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Abstract

Agent-based models (ABMs) are a powerful class of computational models widely

used to simulate complex phenomena in many different application areas. How-

ever, one of the most critical aspects, poorly investigated in the literature, regards

an important step of the model credibility assessment: solution verification. This

study overcomes this limitation by proposing a general verification framework for

ABMs that aims at evaluating the numerical errors associated with the model. A

step-by-step procedure, which consists of two main verification studies (determin-

istic and stochastic model verification), is described in detail and applied to a spe-

cific mission critical scenario: the quantification of the numerical approximation

error for UISS-TB, an ABM of the human immune system developed to predict

the progression of pulmonary tuberculosis. Results provide indications on the pos-

sibility to use the proposed model verification workflow to systematically identify

and quantify numerical approximation errors associated with UISS-TB and, in

general, with any other ABMs.

KEYWORD S
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1 | INTRODUCTION

The evolution of computer models of human pathophysiology enables predicting the response of individual patients to
various treatment options (Digital Patient solutions)1 or to predict the efficacy and/or safety of new treatments on a
cohort of virtual patients (In Silico Trials solutions).2-4 But before such technologies can be used in these mission-
critical scenarios, their credibility must be thoroughly assessed.5 Emerging technical standards6 and recent regulatory
guidelines7 propose general rules and frameworks that can be used to assess model credibility through verification, vali-
dation, and uncertainty quantification (VV&UQ) studies. Although the general aims of the different credibility activities
are well established and valid for all types of models, the detailed definition of the tests to be performed may vary
depending on the computational approach used. This is particularly true for model verification, a part of the verification
process that aims to identify, quantify and reduce the numerical error associated with the model.8
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In this paper, we focus on the part of model verification called solution or calculation verification, of agent-based models
(ABMs), a topic that is still considered one of the main challenges in the field.9 ABMs are a powerful class of computational
models widely used in many different application areas including social science,10 ecology11 and biology.12 The increasing
interest in ABMs in the biomedical field is mainly due to their ability to simulate complex phenomena adopting a bottom-up
approach: the global behaviour of the heterogeneous real system is modelled using autonomous entities of different nature
called agents that can interact and evolve based on their internal state and on different environmental factors. Depending on
how their interaction and state-transition rules are defined, ABMs may be seen as mechanistic models; however, compared
to conventional equation-based mechanistic models, the overall system behaviour is not known a priori and the interaction
of the discrete autonomous agents is mainly described by cause-effect relationships. Another characteristic of ABMs worth
considering when dealing with model verification, is their stochastic nature: the interaction of agents is often defined using
deterministic approaches (e.g., molecular dynamics) but the intrinsic randomness of the complex phenomena modelled
(e.g., spatial distribution of agents) is introduced using stochastic variables.13

In models where the underlying theory is explicitly expressed in term of mathematical equations, the numerical error we
commit in solving these equations can be due to how we implemented in software the solution process (code verification), or
by the assumptions we make to obtain a numerically approximated solution, such as space–time discretisation (solution veri-

fication). But in ABM the underlying theory is expressed in term of local rules; this makes it somehow challenging to define
exactly what model verification should be. The difficulty of establishing verification methods for ABMs is mainly due to
these fundamental features9,14 and only few studies try to meet this challenge. Ormerod and Rosewell15 highlight the fact
that widely recognised verification approaches such as Runge–Kutta methods for numerical solution of differential equations
cannot be used for ABMs. They consider replicability, distributional equivalence and relational alignment key aspects of veri-
fication. The first two concepts are part of verification: replicability means verifying that the model exactly produces the same
results if the same inputs are used; distributional equivalence is the identification of the number of times the stochastic
model has to be solved to establish its properties. But relational alignment, which involves comparing the model predictions
with expected trends, is instead part of validation. In their ABMs verification study, Guoyin et al16 first tested that the logic
structure of the simulation codes was in accordance with the theoretical model, and then conducted software verification
tests such as unit, integration and case tests; in essence, reducing verification to code verification, and leaving out model ver-
ification. A similar limited approach is reported also in Reference 17 Leombruni et al14 discuss the need of a common proto-
col for agent-based simulations and present a detailed description of the analyses that should be conducted once the model
is defined. However, the distinction between model verification and validation is not very clear and typical code verification
activities like bug tracking are considered part of the validation process. In Reference 18, a generic software testing frame-
work for ABMs, mainly focused on validation in the sense of software construct, has been proposed and applied on a realistic
simulation case study.

To the extent of the authors knowledge, there are no studies in the literature that describe a step-by-step procedure
for solution verification of ABMs. Defining a rigorous verification framework that investigates all these points is of fun-
damental importance, especially when dealing with mission-critical applications.

The aim of this work is to propose a detailed solution verification scheme for ABMs for in silico Trials. As exemplary
case to demonstrate the proposed approach, we use UISS-TB, an ABM of the human immune system19 developed to
predict the progression of pulmonary tuberculosis.

2 | MATERIALS AND METHODS

2.1 | UISS-TB

2.1.1 | Main modelling features

The Universal Immune System Simulator (UISS) is an ABM of the human immune system, which accounts for both
innate and acquired immune response; UISS has been used effectively to model the response of the immune system to
a variety of diseases.2021 Within the StriTuVaD project UISS has been extended to model the response of the immune
system to the pulmonary infection of Mycobacterium tuberculosis (MTB). In a preliminary study, it has been shown that
the resulting simulator (UISS-TB) could be used to test in silico the efficacy of new therapies against tuberculosis, one
of the most deadly infectious diseases in the world.22

The process of MTB infection is modelled in UISS-TB as a series of interactions between autonomous biological
entities such as pathogens, cells or molecular species. The most important interactions between these agents can be
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described as a function of their type and state, their vicinity, the concentration of certain chemical species in the
neighbourhood, and/or the molecular fingerprint (presentation patterns) that each entity exposes. The anatomical com-
partment of interest is modelled with a cartesian lattice mathematical structure,23 a bidimensional domain whose state
is dynamic in time. Within this spatial domain, of appropriate size and specific to the phenomena modelled, cells can
differentiate, replicate, become active or inactive, or die. Pathogens and other molecular entities can replicate or die.
An important modelling feature regards the receptor-ligand affinity and specificity: all immune repertories, also called
cell receptors, are represented as a set of binary strings, and binding events are modelled with bit string matching rules
mainly based on the complementary Hamming distance.24

2.1.2 | Deterministic and stochastic nature of UISS-TB

Conceptually, all interactions in UISS-TB are stochastic in nature. But from an implementation point of view, this is
achieved through random seeds (RSs) produced by pseudo-random generators. This means that if the same value of
random seed is used the interaction rule will produce the same result, deterministically. This makes possible to sepa-
rate, for the purpose of solution verification, the deterministic and stochastic aspects of the model, and investigate them
separately.

UISS-TB uses three different RSs representing three stochastic variables: initial distribution of the agents (RSid),
randomisation of the environmental factors (e.g., the effect on the lymphatic flow and cell density constraints; [RSef]),
and the human leukocyte antigen type I and II (HLA-I and HLA-II; [RSHLA]). Different pseudo number generator algo-
rithms (MT19937,25 TAUS 226 and RANLUX,27 respectively) are used for the RS initializations.

2.1.3 | Inputs/outputs model definition

The UISS-TB model is informed by a set of NI = 22 inputs, hereinafter named vector of features, comprising measurable
quantities in an individual MTB patient. Among these are significant components of the adaptive immune system
(e.g., lymphocytes cells, cytokines immunoregulatory molecules, interferons), main characteristics of the patient
(e.g., age and body mass index) and typical MTB disease features such as initial bacterial load in the sputum smear and
bacterial virulence. Table 1 lists all 22 inputs, with their admissible minimum and maximum values. Data reported in
References 28,29 are used as a reference to define the main characteristic of the patients.

To provide an example of the verification approach proposed, we used in this study the immune system
response simulator of a healthy individual that at time 0 is exposed to an infective challenge by MTB. Usually,
when the human immune system faces an antigen for the first time, its recognition process with the innate
immune arm is triggered. Later, the adaptive response is mounted specifically for that antigen. If at a later stage
the same antigen is recognised by the same host immune system, a stronger and faster immune response starts
directly with the adaptive arm: this can be recognised by observing a higher peak in both specific immunoglobulin
and cellular responses directed against the pathogen. The input set used to represent the so called ‘Newly Infected
Patient’ (NIP) are also reported in Table 1. It should be stressed that this input set does not represent any specific
individual, but a possible NIP.

In order to monitor the disease progression, four chemical species were selected as output variables (OVs): T helper
17 cells (Th17), Antibodies (Ab), B cells (B) and Antigens (TotAGS). Th17 lymphocytes represent one of the main sub-
sets of helper T cells, primarily involved in recruiting neutrophils. Ab are circulating proteins produced in response to
the exposure to antigens. B lymphocytes are a type of white blood cell which principal role is to secrete antibodies. An
antigen is a molecule composed by the epitopes and the peptides of the pathogen that can bind to an antigen-specific
antibody or B cell antigen receptor.

For all these entities, UISS-TB traces the evolution of their concentration (number of entities in the entire space
domain that represents 1 μl of peripheral blood sample) through the simulation time (1 year). The concentration curves
were characterised by three key features:

• Peak Value (PV): maximum value of the time series in correspondence of the second infection peak;
• Time to Peak Value (TPV): time at which the PV occurs;
• Final Value (FV): value of the time series at the end of the simulation.
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Hence, we analyse 12 output quantities, Mo: three key features (PV, TPV and FV), for each one of the four output
variables of interest Th17, Ab, B and TotAGS.

2.2 | General model verification workflow

As already mentioned, ABMs are not formulated in terms of a set of related equations (such as ordinary differential
equations), but rather by a set of interaction rules and state transitions. Thus, in addition to the verifications that are
typical of mathematical models (e.g., quantification of the discretisation error) we also need an alternative for analytical
checks of properties from solutions to sets of related equations (e.g., existence, uniqueness, smoothness, non-
chaoticity).

The general model verification workflow adopted in this study consists in the sequence of steps depicted in Figure 1
and described in detail in this section. Two main verification studies can be identified: deterministic and stochastic
model verification. The first includes four different analyses that aim at (a) verifying basic essential properties such as
existence and uniqueness of the solution; (b) quantifying the discretization error associated with solving the computa-
tional problem at a finite number of temporal grid points; (c) evaluating the smoothness of the output time series data;
and (d) exploring critical parameter settings and their corresponding output measures. All these deterministic verifica-
tion tests were performed considering fixed values of the RSs. While RSid and RSef are set randomly, RSHLA is chosen to
represent the mean HLA-I and HLA-II that belong to Caucasian population. Since stochasticity is part of UISS-TB, the
second verification study aims at investigating the effect of the randomisation factors. In order to assess statistical
robustness, the model is run multiple times varying the RSs and the distribution of outcomes are studied in terms of
consistency and variance stability. The determination of the minimum sample size to reach a good statistical

TABLE 1 UISS-TB vector of features definition: admissible minimum (IMIN), maximum (IMAX) values and input settings for the NIP

case study (INIP)

Inputs Description IMin IMAX INip

Mtb_Vir Virulence factor 0 1 0.5

Mtb_Sputum (CFU/ml) Bacterial load in the sputum smear 0 10,000 0

Th1 (cells/μl) CD4 T cell type 1 0 100 0

Th2 (cells/μl) CD4 T cell type 2 0 100 0

IgG (titre) Specific antibody titre 0 512 0

TC (cells/μl) CD8 T cell 0 1134 0

IL-1 (pg/ml) Interleukin 1 0 235 0

IL-2 (pg/ml) Interleukin 2 0 894 0

IL-10 (pg/ml) Interleukin 10 0 516 0

IL-12 (pg/ml) Interleukin 12 0 495 0

IL17-a (pg/ml) Interleukin 17A 0 704 0

IL-23 (pg/ml) Interleukin 23 0 800 0

IFN1A (pg/ml) Interferon alpha-1 0 148.4 0

IFN1B (pg/ml) Interferon beta-1b 0 206 0

IFNG (pg/ml) Interferon gamma (IFNγ) 0 49.4 0

TNF (pg/ml) Tumour necrosis factor 0 268.2 0

LXA4 (ng/ml) Lipoxin A4 0 3 0

PGE2 (ng/ml) Prostaglandin E2 0 2.1 0

Vitamin D (ng/ml) Vitamin D 25 80 25.8

Treg (cells/μl) Regulatory T cells 0 200 55

Age (years) Age 10 80 35

BMI (kg/m2) Body Mass Index 18 35 31
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significance is also investigated. For simplicity, the probabilistic verification analyses were performed in this study only
considering the effect of randomising the environmental factors. The random seed that is responsible of defining this
stochastic process, RSef, is thus varied in order to produce a number of S = 1000 different simulations. The other model
inputs are set according to INIP (Table 1).

2.2.1 | Existence and uniqueness

The first fundamental model verification test regards existence and uniqueness of the solution. Because time is consid-
ered in discrete steps, all the theorems for continuously differentiable equations cannot be applied directly. Existence of
the solution was checked by verifying that for all the feature sets within the admissible range, UISS-TB returned a valid
output set; uniqueness was checked by ensuring that identical input sets would always produce the same output results
within the minimum possible variation range expected for each variable and defined by the implemented numerical
rounding algorithm. UISS-TB is in fact entirely based on a discrete logic where outputs are all integer variables.

2.2.2 | Time step convergence analysis

The only discretisation error in UISS-TB is the one associated with solving the computational problem at a finite num-
ber of temporal points called time steps (TS). All molecules and cells handled by UISS-TB are considered as single enti-
ties. To evaluate the effect of the time discretization on the model predictions, the output time series data representing
the disease progression for each of the OVs were compared by setting different TS sizes. We explore a range of time
steps between 48 h and 1 min. Two days was considered the temporal resolution that was required clinically, whereas
the 1 min value was set on the basis of an acceptable computational cost.

All the other inputs were kept constant, including the RSs. Convergence was checked for all the OVs on the three
different quantities q = PV, TPV and FV, by computing the percentage discretization error according to the
relationship:

eq
i ¼

qi��qi

qi�
�100 ð1Þ

where superscript i = 1…13, refers to the time series obtained by setting the time step size TSi according to Table 2 and
characterised by a number of iterations Ni. The results obtained with the model i* = 14 (TS is set to its minimum value
of 1 min) were considered as reference solutions for the analysis. If qi* was equal to zero, the discretization error was

FIGURE 1 General solution verification workflow which consists in

two main part: deterministic and stochastic model verification
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computed using the mean value of the time series obtained with model i* as denominator of Equation (1). The model
was assumed to converge if the error eq

i<5%. Additionally, the correlation coefficient was computed to investigate
global similarity between curves.

2.2.3 | Smoothness analysis

As mentioned in the introduction, calculation verification studies aim at assessing the errors that may occur in the
numerical solution. Among those, there are singularities, discontinuities and buckling. One metric that can be used to
evaluate the presence of such problems is smoothness.

In order to evaluate the smoothness of the solution, a coefficient of variation D was computed for all output time
series (evolution of the OVs chemical species concentration) obtained with the UISS-TB simulator. The value of the TS
was set according to the results obtained with the time step convergence analysis presented in section 3.1. The coeffi-
cient D represents the standard deviation of the 1st difference of the time series scaled by the absolute value of their
mean and is a measure of how variable the discrete first derivative of the time series is along the whole time series: the
smaller D is the smoother the series. In order to mimic a regular smoothness analysis and detect possible local rough-
ness in the time series, D has been computed using moving windows. For each observation in the time series, yt, the
k nearest neighbours are considered in the windows: ykt = {yt � k, yt � k + 1,..., yt, yt + 1,…, yt + k}. All the measurements
were applied in this study with moving windows of size k = 3. The value of k was selected based on a compromise
between local variability of the time series and computational feasibility.

2.3 | Parameter sweep analysis

The goal of the parameter sweep analysis is to ensure that the model is not numerically ill-conditioned. The entire input
sets space is sampled uniformly looking for particular input sets for which the model fails to produce a valid solution,
or the solution provided is outside the range of expected values. Last, the analysis checks whether small variations of
the input values produce large variations of the output values, which would suggest an abnormal sensitivity to some
inputs. Since are frequently extreme input values that cause problems, a design of experiment (DoE) approach is pre-
ferred to a Monte Carlo sampling, so to ensure that all extreme input values are tested. But in this case, the high dimen-
sionality of the input space (22 inputs), would make a DoE computationally prohibitive. Thus, a hybrid approach was
adopted. An initial sensitivity analysis was carried out by perturbing each input once at a time from their minimum to
their maximum value, while holding the rest at their mean values. A ‘reference input vector of features’ was thus first

TABLE 2 Temporal grid point

refinement scheme used for the time

step convergence check

i TSi (min) Ni

1 2880 182

2 1440 365

3 960 547

4 480 1095

5 240 2190

6 120 4380

7 60 8760

8 30 17,520

9 20 26,280

10 15 35,040

11 10 52,560

12 5 105,120

13 2 262,800

14 1 525,600
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defined using as input setup the mean values for each of the NI inputs (Table 1). Considering all the Mo outputs (PV,
TPV, FV for each of the four OVs) obtained with all the 44 (2 x NI) simulations, a matrix of NI x Mo coefficients pv,j was
computed to determining the inputs that mostly affect the outputs:

pv,j ¼
oj

vmax �oj
vmin

� �

=ojmed

Ivmax � Ivminð Þ=Ivmed

�100with v¼ 1,…,N I;and j¼ 1, ::,Mo ð2Þ

where Ovmax
j and Ovmin

j are the values of the output j obtained by setting the input v respectively to its maximum and
minimum value; Ojmed

is the output j obtained with the reference input vector of features; Ivmax , Ivmin and Ivmed are respec-
tively the maximum, minimum and mean value of the model input v.

Latin hypercube sampling (LHS) was then used to generate sample of P = 100 values on each of the 10 input vari-
ables that mostly affect the output results. The global variation effect on each output j was quantified by computing a
coefficient of variation Cj:

Cj ¼
σj

μj

ð3Þ

where μj and σj are respectively the mean and standard deviation from output j.

2.3.1 | Consistency

The outputs obtained from the S = 1000 simulations varying the RSef factor, were studied in terms of statistical consis-
tency. The TS size was selected for all simulation based on the time step convergence analysis results (section 3.1).

The shape of the sample distributions for all the Mo outputs was first checked by investigating their fit to
Gaussian and Student-t distributions using Kullback–Leibler (KL) divergence measure30: KL divergence is non-
negative and zero if and only if both distributions are exactly the same (i.e., the closer the KL to nought, the more
similar the distributions). Because the scale of KL is arbitrary, the ratio r(X) of the divergence of the Student-t
(KLs) and the Gaussian (KLG) to the distribution of the data, was computed to identify the ‘best’ fitting shape with
the following relationship:

r X j

� �

¼
KLS X j

� �

KLG X j

� � ð4Þ

where Xj is the distribution of the natural logarithm of the output j.
Mean, standard deviation, median, 25th, and 75th percentile are also used to characterise the distributions.

2.3.2 | Sample size determination

The minimum sample size, Ns, to have a sufficiently accurate estimates of the average and standard deviations are cal-
culated, for each output j, based on the following criterion:

ICs ¼
CoV sþ1�CoV s

CoV s

�

�

�

�

�

�

�

�

< ε ð5Þ

where the subscript s refers to the number of samples (i.e., simulations run) obtained with a different RSef value, and
the coefficient of variation index (CoVs) is defined as the ratio of the cumulative standard deviation (CStd_s) and mean
(CMean_s) for increasing sample size s.

In this study, convergence and stability of the mean and standard deviation was assumed to be satisfied for a value
of the sample size s = Ns so that ICs is below a certain value ε. In this specific case, the critical value ε is set to 0.01;
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however, it is worth noting that the value of ε is arbitrary and might be selected according to the level of accuracy
required.

3 | RESULTS

3.1 | Time step convergence analysis

As already stressed, the quantification of the discretization error is a fundamental step in model verification. In
this case, the convergence analysis allows the identification of a sufficient TS value balancing a compromise
between two opposing requirements: a large value of TS to reduce the computational cost and a small value of TS
to guarantee that the discretization error does not exceed for each predicted quantity a value of 5%.

For this case study, the quantities that show fast convergence as the time step decreases are TPV and FV
(Figure 2A,B): for all the OVs, the discretization error associated with these outputs reached a value less than
5% at TS = 10 min that correspond to 52 560 computer iterations and a simulation time of about 8 min. The
values at 12 months were always equal to zero for Ab and TotAGS, regardless of the time step, while FV of
Th17 and B converged monotonically and asymptotically to 0 at a similar rate (Figure 2B). Percentage differ-
ences e (%) of about 2 and 1% were observed at TS = 10 min for the FV of Th1 and B, respectively (Figure 2B).
As far as TPV is concerned, for all the OVs any TS of 16 h or smaller produced percentage differences less than
5% (Figure 2A).

Peak value showed convergence only for TotAGS: the percentage difference rapidly reached a value less than 5%
(3.1%) for i = 2 that correspond to a TS of 24 hours. A severely oscillatory behaviour was instead observed especially
for B, Ab and Th17 with no signs of convergence (Figure 2C).

Pearson Correlation Coefficient (PCC) was also used as a measure of global similarity between curves obtained
with different values of TS. In this study, values of PCC higher than 0.9 were found for Th17, Ab and TotAGS at
TS = 10 min, while with the same time step size a value of PCC of about 0.75 was computed for the most critical
output variable B.

3.2 | Smoothness analysis

Here, local roughness in the time series is assessed. Although the overall trend can be considered smooth for
all the OVs with values of the local coefficient D close to zero (Figure 3), in the regions around the two
peaks was possible to observe higher values of the standard deviation of the first discrete derivative. This is
evident for Th17 and especially for Ab where D reaches a maximum value of about 50 and 890, respectively
(Figure 3).

Maximum values of the first discrete derivative, relative to the maximum chemical species concentration rate, were
about 4.3, 73.7, 4 and 166.7 (# entities/[μl *s]) for Th17, Ab, B and TotAGS, respectively.

3.3 | Parameter sweep analysis

The initial ‘one at the time’ sensitivity analysis performed enables identification of the inputs with a higher effect on
the outputs based on the p coefficient defined in section 2.2. These are Mtb_Vir, BMI, AGE, TC, IgG, PGE2, TNF, IL-
12, Th1 and Th2. The most sensitive responses are the final value of Th17 and the peak value of Ab due to changes of
the BMI input (pBMI,FV_Th17 = 272%, pBMI,PV_Ab = 149%). From this initial I/O exploration it is also possible to notice
that all the Mo outputs appeared to be completely insensitive to two inputs: Treg and LXA4, while the outputs whose
values do not change with the inputs are FVs of Ab and TotAGS.

A summary of the results obtained from the second part of the parameter sweep analysis in terms of coeffi-
cient of variation C is reported in Figure 4. The largest variation observed was for the FV of Th17 and B
(CFV_Th17 = 64.7% and CFV_B = 59.3%); for all the other outputs, C was always below 35%. It is worth noting that
FVs of Ab and TotAGS did not change with the P = 100 different input combinations tested, and the coefficient
C was thus 0.
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3.4 | Consistency

Details of the results obtained with the statistical analyses in term of mean, standard deviation, median, 75 and 25 per-
centiles are reported in Table 3. In all cases, the mean and median have similar values and the coefficient of variation
(not shown) is below 0.33. The ratio r(X) between the KL divergence of the Student-t and the Gaussian fit to the distri-
bution of the data is also reported in Table 3.

3.5 | Sample size determination

The required minimum sample size Ns for all the Mo output variables are reported in Table 3. For the sake
of completeness, an example of the trend of the cumulative mean, standard deviation and IC index with
increasing number of s is shown in Figure 5. It is possible to notice that, for the output variable PVAb, an
accurate estimate of the mean and standard deviation is achieved when the simulation is run 293 times vary-
ing the RSef factor.

FIGURE 2 Trend on the percentage approximation error eTh17, eAb,eB and

eTotAGS with decreasing values of the TS for the three quantities TPV (A), FV

(B) and PV (C). TPV, time to peak value; TS, time step

CURRELI ET AL. 9 of 15



FIGURE 3 Evolution of the output variables concentration during the simulation time of 1 year (left) and relative smoothness measures

(right)

FIGURE 4 Coefficient of variation C for all the output variables
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4 | DISCUSSION

The aim of this study was to develop a detailed solution verification procedure that can be used to identify and quantify
numerical errors associated with a generic ABM. A step-by-step approach mainly based on a verification strategy that
separates the deterministic and stochastic solution verification was proposed. The deterministic solution verification

TABLE 3 Statistic summary for all the output distributions in term of mean, standard deviation, coefficient of variation, median, 75 and

25 percentiles

Output Mean SD CV (%) Median Pctl (75) Pctl (25) r(X) Ns

Th17 PV 15529.892 988.233 6 15,574 14,869 16,153 1.064 683

TPV 2447.792 583.817 24 2626.083 2604.75 2649.833 0.515 594

FV 69.338 17.721 26 69 58 80 0.835 497

Ab PV 439569.193 109589.85 25 429671.5 362,208 506,448 1.148 293

TPV 2727.7 45.627 2 2727.33 2695.5 2757.16 1.085 440

FV 0 0 - 0 0 0 - -

B PV 6142.913 792.342 13 6158.5 5597.5 6698.5 1.065 497

TPV 2618.283 27.478 1 2615.166 2598.5 2634.83 1.131 249

FV 17.459 5.72 33 17 13 21 1.188 340

TotAGS PV 100786.779 900.267 1 100,573 100,235 101106.5 0.836 851

TPV 2528.387 9.536 0 2525.5 2522.16 2530.75 0.831 917

FV 0 0 - 0 0 0 - -

Note: Quantities related to PV and FV are expressed in # entities/μl while those related to TPV are expressed in hours. Non-dimensional measures r(X) and Ns

are also reported.

FIGURE 5 Trend of the CMean_s (A), CStd_s (B) and IC (C) index with increasing values of s for the output variable PVAb and

identification of the minimum sample size Ns required to have an accurate estimate of the mean and standard deviation
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did include aspects commonly present in the verification of models based on differential equations, such as the effect of
time stepping, and aspects that are typically part of the verification of data-based models, such as existence and unicity,
smoothness, and so on. The validity of the ABM verification procedure was tested by applying all the verification activi-
ties to a specific case study: UISS-TB, an ABM that can be used to test in silico the efficacy of new therapies against
tuberculosis.

Generally speaking, ABMs are extensively used in health science applications, ranging from epidemiological field to
clinical decision support systems to individualised predictors of therapeutical strategies. The main question answered
by ABM is how complex systems dynamically evolve by processes that lead to complex emergent behaviours. Making
long story short, four classes of ABM have been identified, based on the resulting patterns produced: class I deals with
the homogeneous state, class II reveals simple stable or periodic structure, class III chaotic (non-repeating) pattern, and
class IV put out complex patterns of localised structures. Whatever class is enshrined an ABM always produces num-
bers that describe the temporal changing of entities during the simulated time frame. Thinking about this, the verifica-
tion activities we described and applied to an ABM for tuberculosis modelling can be easily adapted to potentially
every ABM.

4.1 | Deterministic model verification

From the first deterministic model verification activities, performed with fixed values of all the stochastic variables, was
possible to:

1. ensure that, for all the different input feature set, UISS-TB estimates an acceptable and unique output set;
2. detect uncertainties associated with solving the computational problem at a finite number of temporal grid points;
3. identify local roughness in the output time series data that might indicate unrealistic increment rate of the output

quantity of interest;
4. verify that any combinations of inputs do not lead to unexpected trends of the model's results.

The results obtained from the time step convergence analyses, presented in section 3.1, suggest that a TS of 10 min is
enough to accurately predict both TPV and FV. The discretization error was in fact always less than 5% for all the four
chemical species of interest. However, except for eTotAGS, the trend of the percentage approximation error for PV
showed an oscillatory behaviour. The concentration of B cell output predicted with a time step of 2 min was about 10%
higher than that predicted with a time step of 1 min (minimum acceptable value of the TS in this example). The PV
quantity cannot be thus considered, in this case, reliably predicted by the model for the range of time steps considered
(and thus for acceptable computational costs).

The local smoothness analysis reported peak values in correspondence of the two peaks: values up to 890 for output
Ab, up to 50 for output Th17, and much lower for the other outputs. For comparison, a sinusoidal signal has D values
in the range 5–15, where a random signal shows D values in the range 500–25 000. Although the overall trend of the
four time series data can be considered qualitatively smooth, as already reported in section 2.2, maximum values of D
of 50 and 900 would recommend further investigation on the ‘biological acceptable’ concentration rate for the chemical
species. The maximum concentration rate predicted by the model for output Ab was 73.7 # entities/ (μl *s), and that for
output Th17 was 4.3 # entities/(μl *s). Experiments reported in the literature31,32 confirm these values are plausible.

Results obtained from the so called ‘parameter sweep’ analysis were extremely important, firstly, to ensure that the
model behaves reliably for particular input values, secondly, to verify that all the inputs affected the outputs variables
with an ‘expected level’ of influence. Thanks to the ‘once at a time’ study, was in fact possible to assess that, for this
specific simulated scenario, two inputs (Treg and LXA4) do not have any effect on the outputs results and also that few
outputs are completely insensitive to any combination of inputs (FVs of Ab and TotAGS). High values of pBMI,FV_Th17

and pBMI,PV_Ab suggested that a possible critical effect of BMI on FVTh17 and on PVAb should be further investigated.

4.2 | Stochastic model verification

The stochastic verification aspects of the model were analysed in the second part of the model verification procedure.
In particular, with a fixed value of TS, the model inputs set according to INIP, and varying the RSef was possible to:
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1. identify the ‘best’ fitting shape of the distributions and assess consistency;
2. define the minimum sample size needed to have a statistical significance.

Symmetry and stability of the output distributions, suggested by the graphical check on the histograms and by the basic
statistical summary (Table 3), was also confirmed by the results obtained with the Kullback–Leibler divergence analy-
sis. All the outputs seemed to be well approximated by the Gaussian distribution. However, the r(X) was less than one
for 4 of the 12 OVs (TPVTh17, FVTh17, PVTotAGS and TPVTotAGS) suggesting that, for these cases, the Student t is a better
fit than the Gaussian.

Regarding the convergence and stability of the mean and standard deviation as the sample size increases, a first
graphical check is given by the plots of the cumulative mean and standard deviation (example reported in Figure 5A,B).
All of them showed that after a few hundred samples, both the CMean_s and CStd_s converge to a certain value. More
formally, the number of runs required to obtained an accurate estimate of the mean and standard deviation was com-
puted assessing the variability of the measurements and evaluating the coefficient of variation rate. The outputs that
seemed to converge faster are the PVAb and TPVB. It is important to consider that, because a noisy behaviour of the
quantity IC can be observed, some fitting or filtering operations might help to precisely identify Ns.

This study has some limitations. A first critical point regards the discretization error analyses in which time is con-
sidered the only discrete variable for UISS-TB. It is important to notice that, in most of the cases, also the space domain
is usually partitioned in the so called ‘bins’. In addition to the time step convergence analysis, a ‘bin size’ convergence
analysis might be also needed.

Regarding the parameter sweep analysis, one assumption made was that all the inputs of the vector of features are
independent one from each other which of course this is not generally the case. However, assuming inputs are indepen-
dent allows to explore all possible combinations, even those that might not make physical/biological sense. This is a
conservative assumption. Also, in the OAT analysis, we assume linear and monotonic relationships between inputs and
outputs. More detailed techniques commonly used in uncertainty quantification analyses to identify critical inputs of
the model and measure the strength of the input-outputs relationship are partial rank correlation coefficient and
extended Fourier amplitude sensitivity test.33

Another limitation of the study is that the consistency analyses and the sample size determination was made consid-
ering only the stochastic variability due the environmental factor. This because in principle the initial distribution of
entities and the HLA can be observed in each patient being modelled (the first with a lung radiograph, the second with
immune-essays). If these or other inputs cannot be defined precisely, but only in term of population distributions, the
sample size could become much larger.

In conclusion, the solution verification of ABMs is a non-trivial activity. The approach proposed here is exhaustive,
in the sense that it covers all possible sources of numerical solution errors. Also, the application to UISS-TB model
showed that the proposed approach is effective in highlighting some limitations of the current model implementation,
that depending on the context of use might or might not be critical.
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