the mobile network.

7-URB utilises the experienced Q-value and removes unnec-

essary learning processes. As a result, UW-ALOHA-QM

can improve network resilience and adaptability and avoid

collisions by adjusting its frame timing.

IV. SIMULATIONS

Simulations have been carried out in order to evaluate

the capability of this reinforcement learning based MAC
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protocol, UW-ALOHA-QM for mobile underwater acoustic

networks. Four distinct scenarios have been modelled and the

performance is evaluated in these scenarios. The intention

of simulations in four different scenarios is to demonstrate

the potential of UW-ALOHA-QM when applied to distinct

scenarios, to better illustrate the scope of its use and provide

an insight into how UW-ALOHA-QM performs with respect

to different protocols designed for each type of network.

These scenarios broadly are

• Moored or anchored sensor network

• Free floating sensor network [12]

• AUV assisted network [10]

• AUV sensor network [16].

The first scenario is a reference scenario serving to

illustrate the fundamental operation of UW-ALOHA-QM

with typical parameters. The other three scenarios and cor-

responding parameters are defined in other MAC proto-

col studies, [12], [10], and [16]. These four scenarios have

been considered to provide comprehensive evaluation of

UW-ALOHA-QM and have been chosen for two primary

reasons: 1) to provide very distinct mobility setups and

cases and to provide a wide evaluation of the capability of

UW-ALOHA-QM. 2) The latter three scenarios and param-

eters are taken from the literature [12], [10], and [16] of

other MAC protocol research which have been developed

for the specific scenarios and therefore this allows a direct

comparison of UW-ALOHA-QM with the results presented

for the state of the art schemes presented in those papers. For

each scenario, results from the respective paper from which a

scenario is taken have been extracted. This typically includes

the scheme which was proposed by the authors and also some

other comparative schemes. In addition, UW-ALOHA-QM is

simulated in their scenario.

In these scenarios, the channel utilisation of

UW-ALOHA-QM is measured at the sink node. Channel util-

isation is evaluated as the fractional amount of time in which

data traffic is successfully received at the sink node. Eq. (4)

shows how the channel utilisation (U ) of UW-ALOHA-QM

is measured:

U =
D

ruw × F × S × Ts
(4)

where,D is the total number of data bits successfully received

at the sink node, ruw is the data rate in bps, F is the total

number of framed measured, S is the number of slots in a

frame, and Ts is the duration of a slot.

A. MOORED OR ANCHORED SENSOR NETWORKS

This scenario represents underwater networks which consists

of moored or anchored nodes. To show the network resilience

of UW-ALOHA-QM, this discontinuous movement scenario

is considered where anchored or moored nodes move accord-

ing to currents at random speeds with the assumption that

nodes are spatially correlated. Spatial correlation is generally

used as a fundamental assumption for studies of underwater

node localisation [38]–[40].

TABLE 3. Typical UW-ALOHA-QM parameters.

There are 25 sensor nodes in a single-hop random

topology where generating nodes are located randomly

within a circular coverage area with one sink node located

centrally. All nodes are within interfering range of each

other. All lost packets are due to packet collisions. To

provide a worst case model, any overlap in packet recep-

tion is considered to result in the complete packet being

lost.

Typical parameters for UW-ALOHA-QM are listed

in Table 3. Data packet size, ACK size, and guard time size in

bits are based on previous studies [21]. For practical under-

water environment settings, the data rate (ruw) of 13,900 bps

is chosen by referring to an underwater modem currently on

the market [41]. In terms of node speed, this paper refers to

a velocity profile at tidal-stream energy sites [42] in the sea

between Ireland and Britain. It shows that the tidal stream

speed is less than 4 m/s between 0 to 40 m above the

seabed. Therefore, this scenario uses random speeds for node

mobility between 2 to 4 m/s. Nodes will start at a uniformly

distributed random position in 2 dimensions, within a 100 m

radius circle (R). Each node starts the first movement at

30 min, the second movement at 60 min, and the last one

at 90 min. For each movement, nodes move in a random

direction for a period of 30 seconds at a random speed which

is in the range between 2 to 4 m/s and the actual value is

uniformly distributed. The movement direction is randomly

chosen in a 0 to 2π radius. In order to demonstrate the

impact of mobility with respect to stationary we consider

some events which are short periods of motion intermittent

with peers that are assumed to be stationary.

Fig. 7 shows the changes in channel utilisation of

UW-ALOHA-QM over time and demonstrates the network

resilience of the protocol. As soon as the network is deployed,

all nodes initiate a learning process and can achieve the

theoretical channel utilisation. After 30 minutes, all nodes

simultaneously start to move (for example, by waves) and this

leads to changes in node locations and hence the topology

and propagation delays are changed as well in the network.

Therefore, nodes need to learn the new environment and

can achieve the maximum channel utilisation again. This

demonstrates that UW-ALOHA-QM is able to learn and adapt

to changes in the network without a coordinating node or

additional control message exchanges.
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FIGURE 7. Real time channel utilisation of UW-ALOHA-QM in the moored
or anchored sensor network scenario.

The theoretical maximum channel utilisation represents

the stable channel utilisation which UW-ALOHA-QM

achieves in the network comprising fixed or quasi-fixed

nodes. In that situation, all nodes use the same slot num-

bers and maintain timing of a frame thus a centralised data

transmission pattern is formed and this pattern is repeated.

Therefore, the theoretical channel utilisation can be deter-

mined by considering the proportion of time available for data

transmission in a single frame [8] as shown in Eq. (5). This

moored / anchored mobile scenario, for example, achieves

0.631 Erlangs using parameters from Table 3: (25 nodes ×

75.108 ms) / (14 slots × 212.47 ms).

Theoretical maximumU = (N×Tdp)/(Sm×Ts)(5) (5)

B. FREE FLOATING SENSOR NETWORKS

This type of mobile network is characterised by free floating

nodes distributed by currents. UW-ALOHA-QM is evaluated

and compared to DOTS [12] which is designed for free

floating sensor networks. DOTS uses theMeandering Current

Mobility (MCM) model [36] for node movement.

DOTS is originally designed for networks comprising fixed

nodes, however, it was evaluated for networks comprising

mobile nodes. DOTS uses RTS-CTS-DATA-ACK processes

but allows concurrent transmissions exploiting temporal and

spatial reuse. Nodes overhear one-hop neighbour transmis-

sions and obtain neighbour node propagation delay informa-

tion from theMAC headers. TheMAC headers include a time

stamp indicating when the data packet is sent from a sender in

order to estimate the propagation delay between a sender and

a receiver. This information is stored in a map in each node

and each node expects the future data transmission based on

the overheard information in the map. Parameters defined by

DOTS are described in Table 4.

The maximum node speed is restricted to 0.3 m/s [36].

The study shows that DOTS achieves 0.2 Erlangs of channel

utilisation when the offered load is above 1 Erlang. Although

TABLE 4. Parameters used for free floating scenario evaluation.

FIGURE 8. Channel utilisation according to different traffic loads.

beyond the practical operating capacity, it has been consid-

ered to evaluate DOTS under saturated traffic conditions. For

a fair comparison, UW-ALOHA-QM is simulated using the

parameters suggested by DOTS [12].

Fig. 8 compares the simulated channel utilisation of

UW-ALOHA-QM to the other protocols as reported in [12].

Channel utilisation is measured in a consistent manner as the

average value of 50 simulation runs with each simulation run

lasting 1 hour. Nodes in the UW-ALOHA-QM evaluation

start to move as soon as the simulation commences until

the end of a simulation with the constant speed of 0.3 m/s.

The only difference is that DOTS uses time synchronisation

whilst UW-ALOHA-QM does not need to. The theoretical

maximum channel utilisation of UW-ALOHA-QM in this

network configuration is 0.624 Erlangs [8] but the proto-

col achieves 0.617 Erlangs due to the node mobility. The

small difference in channel utilisation stands out given that

the network comprises mobile nodes moving at a very slow

speed.

Table 5 provides parameters for UW-ALOHA-QM in the

network configurations defined by [12]. Given a network

of 430 m size with 10 nodes [12], the smallest frame size

under a condition that B is greater than 1.5 is 2 (Sm). In this

network configuration, B is 1.6, which means a sink node

has 60% more capacity than the total of 10 data packet dura-

tions. In other words, the sink node would be able to receive

16 data packets if the network was time synchronised and

scheduled.
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TABLE 5. Parameters used for free floating scenario.

FIGURE 9. Data packet receptions at the sink node.

Fig. 9 show the packet reception at the sink node at dif-

ferent frames. The sink node actually does not have the time

slot and frame structure as shown in Fig. 3, but it is illustrated

in Fig. 9 for an easy understanding of the theoretical concept

of UW-ALOHA-QM. 10 sensor nodes send data packets to

the sink node and they are not time synchronised, therefore

10 packets arrive at the sink node at random times. When

the node speed is 0.3m/s, a sensor node moves 0.39 meters

during a frame which results in a 0.00026 seconds change

in the propagation delay per frame. This change accounts

for merely 0.04% of a frame, which is very small compared

to one data packet which accounts for 6.24% of a frame.

Therefore, the idle time at the sink node functions as a guard

band to deal with the small changes in propagation delay

caused by the slow node mobility.

For example, in Fig. 9, N1 moves away from the sink

node at a 0.3 m/s speed and the data packet sent from N1 of

frame X+1 arrives slightly later than the previous frame X.

However, the idle time at the sink node allows reception

of the packet without a collision. N5 moves away from the

sink node and N8 moves towards the sink node and their

packets collide in frame X+1, and if the collision continues

for 7 consecutive frames, the two nodes will trigger 7-URB

and then they attempt a different frame start time to find an

appropriate gap at the sink node. Therefore, with slow node

movement (0.3 m/s), UW-ALOHA-QM can maintain good

channel utilisation.

Fig. 10 compares the channel utilisation of the different

protocols with various node speeds from 0.3 m/s to 3 m/s. All

nodes continue to move during the simulation time for one

hour. TheDOTS protocol exhibits 0.2 Erlangs channel utilisa-

tion regardless of the node speed because DOTS incorporates

guard bands of sufficient duration to accommodate changes in

reception timing caused by node mobility and the impact this

has on propagation delay. However, there is a 12% decrease

in the average channel utilisation of UW-ALOHA-QM with

respect to the theoretical maximum channel utilisation, with

nodes moving at a 3 m/s speed. This is because the relative

timing of packet reception from the different nodes at the

FIGURE 10. Data packet receptions at the sink node.

TABLE 6. The average number of times 7-URB is triggered.

sink changesmore rapidly and the learning algorithm because

less effective at adapting to the changes. The preferred slot is

subject to reduction in its Q-value.

7-URB is triggered more often as the node speed increases.

Table 6 provides the average frequency with which 7-URB is

invoked across the 50 simulation runs for each speed. As the

node speed increases, the 60% extra time at the sink node

is not sufficient to deal with the high mobility. When the

node speed is 0.3m/s, 7-URB is triggered on average every

86 frames whereas it is triggered more frequently (every

8 frames on average) when the node speed is 3m/s, in an

attempt to find an appropriate frame start time for successful

transmission.

In summary, the simulation results shows that

UW-ALOHA-QM always provides a respectable channel

utilisation and outperforms DOTS and other protocols in

the free floating node scenario despite the asynchronous

operation of UW-ALOHA-QM.DOTS uses a sufficient guard

time to deal with the node movement and handshaking which

significantly reduces the achievable channel utilisation. How-

ever, UW-ALOHA-QM uses the learning approach where

all nodes independently learn and find a distinct slot and

appropriate frame start time through their interaction with

the time-varying environment, which brings about better

adaptability and higher channel utilisation than other existing

protocols. For example, UW-ALOHA-QM provides more

than 3 times better channel utilisation (0.617 Erlangs) than

DOTS (0.2 Erlangs) when the node speed is 0.3 m/s.

Figs. 8 and 10 also illustrate features of different MAC

approaches. CS-ALOHA uses random access and the channel
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utilisation is therefore heavily dependent on traffic load

(G) but not dependent on the node speed. The DOTS, DCAP,

and S-FAMA protocols conduct handshaking before data

transmission and their performance is not affected by envi-

ronmental changes (i.e. node speed in this scenario) since the

handshaking scheme does not require prior information of

the environment nor interaction with environmental changes.

However, due to frequent control message exchange, the

underlying performance of those protocols is very low and

the handshaking process potentially fails if nodes move

at a very high speed during the process in the mobile

network.

On the contrary, the channel utilisation of the learning

approach is related to the environmental changes since it

interacts with the environment. High speed mobility implies

that the network environment changes quickly. Consequently,

the node speed has an impact on the performance of

UW-ALOHA-QM. However, it can be seen that for this par-

ticular environment, the learning scheme is able to allow the

network to adapt sufficiently rapidly to the environmental

changes and achieve network resilience. Therefore, the chan-

nel utilisation of UW-ALOHA-QM can be significantly

higher than other protocols.

C. AUV ASSISTED NETWORKS

These networks consist of fixed sensor nodes and one

or more AUVs. The LTM-MAC [10] and Load adaptive

CSMA/CA [14] protocols are designed for this type of mobile

network. LT-MAC [11] was proposed for small-scale static

underwater networks and LTM-MAC [10] is an extended

version for the extra AUV in fixed underwater networks.

LTM-MAC assumes the AUV has enough knowledge about

the network topology to support the fixed sensor nodes. Basi-

cally, carrier sensing is added for the LTM-MAC protocol to

handle the mobility of the AUV. However, the carrier sensing

mechanism added to cope for AUV mobility requires long

guard bands due to the long propagation delay, otherwise

it cannot operate effectively in the underwater environment.

LT-MAC and LTM-MAC are based on TDMA, therefore,

time synchronisation is required and the transmission order of

static nodes is decided before the data transmission. However,

these protocols use dynamic time slot durations for each

node based on the results obtained in the latency detection

phase before the data transmission phase. Therefore, all nodes

should broadcast a control message to indicate the slot dura-

tion before each data transmission.

In this AUV assisted network scenario, one AUV keeps

moving throughout each simulation run whilst other nodes

are static on the seabed. UW-ALOHA-QM uses the identical

network configurations and parameters, but asynchronous

operation is applied. With a frame size (Sm) of 6 based on the

desired ratio B, the theoretical maximum channel utilisation

of UW-ALOHA-QM is 0.58 Erlangs with a saturated traffic

model in this scenario [8]. Table 7 summarise the parame-

ters used in the AUV assisted scenario and they are defined

in [10].

TABLE 7. Parameters used for AUV assisted scenario evaluation.

FIGURE 11. Channel utilisation according to different traffic loads.

Fig. 11 compares channel utilisation at the different traffic

loads (G). LTM-MAC was evaluated for a 1,000 second

period for one simulation trial, but the AUV only moves

1,540 m at a speed of 3 knots during the simulation time.

Considering a network size of 1,500 m, it is not sufficient

to visit every node located randomly in a circle, therefore for

the UW-ALOHA-QM evaluation, additional simulations are

executedwith a longer simulation time of 100 frame durations

for UW-ALOHA-QM as well as 1,000 seconds (40 frames).

When the traffic load (G) is very small, UW-ALOHA-QM

exhibits a lower channel utilisation than LTM-MAC. If the

frequency of data transmission is very small, there are insuf-

ficient trials for UW-ALOHA-QM to be able to find a suitable

slot and frame start time in order to achieve collision free

reception.

For the same traffic load levels, when the simulation time

is longer (100 frames), UW-ALOHA-QM shows better per-

formance since it has a longer period in which to find an

appropriate transmission time. In a practical deployment,

the duration of operation would of course be much longer

than this and the results demonstrate that with the mobility

levels in this scenario, UW-ALOHA-QM can provide higher

channel utilisation than the alternatives for all but very low

traffic load levels.

D. AUV NETWORKS

AUV networks consist of AUVs having sensing functionality.

Path planning is generally used, for example, searching for

wreckage in a zig-zag path in a crash area [37]. Therefore, the
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TABLE 8. Parameters used for AUV assisted scenario evaluation.

FIGURE 12. Channel utilisation in AUV network.

movement models are different depending on the application

requirements. There are a couple of studies of AUVnetworks:

APD-TDMA [16] and BTB-TDMA [43]. UW-ALOHA-QM

is compared with APD-TDMA in the scenario described

in [16] because APD-TDMA is the state-of-art and shows

better performance than BTB-TDMA [43].

APD-TDMA [16] is designed for AUV sensor networks

and it is an extension of the TDA-MAC protocol [17]

designed for static networks. APD-TDMA consists of two

phases: initialisation and transmission. APD-TDMA requires

enough control message exchanges during the initialisation

phase to get all AUV locations and then it can be ready to

start the transmission phase for the data packet transmissions.

A transmission phase consists of cycles which is a similar

concept to frames of UW-ALOHA-QM but APD-TDMA

does not use ACKs. During transmission phases, whenever

the number of data packet losses at the sink node is greater

than a certain value, APD-TDMA repeats the initialisation

phases.

Table 8 provides AUV network configurations defined by

APD-TDMA and Fig. 12 compares channel utilisation of the

existing protocols with a different numbers of node (N) in a

network.

APD-TDMA measures channel utilisation only during

the transmission phases and does not reveal the certain

level of packet loss for the re-initialisation, hence it is

difficult to estimate how many times the re-initialisation

occurs. Therefore, it is not fair to directly compare

APD-TDMA and UW-ALOHA-QM since the channel util-

isation of UW-ALOHA-QM is measured from the start of

TABLE 9. Thoretical maximum channel utilisation of UW-ALOHA-QM with
different N and SM.

one simulation trial to the end. However, we compare those

two protocols when the number of nodes (N) in a network is

smaller, on the basis that fewer collisions are likely to occur

using a smaller number of nodes. UW-ALOHA-QM shows

lower channel utilisation, however it is predicted that, if the

channel utilisation of APD-TDMA is measured also together

with the multiple initialisation phases, UW-ALOHA-QM

may provide better performance than APD-TDMA.

The theoretical maximum channel utilisation of

UW-ALOHA-QM is calculated by Eq. (5). In the equation,

the data packet duration (Tdp) and the slot duration (Ts)

are constant during simulations of this scenario whilst the

number of nodes (N) and the optimum frame size (Sm) are

changing. Table 9 provides theoretical channel utilisation of

UW-ALOHA-QM in different settings in the AUV network

scenario. As the table shows, the number of nodes (N)

increases linearly but the optimum frame size (Sm) does not

change linearly due to the condition that B is greater than 1.5.

Therefore, UW-ALOHA-QM shows the zig-zag style shape

in Fig. 12 which is typical feature as explained in [8].

An initialisation phase is required for APD-TDMA and

many other protocols to obtain the mobile nodes’ location

information in the underwater environment and then schedule

the data transmissions. However, UW-ALOHA-QM does not

need such a phase, because nodes do not need prior infor-

mation for data transmissions and only the Q-value based on

learning experience is important, which is independent from

other nodes in the network. Although APD-TDMA knows

the location information of AUVs, it becomes invalid quickly

because AUVs continue to move. Therefore, the prediction

approach of APD-TDMA based on the initialisation or the

current data transmission receive timing is only reasonable

for constant movements rather than random direction and

speed movements. UW-ALOHA-QM, however, does not use

prediction but learns and adapts to the changing environment,

thereforeUW-ALOHA-QMcan be used in the networkwhere

nodes moves in an unpredictable manner. BTB-TDMA [44]

shows the lowest channel utilisation in Fig. 12 because it

fundamentally uses the long enough guard time to deal with

AUV mobility though it requires time synchronisation.

V. CONCLUSION

In this paper, we have proposed a reinforcement learning

based MAC protocol for underwater mobile sensor networks,

namely UW-ALOHA-QM. Existing protocols designed for
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underwater mobile networks handle node mobility through

additional supportive measures such as frequent control mes-

sage exchange rather than our approach to improving network

resilience.

Using the reinforcement learning approach,

UW-ALOHA-QM provides good channel utilisation and

adaptability for a range of mobile network scenarios. In the

best scenario, the theoretical maximum channel utilisation

of UW-ALOHA-QM reaches 0.66 Erlangs, which is com-

parable to centralised protocols for underwater networks.

An approach has been proposed here for mobile underwa-

ter networks and the most appropriate application for this

scheme are underwater networks in which node trajectories

are unpredictable. Simulation results demonstrate that UW-

ALOHA-QM generally outperforms existing protocols under

various scenarios and configurations by improving network

flexibility. It provides a useful topology agnostic solution to

the medium access control problem.
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