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Abstract In this paper, a review of the nonlinear

aspects of the mechanical inerter will be presented.

The historical context goes back to the development

of isolators and absorbers in the first half of the twen-

tieth century. Both mechanical and fluid-based non-

linear inerter devices were developed in the mid- and

late twentieth century. However, interest in the inerter

really accelerated in the early 2000s following the work

of Smith [87], who coined the term ‘inerter’ in the

context of a force–current analogy between electri-

cal and mechanical networks. Following the histori-

cal context, both fluid and mechanical inerter devices

will be reviewed. Then, the application of nonlin-

ear inerter-based isolators and absorbers is discussed.

These include different types of nonlinear energy sinks,

nonlinear inerter isolators and geometrically nonlin-

ear inerter devices, many relying on concepts such as

quasi-zero-stiffness springs. Finally, rocking structures

with inerters attached are considered, before conclu-

sions and some future directions for research are pre-

sented.
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1 Introduction

During the last 20 years, mechanical inerter devices

have been the subject of substantial research interest in

both academia and industry. These devices have been a

major innovation in the research field of passive vibra-

tion control. They have also been primarily described

in the literature in terms of linear vibration phenom-

ena. However, as this field of research begins to mature,

there is a growing recognition that nonlinearity plays

a significant role in these devices. For example, most

of the mechanisms used to realise mechanical inerter

devices in practice are nonlinear, such as gears, ball-

screw mechanisms and fluid flow. Furthermore, a num-

ber of research studies have been undertaken that are

applying the inerter as nonlinear vibration mitigation

methods.

This paper presents a review of the nonlinear

dynamics aspects of the mechanical inerter—although

to cover the historical context, a limited amount of

linear dynamics is discussed as well. Inerters are

often considered as vibration control devices, and this

review will cover only passive devices. Semi-active and

active control applications are not considered in detail,

although they will be mentioned in the context of future

developments—see also [2,14,36,38,59,99,122] and

references therein for a selection of topics in these

research fields.

The paper is structured as follows. In Sect. 2, the

historical context and background of the mechanical

inerter are presented. Then, in Sect. 3 physical reali-
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sations of mechanical inerter devices are considered in

detail. Section 4 considers nonlinear applications of the

mechanical inerter. Finally, in Sect. 5, conclusions and

future directions for research are presented.

2 History and background to the mechanical

inerter

In order to put the inerter into historical context, the

first step is to consider the state-of-the-art methods in

passive vibration control prior to the advent of inerter-

based techniques.

The term ‘inerter’ was first introduced by Smith

[87] using a force–current analogy between mechanical

and electrical networks—see also [88]. In this context,

the inerter is considered to represent the equivalent of

the capacitor in electrical networks. As a result, in the

mechanical domain, it has the property that the force

generated is proportional to the relative acceleration

between its end points (also called terminals, ports or

nodes). The constant of proportionality for the inerter

is called inertance and is measured in kilograms.

Long before this definition, engineers were seeking

methods to reduce unwanted vibrations, particularly

from resonances. We start by considering one of the

earliest proposed solutions to this problem—see also

Titurus [100] and Kuhnert et al. [51] for additional his-

torical perspectives of the inerter.

2.1 The tuned-mass-damper (TMD)

In October 1909, Hermann Frahm filed a patent on a

new device for ‘damping vibrations of bodies’ [27].

The idea was simple, and went on to radically improve

many engineering applications where unwanted vibra-

tions occurred. It was based on the observation that the

resonance of an oscillating system could be reduced by

deliberately attaching a smaller oscillator to the sys-

tem. The key insight was that if the resonance fre-

quency of the smaller device was designed in a par-

ticular way, then the two systems interfered with each

so that the largest amplitudes of vibration were dramat-

ically reduced.

The concept is shown in Fig. 1a, where the smaller

oscillator—called the tuned-mass-damper (TMD)—

with mass ma , damping ca and stiffness ka is shown

attached to the primary (or host) system, with mass M

and stiffness k (the primary system is assumed to have

zero, or close to zero damping). The response of the pri-

mary system (without the TMD but with a small amount

of damping) to a sinusoidal excitation is shown as a

solid line in Fig. 1b, and a large displacement resonance

peak can be seen. The response of the same system after

the TMD, (also called a tuned-vibration-absorber and

dynamic-vibration-absorber,) has been added is shown

as a dashed line in Fig. 1b. It is clear that the idea

proposed by Frahm leads to a dramatic reduction in

maximum amplitude. Despite being over 100 years old,

remarkably this idea was until very recently the state

of the art in almost all relevant areas of engineering

practice.

The idea was both popularised and given a rig-

orous design process by J.P. Den Hartog [20] and

then J. E. Brock [11] since when it has been used

extensively across all engineering (with some further

refinements—see for example Liu and Liu [60] and

references therein). Probably the most famous exam-

ple is in the Taipei 101 in Taiwan. This is a 509m

high skyscraper, which between 2004 and 2008 was

the tallest building in the world. Taipei suffers from

typhoon storms and earthquakes, so the building was

fitted with a tuned-mass-damper using a mass of 660

tonnes, as shown in Fig. 1c, d. The mass is suspended

on cables and swings when the building is shaken by

wind or earthquake. This swing motion is tuned to give

the same cancellation effect of the largest vibrations

based on Frahm’s idea (see review by Gutierrez and

Adeli [32] for a list of TMDs in tall buildings).

The tuned-mass-damper in the Taipei 101 has been

shown to work amazingly well, but the fact that a 660-

tonne pendulum is required highlights one of the major

drawbacks with the tuned-mass-damper idea. As the

structure gets larger (or a greater damping effect is

needed), then the mass required also becomes larger,

which has several disadvantages, not least the cost and

large space required inside the structure. Apart from

having to use very large masses in large structures, the

conventional TMD also suffers from two other impor-

tant limitations. The first is that the sharp nature of the

resonance peak (i.e. the solid line in Fig. 1b), means

that small amounts of tuning error (for example from

parameter changes over time) result in a rapid loss of

performance. The second is that for systems with mul-

tiple resonances (which applies to very many real appli-

cations), the TMD can only suppress vibrations of one

resonance peak. In fact, this is less of a problem in large
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(a) (b)

(c) (d)

Fig. 1 The tuned-mass-damper (or tuned-vibration-absorber)

showing a a schematic diagram of the primary system, M , k,

with the absorber, ma , ka , ca , attached. b A simulation of the

(damped) primary system without the absorber attached (solid

line) and tuned-mass-damper (dashed line) subjected to sinu-

soidal excitation F sin(�t) where F = 1N. The frequency ratio

is �/ωp where ωp =
√

k/M . The TMD was designed using the

‘fixed point’ method of Brock [11] (see also Den Hartog [20], and

note that these are the ‘fixed point’ design rules that have been

adapted for the design of inerter devices—see [37] and refer-

ences therein). Start with the given parameters of k = 1000N/m,

M = 100kg, ma = 8 kg and c = 10 kg/s (i.e. damping close to

zero). Then, let μ = ma/M , so that ka = kμ

(1+μ)2 , ζ =
√

3μ

(1+μ)3

from which, ca = 2ζmaωp , see for example Liu and Liu [60].

c A photograph of the 660-tonne mass from the Taipei 101 tuned-

mass-damper is shown. d The mass is suspended on cables, across

four storeys at the top of the building, and the mass acts like a

pendulum version of the TMD. A review of TMDs with a list of

applications to buildings is reported in Gutierrez and Adeli [32].

Photograph credits: Guillaume Paumier

buildings, where typically 80% of the transverse vibra-

tion is from a single resonance, but is a major problem

in other applications.

Two of these problems can be mitigated to a large

extent by inerter-based devices. Firstly, an inerter-

based device creates an inertial force that is signif-

icantly greater than its own mass. At the civil engi-

neering scale, Sugimura et al. [92] described a system

where the inertial force created was nearly 10000 times

greater than the mass of the device. In addition, because

an inerter is a relative motion device, it has an effect on

all the resonances in the system, although it is typically

still just one that is targeted in the design process. This

and other effects are further described in Sect. 4.

2.2 The dynamic antiresonant vibration isolator

(DAVI)

During the early part of the twentieth century, the devel-

oping aerospace industry was concerned with issues

related to control and stability, during which time sev-

eral inerter like devices were developed—see for exam-

ple the literature reviews given in [51,100]. Several of

these novel devices will be discussed in this review, the

first of which is a mechanical device called the dynamic

antiresonant vibration isolator (DAVI), first patented in

1967 by Flannelly [25]. The antiresonance in the DAVI

was exploited in the aerospace industry for applications

including isolating the fuselage of a helicopter against
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(a) (b)

(c)

Fig. 2 The dynamic antiresonant vibration isolator (DAVI)

showing a a schematic diagram of the primary system (M , k

and c) with the DAVI rod (m, J , ℓa and ℓb) attached. Note that

the vertical displacement of the mass, m, is given by x0 and the

angular rotation of the DAVI rod is denoted by ψ . b A simulation

of the primary system without the DAVI attached (solid line), and

with the DAVI (dashed line) subjected to sinusoidal excitation

F sin(�t) where F = 1N. The frequency ratio is �/ωp where

ωp =
√

k/M , and transmissibility is |X/Y |. The parameters are

k = 80 N/m, M = 50 kg, m = 10 kg, J = 22.5 kg m2, ℓa = 1m,

ℓb = 1.5m and c = 5 kg/s (i.e. damping close to zero). c The

prototype DAVI Alpha, reproduced from [46]

the vibration caused by its rotors, as described by Des-

jardins and Hooper [21].

It should be noted that the DAVI is a vibration isola-

tor whereas the tuned-mass-damper, shown in Fig. 1, is

a vibration absorber. An example of the DAVI concept

is shown schematically in Fig. 2a, where the objective

is to isolate the mass M from the support input y.

Although the DAVI system shown in Fig. 2a con-

tains geometric nonlinearities, to the authors knowl-

edge there has not been any research on the nonlin-

ear version of this system. Instead, we present the lin-

earised version which is related to the original deriva-

tions that can be found in Anderson and Smith [3] and

Jones [46], see also [7,10,21,23,62,119].

In order to derive a transmissibility relationship

(max(x)/max(y) as frequency is varied) for the DAVI

system shown in Fig. 2a, it is required to derive the

equations of motion in terms of just x and y. There-

fore, to eliminate x0 and ψ the following relationships

are used x0 = αy − (α − 1)x , where α = ℓb/ℓa , and

sin(ψ) = y − x

ℓa

≈ ψ � ψ̈ ≈ ÿ − ẍ

ℓa

(1)

which restricts the subsequent analysis to small angle

ranges for ψ . Note also that ℓa and ℓb must be chosen

so that α > 1.

Considering the equilibrium of mass M and the

DAVI rod gives

Mẍ + c(ẋ − ẏ) + k(x − y) + Fp = 0, and

Fp = 1
ℓa

[

−mẍ0(ℓb − ℓa) − J ψ̈
]

,

(2)
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where Fp is the force on the pivot point attached to M .

Substituting for x0 and ψ̈ using the expressions above

leads to an equation of motion of

[

M + m(α − 1)2 + J
ℓ2

a

]

ẍ

+cẋ + kx =
[

mα(α − 1) + J
ℓ2

a

]

ÿ + cẏ + ky, �

(M + b1)ẍ + cẋ + kx = b2 ÿ + cẏ + ky,

(3)

where b1 = m(α−1)2+ J
ℓ2

a
and b2 = mα(α−1)+ J

ℓ2
a

are

the inertance values for the DAVI in units of kilograms.

It can be seen that by adjusting the parameters of the

DAVI, namely m, J , ℓa and ℓb, the level of inertance

generated can be defined. This is an important property

of an inerter device that allows the vibration mitigation

strategy to be relatively easily designed.

Making the idealised assumption that the bar of the

DAVI has no mass such that J = mℓ2
b leads to inertance

values of b1 = m((α−1)2 +α2) and b2 = mα(2α−1)

and a governing equation given by

[M + m((α − 1)2 + α2)]ẍ + cẋ + kx

= mα(2α − 1)ÿ + cẏ + ky. (4)

This is the governing equation used to compute the

results shown in Fig. 2b.

Results for the isolator are expressed in terms of

the transmissibility, max(x) divided by max(y) for

each frequency value across the range considered. Now

assuming that the input y and response x are both sinu-

soidal, then Eq. (3) leads to an undamped (i.e. by setting

c = 0) transmissibility relationship of

X

Y
= k − b2�

2

k − (M + b1)�2
(5)

where X and Y are the displacement amplitudes of

sinusoidal x and y signals, respectively, and � is the

frequency of the sinusoidal support motion. For this

undamped DAVI system, there are two important fre-

quency values

ωa =
√

k

b2
and ωr =

√

k

M + b1
(6)

where ωa is the frequency where the antiresonance

occurs (the zero of (5)), and ωr is the resonance fre-

quency of the isolated system (the positive pole of (5)).

The damped transmissibility function becomes

X

Y
= k − b2�

2 + ic�

k − (M + b1)�2 + ic�

�

∣

∣

∣

∣

X

Y

∣

∣

∣

∣

=

√

(1 − μ2ω̂2)2 + (2ζ ω̂)2

(1 − (1 + μ1)ω̂2)2 + (2ζ ω̂)2
(7)

where c is the viscous damping coefficient, μ1 = b1/M

and μ2 = b2/M are the inertance to mass ratios,

ω̂ = �/ωp is the frequency ratio, ζ = c/2Mωp is

the damping ratio, and ωp =
√

k/M is the undamped

natural frequency of the primary system.

The response of the primary system without the

DAVI is shown as the solid line in Fig. 2b. The cross-

over frequency ratio is the value where the transmissi-

bility equals one (for nonzero frequency ratio values).

To the left of the cross-over frequency is the amplifi-

cation region (meaning |X/Y | > 1) and to the right

of the cross-over frequency is the attenuation region

(meaning |X/Y | < 1). This can be compared to the

primary system with DAVI, computed using Eq. (7),

and shown as the dashed line in Fig. 2b. Note that, now

the DAVI has been added, the transmissibility plot has

both a resonance and an antiresonance peak.

The DAVI response (dashed line) in Fig. 2b does

three important things: (i) reduces the height of the

resonance peak, (ii) moves the cross-over frequency to

the left, which reduces the amplification region, and

(iii) creates an antiresonance, where the amplitudes

of response are dramatically reduced. In terms of the

level of reduction at the antiresonance, it can be seen

for the example in Fig. 2b that there are approximately

two orders of magnitude between resonance peak and

antiresonance (in the idealised case, when c = 0 trans-

missibility is zero at the antiresonance). If the operat-

ing point of the primary system can be moved close

to the antiresonance, then large reductions in vibration

transmission can be achieved, and this is a common

approach in applications—see Jones [46] for a detailed

design methodology.

Although there have been more recent applications

of the DAVI (e.g. Liu et al. [62]), the concept was

not used extensively following the initial development.

However, the DAVI did help as a design model for other

vibration isolation problems. In particular, the ability to
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introduce an antiresonance was important as a design

possibility for passive vibration isolation. As a result,

the DAVI-type model has subsequently been used for

other vibration isolation devices. For example, it has

been used to develop certain types of automotive engine

mounts that are a type of fluid inerter. This, and other

mechanical inerter devices, will be discussed in the next

section.

More recently, inerter isolation devices with spring,

damper and inerter in parallel have been studied

extensively—see [37] for an analysis of the paral-

lel inerter isolator case. It is interesting to note that

the transmissibility expressions found for the DAVI in

Equation (7) are equivalent to those for the parallel

inerter isolator case if it is assumed that μ1 ≈ μ2. This

type of parallel inerter isolator can be realised in prac-

tice using a flywheel inerter, as will be described in

more detail in Sect. 3.2.

3 Mechanical inerter devices

3.1 Fluid inerter devices

3.1.1 The hydramount

An alternative to generating inertial forces using a lever

mechanism, such as the DAVI, is to use fluid flow within

a chamber or pipe. This concept was developed exten-

sively in the twentieth century for aerospace and auto-

motive applications, and led to a wide range of devices

generally referred to as ‘shock absorbers’ and ‘isolation

mounts’ amongst other terminology. A more detailed

historical review of fluid-based devices is given by Titu-

rus [100]. One example, relevant to this review was a

fluid inerter that was incorporated into an automotive

engine mount, called the ‘hydraulic mount’ or some-

times ‘hydramount’—see Flower [26] and references

therein.

Vibration isolation mounts of this type had long

been based on a rubber element that acted as a com-

bined ‘spring’ and ‘damper’—see for example Rivin

[77]. Although rubber used in this way has nonlinear

restoring force and damping properties, many designs

assume a linear model, typically like the parallel spring

k and damper c of the system shown in Fig. 3a without

the hydramount. As a result, the design objective of

such a linear isolator is to reduce the resonance peak,

and move the cross-over frequency to the left. One way

this can be achieved is by reducing the stiffness, and (if

possible) increasing the damping.

An example is shown in Fig. 3b) where the response

of the primary system, with parameters M , c, k, is plot-

ted as the solid line. The dot-dashed line in Fig. 3b)

shows the response of a linear isolator, where the stiff-

ness, kI is less than the primary stiffness, k. In addi-

tion, the damping of the linear isolator is greater than

the primary system, cI > c, and it can be seen that the

height of the resonance peak is reduced. Furthermore,

the cross-over frequency has moved to the left, there-

fore increasing the attenuation region, when compared

to the primary system curve (solid line).

However, reducing the stiffness is often undesirable

(or impossible) in many practical applications, as the

primary mass needs to be supported without excessive

static deflection. Therefore, it is often preferable to seek

alternatives where the stiffness of the primary system

does not need to be reduced. From Equation (6) (assum-

ing the DAVI-type model is appropriate), it can be seen

that the natural frequency of the system, ωr can be

reduced by increasing the inertance, without needing

to change either the mass or linear stiffness values.

The hydramount was designed to improve the per-

formance of a linear mount by introducing inertance

using hydraulic fluid that is forced between two cham-

bers via a helical pipe (also called an annulus or ‘inertia

track’), as shown schematically in Fig. 3a. As the fluid

rotates around the helical pipe, H , it creates a ‘fluid

flywheel’ effect that can be designed to give an antires-

onance in a similar way to the DAVI. In fact, Flower

[26], proposed a design process that used the DAVI

lever arm model, very similar to that shown in Fig. 2a,

in order to approximate the effect of a rotating fluid

inside the mount, and this approach has been used to

compute the hydramount response (dashed line) shown

in Fig. 3b. As a result, the hydramount can create an

antiresonance, and this can be designed to be very close

to the operating frequency range of the system such that

the isolation effect is maximised.

Note that away from the antiresonance, for exam-

ple at frequency ratios above 2, the hydramount (and

DAVI in the previous example) are worse than the linear

case. This demonstrates why the frequency of operation

needs to be close to the antiresonance in order to work

effectively. More recent studies of the hydramount are

given by Singh [86], Golnaraghi and Nakhaie [30] and

Soltani et al. [91].

123



A review of the mechanical inerter

(a) (b)

(c)
(d)

Fig. 3 Fluid inerter concept, showing a a schematic diagram of

the hydramount system, where engine mass, M , is to be isolated

from chassis input y(t). The rubber mount is assumed to be a

linear (i.e. k and c) with the fluid inerter consisting of hydraulic

fluid that is passed between an upper, U , and lower, L , cham-

ber via a helical pipe H . b a simulation of the primary system

(M , k, c solid line), linear isolator (M , kI , cI dot-dash line) and

hydramount (dashed line, computed using a DAVI model) sub-

jected to sinusoidal excitation F sin(�t) where F = 1N. The

frequency ratio is �/ωp where ωp =
√

k/M , and transmissi-

bility is |X/Y |. The parameters are k = 80N/m, kI = 60N/m,

M = 50kg, m = 10kg, J = 22.5kgm2, ℓa = 1, ℓb = 1.5,

c = 5kg/s and cI = 10kg/s. c Schematic cross-sectional diagram

of helical fluid inerter. d A comparison of a helical fluid inerter

test results from Smith and Wagg [90] and a linear hysteretic

model based on the force in the fluid inerter being approximated

as Fh = bh z̈ +ch ż, where bh is the inertance, ch is the additional

viscous damping within the fluid inerter and z = x − y is the

relative displacement across the terminals of the inerter device

(terminals are shown as a and b in (c)). When sinusoidal inputs

are assumed, Fh = ch ż±bh�
√

�2 Z2 − ż2, where Z is the max-

imum amplitude of the sine wave with frequency �. This forms

an ellipse, which is shown as a dotted line in (d). The identified

parameters for the model are close to the previously estimated

values from Smith and Wagg [90], and were given by bh = 98.4

kg and ch = 1628 kg/s

3.1.2 The helical fluid inerter

Helical tubes of fluid had been proposed as useful

components in dampers a considerable time before

the development of the hydramount—see for example

O’Connor [71]. A more detailed historical description

and comprehensive literature reviews can be found in

Rivin [77] and Titurus [100]. The first known applica-

tion of a fluid inerter device is the ‘mass pump’ devel-

oped by Kawamata [47–49] starting in the 1970s. How-

ever, interest in helical fluid-filled tubes used as inerters

only really gained significant momentum following the

work of Swift et al. [94].
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In contrast to a hydramount, a helical fluid inerter is

not typically integrated into the mount. The most com-

mon practical realisation is a fluid (usually hydraulic

oil) filled cylinder with a helical tube wrapped around

the outside, as shown schematically in Fig. 3c. The

radius of the main fluid chamber is given by r2, and

the piston through rod which pushes the fluid inside

the main chamber has radius r1. The distance r4 is the

helix radius from the centre of the longitudinal axis of

the cylinder and r3 is the inner radius of the helical pipe.

The cross-sectional area of the cylinder is A1 =
π(r2

2 − r2
1 ) and the cross-sectional area of the helix

is A2 = πr2
3 . The principal of conservation of mass

is normally applied to derive an expression equating a

linear (relative) displacement in the cylinder, z = x − y

to an angular displacement of a fluid element in the

helix, θ . Taking the mass of the fluid in the helix as

mhel ≈ ρ f Lh A2, where ρ f is the mass density of the

fluid at reference temperature and Lh is the length of

the helix, then the moment of inertia about the axis of

the piston is defined as J = mhelr
2
4 . Making a series of

assumptions about the ideal nature of the device (see

for example Swift et al. [94]) leads to the idealised

relationship for the equivalence of kinetic energy in

the inerter

1

2
bhel ż

2 = 1

2
J θ̇2 (8)

where θ is the rotation angle of the fluid in the helix,

ż is the relative velocity between the end points of the

inerter, and bhel is the inertance of the fluid in the helix.

These definitions can be used to derive the following

expression [28]

bhel = mhel

(1 + (h/(2πr4))2)

(

A1

A2

)2

, (9)

where h is the pitch of the helix. As a result, bhel can be

designed using the geometry of the cylinder and helix

using Equation (9).

Fluid inerters have a significant level of inherent

damping due to the fluid dynamic effects. This leads

to nonlinear relationships in terms of the velocity, in

addition to which, the friction effects of the piston are

significant and also nonlinear in nature. In general, the

forces between terminals a and b of the helical fluid

inerter shown in Fig. 3c are modelled using

ftotal = finertial + fdamping + f f r iction (10)

where it is noted that entry and exit losses between the

cylinder and the helix tend to be neglected as they’re

(usually) small compared to the other effects—see for

example discussions in [15,63,82,83,94]. In terms of

capturing the physical behaviour, both damping and

frictional effects will be nonlinear.

For example, an expression using nonlinear fluid

damping combined with a Coulomb-type friction model

leads to a force expression of

ftotal = bhel z̈ + cd żβ + f0sgn(z), with z = x − y

(11)

where cd is the nonlinear damping coefficient, f0 is the

static friction coefficient, and β = 1.75 is the nonlinear

damping exponent. This derivation (see for example

De Domenico et al. [15]) assumes turbulent flow and a

smooth pipe, so that the nonlinear damping coefficient

can be approximated as

cd = 0.664μ0.25
f ρ0.75

f

Lh A1

r1.25
3

(

A1

A2

)1.75

(12)

where μ f is the dynamic viscosity of the fluid. Spe-

cific other examples can be found in [63,64,82,83,94],

where other choices for β such as β = 2 are discussed.

As discussed for the DAVI and hydramount exam-

ples, inerters are used in combination with other ele-

ments, such as masses, springs and dampers, in order

to create vibration absorbers or isolators. This presents

two problems for fluid inerters; (i) the tuning rules for

isolators and absorbers (e.g. [37]) are linear, and so

do not translate to nonlinear systems, and (ii) there is

a strong coupling between the inertance and damping

(i.e. see Equations (9) and (12)) making it very difficult

to design and specify separate inertance and damping

values.

One approach used by De Domenico et al. [15] for

earthquake excitation was to apply statistical lineari-

sation (for an introduction to this topic, see Roberts

and Spanos [78]) which then resulted in a constrained

optimisation problem to find the optimal values of bhel

and cd (friction was neglected, on the basis that for
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(a) (b)

(c) (d)

Fig. 4 Mechanical flywheel inerters, showing a a schematic

diagram of a pivoted flywheel inerter, where mass, M , is to be

isolated from input y(t). b A rack-and-pinion, geared flywheel

inerter called the ‘gyro-mass’ inerter from Saitoh [79], that uses

gears to amplify the flywheel effect. c A flywheel-driven ‘ball-

screw’ inerter, with flywheel parameters J , m. d A viscous mass

damper [41], which consists of a ball-screw inerter in combina-

tion with viscous oil damping

high force and frequency inputs, like earthquake exci-

tation, the Stribeck effect reduced the significance of

the friction force). An alternative approach is to con-

sider different geometries, such as that considered by

Liu et al. [64], where a meander tube was shown to

give much lower damping values for similar inertance

values to the helix case.

Results from an experimental test with a helical

fluid inerter are shown in Fig. 3d. It can be seen from

Fig. 3d that the experimental hysteresis loop is strongly

affected by friction, in the regions where velocity

changes sign. In comparison, the elliptical linear hys-

teresis model represents a limited approximation, and

in these types of inerters, the nonlinear effects are there-

fore highly significant.

It has been noted by some authors that both the

damping and inertance behaviour of helical fluid inert-

ers have strong similarities with memory element mod-

els (also called mem-models). Zhang et al. [123] pro-

posed the mem-inerter element that is able to cap-

ture the inerter hysteresis effect. This idea was further

extended, using data from experimental tests, to include

memory effects in both inertance and damping by Wagg

and Pei [101], and then friction as well by Zhang et al.

[124]. These studies also included some comparison

between mem- and nonlinear models for the inerter, an

idea that was also considered by Biolek et al.[8,9] in

the context of higher-order electrical elements.

In the next section, we consider a final class of inert-

ers to be discussed in this review, those that use rota-

tional flywheel effects to create inertance.

3.2 Mechanical flywheel inerters

3.2.1 Pivoted flywheel and Rack-and-pinion inerters

The flywheel is an ancient technology that has been

used in applications throughout human history as

described by White Jr [116]. One of the main benefits of

a flywheel is its simplicity. For example, the lever arm

design of the DAVI, shown in Fig. 2 has an asymmetry

which leads to two inertance values, given in Eq. (3).

This asymmetry is removed if the lever and mass are

replaced with a flywheel, to create a pivoted flywheel

inerter, as shown schematically in Fig. 4a. Note that to

fully eliminate the asymmetry, the pivots would need
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to be equally spaced from the centre of the flywheel,

however the design with one pivot offset and one close

to the centre has been found easier to implement from a

practical perspective—see for example John and Wagg

[45]—and it is also a sufficiently close approximation

for small angles of rotation.

For the system in Fig. 4a, the flywheel is assumed to

produce a couple equal to Fℓa , where F is the force on

each of the pivots (which are assumed to be massless).

The couple can be directly related to the torque, T , and

the angular acceleration via

T = Fℓa = J φ̈ (13)

where J is the moment of inertia of the flywheel, φ is

the angle of rotation and an overdot represents differen-

tiation with respect to time, t . Using the same approxi-

mation for small angles as in Eq. (1) (i.e. with φ instead

of ψ) gives

F = bp(ÿ − ẍ), (14)

where the inertance, bp, is defined as

bp = J

ℓ2
a

. (15)

Note that, unlike the DAVI, there is now only a single

inertance value, bp, given by Eq. (15). Furthermore, bp

has only two parameters, the moment of inertia J =
mr2

2
, and the lever arm distance ℓa as given in Equation

(15)

Using the above relationships, the equation of

motion for the pivoted flywheel inerter system shown

in Fig. 4a is

Mẍ + k(x − y) + c(ẋ − ẏ) + bp(ẍ − ÿ) = 0, (16)

where c is the viscous damping parameter. Equation

16 is the simplest model for an inerter isolator system,

and as a result it has been widely used to approximate a

range of devices in the literature—see for example the

discussion in Hu et al. [37] and other references therein.

As a result of there being just a single inertance value,

the damped transmissibility function for Equation (16)

becomes

X

Y
= k − bp�

2 + ic�

k − (M + bp)�2 + ic�
�

∣

∣

∣

∣

X

Y

∣

∣

∣

∣

=
√

(1 − μpω̂2)2 + (2ζ ω̂)2

(1 − (1 + μp)ω̂2)2 + (2ζ ω̂)2
(17)

where μp = bp/M and all other parameters are the

same as previously defined in Eq. (7).

One of the earliest inerter devices of this type is the

so-called gyro-mass which was patented in 1997 by

Okumura [72]. This device used a rack-and-pinion gear

system in order to amplify the effect of the flywheel, and

a related device is shown as an example in Fig. 4b from

Saitoh [79]. Another early example of the rack-and-

pinion inerter concept was discussed by Smith [87] and

physical realisations of rack-and-pinion devices that

have been tested experimentally are given by Smith

and Wang [89], Papageorgiou et al. [73], Saitoh [79]

and Madhamshetty and Manimala [66]. When gears

are used, the inertance relationship will become

bp ∝ J

ℓ2
a

, (18)

where the proportionality is related to gear ratios, as

for example described by [67,79,87,97].

3.2.2 Ball-screw inerters

In Fig. 4c, a schematic diagram of an inerter system is

shown where the flywheel rotation occurs in the hori-

zontal plane. The flywheel rotation, θ , is driven by the

relative motion of the device in the vertical plane. These

types of inerters are generally referred to as ball-screw

inerters, and a derivation and some historical context

are given by Rivin [77]. For the system in Fig. 4c, the

torque, T , is now related to the vertical force, F , gen-

erated by the flywheel by assuming it acts like a nut, so

that

T = Frm tan(α ± γ ) � F = T

rm tan(α ± γ )

= J θ̈

rm tan(α ± γ )
(19)

where rm is the mean radius of the thread (meaning the

radius to the centre of the contact region), θ is the rota-

tion of the flywheel, α is the helix angle of the thread,

and γ = arctan(μ f r ic) is the friction angle, where

μ f r ic is the friction coefficient. The plus or minus in

front of γ defines the two cases of the flywheel moving

up and down (note we are neglecting the mass of the

screw rod and flywheel housing, plus the gravitational
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contribution from the mass of the flywheel, all of which

should be small compared to the inertance).

Then, from the geometry of the helix, it can be shown

that θ = y−x
rm tan α

such that the vertical force within the

nut (i.e. flywheel and threaded rod) becomes

F = J (ÿ − ẍ)

r2
m tan(α ± γ ) tan α

(20)

which is a similar relationship to Eq. (14), and we write

it as

F = bs(ÿ − ẍ), with bs = J

r2
m tan(α ± γ ) tan α

.

(21)

where bs is the inertance of the ball-screw. The equa-

tion of motion for the system in Fig. 4c is the same as

Eq. (16) with bs instead of bp.

In the idealised case where friction is assumed to be

zero (i.e. μ f r ic = 0), then we can use the relationship

between the pitch of the thread, p, and the helix angle

given by tan α = p
2πrm

to simplify Eq. (21) so that the

inertance becomes

bs = 4π2 J

p2
� bs =

(

2πκ

p

)2

M for μ = 0 (22)

where κ is the radius of gyration from the relationship

J = Mκ2—see for example the derivation in Smith

[88].

Although is possible in theory to have a dry-friction

ball-screw device, in practice they need to be lubricated.

In many designs, the fluid provides both lubrication and

viscous damping as well. This has been a particular

area of development for civil engineering applications.

The combination of a ball-screw device with viscous

fluid damping was proposed by Arakaki [4,5] to create

the rotary damping tube. This concept was refined by

subsequent researchers such as Sugimura et al. [92] and

Ikago et al. [41] and is now known as the viscous mass

damper. The example shown in Fig. 4d is reproduced

from Ikago et al. [41]. In the civil engineering domain,

forces are very large. For example, the viscous mass

damper used in Sugimura et al. [92] had a mass of 560kg

and was able to create an inertance of 5400 tonnes,

whilst the viscous damping was 7300kNs/m.

In terms of the nonlinearities that can occur in ball-

screw inerters, Wang and Su [107] and Papageorgiou

et al. [73] described the friction and backlash effects

that can occur. Both proposed backlash models, and

a method for identifying the parameters of the system

(see also Brzeski and Perlikowski [12] for a related dis-

cussion). As the system had little viscous damping, the

authors were able to use a model similar to Eq. (10)

with fdamping ≈ 0 assumed. Another study that was

close to the dry-friction ball-screw case was carried out

by Gonzalez-Buelga et al. [31] who used a commer-

cially manufactured Penske inerter device with most

of the damping oil drained out of it. As a result, the

authors were able to use a similar modelling approach,

by assuming the device is dominated by inertance and

friction forces. These studies relate strongly to automo-

tive examples which are another large domain of appli-

cation for ball-screw inerters (i.e. Penske manufactures

inerter devices for this market). For further discussion

of this topic, with reference to the nonlinear effects, see

for example Wang et al. [109], Sun et al. [93] and Shen

et al. [82,83].

There are some other mechanical inerter devices that

have been proposed that include gears. Two such exam-

ples are the rotational inerter, based on a realisation

using an epicyclic gearbox, and the gear-pump inerter

which combines fluid flow and gears—see [88] and

references therein for a discussion of both these sys-

tems. However, for the purposes of this current review,

we now consider the topic of inerter applications that

make use of nonlinearity.

4 Nonlinear applications of the inerter

The nonlinearities described in the mechanical inerter

devices in Sect. 3 are significant at the scale of the

devices, but become less significant when used in a

larger scale system in combination with other (nom-

inally) linear elements such as springs and dampers.

For example, when the viscous mass damper, shown

in Fig. 4d, is combined with other elements it can be

tuned to give a vibration absorber effect and there-

fore becomes a tuned-viscous-mass-damper (TVMD)

(see Ikago et al.[41], and note that this device is

also sometimes called the parallel-connected-viscous-

inerter–damper (PVID)). The absorber tuning can be

done using a linear tuning approach adapted from the

tuned-mass-damper described in Sect. 2.1 (see also

Fig. 2.1).
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Also using linear theory, and varying the arrange-

ment of elements has led to other inerter-based absorbers.

Most notably, the tuned-inerter–damper (TID) was

proposed by Lazar et al. [53], and the tuned-mass-

damper–inerter (TMDI) proposed by Marian and Gia-

ralis [69]. A wider analysis of other configurations

can be found in Hu et al. [37] and Krenk [50].

These three systems (i.e. TVMD, TID and TMDI)

and variants have been studied extensively for a

range of applications including vehicle suspensions

and steering systems [24,38,52,59,73,82,83,89,93,

102,109,120], train suspension systems [57,104–106],

and civil engineering systems—see for example [15,

16,18,29,33,34,39,53,54,74,84,85,96,103,121] and

references therein. It is also worthy of note that the

TVMD, TID and TMDI have been used to largely mit-

igate the limitations of the TMD described at the end

of Sect. 2.1, although only a small number of concepts

have been deployed in real engineering applications.

The majority of these studies assume the systems

are linear. However, the relevance of these applications

should become apparent as we resume the review of

nonlinear inerter applications.

4.1 Nonlinear energy sink inerter devices

Several studies have been carried out to investigate the

potential benefits of using nonlinearity to create non-

linear vibration absorbers. One way to do this is to

use nonlinear springs instead of linear springs in the

inerter-based devices. The resulting oscillator systems

are closely aligned to the concept of a nonlinear energy

sink (NES, see the recent review by Ding and Chen

[22]), which in simple terms can be considered to be

analogous to the tuned-mass-damped system shown in

Fig. 1a where the spring, ka is replaced with a nonlinear

spring.

Devices that fall into the category of being nonlin-

ear energy sink inerter devices are often abbreviated

by NESI. This can include devices with different types

of layout and different types of nonlinear spring. In

order to distinguish between different devices, we use

an additional classification. For example, in terms of

system layout, using a cubic nonlinear spring in the

tuned-inerter–damper device (see Zhang et al. [126])

results in the system shown in Fig. 5a. We call this

a nonlinear energy sink-inerter of the TID type, or

NESI-TID. Likewise, Zhang et al. [125] showed that

the (non-grounded) tuned-mass-damper–inerter can be

reconfigured with a nonlinear spring to give a nonlinear

energy sink-inerter of the TMDI type (NESI-TMDI).

Similarly, Javidialesaadi and Wierschem [42] showed

that the grounded tuned-mass-damper–inerter can be

reconfigured with a nonlinear spring to give a nonlinear

energy sink inerter of the grounded TMDI type (NESI-

gTMDI).

Considering the equilibrium of mass M in the NESI-

TID system shown in Fig. 5a gives equations of motion

of

Mẍ + cẋ + kx + cd(ẋ − ẋd) + fd(x − xd) = F(t),

and bẍd + cd(ẋd − ẋ) + fd(xd − x) = 0.

(23)

Linear tuning rules are no longer applicable to these

types of NESI systems. Therefore to obtain optimum

parameters values for the nonlinear device, optimisa-

tion methods can be used as an alternative method.

An example of the response of the NESI-TID when

subjected to a sine wave excitation force is shown in

Fig. 5b. The NESI-TID system response (dot-dash line)

is compared with the linear primary system response

(blue solid line, similar to the primary system in Fig. 1),

and a linear TID system response (dashed line). It

should be noted that the parameters for Fig. 5 (b)

have not been optimised directly. Instead, for the pur-

pose of illustrating the concept, we have adapted the

optimised parameters computed by Javidialesaadi and

Wierschem [42] for a related grounded TMDI-type sys-

tem (e.g. a NESI-gTMDI) subject to transient input sig-

nals. Despite this limitation, it can be seen in Fig. 5b

that close to resonance the NESI-TID (dot-dash line)

has the smallest displacement amplitude, when com-

pared to the uncontrolled primary system (blue solid

line), and a linear TID system response (dashed line).

In practice, the exact conditions for optimisation

are dependent on the application being considered, and

discussions regarding this type of optimisation can be

found, for example in Javidialesaadi and Wierschem

[42] or Wang et al. [110]. An alternative approach to

direct optimisation is to carry out a harmonic balance

analysis as a preliminary step before determining the

optimum parameters, see for example Zhang et al. [126]

or Wang et al. [112]. A comparative study of a negative
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(a) (b)

Fig. 5 Nonlinear energy sink inerter (NESI) example, show-

ing a a schematic diagram of a nonlinear energy sink inerter of

the TID type (NESI-TID), where mass, M , is excited by force

F(t), and the TID spring has a nonlinear restoring force func-

tion, fd (ẑ), where ẑ = x − xd , b a simulation of the NESI-TID

system (dot-dash line) compared with the linear primary sys-

tem (blue solid line), and a linear TID system (dashed line). The

following parameters were used; M = 10 kg, k = 8500 N/m

c = 5 kg/s, b = 12.15 kg and F(t) = sin(�t) N. For the lin-

ear TID, the following parameters were used cd = 7.7 kg/s,

and fd = 182(x − xd ) N. For the NESI-TID, the spring forces

was given by fd = 107(x − xd )3 N, and cd = 10.0 kg/s. The

frequency ratio is �/ωp where ωp =
√

k/M . Note that these

parameters are adapted from the optimised parameters computed

by Javidialesaadi and Wierschem [42], who computed optimal

parameters for transient input signals rather than sine waves

stiffness damper and inerter damper was also carried

out by Xiang et al. [117].

There is still the problem of how exactly the required

nonlinear stiffnesses can be achieved in practice. To

overcome this issue, several authors have recently

studied the idea of combining quasi-zero stiffness

mechanisms with inerters, see for example Wang et

al.[110,112,113] and Yang et al. [118]. Note also that

for civil engineering structures related negative stiff-

ness concepts have been considered, as discussed by

Luo et al. [65]. An example of this type of quasi-zero

stiffness mechanism will be discussed in detail in the

next section.

4.2 Nonlinear inerter isolators

Consider the vibration isolation example shown

schematically in Fig. 6a. Here, the requirement is to

isolate mass, M , from input y(t). The response of the

unisolated system with a linear spring and no inertance

(similar to the primary system in Figs. 2 and 3) when

excited with a sine wave is shown as the thick blue line

in the transmissibility plot of Fig. 6d. There is a sig-

nificant resonance peak that ideally should be reduced,

along with the amplification region that can be reduced

by moving the cross-over frequency to the left. The

effect of adding a linear inerter to the system, whilst

keeping the linear spring, is shown as the dot-dashed

line in the transmissibility plot of Fig. 6d. This has had

the desired effects, and in addition has introduced an

antiresonance (similar to the examples of Figs. 2 and

3), and in this case with an inertance to mass ration

of μ = 0.4. Increasing μ is one way to continue to

improve the isolation, but what about the situation when

μ is already at the maximum possible value? Are there

ways to improve the situation then?

One possibility is to use a nonlinear spring in com-

bination with the inerter, as was done in the previous

subsection. The example shown in Fig. 6c is a quasi-

zero nonlinear spring function based on the design

method proposed by Shaw et al. [80], which can also be

realised experimentally—see for example Alabuzhev

[1], Shaw et al. [81] and Yang et al. [118]. The equa-

tion of motion for the nonlinear quasi-zero and inerter

isolator in Fig. 6a can be written as

(m + b)z̈ + cż + f (z) = −mÿ, (24)

where z is the relative displacement z = x − y. Fol-

lowing the design method proposed by Shaw et al. [80]
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(a) (b)

(c)
(d)

Fig. 6 Nonlinear inerter isolator example, showing a a

schematic diagram of a nonlinear inerter isolator, where mass,

M , is to be isolated from input y(t), and the spring has a non-

linear restoring force function, f (z), where z = x − y, b the

geometrically nonlinear inerter isolator system proposed in de

Haro Moraes et al. [19] and Wang et al. [115], c an example

of a quasi-zero force function taken from Shaw et al. [80] where

Fs = Mg is the static force due to gravity g, and ks is the equiva-

lent linear stiffness, and d a comparison of linear- and nonlinear-

inerter isolators showing; the unisolated linear primary system

with M = 7.2 kg, linear spring k = 80 N/m, c = 1.0Ns/m sub-

ject to a forcing of y = 0.04 sin(�t) m and b = 0 (thick blue

line); the linear spring plus inerter case with the same parameters

except inertance b = 2.9 kg so that μ = b/M = 0.4 (dot-dash

line), and; the quasi-zero plus inerter case with the same param-

eters as the previous case except a nonlinear quasi-zero spring

function designed using the method in Shaw et al. [80] with

ks = 52N/m and ẑr = 0.577 is used (thin solid line). Note that

the thin dashed line represents the part of the solution branch that

is unstable

we define the nonlinear stiffness function as

f (z) = k1z + k3z3 + k5z5, (25)

which is the solid curve shown in Fig. 6c. The stiffness

values, k1 and ks (see Fig. 6c) are predefined and then

the nonlinear stiffness values are computed from

k3 = Fs

z3
s

[

(1 − k1

ks

)
5ẑ4

r − 1

5ẑ4
r − 3ẑ2

r

]

,

and k5 = Fs

z5
s

[

(1 − k1

ks

)
1 − 3ẑ2

r

5ẑ4
r − 3ẑ2

r

]

(26)
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where ẑr = zr/zs and ±ẑr defines the low stiffness

range of the mount—see Shaw et al. [80] for further

details.

The result of using this nonlinear quasi-zero and

inerter isolator when excited with a sine wave is shown

as the thin solid (and dashed) black line in the transmis-

sibility plot of Fig. 6d. It can be seen, that for the same

inertance values, using a quasi-zero spring instead of a

linear spring has further improved the isolation effects

when compared to the linear spring plus inerter case

(dot dash line). Notice that the antiresonance is now

closer to the position of the original resonance peak

(although the transmissibility is slightly higher), and by

further tuning the quasi-zero spring properties, it is pos-

sible to locate the antiresonance exactly at the original

resonance position, thereby maximising the isolation

benefit if operation is at resonance.

One of the potential drawbacks in using nonlinear

spring functions is that the dynamic behaviour of the

system is more complex. For example in Fig. 6d, there

is a small section of dashed line, which represents the

unstable solution branch for the quasi-zero and inerter

isolator. Here, there will be saddle-node bifurcations,

leading to jumps in the displacements as frequency

is increased or decreased. Other undesirable, complex

nonlinear behaviours may also be possible, and so care-

ful design is required to avoid any unwanted effects.

Another method that can be used to introduce non-

linear behaviour in practice, is geometrically nonlin-

ear arrangements of the device elements. For example,

in Fig. 6b another type of the geometrically nonlin-

ear inerter isolator system proposed in de Haro Moraes

et al. [19] and Wang et al. [115] is shown, where the

inerters are mounted horizontally, whilst the spring and

damper are vertical.

A wider group of systems exhibiting this type of

geometrically nonlinear arrangement of elements has

recently been studied by Yang et al. [118]. In this study,

the authors showed how the arrangements could be used

to design specific transmissibility curves, by combin-

ing the geometrically nonlinear effect with a QZS-type

spring system. There are multiple different other con-

figurations that have been considered, and the inter-

ested reader can find recent examples in Zhang et al.

[127] and Yang et al. [118], where it is noted that some

systems can give the effect of combining isolation with

absorption.

4.3 Rocking structures and inerters

In applications such as earthquake engineering, it is

possible to have gravity-based structures that can rock

when excited by a ground input motion. An exam-

ple is shown in Fig. 7a where, following the classi-

cal analysis of Housner [35], a rectangular block of

dimensions 2H × 2B and mass, M , is able to rotate

about points O and O ′ when excited by the hori-

zontal ground input acceleration, ag . In the classical

approach by Housner [35], inerters are not consid-

ered, but more recently the advantages of using rota-

tional inertia for earthquake engineering applications

have been studied by Makris and Kampas [67], Thiers-

Moggia and Málaga-Chuquitaype [97,98] and Málaga-

Chuquitaype et al.[68]. The inerter(s) can be config-

ured in a variety of locations, and the example shown

schematically in Fig. 7a is chosen for simplicity in order

to illustrate the concept.

In order to derive equations of motion for the block

in Fig. 7a, we use the fact that the effective force on the

block at point CG due to a ground acceleration ag is

feff = −mag R cos(α − θ). Furthermore, the inerter is

considered to be grounded at the left-hand end, and so

the force across the inerter is f I = bḧCG where ḧCG

is the horizontal acceleration of point CG. To com-

pute this note that the tangential acceleration of point

CG when the block is rotating about point O is Rθ̈ ,

so the horizontal component of this is Rθ̈ cos(α − θ).

As a result, f I = bθ̈ R cos(α − θ) and the moment

of this about the point O is bθ̈ R2 cos2(α − θ). Now

considering the moment equilibrium of the block in

Fig. 7a around points O and O ′, we obtain the follow-

ing expressions governing their motion (see for exam-

ple Thiers-Moggia and Málaga-Chuquitaype [97])

(Jb + bR2 cos2(α − θ))θ̈ + MgR sin(α − θ)

= −Mag R cos(α − θ), θ > 0

(Jb + bR2 cos2(−α − θ))θ̈ + MgR sin(−α − θ)

= −Mag R cos(−α − θ), θ < 0 (27)

which can be combined into a single equation

(Jb + bR2 cos2(α sgn(θ) − θ))θ̈ + MgR

sin(α sgn(θ) − θ) = −Mag R cos(α sgn(θ) − θ),

(28)

where sgn denotes the signum function, and Jb =
(4/3)M R2 is the moment of inertia of the block around

the rotation points.
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(a) (b)

(c)
(d)

Fig. 7 Rocking block with inerter, showing a a schematic dia-

gram of rocking block system, where the block with mass, M , is

to be isolated from ground motion acceleration input ag , and

the block can rotate about points O and O ′. The inerter is

assumed to be grounded at the left-hand end, and has an iner-

tance of b. The parameters R =
√

B2 + H2 and α are used

to define the slenderness of the block. b–d Simulation show-

ing the angle of rotation (b) and angular velocity (c) of a block

subjected to the sinusoidal impulse shown in (d). Parameter val-

ues are μ = b/M = 0.5, R = 1.0m, α = 0.0873 radians,

� = 10.85rads/s, Ag = 1.5m/s2. The acceleration input is below

the level for overturning. See also Thiers-Moggia and Málaga-

Chuquitaype [97] for further details and related results

The block is assumed not to slide in the horizontal

direction at points O and O ′, but impacts can occur

when the block reaches the vertical position, when θ =
0. The impact process is modelled using a coefficient of

restitution, such that θ+ = rθ−, where θ− is the angular

velocity just before impact, and θ+ is the velocity just

after impact.

Combining Eq. (28) and the coefficient of restitu-

tion rule gives a nonlinear model for the rocking block

with inerter system. For earthquake engineering appli-

cations, the primary interest relates to transient loads

rather than steady-state response such as transmissibil-

ity’s described in previous sections. An example of this

type of situation is shown in Fig. 7d, where a single sine

wave is used as a horizontal acceleration input for the

rocking block with inerter system. The response to this

input is shown in Fig. 7b, c, where the rotation angle

θ is shown in (b) and the angular velocity θ̇ is shown

in (c). In each of Fig. 7b, c, the solid line is the case

where the block is simulated with no inerter (i.e. b = 0)

and the dashed line shows the case where the inerter is

included. Clearly, there is a benefit in having the inerter

included for the parameters selected for this example,

as both θ and θ̇ are reduced in overall amplitude.

However, there are several further complexities of

these types of systems. Firstly real earthquake inputs
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are more complex than the simple signal shown in

Fig. 7d, and the amplitude can be large enough for

the block to overturn. Determining the optimal iner-

tance value is non-trivial, and the possibility of using

clutched inerters can be advantageous in certain situa-

tions. Clutched inerters are nonlinear mechanisms that

enable the inertance to be designed in a semi-active

way—see [55,56,58,67,68,97,98,108] and references

therein for further details.

Other applications in earthquake engineering gen-

erally assume a linear inerter behaviour, but increas-

ingly they are being considered in combination with

nonlinear friction damping and/or nonlinear material

properties, such as those used recently to model base

isolation systems as recently shown, for example, by

De Domenico and Ricciardi [17] and Zhao et al. [130].

5 Conclusions and future directions for research

In this paper, a review of the mechanical inerter, with

a particular focus on the nonlinear dynamic behaviour

has been presented. Although inerters are often mod-

elled as a linear dynamic phenomenon, the physical

devices that have been manufactured are typically non-

linear in nature. That said, linear models are often a

reasonable approximation for a wide range of appli-

cations, although recent experimental tests (e.g. Piet-

rosanti et al. [75]) indicate the nonlinear nature of the

response.

The historical context goes back to the development

of isolators and absorbers in the first half of the twen-

tieth century. Both mechanical and fluid-based nonlin-

ear inerter devices were developed in the mid- and late

twentieth century.

However, interest in the inerter really accelerated

in the early 2000s following the work of Smith [87],

who coined the term ‘inerter’ in the context of a force–

current analogy between electrical and mechanical net-

works. In particular work on ball-screw and rack-and-

pinion inerters developed strongly in this period, along

with their use in the inerter-based devices such as,

the tuned-viscous-mass-damper, tuned-inerter–damper

and tuned-mass-damper–inerter.

Also important was the application of nonlinear

inerter-based isolators and absorbers. These included

different types of nonlinear energy sink inerters, non-

linear inerter isolators, and geometrically nonlinear

inerter devices, many relying on quasi-zero-stiffness

springs. In these devices, the nonlinear nature of the

dynamics typically makes it difficult to determine the

optimum parameter values required to minimise the

unwanted vibration effects. As a result, optimisation is

often used in order to design parameter values for the

nonlinear inerter device.

Finally, in this review, rocking structures with inert-

ers attached were considered. These types of appli-

cations arise in earthquake engineering where ground

accelerations can cause blocks, and similar structural

elements, to tip and rock back and forth. In this situa-

tion, it is the transient response that is of most interest,

and attaching inerters has been shown to be effective

in limiting rocking behaviour.

As with all reviews, there are limitations, and this

review has only considered a selection of passive inerter

devices. There are many other devices, particularly

semi-active and active control applications that we have

considered to be outside the scope of this review.

5.1 Future directions for research

It could be argued that the inerter is the most exciting

development in the field of structural control since the

patent of the tuned-mass-damper by Frahm in 1909.

Just like Frahm’s idea, part of the appeal of the inerter

is the simplicity of its governing equations, and subse-

quent tuning rules that allow engineers to design pas-

sive control systems. The nonlinear dynamics of the

real manufactured inerter devices is something that has

yet to be fully recognised and studied in depth. This

is partly because the devices are often used in much

larger scale systems where their nonlinear behaviour is

less noticeable. A secondary reason is that there are far

fewer studies that have experiments and/or real engi-

neering applications, compared to those without. Other

areas for future development are:

– There is considerably more scope in using non-

linear inerter models within the design of inerter-

based devices such as nonlinear energy sinks. A

recent example studied by Chen et al. [13] is

applied to the problem of eliminating unwanted

resonances from a composite plate . This type of

multi-resonance analysis has significant potential

for future research.

– Seeking forms of device that can be physically

implemented and that exploit the benefits of nonlin-

ear dynamics is an area of great interest. For exam-

ple, this has been recently investigated for an energy
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harvesting application by Liu et al. [61], and for

another application using nonlinear viscous damp-

ing by Huang et al. [40]. Building novel devices and

device configurations is a related area of interest.

– Earthquake engineering offers some of the most

challenging problems in dynamics due to the

extreme nature of the loadings involved. More gen-

erally nonstationary stochastic inputs offer a related

challenge, which has already been studied for the

linear case [6,43,70,95]. Often the examples con-

sidered in earthquake engineering have to be quite

idealised when compared to the real application. As

a result, developing methods for transient responses

such as earthquakes in the presence of nonlinear

effects such as those discussed in this paper is an

area for future development—see for example Radu

et al. [76] and Ji et al. [44].

– Lastly, although semi-active and active control

applications were not considered as part of this

review, it should be mentioned that they offer

some of the most interesting areas of development

of future nonlinear inerter applications—see for

example the following recent papers [111,114,128,

129] and references therein.
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active vibration isolation systems using inerter. J. Sound

Vib. 418, 163–183 (2018)

3. Anderson, R.C., Smith, M.F.: A study of the kaman

dynamic antiresonant vibration isolator. Technical report.

Kaman Aerospace Corp., Bloomfield CT (1966)

4. Arakaki, T., Kuroda, H., Arima, F., Inoue, Y., Baba, K.:

Development of seismic devices applied to ball screw: part

1 basic performance test of rd-series. AIJ J. Technol. Des.

5(8), 239–244 (1999). In Japanese

5. Arakaki, T., Kuroda, H., Arima, F., Inoue, Y., Baba, K.:

Development of seismic devices applied to ball screw: part

2 performance test and evaluation of rd-series. AIJ J. Tech-

nol. Des. 5(9), 265–270 (1999)

6. Baduidana, M., Kenfack-Jiotsa, A.: Optimal design of

inerter-based isolators minimizing the compliance and

mobility transfer function versus harmonic and ran-

dom ground acceleration excitation. J. Vib. Control

1077546320940175 (2020)

7. Bartlett, F.D., Flannelly, W.G.: Application of antireso-

nance theory to helicopters. J. Am. Helicopter Soc. 19(1),

11–15 (1974)

8. Biolek, D., Biolek, Z., Biolkova, V., Kolka, Z.: Nonlinear

inerter in the light of Chua’s table of higher-order electrical

elements. In: 2016 IEEE Asia Pacific Conference on Cir-

cuits and Systems (APCCAS), pp. 617–620. IEEE (2016)

9. Biolek, Z., Biolek, D., Biolková, V., Kolka, Z.: Taxicab

geometry in table of higher-order elements. Nonlinear Dyn.

98(1), 623–636 (2019)

10. Braun, D.: Development of antiresonance force isolators

for helicopter vibration reduction. J. Am. Helicopter Soc.

27(4), 37–44 (1982)

11. Brock, J.E.: A note on the damped vibration absorber.

Trans. ASME J. Appl. Mech. 13(4), 284 (1946)

12. Brzeski, P., Perlikowski, P.: Effects of play and inerter non-

linearities on the performance of tuned mass damper. Non-

linear Dyn. 88(2), 1027–1041 (2017)

13. Chen, H.Y., Mao, X.Y., Ding, H., Chen, L.Q.: Elimina-

tion of multimode resonances of composite plate by inertial

nonlinear energy sinks. Mech. Syst. Signal Process. 135,

106383 (2020)

14. Chen, M.Z.Q., Hu, Y., Li, C., Chen, G.: Application of

semi-active inerter in semi-active suspensions via force

tracking. J. Vib. Acoust. 138(4), 041014 (2016)

15. De Domenico, D., Deastra, P., Ricciardi, G., Sims, N.D.,

Wagg, D.J.: Novel fluid inerter based tuned mass dampers

for optimised structural control of base-isolated buildings.

J. Franklin Inst. 356, 7626–7649 (2019)

16. De Domenico, D., Ricciardi, G.: An enhanced base iso-

lation system equipped with optimal tuned mass damper

inerter (TMDI). Earthq. Eng. Struct. Dyn. 47(5), 1169–

1192 (2018)

17. De Domenico, D., Ricciardi, G.: Optimal design and seis-

mic performance of tuned mass damper inerter (TMDI) for

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


A review of the mechanical inerter

structures with nonlinear base isolation systems. Earthq.

Eng. Struct. Dyn. 47(12), 2539–2560 (2018)

18. De Domenico, D., Ricciardi, G., Zhang, R.: Optimal design

and seismic performance of tuned fluid inerter applied

to structures with friction pendulum isolators. Soil Dy.

Earthq. Eng. 132, 106099 (2020)

19. de Haro Moraes, F., Silveira, M., Goncalves, P.J.P.: On the

dynamics of a vibration isolator with geometrically non-

linear inerter. Nonlinear Dyn. 93(3), 1325–1340 (2018)

20. Den Hartog, J.P.: Mechanical Vibrations. McGraw-Hill,

New York (1934)

21. Desjardins, R.A., Hooper, W.E.: Antiresonant rotor isola-

tion for vibration reduction. J. Am. Helicopter Soc. 25(3),

46–55 (1980)

22. Ding, H., Chen, L.Q.: Designs, analysis, and applications

of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–

3107 (2020)

23. Dylejko, P.G., MacGillivray, I.R.: On the concept of a trans-

mission absorber to suppress internal resonance. J. Sound

Vib. 333(10), 2719–2734 (2014)

24. Evangelou, S., Limebeer, D.J., Sharp, R.S., Smith, M.C.:

Steering compensation for high-performance motorcycles.

In: 43rd IEEE Conference on Decision and Control, vol. 1,

pp. 749–754. IEEE (2004)

25. Flannelly, W.G.: Dynamic antiresonant vibration isolator.

US Patent 3,322,379 (1967)

26. Flower, W.C.: Understanding hydraulic mounts for

improved vehicle noise, vibration and ride qualities. SAE

Tech. Pap. 1, 850975 (1985)

27. Frahm, H.: Device for damping vibrations of bodies. US

Patent US 989958 (1909)

28. Gartner, B.J., Smith, M.C.: Force-controlling hydraulic

device. US Patent 8,881,876 (2014)

29. Giaralis, A., Taflanidis, A.A.: Optimal tuned mass-damper-

inerter (TMDI) design for seismically excited MDOF struc-

tures with model uncertainties based on reliability criteria.

Struct. Control Health Monit. 25(2), e2082 (2018)

30. Golnaraghi, M.F., Nakhaie Jazar, G.: Development and

analysis of a simplified nonlinear model of a hydraulic

engine mount. J. Vib. Control 7(4), 495–526 (2001)

31. Gonzalez-Buelga, A., Lazar, I.F., Jiang, J.Z., Neild, S.A.,

Inman, D.J.: Assessing the effect of nonlinearities on the

performance of a tuned inerter damper. Struct. Control

Health Monit. 24(3), e1879 (2017)

32. Gutierrez Soto, M., Adeli, H.: Tuned mass dampers. Arch.

Comput. Methods Eng. 20, 419–431 (2013)

33. Hashimoto, T., Fujita, K., Tsuji, M., Takewaki, I.: Innova-

tive base-isolated building with large mass-ratio TMD at

basement for greater earthquake resilience. Future Cities

Environ. 1(1), 9 (2015)

34. Hessabi, R.M., Mercan, O.: Investigations of the applica-

tion of gyro-mass dampers with various types of supple-

mental dampers for vibration control of building structures.

Eng. Struct. 126, 174–186 (2016)

35. Housner, G.W.: The behavior of inverted pendulum struc-

tures during earthquakes. Bull. Seismol. Soc. Am. 53(2),

403–417 (1963)

36. Hu, Y., Chen, M.Z., Xu, S., Liu, Y.: Semiactive inerter and

its application in adaptive tuned vibration absorbers. IEEE

Trans. Control Syst. Technol. 25(1), 294–300 (2017)

37. Hu, Y., Chen, M.Z.Q., Shu, Z., Huang, L.: Analysis and

optimisation for inerter-based isolators via fixed-point the-

ory and algebraic solution. J. Sound Vib. 346, 17–36 (2015)

38. Hu, Y., Chen, M.Z.Q., Sun, Y.: Comfort-oriented vehicle

suspension design with skyhook inerter configuration. J.

Sound Vib. 405, 34–47 (2017)

39. Hu, Y., Wang, J., Chen, M.Z., Li, Z., Sun, Y.: Load miti-

gation for a barge-type floating offshore wind turbine via

inerter-based passive structural control. Eng. Struct. 177,

198–209 (2018)

40. Huang, Z., Hua, X., Chen, Z., Niu, H.: Optimal design

of TVMD with linear and nonlinear viscous damping for

SDOF systems subjected to harmonic excitation. Struct.

Control Health Monit. 26(10), e2413 (2019)

41. Ikago, K., Saito, K., Inoue, N.: Seismic control of single-

degree-of-freedom structure using tuned viscous mass

damper. Earthq. Eng. Struct. Dyn. 41(3), 453–474 (2012)

42. Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced

nonlinear energy sink. Mech. Syst. Signal Process. 129,

449–454 (2019)

43. Javidialesaadi, A., Wierschem, N.E.: Response of a SDOF

system with an inerter-based tuned mass damper subjected

to non-stationary random excitation. In: Dynamics of Civil

Structures, vol. 2, pp. 201–203. Springer (2020)

44. Ji, X., Cheng, Y., Hutt, C.M.: Seismic response of a tuned

viscous mass damper (TVMD) coupled wall system. Eng.

Struct. 225, 111252 (2020)

45. John, E.D.A., Wagg, D.J.: Design and testing of a fric-

tionless mechanical inerter device using living-hinges. J.

Franklin Inst. 356, 7650–7668 (2019)

46. Jones, R.: An analytical and model test research study on

the kaman dynamic antiresonant vibration isolator (DAVI).

Technical report. Kaman Aerospace Corp., Bloomfield, CT

(1968)

47. Kawamata, S.: Development of a vibration control system

of structures by means of mass pumps. Technical report.

Institute of Industrial Science, University of Tokyo, Tokyo

(1973)

48. Kawamata, S.: Control of structural vibration by inertia

pump damper: part I theoretical model and response to

harmonic excitation. In: Summaries of Technical Papers of

Annual Meeting Architectural Institute of Japan (1986)

49. Kawamata, S.: Accelerated liquid mass damper and princi-

ples of structural vibration control. In: Structural Mechan-

ics in Reactor Technology (1987)

50. Krenk, S., Høgsberg, J.: Tuned resonant mass or inerter-

based absorbers: unified calibration with quasi-dynamic

flexibility and inertia correction. Proc. R. Soc. A

472(2185), 20150718 (2016)

51. Kuhnert, W.M., Gonçalves, P.J.P., Ledezma-Ramirez, D.F.,

Brennan, M.J.: Inerter-like devices used for vibration iso-

lation: a historical perspective. J. Franklin Inst. (2020)

52. Kuznetsov, A., Mammadov, M., Sultan, I., Hajilarov, E.:

Optimization of improved suspension system with inerter

device of the quarter-car model in vibration analysis. Arch.

Appl. Mech. 81(10), 1427–1437 (2011)

53. Lazar, I.F., Neild, S.A., Wagg, D.J.: Using an inerter-based

device for structural vibration suppression. Earthq. Eng.

Struct. Dyn. 43(8), 1129–1147 (2014). https://doi.org/10.

1002/eqe.2390

123

https://doi.org/10.1002/eqe.2390
https://doi.org/10.1002/eqe.2390


D. J. Wagg

54. Lazar, I.F., Neild, S.A., Wagg, D.J.: Vibration suppression

of cables using tuned inerter dampers. Eng. Struct. 122,

62–71 (2016)

55. Lazarek, M., Brzeski, P., Perlikowski, P.: Design and iden-

tification of parameters of tuned mass damper with inerter

which enables changes of inertance. Mech. Mach. Theory

119, 161–173 (2018)

56. Lazarek, M., Brzeski, P., Perlikowski, P.: Design and mod-

eling of the cvt for adjustable inerter. J. Franklin Inst.

356(14), 7611–7625 (2019)

57. Lewis, T.D., Jiang, J.Z., Neild, S.A., Gong, C., Iwnicki,

S.D.: Using an inerter-based suspension to improve both

passenger comfort and track wear in railway vehicles. Vehi-

cle Syst. Dyn. 58(3), 472–493 (2020)

58. Li, L., Liang, Q., Qin, H.: Equivalent linearization methods

for a control system with clutching inerter damper. Appl.

Sci. 9(4), 688 (2019)

59. Li, P., Lam, J., Cheung, K.C.: Control of vehicle suspension

using an adaptive inerter. Proc. Inst. Mech. Eng. Part D J.

Automob. Eng. 229(14), 1934–1943 (2015)

60. Liu, K., Liu, J.: The damped dynamic vibration absorbers:

revisited and new result. J. Sound Vib. 284(3–5), 1181–

1189 (2005)

61. Liu, M., Tai, W.C., Zuo, L.: Enhancing the performance of

backpack energy harvester using nonlinear inerter-based

two degrees of freedom design. Smart Mater. Struct. 29(2),

025007 (2020)

62. Liu, N., Li, C., Yin, C., Dong, X., Hua, H.: Application

of a dynamic antiresonant vibration isolator to minimize

the vibration transmission in underwater vehicles. J. Vib.

Control 1077546317711538 (2017)

63. Liu, X., Jiang, J.Z., Titurus, B., Harrison, A.: Model identi-

fication methodology for fluid-based inerters. Mech. Syst.

Signal Process. 106, 479–494 (2018)

64. Liu, X., Jiang, J.Z., Titurus, B., Harrison, A.J.L., McBryde,

D.: Testing and modelling of the damping effects for fluid-

based inerters. Proc. Eng. 199, 435–440 (2017)

65. Luo, H., Ikago, K., Chong, C., Keivan, A., Phillips, B.M.:

Performance of low-frequency structures incorporated with

rate-independent linear damping. Eng. Struct. 181, 324–

335 (2019)

66. Madhamshetty, K., Manimala, J.M.: Low-rate characteri-

zation of a mechanical inerter. Machines 6(3), 32 (2018)

67. Makris, N., Kampas, G.: Seismic protection of struc-

tures with supplemental rotational inertia. J. Eng. Mech.

142(11), 04016089 (2016)

68. Málaga-Chuquitaype, C., Menendez-Vicente, C., Thiers-

Moggia, R.: Experimental and numerical assessment of the

seismic response of steel structures with clutched inerters.

Soil Dyn. Earthq. Eng. 121, 200–211 (2019)

69. Marian, L., Giaralis, A.: Optimal design of a novel tuned

mass-damper-inerter (TMDI) passive vibration control

configuration for stochastically support-excited structural

systems. Probab. Eng. Mech. 38, 156–164 (2014)

70. Masri, S.F., Caffrey, J.P.: Transient response of a SDOF

system with an inerter to nonstationary stochastic excita-

tion. J. Appl. Mech. 84(4) (2017)

71. O’connor, B.E.: Inertia controlled flutter damper. US Patent

2,742,113 (1956)

72. Okumura, A.: The gyro-mass inerter Japan patent koukai.

h09-177875 (1997)

73. Papageorgiou, C., Houghton, N.E., Smith, M.C.: Experi-

mental testing and analysis of inerter devices. J. Dyn. Syst.

Meas. Contr. 131(1), 011001 (2009)

74. Pietrosanti, D., De Angelis, M., Basili, M.: Optimal design

and performance evaluation of systems with tuned mass

damper inerter (TMDI). Earthq. Eng. Struct. Dyn. 46(8),

1367–1388 (2017)

75. Pietrosanti, D., De Angelis, M., Giaralis, A.: Experimen-

tal study and numerical modeling of nonlinear dynamic

response of SDOF system equipped with tuned mass

damper inerter (TMDI) tested on shaking table under har-

monic excitation. Int. J. Mech. Sci. 105762 (2020)

76. Radu, A., Lazar, I.F., Neild, S.A.: Performance-based seis-

mic design of tuned inerter dampers. Struct. Control Health

Monit. 26(5), e2346 (2019)

77. Rivin, E.I.: Passive Vibration Isolation. ASME Press, New

York (2003)

78. Roberts, J.B., Spanos, P.D.: Random Vibration and Statis-

tical Linearization. Courier Corporation, New York (2003)

79. Saitoh, M.: On the performance of gyro-mass devices for

displacement mitigation in base isolation systems. Struct.

Control Health Monit. 19(2), 246–259 (2012)

80. Shaw, A.D., Neild, S.A., Wagg, D.J.: Dynamic analysis

of high static low dynamic stiffness vibration isolation

mounts. J. Sound Vib. 332, 1437–1455 (2013)

81. Shaw, A.D., Neild, S.A., Wagg, D.J., Weaver, P.M., Car-

rella, A.: A nonlinear spring mechanism incorporating a

bistable composite plate for vibration isolation. J. Sound

Vib. 332(24), 6265–6275 (2013)

82. Shen, Y., Chen, L., Liu, Y., Zhang, X.: Modeling and opti-

mization of vehicle suspension employing a nonlinear fluid

inerter. Shock Vib. 2016 (2016)

83. Shen, Y., Chen, L., Liu, Y., Zhang, X.: Influence of fluid

inerter nonlinearities on vehicle suspension performance.

Adv. Mech. Eng. 9(11), 1687814017737257 (2017)

84. Siami, A., Cigada, A., Karimi, H.R., Zappa, E.: Vibration

protection of a famous statue against ambient and earth-

quake excitation using a tuned inerter-damper. Machines

5(4), 33 (2017)

85. Siami, A., Karimi, H.R., Cigada, A., Zappa, E., Sabbioni,

E.: Parameter optimization of an inerter-based isolator

for passive vibration control of Michelangelo’s Rondanini

pietà. Mech. Syst. Signal Process. 98, 667–683 (2018)

86. Singh, R.: Dynamic design of automotive systems: Engine

mounts and structural joints. Sadhana 25(3), 319–330

(2000)

87. Smith, M.C.: Synthesis of mechanical networks: the inerter.

IEEE Trans. Autom. Control 47(10), 1648–1662 (2002)

88. Smith, M.C.: The inerter: a retrospective. Ann. Rev. Control

Robot. Autonomous Syst. 3, 361–391 (2020)

89. Smith, M.C., Wang, F.C.: Performance benefits in passive

vehicle suspensions employing inerters. Veh. Syst. Dyn.

42(4), 235–257 (2004)

90. Smith, N., Wagg, D.J.: A fluid inerter with variable iner-

tance properties. In: Proceedings of the 6th European Con-

ference on Structural Control, pp. 1–8 (2016). https://doi.

org/10.15131/shef.data.4206096.v1

91. Soltani, P., Pinna, C., Wagg, D.J., Whear, R.: Ageing sim-

ulation of a hydraulic engine mount: a data-informed finite

element approach. Proc. Inst. Mech. Eng. Part D J. Auto-

mob. Eng. 233(10), 2432–2442 (2018)

123

https://doi.org/10.15131/shef.data.4206096.v1
https://doi.org/10.15131/shef.data.4206096.v1


A review of the mechanical inerter

92. Sugimura, Y., Goto, W., Tanizawa, H., Saito, K.,

Nimomiya, T.: Response control effect of steel building

structure using tuned viscous mass damper. In: Proceedings

of the 15th World Conference on Earthquake Engineering,

pp. 24–28 (2012)

93. Sun, X.Q., Chen, L., Wang, S.H., Zhang, X.L., Yang, X.F.:

Performance investigation of vehicle suspension system

with nonlinear ball-screw inerter. Int. J. Automotive Tech-

nol. 17(3), 399–408 (2016)

94. Swift, S.J., Smith, M.C., Glover, A.R., Papageorgiou, C.,

Gartner, B., Houghton, N.E.: Design and modelling of a

fluid inerter. Int. J. Control 86(11), 2035–2051 (2013)

95. Taflanidis, A.A., Giaralis, A., Patsialis, D.: Multi-objective

optimal design of inerter-based vibration absorbers for

earthquake protection of multi-storey building structures.

J. Franklin Inst. 356(14), 7754–7784 (2019)

96. Takewaki, I., Murakami, S., Yoshitomi, S., Tsuji, M.: Fun-

damental mechanism of earthquake response reduction in

building structures with inertial dampers. Struct. Control

Health Monit. 19(6), 590–608 (2012)

97. Thiers-Moggia, R., Málaga-Chuquitaype, C.: Seismic pro-

tection of rocking structures with inerters. Earthq. Eng.

Struct. Dyn. 48(5), 528–547 (2019)

98. Thiers-Moggia, R., Málaga-Chuquitaype, C.: Dynamic

response of post-tensioned rocking structures with inert-

ers. Int. J. Mech. Sci. 187, 105927 (2020)

99. Tipuric, M., Wagg, D., Sims, N.: Magnetorheological

bypass valve design for a semi-active inerter. In: Active

and Passive Smart Structures and Integrated Systems XII,

vol. 10967, p. 109671L. International Society for Optics

and Photonics (2019)

100. Titurus, B.: Generalized liquid-based damping device for

passive vibration control. AIAA J. 56(10), 4134–4145

(2018)

101. Wagg, D., Pei, J.S.: Modeling a helical fluid inerter system

with time-invariant mem-models. Struct. Control Health

Monit. (2020)

102. Wang, F.C., Chan, H.A.: Vehicle suspensions with a mecha-

tronic network strut. Veh. Syst. Dyn. 49(5), 811–830 (2011)

103. Wang, F.C., Hong, M.F., Chen, C.W.: Building suspensions

with inerters. Proc. Inst. Mech. Eng. Part C J. Mech. Eng.

Sci. 224(8), 1605–1616 (2010)

104. Wang, F.C., Hsieh, M.R., Chen, H.J.: Stability and perfor-

mance analysis of a full-train system with inerters. Veh.

Syst. Dyn. 50(4), 545–571 (2012)

105. Wang, F.C., Liao, M.K.: The lateral stability of train sus-

pension systems employing inerters. Veh. Syst. Dyn. 48(5),

619–643 (2010)

106. Wang, F.C., Liao, M.K., Liao, B.H., Su, W.J., Chan, H.A.:

The performance improvements of train suspension sys-

tems with mechanical networks employing inerters. Veh.

Syst. Dyn. 47(7), 805–830 (2009)

107. Wang, F.C., Su, W.J.: Impact of inerter nonlinearities on

vehicle suspension control. Veh. Syst. Dyn. 46(7), 575–

595 (2008)

108. Wang, M., Sun, F.: Displacement reduction effect and sim-

plified evaluation method for SDOF systems using a clutch-

ing inerter damper. Earthq. Eng. Struct. Dyn. 47(7), 1651–

1672 (2018)

109. Wang, R., Meng, X., Shi, D., Zhang, X., Chen, Y., Chen, L.:

Design and test of vehicle suspension system with inerters.

Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228(15),

2684–2689 (2014)

110. Wang, X., He, T., Shen, Y., Shan, Y., Liu, X.: Parame-

ters optimization and performance evaluation for the novel

inerter-based dynamic vibration absorbers with negative

stiffness. J. Sound Vib. 463, 114941 (2019)

111. Wang, Y., Ding, H., Chen, L.Q.: Averaging analysis

on a semi-active inerter-based suspension system with

relative-acceleration-relative-velocity control. J. Vib. Con-

trol 26(13–14), 1199–1215 (2020)

112. Wang, Y., Li, H.X., Cheng, C., Ding, H., Chen, L.Q.:

Dynamic performance analysis of a mixed-connected

inerter-based quasi-zero stiffness vibration isolator. Struct.

Control Health Monit. 27(10), e2604 (2020)

113. Wang, Y., Li, H.X., Cheng, C., Ding, H., Chen, L.Q.: A

nonlinear stiffness and nonlinear inertial vibration isolator.

J. Vib. Control 1077546320940924 (2020)

114. Wang, Y., Meng, H., Zhang, B., Wang, R.: Analyti-

cal research on the dynamic performance of semi-active

inerter-based vibration isolator with acceleration-velocity-

based control strategy. Struct. Control Health Monit. 26(4),

e2336 (2019)

115. Wang, Y., Wang, R., Meng, H., Zhang, B.: An investigation

of the dynamic performance of lateral inerter-based vibra-

tion isolator with geometrical nonlinearity. Arch. Appl.

Mech. 89(9), 1953–1972 (2019)

116. White Jr., L.: Theophilus redivivus. Technol. Culture 5(2),

224–233 (1964)

117. Xiang, S.H.I., Songye, Z.H.U.: A comparative study of

vibration isolation performance using negative stiffness

and inerter dampers. J. Franklin Inst. 356(14), 7922–7946

(2019)

118. Yang, J., Jiang, J.Z., Neild, S.A.: Dynamic analysis and

performance evaluation of nonlinear inerter-based vibra-

tion isolators. Nonlinear Dyn. 99(3), 1823–1839 (2020)

119. Yilmaz, C., Kikuchi, N.: Analysis and design of passive

band-stop filter-type vibration isolators for low-frequency

applications. J. Sound Vib. 291(3–5), 1004–1028 (2006)

120. Zeng, Y.C., Ding, H., Du, R.H., Chen, L.Q.: A suspension

system with quasi-zero stiffness characteristics and inerter

nonlinear energy sink. J Vib. Control 1077546320972904

(2020)

121. Zhang, R., Zhao, Z., Pan, C., Ikago, K., Xue, S.: Damping

enhancement principle of inerter system. Struct. Control

Health Monit. 27(5), e2523 (2020)

122. Zhang, X.J., Ahmadian, M., Guo, K.H.: On the benefits of

semi-active suspensions with inerters. Shock Vib. 19(3),

257–272 (2012)

123. Zhang, X.l., Gao, Q., Nie, J., : The mem-inerter: a new

mechanical element with memory. Adv. Mech. Eng. 10(6),

1687814018778428 (2018)

124. Zhang, X.L., Geng, C., Nie, J.M., Gao, Q.: The missing

mem-inerter and extended mem-dashpot found. Nonlinear

Dyn. 101(2), 835–856 (2020)

125. Zhang, Y.W., Lu, Y.N., Zhang, W., Teng, Y.Y., Yang, H.X.,

Yang, T.Z., Chen, L.Q.: Nonlinear energy sink with inerter.

Mech. Syst. Signal Process. 125, 52–64 (2019)

126. Zhang, Z., Lu, Z.Q., Ding, H., Chen, L.Q.: An inertial non-

linear energy sink. J. Sound Vib. 450, 199–213 (2019)

123



D. J. Wagg

127. Zhang, Z., Zhang, Y.W., Ding, H.: Vibration control com-

bining nonlinear isolation and nonlinear absorption. Non-

linear Dyn. 1–19 (2020)

128. Zhao, G., Raze, G., Paknejad, A., Deraemaeker, A., Ker-

schen, G., Collette, C.: Active nonlinear energy sink using

force feedback under transient regime. Nonlinear Dyn. 1–

18 (2020)

129. Zhao, G., Raze, G., Paknejad, A., Deraemaeker, A., Ker-

schen, G., Collette, C.: Active nonlinear inerter damper for

vibration mitigation of duffing oscillators. J. Sound Vib.

473, 115236 (2020)

130. Zhao, Z., Zhang, R., Jiang, Y., Pan, C.: Seismic response

mitigation of structures with a friction pendulum inerter

system. Eng. Struct. 193, 110–120 (2019)

Publisher’s Note Springer Nature remains neutral with regard

to jurisdictional claims in published maps and institutional affil-

iations.

123


	A review of the mechanical inerter: historical context, physical realisations and nonlinear applications
	Abstract
	1 Introduction
	2 History and background to the mechanical inerter
	2.1 The tuned-mass-damper (TMD)
	2.2 The dynamic antiresonant vibration isolator (DAVI)

	3 Mechanical inerter devices
	3.1 Fluid inerter devices
	3.1.1 The hydramount
	3.1.2 The helical fluid inerter

	3.2 Mechanical flywheel inerters
	3.2.1 Pivoted flywheel and Rack-and-pinion inerters
	3.2.2 Ball-screw inerters


	4 Nonlinear applications of the inerter
	4.1 Nonlinear energy sink inerter devices
	4.2 Nonlinear inerter isolators
	4.3 Rocking structures and inerters

	5 Conclusions and future directions for research
	5.1 Future directions for research

	Acknowledgements
	References


