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Abstract  

 

Lithium-ion batteries change their internal state during cycles of charge and discharge. The 

state of charge of a lithium-ion battery varies during the charging cycle and depends on the 

internal structure of the components which may degrade with use. Estimation of the state of 

charge is commonly performed by battery management systems that rely on charge counting 

and cell voltage measurement. Determining the physical state of the battery components is 

challenging. Recently, the response of an ultrasonic pulse to a battery has been successfully 

correlated with both change in state of charge and state of health, the quality of the approach 

is now well established. This study assesses the qualities contained within an ultrasound 

signal response by investigating the behaviour of ultrasonic waves as they pass through the 

components in a layered battery structure, as those components change with battery charge. A 

model has been developed to understand the nature of the ultrasound response and the 

features that provide a particular characteristic. This is useful as two apparently identical 

batteries can produce very different ultrasonic responses. Detailed data analysis has been 

performed to find which combination of data comparisons provides the strongest correlation 

with state of charge and guides decisions about future use of battery monitoring using 

ultrasound. Finally, a smart peak selection method has been developed to ensure that 

regardless of the nature of the ultrasound response, state of charge measurements are 

optimised by ensuring the regions of signal with best battery charge correlation are identified. 

This can greatly help with the automation of the process in a sensor-based battery 

management system. 
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1. Introduction  

 

Since their introduction in the 1990’s, lithium-ion batteries have become increasingly popular 

in mobile power applications, from hand-held devices such as smart phones and tablets to 

electric vehicles. The success of the lithium-ion battery is due to its high energy density and 

operating voltage, the best energy-to-weight ratio, no memory effect and undergo only small 

amounts of discharge when not in use when compared to alternative battery technologies [1]–

[3]. There are limitations with this technology; stress induced material damage, capacity fade 

and the potential for thermal runaway. With optimal usage a battery can support only a finite 
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number of charge/discharge cycles, improper use can lead to deterioration in battery 

performance and a shortening of lifespan [4]. 

 

To assist in the care of battery usage, battery management systems (BMS) have been 

developed to monitor battery status. Estimating the available capacity of a battery, referred to 

as state of charge (SoC), is an important feature of a BMS. There are various methods of 

estimating SoC, from measured values such as ampere hour counting and open circuit voltage 

to modelling approaches such as machine learning algorithms and electrochemical models. 

Each method has benefits and disadvantages, the measured values are simple to obtain for 

example, but contain greater estimation errors than modelling methods which contain lower 

estimation errors but are complex, requiring processing time/power [5]. This work focuses on 

the use of ultrasound (US) to provide some understanding into the complex nature of 

reflected waves that contain real-time state of charge information from the battery cell to 

estimate battery state of charge.  

 

Ultrasonic battery monitoring is a well-established method of obtaining feature rich data from 

a battery. Each battery, regardless of chemistry or design, undergoes redistribution of density 

as a function of charge along with bulk moduli changes in anode and cathode layers [6], [7]. 

Many studies now exist that use ultrasound to exploit this, as well as the monitoring of 

battery ageing [8], gassing [9] and swelling [10]. A further advantage of this method is the 

simple application of a sensor at a low cost making it suitable for implementation into a BMS 
[7], [11]. 

 

Ultrasound defines sound waves that are above the normal range of human hearing, generally 

referred to as frequencies greater than 20kHz [12]. Ultrasound waves are non-invasive and 

there is no requirement to introduce instrumentation into any body under exploration and 

importantly, ultrasound is non-destructive, so that the propagating sound waves creating only 

minor and non-permanent changes to the body at particle level. Typically, waves are pulsed 

using either/or a combination of, longitudinal waves (where the material vibration occurs 

parallel to the direction of travel) and shear waves (where the vibration occurs perpendicular 

to the direction of wave travel) [13].  

 

Reflections occur when a wave encounters a material interface (Figure 1). The difference in 

material properties can be due to material density and elasticity which will affect the sound 

speed for these materials. Where there is a difference, the wave can partially or completely 

reflect, it is these reflections that provide insights into an otherwise inaccessible body. For 

this study longitudinal waves are used as they provide the strongest reflection response from 

liquid and solid material interfaces.   

 

 
Figure 1: Example of a two layered body, when a wave encounters an interface (a change in material property) some 

part of the wave is transmitted and some is reflected.  
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Much of current ultrasound/battery studies have focused on improving accuracy by using 

pulse techniques and instrumentation experiments [7], [11], [14], [15]. Other studies have used 

ultrasound data combined with traditional SoC and state of health (SoH) estimation methods 

to reduce errors, as well as implementation in predictive models and machine learning 

algorithms [8], [14]. 

 

A common approach in most studies is the selection of a single peak in the time domain 

waveform, be that of an individual wave [8], [11], [16], [17] or from a signal envelope [14], [15]. From 

the time of flight (ToF) and signal amplitude, measurements are recorded and compared with 

battery information such as SoC and SoH. In previous work there is little discussion of the 

characteristics of the wave response and what causes it to return to the capturing sensor in the 

manner it does. 

 

To this end, this paper focuses not on the accuracy of the method, but on the accuracy of the 

features within the ultrasound/SoC method. Potential challenges that are overcome with 

findings in this study include; combating the diverse nature of battery cell geometries which 

each may produce a different waveform response, assessing the effects of temperature 

changes from both external sources (ambient temperature) and internal (charge cycling 

temperature fluctuations) and the variance in quality of signal that could arise from 

instrumentation inconsistencies. 

 

This paper will focus on two concepts; the various effects battery and pulsing parameters 

have and how these alter the nature of a wave response; and strategies to combat the diverse 

nature of battery cell geometries. The purpose of this study is to identify the most accurate 

and reliable waveform changes to correctly track battery changes with respect to state of 

charge. 

2. Multilayered body model 

2.1. Model background 

 

A model was created to predict the transmission and reflection of a sound wave through a 

pouch cell represented as a 1D layered body. The passage of a 1D wave through a body is 

governed by the partial differential equation (PDE) wave equation 

  

 𝑢!! = 𝑐"𝑢## (1) 

 

Where u is the wave position at point x and at time t, c is the wave speed through the material 

at position x. Differences in the wave speed c array will result in the transmission/reflection 

effect shown in Figure 1. The reflection coefficient is the proportion of a wave amplitude 

reflected at a boundary and is given by: 

 

𝑅 = 𝑍" − 𝑍$𝑍" + 𝑍$ 
(2) 

 

Where 𝑍% is the acoustic impedance of the material 𝑍% = (𝜌%𝑐%), r being the material 

density and c being the sound velocity for the material. The reflection coefficient R varies 

between 0 and 1 and the transmission coefficient is R-1. 
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The boundaries are fixed and rather than c being a single constant wave speed value, it is 

built as an array with variable values to simulate differences in wave speed across the length 

of the body, modelling the properties of various material layers. As the wave encounters a 

different c value, some energy from the passing wave is transmitted and the rest is reflected, 

like that of the reflection coefficient R. The wave speed c is obtained using: 

 

𝑐 = +𝐸𝜌 
(3) 

 

Where E is the elastic modulus. A summary of the finite difference scheme is shown in 

Figure 2. By recording values adjacent to the model boundaries, simulated waveforms, such 

as those gained using contact transducers, are captured. The side with the initial pulse being a 

pulse/echo simulation and the opposing side simulating a pitch/catch through pulse.  

 

 
Figure 2: Finite difference scheme showing points in time/space used to calculate point ui,j+1. Boundary conditions of left 

side include the initial pulse (blue). Position used to capture pulse/echo signal shown in magenta, pitch/catch through 

wave shown in yellow. 

 

 

2.2. Model implementation 

 

To model the ultrasonic wave passing through a simulated battery a matrix was created to 

represent the cell body in time and space. The length of time was specified (typically 20µs in 

steps of dt = 2.7ns giving 7500 data points) and the cell body width (typically 5mm in steps 

of dx = 20µm giving 250 data points). A base wave speed was set at v=3000m/s to ensure the 

Courant–Friedrichs–Lewy (CFL) condition is met for model stability, where CFL ≤ 0.5 from 

equation: 

 

𝐶𝐹𝐿 = v 𝑑𝑡𝑑𝑥 
(4) 

 

The initial pulse was initialised in the time domain starting at t=0, being n number of 

consecutive sine waves (typically n=3). The wavelength was determined by setting a single 

sine wave to 1µs representing 1MHz, stacking and scaling these according to the user 
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requested cycle numbers and pulse frequency. The finite difference model calculated the 

wave position at each point across the cell body after which the time step was increased and 

the next iteration of the wave was calculated. The c array represents the wave speed across 

the battery, this varies simulating the various material properties of layers within the cell. 

Each block of identical wave speeds across the array represent the dimensions of each layer. 

As the wave encounters these changes in c the wave equation underpinning the model 

transmits and reflects proportions of the passing wave according the nature of the change in 

wave speed. 

 

The wave speeds for the various components were generally taken from the density and 

elasticity values provided by Hsieh et al [6], calculated using equation (3) the layer 

dimensions were based on those provided by Ladpli et al [14]. Two separate matrices were 

generated where certain layers in the body alter in the time domain T to represent either 

stepped/partial or complete charge and discharge of the battery. This charge simulation used 

the range of density values for LiCoO2 (cathode) and graphite (anode) and alters them 

linearly in multiple steps or a single step. The anode layer(s) decrease wave speed during 

charge whilst the cathode layer(s) increase wave speed. These localised layer density changes 

alter the nature of the wave reflections and provide differing wave responses, a simulated 

signal response, known as an A-scan, and Fourier transform are shown in Figure 3. Model 

animations are included in the supplementary material showing the propagation of the 

incident waves through the multiple layers of the cell generating A-scans (pulse/echo and 

pitch/catch) that result from the wave travelling through the specific material properties. 

 

  

  
a) b) 

Figure 3: a) A-scan waveform generated by pulsing through the layers a simulated battery cell (red wave is discharged, 

green is charged state). b) Fourier transform for the simulation showing the main wave activity focused around the 

2MHz region. 

  

The speed of sound is temperature dependent. In the model, temperature effects are simulated 

by altering the wave speeds at a global rather than local level. The whole wave speed array c 

is raised and lowered uniformly according to a specified temperature profile, based on the 

assumption that temperature change would affect the cell body as a whole and uniformly. 

This provides an opportunity to observe change in ultrasound responses combining cell level 

changes (temperature) with localised battery layer changes (elasticity/density).  

 

2.3. Illustration of model function 
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Figure 4 shows some sample output from the model at four time steps. The top half of each 

plot shows a different density distribution to the bottom half (although the overall density 

value remains unaltered) which can be thought of as charged/discharged states of a battery. 

 

   
a) b) c) d) 

Figure 4: Simple four layered body wave model with differing density distribution. Notice due to the relatively even 

distribution of the theoretically discharged (bottom) half of the model, where the wave passes through layers with 

almost all the wave transmitted and very little reflection. These reflection/transmission events occur as every wave 

(including new waves) reaches each interface, in either direction. This causes the signal to quickly develop in complexity 

meaning direct measurements are difficult to take or unreliable. 

 

For illustrative purposes, this simple case simulates four layers in a 5mm body thickness with 

an ultrasound sensor pulsing a single wave at a frequency of 3MHz. The timing of each 

capture is shown in the top right corner 

 

a) The model starts at 0.0µs and the two waves are overlaid with only the green, discharged 

state, wave visible. 

b) By 0.6µs, the red wave (charged state) is only partially transmitted and some part of the 

wave is reflected back towards the source, in addition the red wave slows down somewhat 

and lags behind the green wave. This occurs as the red wave encounters a significant 

change in material property as this transmission/reflection effect occurs in such instances. 

c) By 1.3µs the red wave has passed through a second material property change and 

produced a third wave of note, reflected back towards the source, the second wave has 

reflected from the boundary and is now following behind the initial pulse. 

d) At 1.5µs both waves marked 2&3 pass through each other and form a constructed wave 

larger than each of the individual waves travelling through the body as they are of the 

same phase, by this time the incident wave has passed through a third layer interface and 

a new wave, wave 4 is reflected back towards the source. Notice the initial phase of 

waves 2 and 4 contrasted with wave 3, this is a result of change of material property 

values, 2 and 4 moved to a higher density material whilst wave 3 created as reflection 

traveling into a lower density material. 

 

2.4. Ultrasound response to a typical battery structure 

 

A typical pouch cell geometry configuration based on values in Table 1, with density and 

therefore wave speed values changing according to a battery charging profile, produces a 

series of simulated ultrasound wave responses that can be stacked to form the amplitude 

intensity plot shown in Figure 5a. 
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Component Charge % 

Elastic 

Modulus 

(GPa) 

Density 

(kg/m3) 

Wave Speed 

(m/s) 

Thickness 

(µm) 
Citation 

Anode (Graphite)  0 30 2078 3800 96 [6], [14] 
 20 

40 

60 

80 

30 

2213 

2348 

2484 

2619 

3700 

3600 

3500 

3400 

96 

 

Anode  100 30 2754 3300 96 [6], [14] 

Separator  0.7 550 1128 25 [14] 

Cathode (LiCoO2) 0 184 5663 5700 60 [6], [14] 

 20 

40 

60 

80 

184 

5488 

5312 

5137 

4961 

5800 

5900 

6000 

6100 

60 

 

Cathode  100 184 4786 6200 60 [6], [14] 
Table 1: Elastic modulus and density values of electrodes and separator for ultrasonic wave response simulation. 

Electrode material wave speeds increase/decrease as a function of the battery charging as 

lithium passes back and forth between anode and cathode during cycling. For the model, a 

constant current charge/discharge is considered, as such the density values move to their end 

values in a linear, incremental fashion. For more accurate modelling, changes in the elastic 

modulus should be included in calculations, however as with the model utilised by Hsieh et 

al. [6], the modulus is held constant and is considered sufficient for these estimation purposes. 

 

The changes in density distribution cause ultrasonic wave response changes, stacking A-scans 

to form a signal intensity surface plot and synchronising with battery shows a clear 

relationship between charge and ultrasonic response. 

 

a) 

 

 

b) 

 

Figure 5: Predicted ultrasonic amplitude intensity map as a battery is charged and discharged. Each waveform (A-scan) is 

stacked (two sample signals shown, discharged state in red and charged state in green) to form a surface plot, where the 

high (yellow) intensity regions represent the larger amplitude signal peaks. The absolute values are shown in this plot for 

clearer viewing. In b) The battery capacity is plotted over a colour coded background to identify the part of the charge 

cycle (green = charge, red = discharge, grey = rest). The black dashed vertical lines show the position of the two sample 

waveforms. 
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2.5. Comparing battery geometries 

 

The model is customisable, where the layout/stacking of active layers [cathode-separator-

anode-separator] can be specified. The thicknesses of all layers and number of active layers 

can also be specified and the frequency and number of the initial pulses (2MHz and 2 cycles 

in this example). 

 

  
a) b) 

Figure 6: Model based on values taken from Table 1, separator wave speed for a) is 1128m/s and is altered to 685m/s in 

figure b) all other material properties and all dimensions remain the same for both models. This change creates a very 

different signal response as shown in the wave form. 

 

Figure 6a illustrates the same model as that in Figure 5 with the grey scale representing the 

density/wave speed and relative thickness of each layer (top) and two A-scan responses 

(charged in green, discharged in red) overlaid (bottom). A box is drawn to show the region of 

the signal containing the ‘first reflections’. Figure 6b is the same model except for an 

arbitrary change in the separator material density (550kg/m3 to 1450kg/m3) which, once again 

holding the elastic modulus constant for this estimation, results in a change in separator wave 

speed of 1128m/s to 685m/s, all other parameters remain unaltered. Inspection of the bottom 

panel shows the change of separator property has a significant effect on the wave response. 

Two things are immediately clear resulting from this change, firstly, the change between 

charged and discharged states is greatly diminished in the right-hand model and secondly, the 

clear wave response has collapsed, there is no obvious region containing the first reflections 

and does not lend itself to taking an envelope from which to take readings. 

 



9 

 

a) 

 

b) 

Figure 7: Waveform development, showing only wave peaks. For a) and b) Left-hand side is wave development for the 

charged state, centre panel shows the wave development for the discharged state and the right-hand side shows the 

absolute difference between the two charge extremes.   

 

The panel of plots in Figure 7a show the historical wave development of the battery modelled 

in Figure 6a as it passes through the cell layers. This clearly shows a set of first reflections 

(highlighted in the white box) back to the sensor side of the battery cell (width = 0mm) which 

occurs between approximately 5𝜇s and 8𝜇s. This region corresponds with the collection of 

peaks in the bottom panel of Figure 6a. 

 

Observation of the difference panel (Figure 7a top right) confirms that these differences are 

driven by the incident waves (together with localised reflections and accumulated 

transmissions highlighted in the red box) reaching the opposing side of the body and 

returning the sensing edge of the cell. It can be assumed that waves of this nature collect and 

return information gathered through each layer of the cell twice (there and back) and would 

naturally be the most accurate to read.  

 

Using the model in this way demonstrates the complex interactions of transmissions and 

reflections that sum to form a particular waveform response. The change in separator 

properties cause the convenient first reflection group to break down (as shown in Figure 7b). 

Essentially the lower separator speed of sound causes a greater acoustic mismatch between 

separator and electrode and hence greater reflection at each interface (as shown in equation 

2). The most intense regions in the differences plot are close to the first active layer 

encountered after the casing. This results in the signal struggling to penetrate the body 

causing a loss in battery measuring capability. In certain geometries, the signal can be 

dominated by reflections from large changes in material properties close to the sensor (casing 

materials/thickness) that will necessarily dominate the signal response. Locating a current 

collector can also have an effect as explored by Maier et al. [11], without knowing the precise 

construction of the cell it is difficult to ensure the signal response is optimised in terms of 

ultrasound correlation with SoC. 
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It would therefore be beneficial to have a method to identify the best waveform location to 

correlate with battery state of charge. To this end, experimental tests have been carried out 

with detailed analysis of the signal during different charge stages to explore methods of 

combating weak or unintuitive signal responses. 

 

2.6. Confirming pulse frequency using model  

 

During experiments, a pulse frequency of 1-2MHz was used, similar to the 2.25MHz used by 

Hsieh et al [6], this gave the clearest response and best battery charge correlations during 

testing. Using lower frequencies provided diminished changes in wave response, whereas 

higher frequencies produced more unpredictable signals with lower battery charge 

correlations. The effects of frequency choice can be visualised and the problems explained 

using model data. 

 

Three frequency choices were 0.5MHz, 2MHz and 5MHz, all other parameters are held 

constant. The plots in Figure 8 show the absolute differences between the wave developments 

for both fully charged and discharged states. The higher amplitude, yellow regions are where 

there are highest discrepancies whilst dark blue shows low/no discrepancy. The development 

of the 5MHz wave collects some differences (Figure 8a), these are accumulated close to the 

initial pulse side of the cell, the differences fail to accumulate due to lack of cell penetration 

of the wave. As a result, the signal is dominated by layers close to the pulse/echo edge and 

are susceptible to temperature bias as this would include a high proportion of cell casing 

reflections. The 0.5MHz waves (Figure 8b) only detect minor changes as the wave lengths 

are considerably larger than the narrow layers they pass through, note a lack of wave 

development with yellow, high intensity changes. The 2MHz wave (Figure 8c) shows 

significant differences collect along the wave paths as they return to the sensing edge with a 

clear region of first reflections. This illustrates that 2MHz offers a good balance between cell 

penetration (lower frequency) and detail from layer reflections (higher frequency), providing 

solid theory behind the sensor/pulse selection process. Figure 8d shows the effect on the SoC 

correlations of the three frequency choices, the 2MHz performs well whilst the 0.5MHz and 

5MHz register very weak/no useful battery charge correlation and are unsuitable in this 

instance. 

 

  
a) 5MHz b) 0.5MHz 
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c) 2MHz d) 

Figure 8: Charged/Discharged difference in ultrasound response plots. a) 5MHz shows small changes in wave 

development occurring close to initial pulses with lack of meaningful cell penetration. b) 0.5MHz wave passes through 

body almost unaffected by the changing properties in narrow layers. c) 2MHz passes through the cell with the incident 

waves gathering and accumulating changes, travelling back to the recording sensor side. d) Ultrasound ToF/battery 

charge correlation show 2MHz has strong relationship with battery SoC. 

3. Experimental apparatus and instrumentation 

 

The pouch cells used during testing were all commercially sourced lithium polymer 

rechargeable cells having a nominal voltage of 3.7V, a discharge/charge cut-off of 3.0V/4.2V 

and a capacity of 2Ah. The maximum discharge/charge current for the cells was 2000mA 

(1C)/1000mA (0.5C).  

 

Commercial longitudinal contact transducers were used to both transmit and receive an 

ultrasound pulse in a pulse/echo arrangement as this is the simplest and most cost-effective 

method of capturing ultrasound data. The sensor was clamped in place and a high 

temperature ultrasound gel was used as couplant. The clamps were hand tightened enough to 

hold the sensor in place, minimum pressure was applied such that the sensor could be moved 

slightly while held in place. This was in to ensure no possibility of causing an accidental 

wave interface and in general care of the battery itself. 

 

The sensor was connected to a PICOSCOPE 5000 Series oscilloscope which was used to 

generate the pulse and record the reflected waves. The pulse consisted of 2-3 sine waves at a 

frequency of generally 2MHz according to the discussion in section 2.6. The response signal 

captured ranged from 0-2µs to 12-30µs with a time resolution of 2-8ns. Signal captures were 

taken from every 60s to 300s depending on test length and each capture was recorded as the 

average of 20 captures taken at 20Hz.  

 

Bespoke LabView software was used to control the PICOSCOPE in both signal generation 

and capturing the signal response. The software was also connected to a NI-9211 

thermocouple input module to record the surface temperature of the cell during charge 

cycling. A schematic of test configuration is shown in Figure 9, cell images are shown in the 

top left corner. As the C-rates for the charge cycles were low and within the manufacturers 

stated maximums, no swelling occurred during testing and the cells remained in perfect 

physical condition throughout.  

 

The battery was connected to a MACCOR 4000 Series Test System which controlled the 

charge cycling stages. Test were cycled according to a custom built programme generally 
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consisting of a combination of fixed current, fixed voltage and timed rest periods. In the fixed 

current stages, the rate of charge/discharge was generally 0.5C. The MACCOR records the 

battery voltage during charging and charges up to 4.2V and discharges down to 3.0V, 

additionally, the Ah/s data is accumulated during cycling to provide a battery capacity 

profile, providing an alternative state of charge rating for the cell. 

 

 

 

  
Figure 9: Test setup schematic 

4. Analysis approach 

 

Three data sets were retrieved (ultrasound response, charge data, surface temperature) during 

an experiment. The ultrasound data contains various information types, such as signal 

amplitude and time of flight changes which will vary based on which part of the signal a 

measurement is taken. Also signal power and frequency domain information is obtainable 

from the waveform. Additionally, the battery charge data provides voltage, current and 

capacity information. The analysis method developed was designed to incorporate all 

methods of data analysis such that the same data sets can be arranged in a variety of ways to 

assess the strongest correlations.  There is also capability of tracking and measuring multiple 

signal peaks across the signal response to compare the results of each peak individually. The 

flow chart in Figure 10 shows these various methods of analysis available, the outputs of 

which will be discussed in detail.  
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Figure 10: Analysis flow chart for analysis script created in MATLAB 

 

The plots in Figure 11 show the initial formatting and data synchronisation process, the 

ultrasound and battery charge information is presented here with the peak tracking evident in 

Figure 11b. Note the tracking is colour coded to match the nature of the charge cycle which 

reveals a clear, significant and repeating pattern throughout the cycle stages. This peak 

tracking is a viable option for the automation of battery readings and therefore suitable for 

use in a battery management system. 
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a) 

 

b) 

c) 

Figure 11: Measured ultrasonic amplitude intensity map as a battery is charged and discharged, each waveform (A-scan) is 

stacked (two sample signals shown, discharged state in red and charged state in green). The absolute values are shown in 

this plot for clearer viewing. The black solid lines show the area bounded by the user with a zoom of this in b) the peak is 

tracked throughout the test, each point is colour coded to identify the part of the charge cycle (green = charge, red = 

discharge, grey = rest), in c) The battery capacity is plotted over a colour coded background following the same colour 

coding. The black dashed vertical lines show the position of the two sample waveforms. 

 

Some studies take measurements directly from the waveform and select a peak from which to 

take readings [11], [16], [17], most commonly, the largest peak found in the response. Popp et al. 

use a Schmitt-trigger method that captures a signal peak over a threshold and turns these into 

digital rectangular signals from which to measure [7] and signal power has been used as a 

means of capturing and quantifying ultrasound signal response [6]. Others have taken a 

readings from the peak of a signal envelope [14], [15]. This can often, but not always, correlate 

with battery state of charge, however obtaining an envelope that remains consistently strong 

across charge cycling is difficult to guarantee whereas selecting a peak directly from the 

signal is always possible. The problem with opting to measure from a single peak is being 

able to correctly identify the peak that carry battery charge insights. The following section 

compare the results of various measuring options to help identify a robust signal analysis 

strategy. 

 

4.1. Waveform peak and peak envelope 

 

Comparisons between measuring directly from a single peak and a signal envelope are shown 

in Figure 12, plots (c) and (e) relate the single peak selected in plot (a), and plots (d) and (f) 

relate to the envelope peak from the same signal in plot (b). 
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Peak Envelope 

  
a) b) 

  
c) d) 

  
e) f) 

Figure 12: a) A single peak directly taken from the ultrasound response is selected and tracked throughout the test [step 

B in the flow chart Figure 7] b) the peak of an envelope can also be tracked in the same manner c) the graphical display 

of the peak evolution throughout the test [step C in the flow chart] d) graphical display for the envelope tracking e) 

separated correlation plots for charge/discharge/rest for the single peak for both signal amplitude (measured in 

arbitrary units) and time of flight [point D in flowchart]  f) correlation plots for the envelope. 

 

Peak tracking using either an individual peak or the envelope peak provides ability to take 

amplitude and time of flight measurements as the battery is charge cycled. The peak tracking 

is colour coded (red: charge, green: discharge, grey: rest) to highlight the battery charge 

status in Figure 12c and d. The change in time of flight and amplitude is recorded from this 

peak tracking throughout the duration of the charge cycling test, taken at the maximum point 

of the peak. Figure 12e and f, show correlation plots for the amplitude (top row) and time of 

flight (bottom row) measurements taken during charge cycling, the plots are also colour 

coded to show the different charge states according to the same scheme, with shaded points 

identifying data by its particular cycle. 
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a) b) 

Figure 13: a) Using a selected peak directly from a waveform to monitor battery state of charge and b) using the peak of 

a waveform envelope [point A on flow chart]. 

 

The accuracy of each method typically depends on the signal and it is not obviously 

predictable which method will yield the best correlation. An envelope can help with signal to 

noise ratio and can perform some data smoothing effects. It can however combine the effects 

of the inaccurate parts of signal reducing the overall correlation with battery charge. In the 

composite plots in Figure 13, showing the same single peak and envelope analysis as in 

Figure 12, the signal envelope performs well and provides a slightly stronger R2 value 

(~0.95) with battery state of charge than the single peak (~0.88).  

 

In addition to the envelope not always providing the strongest charge correlations however, 

importantly, reliance of taking measurements from envelopes is problematic. As shown in the 

modelling, in some cases an envelope may be difficult to capture.  

 

  
a) b) 

Figure 14: a) smoothed charging data b) smoothed discharging data 

 

A note on the accuracy of the data. As this study is concerned with the quality of different 

peaks within the signal rather the quality of signal itself, raw captured data is shown 

throughout. There are several means of improving data accuracy however, denoising can be 

performed in data processing, the data in Figure 14 has been denoised using a sym4 wavelet 

twice, firstly the selected peak is smoothed to aid peak tracking accuracy, following from this 

the peak tracking itself is denoised, along both the ToF and amplitude axes. The results are 

overlaid, this simple measure both improves the precision of the relationship between US and 
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SoC and gives some further context to results, an isolated cycle becomes clear, likely due to a 

temperature change.  

 

Data acquisition improvements can also be made, such as increasing the capture rate from 

20Hz or increasing the pulse voltage to improve signal to noise ratio. There are several 

alternative methods of arranging sensors as discussed previously and whilst many of these 

studies aim to improve signal accuracy with respect to battery information, this study is 

focused on the qualities within the signal itself. 

 

4.2.  Battery voltage or battery capacity to define state of charge 

 

Most current literature uses voltage as the measure of battery state of charge for ultrasound 

comparisons, with a few exceptions that used battery capacity [7], [15], [18]. This analysis will 

compare both. Figure 15 shows that ultrasound has a much stronger relationship with the 

battery capacity than with the voltage. Two points are important to note; firstly, tracking 

battery capacity with ultrasound gives a much stronger R2 value (~0.89) average compared to 

(~0.64) for voltage, this is evident in the voltage plot where a clear linear relationship is 

absent. Secondly, the changes for charge and discharge occur in a similar fashion when 

tracking capacity with ultrasound. The changes occur at different voltage ranges, this lack of 

similarity between charge and discharge would make taking readings much more difficult. 

 

  
a) b) 

Figure 15: a) Using battery capacity as the measure of battery state of charge and b) using battery voltage as a measure 

of state of charge. [These plots are from point A of the analysis flow chart]. Note that these results were taken from a 

quick charge, as a result the voltage jumped straight to just over 3.8V when charging after resting and just under 3.8V 

when discharging after resting, notice the reduced capacity as a results (1.3Ah) 

 

4.3. Measurement from signal amplitude or time of flight 

 

As previously mentioned, published studies used signal amplitude and time of flight shift to 

monitor ultrasound changes for battery measuring purposes. In Figure 16a, a clear linear 

relationship between battery capacity and ultrasound time of flight is visible. The same 

relationship is much less clear for peak amplitude (Figure 16b), especially for the charge part 

of the cycle which has a R2 value of only 0.01, being non-linear and complicated to measure.  

 

Figure 16c shows the correlations for capacity and temperature against change in ToF and 

signal amplitude across the whole signal, with the selected peak measured in Figure 16a and 

Figure 16b highlighted in grey. Notice that the capacity/ToF (blue circles) and 



18 

 

temperature/amplitude (orange squares) correlations are higher, whilst the capacity/amplitude 

(blue squares) and temperature/ToF (orange circles) have little to no correlation anywhere in 

the signal. The highest correlation in this test is the capacity/ToF at the selected peak. Signal 

peak amplitude can occasionally provide good capacity measurements but being sensitive to 

temperature changes makes it an erratic and unreliable indicator of battery charge, this is 

discussed in section 5.2. 

 

   
a) b) c) 

Figure 16: Composite plots with linear fit details, a) time of flight from a single peak measurement and b) signal 

amplitude from the same single peak measurement. c) the location of the peak displayed in a) and b) with measurement 

correlations from across the signal for comparison, averaged using next peak data for clearer viewing. 

 

4.4. Difficulties obtaining signal envelope 

 

As mentioned previously, in some experiments, it is difficult to identify suitable envelopes 

from which to take readings (example shown in Figure 17a). From the model in Figure 6 it 

was shown that, apart from being an instrumentation issue, flattened signal could result from 

the specific nature of the layered properties in the battery, this could typically be caused by 

some significant interface boundary along the wave path rendering the incident wave unable 

to return back to the sensor with clarity (e.g. casing, gas build-up, current collector, large 

layer acoustic mismatch). It is important to note that this is not a signal to noise issue and 

increasing the pulse voltage will merely increase the whole signal, including reflections. 

The linear fit plots in Figure 17b and c show the problems when deciding from which part of 

the signal measurements should be taken. Peak #1 is taken where there is a large defined peak 

available having decent signal to noise ratio and at around 6µs should contain some of the 

first reflections when comparing with the model and other experimental results. Peak #2 is 

from much later in the waveform that has suffered significant attenuation with a poorly 

defined peak. However, peak #1 shows little relationship with the battery capacity, whereas 

peak #2 has a good correlation. Whilst the R2 values are not as strong as in other tests, it 

remains a valuable exercise to identify a suitable method that would maximise the battery 

information should a signal such as this be obtained.  

 

Note this test contained a constant voltage section in the charge cycling, this is denoted in the 

peak tracking using a blue line. The blue line shows that the ultrasound peak continues to 

develop along a similar trajectory to the green (charge) line, until the grey (rest) period is 

reached. The linear fit for this data confirms the relationship is an extension of the charge 

data albeit at a different rate which would be expected as the current gradually decreases 

approaching capacity. 
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a) 

 

  
b) c) 

Figure 17: a) Experimental test signal response. Not suitable for taking an envelope, two peaks tracked for battery state of 

charge accuracy. Linear fit for peak #1 shown in b) and linear fit for peak #2 shown in c) 

 

4.5. Temperature effect on ultrasound signal 

 

The speed of sound of materials varies with temperature and since battery temperature 

fluctuates during charge cycling it needs to be considered. In Figure 18a, battery temperature 

is synchronised with the charge cycling data and the clear repeated effect of charge on cell 

temperature is evident. The laboratory ambient temperature is also seen to have an effect 

altering the underline baseline temperature. 

 

Figure 18b shows the correlation between change in ultrasound ToF for each individual peak 

in the signal response and battery capacity/battery surface temperature. This clearly shows a 

greater relationship between US and SoC when compared to US and temperature. There is a 

very strong relationship at 6-9µs with SoC whilst the temperature shows no relationship until 

a switch in correlation occurs late in the signal. 

 

  
a) b) 

Figure 18: a) Battery surface temperature variation recorded during testing. The coloured bars behind the plot denote 

the stage of charge cycling (charge/rest/discharge/rest). The red line shows the daily cycle in which a maximum and 
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minimum ambient temperature affects the base line. b) Ultrasound/battery capacity and ultrasound/battery surface 

temperature correlations shown across the length of an ultrasound response. [step H on flow chart] 

 

Changes in global wave speeds are built into the model to simulate cell temperature changes, 

two examples are shown in Figure 19. In model a) the temperature gain is set to 5°C during 

cycling, this occurs both as a combination of ambient cycling temperature and in accordance 

with the charge cycle. This shows similar results to the experimental data, the correlation is 

strongest with battery charge. In model b) the temperature gain is increased to 25°C and this 

results in a reduction in battery charge/US correlation and an increase in temperature/US 

correlation. This suggests that significant temperature increases, either ambient or internally 

driven, will limit the charge measurement capability of the ultrasound signal.  

 

A strong signal with good cell penetration contains good battery density change and therefore 

battery charge data. Locating this region when taking measurements is vital, parts where the 

incident wave is traveling through the cell and is away from the sensor edge (for example 0-

4µs and 10-12µs in the waveform development plot in Figure 7a) show the signal to have 

weak correlation with battery charge. This is shown in both the experimental data in Figure 

18b and in the model data in Figure 19a. In both cases, where charge correlations diminish, 

temperature correlations increase. Here, signal peaks contain accumulations of shallow wave 

penetrations largely influenced by the casing materials where changes in wave speed can only 

be attributed to temperature changes.  

 

  
a) b) 

Figure 19: Battery capacity/temperature – ultrasound correlation plots a) 5°C gain during charge cycling and b) 25°C 

gain during cycling. The model increases the global wave speed 1.0m/s for each °C increase. 

 

5. Adaptive peak tracking for battery cell variation 

5.1. Cross wavelet transform 

 

In the current literature, analysis has almost exclusively focused on ultrasound signals in the 

time domain, with little regarding the effects of battery changes on the signal in the frequency 

domain. Gold et al, compare wavelengths of the second compressional wave to the charge of 

the battery which showed wavelength and amplitude were a function of charge [15]. Apart 

from this all studies focus on the signal power (the area under the curve of the signal), peak 

amplitude, or peak time of flight change.  
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Various methods are tried here to identify if information from the frequency domain can aid 

in determining parts of the waveform that have strongest correlations with change in battery 

capacity. A fast Fourier transform (FFT) will provide signal information in the frequency 

domain at the expense of losing all time-based information. The short-time Fourier transform 

(STFT) technique is a time-frequency analysis and can help identify not only changes in 

frequency but also where in the time domain these changes occur. This method has been 

previously used in attempts to detect acoustic echoes embedded in a signal response through 

layered bodies [19]. The STFT method suffers from a necessary comprise between good 

time/frequency resolution. A method that somewhat eliminates this time/frequency accuracy 

trade-off is a continuous wavelet transform (CWT) which has also been used to detect echoes 

in multilayered structures [20]. 

 

Experimental data time/frequency plots transformed using a CWT are shown in Figure 20a 

(charged) and Figure 20b (discharged). These plots show the amplitude across the frequency 

spectrum (y-axis) along the waveform duration (x-axis), with yellow being high amplitude 

and blue being low amplitude. Activity is observed across a broad range of frequencies, with 

concentration around a 2MHz frequency band by around 6µs before attenuating by 

approximately 10µs, this region would be expected to be the location of the first reflections. 

The greyed regions denote the cone of influence (COI), a feature of wavelet transforms that 

causes lower frequency bands to have increased edge effects and must be disregarded. 

 

The battery ultrasound measurements rely on change in signal (ToF/amplitude) rather than an 

absolute measurement value (i.e. variation in ultrasonic response are observed as a battery 

feature, such as charge changes). As such, a useful tool to use to monitor these changes in the 

time/frequency domain is the cross wavelet transform (XWT). This method was developed 

by Grinsted et el, originally to monitor the Arctic oscillation being a key aspect of climate 

variance in the Northern Hemisphere [21], but can be applied to any two sets of time series 

data. A XWT plot is shown in Figure 20c, regions in the time/frequency domain that share 

high common signal power properties are denoted as high intensity (yellow), the arrows show 

the phase changes with right arrows showing in-phase, left arrows anti-phase, down arrows 

charge lead discharged by 90°. The black border surrounding certain parts of the plots 

denoted regions with 5% significance against noise, a feature which is not used in this 

analysis. The COI is again rendered on the plot showing regions at lower frequencies where 

insights are to be disregarded.  
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a) 

 
b) c) 

Figure 20: a) Continuous wavelet transform (CWT) for the signal when the battery is charged, and b) discharged, c) cross 

wavelet transform (XWT) showing frequency bands where both signals have strong similarities in amplitude shown in the 

higher (yellow) intensity regions, arrows mark the phase shift between the signals [arrow right: in phase, left: anti-phase, 

down: charged leading discharged by 90°] [21] 

 

From the XWT shown in Figure 20c, a parameter for determining the most accurate part of 

the signal from which to take battery charge readings can be obtained. It can be safely 

assumed that the pulsing frequency is a known value and as such that frequency can be 

isolated (shown by the dotted white line at 2MHz in Figure 20c). Taking the intensity value 

along this line gives the XWT amplitude plot shown in Figure 21a. This is normalised 

between 0 and 1 and has a large peak at the beginning of the signal at around 3µs. This peak 

corresponds to the incident pulse and would be of no practical use. There is however a second 

peak between 6 and 7µs. The phase shift value in Figure 21b captures the phase change 

which is also normalised between 0 and 1. Here it can be seen that there is little or no shift in 

phase until around 6µs and then there are fluctuations across the selected frequency after this, 

growing in intensity and erraticism. In Figure 21c, there is an arbitrary, exponential function, 

providing weighting towards later parts of the signal. The weighting is constructed based on 

the assumption that later peaks in the signal have travelled further, will include more 

reflections and therefore hold greater battery insights. This additional parameter also serves 

the purpose of eliminating or deemphasizing the very early parts of the signal (potentially 

shallow signal depth penetration, dominated by early layer echoes and often prone to 

transducer ringdown effects). Finally, in Figure 21d, the three values are multiplied to 

provide a signal importance variable. The variable can guide and potentially automate, based 

on comparing two signal captures, where to measure peaks to optimise the accuracy of 

battery charge information. It is important to note that this method works from any two, non-

identical, wave captures taken whilst charge cycling. In Figure 21a-d the dashed lines 

represent the arbitrary partial charge points marked in grey in Figure 21e. Although the 

intensity of the signal importance factor is lower, the identification of the most important 

section of the signal remains clear and accurate. 
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a) 

 
e) 

b) 

c) 

d) 

 
Figure 21: Signal importance factor calculation [point E on the flow chart]. Solid lines represent reference taken at charge 

extremes (blue markers in plot e), dashed lines from reference taken at arbitrary partial charge points (grey markers in 

plot e). 

 

5.2.  Smart peak selection 

 

Using the XWT to define the signal importance factor enables identification of waveform 

regions that maximise two conditions; (i) good signal amplitude when at both extremes (or 

any two non-identical parts) of the charge cycle and (ii) have significant phase shift activity. 

 

In Figure 22 the smart peak selection region is shown as peaks on the black line (signal 

importance factor); this shows a clear maximum between 6 and 8µs. By plotting the time of 

flight/battery charge correlations (blue line) and the signal amplitude/battery charge 

correlations (pink line) two points become quite clear. Firstly, the smart peak selection region 

identifies the waveform region that best correlates with battery charge data and the variation 

for both charged and discharged states is low (narrow band on the shaded region). Secondly, 

it confirms that time of flight, rather than amplitude, is a more stable measure to gain battery 

SoC insights. 
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Figure 22: Smart peak selection method of locating best region for taking battery measurements [step F on flow chart]. 

Signal peak amplitude-ToF/battery SoC correlation across the waveform. 

 

Figure 23 shows an ultrasound response waveform marked up with all the strategies to 

suggest from which region to extract measurements. The signal itself is drawn with the 

regions suggested as containing best battery correlations in a thick black line, the signal is 

faint and thin elsewhere. Each peak selected for analysis has a marker, the size of which 

represent the strength of correlation with battery state of charge. The deepness of red is used 

to indicate the discrepancies in correlations between charge and discharge parts of the cycle. 

This smart peak selection should show large, deep red markers on the peaks of the signal 

shown drawn with thick black lines. A useful feature of this method of peak selection is that 

as the XWT amplitude variable detects regions where both signals share high common 

power, disappearing peaks of interest are automatically filtered out. This helps to guard 

automatically against unstable recordings. 

 

The point on the peak at around 7µs is large and deep red. This can be seen in Figure 22, 

where the ToF/battery capacity R2 values during both charging and discharging are 0.86 and 

0.92 respectively. The point at the peak at around  11µs is small and almost white, this can be 

seen in Figure 22 where the ToF/battery capacity R2 values whilst charging and discharging 

are 0.03 and 0.31 respectively and would be unsuitable for battery monitoring purposes. 

 

 
Figure 23: Smart peak selection waveform mark up. The ultrasound response waveform is displayed with thick black lines 

to denote regions of signal that are favoured by the smart peak selection method. The size of the point at each peak 

represent the strength of correlation with battery state of charge (large points are best) and the deepness of the red in 

those points shows the variance between charge and discharge parts of the cycle (deep red is best). [step G on the flow 

chart] 

 

Many signals produce a noticeable collection of peaks that represent the first reflection waves 

that have travelled there and back through the battery. This is an intuitive place to take 

measurements from and are appropriate to capture signal envelopes, however some signal 

responses do not provide this. The signals in Figure 24 are taken from batteries of the same 

specification and manufacture as previous using identical test equipment and methodology. 

The signal in Figure 24a is difficult to envelope and gain a defined peak from which to take 

measurements. However, here are a collection of peaks that would appear suitable for taking 
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charge measurements. The signal drawn in thick black between 13 and 15µs contains two or 

three peaks that have strong correlation and low charge/discharge variance. 

 

The signal in Figure 24b is lower quality and no obvious peaks are evident with a good signal 

to noise ratio as good candidates for taking charge measurements. The smart peak method in 

this case highlights very early (3 to 5µs) signal and these peaks provide poor battery 

information (the sound wave has not travelled through the cell layers and there appears to 

some transducer ring down). The second, shorter group of smart selected peaks from 11 to 

12µs reveal the region that contains peaks containing best battery charge correlations. Recall 

from the modelling data, that early signal is usually dominated by casing and suffers from 

lack of cell penetration and should be avoided, the second shallow peak would be preferable. 

 

  
a) b) 

Figure 24: a) Signal that is difficult to provide a consistent peak of an envelope, smart peak selection shows that peaks 

drawn in thick black lines have the strongest battery charge correlations and are most consistent across 

charge/discharge parts of the cycle. b) This signal has little scope for enveloping, no obvious peak as a candidate for 

taking measurements, first smart peak region inaccurate, second more shallow region successfully locates peaks with 

best battery charge correlations. 

 

6. Discussion – Practical implementation 

 

Ultrasound measurements would likely be used in conjunction with traditional battery 

measuring methods, such as voltage readings, to enhance the accuracy of charge estimations. 

The smart peak selection method can help optimise and protect ultrasonic battery 

measurements, particularly where the signal response is weak or contains unexpected 

features. Causes of these problems could include variations in battery geometries and sensor 

instrumentation. 

 

This method of battery monitoring is a practical means of gaining true insights into the 

internal changes occurring during battery charge cycling. Although this work utilised 

commercial contact probes to gain ultrasound readings, much smaller instrumentation 

methods are possible. For example, discs or cut piezoelectrical plates, low profile and size 

order of a few mm’s requiring very thin wiring. To ensure responses with good cell 

penetration additional factors such as adhesion and damping must be considered, this would 

still allow for a very small and cheap instrumentation set up. Results can be obtained using a 

single sensor, keeping materials to the minimum required for this method and only one face 

needs to be accessible. Pulsing/receiving circuits are also small and inexpensive, of the order 

of £10s, and with the application of pulse sequencing tables, could control the pulse, signal 
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capture and data processing of all connected battery cells. All the experimental data analysis 

performed in this study, including peak tracking and smart peak selection requires minimal 

processing time and power and is suitable for live monitoring purposes. Any improvements in 

the accuracy of ultrasound data acquisition would improve the accuracy of methods covered 

in this study. 

7. Conclusion 

 

This study examines the reflection of an ultrasound pulse travelling through layers in a 

battery cell, and how that signal responds to battery state of charge changes. Reflections 

occur at each interface within the battery structure and the composite reflected signal consists 

of many peaks. Early peaks tend to be larger, but the responsible wave has not travelled 

through all the battery and so contains less information about the structural changes (such as 

the change in properties caused by lithium uptake during charging). 

 

A model was created based on the wave equation PDE. From this model it is revealed how 

small changes to the properties of the battery layers can have significant effects on the 

characteristics of the ultrasound response signal. Dimensional, density or ordering changes 

from battery to battery can cause the signal to vary in each case, this can impair the intensity 

of wave changes as a function of state of charge and could render envelopes difficult to 

obtain should that be the method of measurement. 

 

From analysis of experimental data, it was shown that battery ultrasound response has a much 

stronger correlation with battery capacity than with battery voltage. In fact, the relationship 

between ultrasound and capacity is linear which confirms the ultrasound is detecting density 

changes during cycling as lithium passes between anode and cathode. Some studies opt to 

take readings from a signal envelope, this study finds that this method does not provide 

consistent advantages over a single peak from the signal and as an envelope is not always 

guaranteed to be available, individual peak selection is the safest option. 

 

Signal peak amplitude and change in time of flight do not alter with SoC in the same manner, 

it is shown that time of flight has stable correlations with battery charging whereas although 

some peaks have good amplitude/charge correlations, this is much more erratic across the 

signal. For this reason, time of flight is regarded as the best method for gaining a single 

measurement for battery state of charge. This is confirmed in tests including constant voltage 

sections of charge cycling. The time of flight will continue to change along the same path as 

the constant current charge section. However, the rate of change is altered, reflecting the rate 

of change in capacity level. 

 

Change in temperature is a factor that affects wave speed through any medium, along with 

changes in density and elasticity. To assess the effect of temperature, a thermocouple was 

attached to the battery during cycling, it was found that both battery activity and the ambient 

temperature of the laboratory caused changes in battery surface temperature by ±7°C and this 

has little effect on the stability of the time of flight readings. From the model however, it was 

shown that should the temperature effects be large enough this could prevent the capability of 

taking reliable and accurate ultrasound/SoC readings. 

 

Selecting the correct peak from which to take time of flight measurements is not trivial and 

the obvious and intuitive peak may not provide any useful battery information. A method 

using the cross wavelet transform to gain amplitude and phase shift activity along the 
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transducer/pulsing frequency band across the signal, can provide a 'smart peak' selection 

region that has the capability to automate the peak that will provide the most accurate battery 

charge measurements. This method relies on two reference signals from non-identical parts of 

the charge cycle to be effective. 
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