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Received / Accepted

ABSTRACT

We consider fluting oscillations in a thin straight expanding magnetic flux tube in the presence of a background flow. The tube is
divided into a core region that is wrapped in a thin transitional region, where the damping takes place. The method of multiple scales
is used for the derivation of the system of governing equations. This system is applicable to study both standing and propagating
waves. Furthermore, the system of equations is obtained for magnetic tubes with a sharp boundary. An adiabatic invariant is derived
using the Wentzel-Kramer-Brillouin (WKB) method for a magnetic flux tube with slowly varying density, and the theoretical results
are then used to investigate the effect of cooling on flute oscillations of a curved flux tube semi-circlular in shape. We have analysed
numerically the dependencies of the dimensionless amplitude for a range of values of the expansion factor and the ratio of internal to
external plasma densities at an initial time. We find that the amplitude increases due to cooling and is higher for a higher expansion
factor. Higher values of the wave number lead to localisation of the oscillation closer to the boundary. Finally, we show that the higher
the value of the ratio of internal to external plasma densities, the higher the amplification of oscillation due to cooling. Therefore, we
conclude that the wave number, density ratio, and the variation of tube expansion are all relevant parameters in the cooling process of
an oscillating flux tube.
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1. Introduction

The presence of a complex magnetic field, which makes the
plasma highly structured and dynamic, dominates the dynamics
in a wide range of regions of the solar atmosphere. Improve-
ments in solar telescope technology over the past two decades
have enabled detections of a myriad of periodic perturbations
in a wide range of magnetic structures (see, e.g., Banerjee et al.
2007, and Tomczyk et al. 2007), that are often described in terms
of magnetohydrodynamic (MHD) waves. MHD wave theory is
a powerful tool to be exploited for plasma diagnostics of these
structures, known as solar magneto-seismology (SMS; see re-
views by Erdélyi 2006a,b, Andries et al. 2009, and Ruderman
& Erdélyi 2009). SMS combines the measured characteristics of
waves with theoretical MHD modelling, and makes it possible
to determine waveguide parameters that are hard to measure di-
rectly, like the coronal magnetic field strength (Nakariakov &
Ofman 2001, Erdélyi & Taroyan 2008, and Kuridze et al. 2019).

One of the first approaches used for modelling solar atmo-
spheric waveguides was based on representing the magnetic flux
as a straight homogeneous magnetic cylinder (see, e.g., Ryutov
& Ryutova 1976, and Edwin & Roberts 1983). Since then, more
complex and more realistic models have been developed (for re-
cent reviews, see, e.g., Nakariakov & Verwichte 2005, Ruderman
& Erdélyi 2009 and Nakariakov et al. 2016).

It is customary to categorise the wave modes in a magnetic
flux tube depending on the azimuthal wavenumber m (see, e.g.,
Edwin & Roberts 1983), where m = 0 corresponds to sausage

waves, modes with m = 1 are the kink modes, and modes with
m ≥ 2 are called the fluting modes. The properties of sausage
and kink modes have been studied in a significant number of ar-
ticles; on the contrary, fluting modes are not getting sufficient
attention which can probably be explained by the absence of ob-
servations associated with fluting modes. A reason for the lack
of observed detection of these modes may be related to the need
of high spatial and temporal resolution, where the former is not
that easy to achieve.

Nevertheless, there is a great interest in investigating the flut-
ing modes with a theoretical approach as analysing these modes
may provide further insights into the sub-resolution structure of
a waveguide, and into their high potentials contributing to heat-
ing. An initial insight, popular today, into the properties of the
oscillations of the flux tube with fluting modes is given by Ed-
win & Roberts (1983); a homogeneous flux tube was studied,
and it was shown how the sausage, kink, and fluting modes be-
have under solar atmospheric circumstances. However, Ruder-
man et al. (2017), among others, has theoretically revealed for
the kink modes that the dispersion is rather different for a non-
homogeneous flux tube with plasma flows even in the thin tube
and thin boundary approximation. Moreover, numerical experi-
ments and contemporary theory suggest that the kink and flut-
ing waves could couple in a non-linear fashion (see, e.g., Rud-
erman et al. 2010, Ruderman 2017, and Terradas et al. 2018).
Another interesting aspect is that high azimuthal wavenumbers
could be determinant in the cause of the Kelvin-Helmholtz in-
stability (see, e.g., Terradas et al. 2008, Antolin et al. 2014, and-
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Fig. 1. Equilibrium configuration of the straight expanding two-layered
magnetic flux tube in the presence of a background flow.

Magyar & Van Doorsselaere 2016). As a result, additional inves-
tigation of the behaviour of the fluting oscillations could comple-
ment the analysis of the sausage and kink modes. Examples of
the latter are Pascoe et al. (2016), Pascoe et al. (2017), Nelson
et al. (2019), and Shukhobodskaia et al. (2021), among others,
where significant development has lead to a better understand-
ing of kink oscillations of coronal loops, although contemporary
theory is still unable to perfectly match the observed oscillation
patterns.

In this work, we further extend the study of oscillations of
coronal loops. Coronal loops with elliptical cross-sections and
a constant density profile have been studied previously in both
cold (Ruderman 2003), and finite-β (Erdélyi & Morton 2009)
plasmas. Fluting oscillation, central to the current paper, in the
absence of background flows and magnetic flux tube expansion
was studied comprehensively by Soler (2017). In our work we
now consider fluting modes in expanding cylindrical flux tubes
in the presence of background bulk flows and a variable density.

The paper is organised as follows. Section 2 contains the for-
mulation of the problem and recalls the linearised MHD equa-
tion for the model that is studied here. In Section 3 we derive
the governing equation for fluting oscillations in the thin tube
approximation in the case of the absence of transitional layer be-
tween the tube interior and exterior. In Section 4 we conduct a
general analysis of the eigenvalue problem describing the flut-
ing perturbations in the presence of a stationary flow. Section 5
consists of the derivation of an adiabatic invariant for the flut-
ing oscillations of an expanding magnetic flux tube with slowly
varying density. An analytical and a numerical study of the effect
of cooling of the coronal magnetic loops, associated with the in-
variant, are carried out. Finally, Section 5 contains the summary
of the obtained results and the main conclusions of the work.

2. Proposed model

In this article, we consider a coronal loop as a thin straight ex-
panding magnetic flux tube with circular cross-section R(z). Fig-
ure 1 shows the sketch of the equilibrium configuration of the

proposed model. In what follows, the cylindrical coordinates r,
φ, and z are used. The density inside the tube ρi(t, r, z) varies
with time along and across the magnetic flux tube; the density
in the surrounding plasma ρe(t, r, z) and in the transitional layer
ρt(t, r, z) are considered and are given by

ρ =



ρi(t, r, z), 0 ≤ r ≤ R(z)(1 − l/2),

ρt(t, r, z), R(z)(1 − l/2) ≤ r ≤ R(z)(1 + l/2),

ρe(t, r, z), r ≥ R(z)(1 + l/2).

(1)

Here l is a constant determining the thickness of the transitional
layer sandwiched between the loops’s interior and exterior. It is
assumed that ρ(t, r, z) is a continuous function, and ρt(t, r, z) is
a monotonically decreasing function of r. The reason why the
tube is split into core and transitional layers is because we want
to take into account damping due to resonance absorption. The
time-independent non-twisted equilibrium magnetic field is B =

(Br(r, z), 0, Bz(r, z)). Therefore, the divergence-free condition ∇ ·
B = 0 for the magnetic field can be written as

1

r

∂(rBr)

∂r
+
∂Bz

∂z
= 0. (2)

It follows from this equation that B can be expressed in terms of
the magnetic flux function ψ as

Br = −
1

r

∂ψ

∂z
, Bz =

1

r

∂ψ

∂r
. (3)

In addition, we assume that the boundaries of the transitional
layer are magnetic surfaces. Therefore, equations r = R(z)(1 −
l/2) and r = R(z)(1 + l/2) can be written as ψ = ψi = const and
ψ = ψe = const, respectively, where indices i and e refer to inter-
nal and external values. In what follows we use the cold plasma
approximation and the thin tube thin boundary (TTTB) approxi-
mation. Therefore, it follows from the equilibrium configuration
that the magnetic field must be potential. We have ∇ × B = 0 as
a result, which can be rewritten in polar coordinates as

∂Br

∂z
=
∂Bz

∂r
. (4)

Substituting Equation (3) into Equation (4), we express the latter
equation in terms of magnetic flux function ψ as

r
∂

∂r

(
1

r

∂ψ

∂r

)
+
∂2ψ

∂z2
= 0. (5)

There is also a time-dependent background flow U =

(Ur(t, r, z), 0,Uz(t, r, z)) present. It is assumed that the back-
ground flow velocity is parallel to the equilibrium magnetic field,
U ‖ B. The plasma density and velocity are related by the mass
conservation equation

∂ρ

∂t
+

1

r

∂(rρUr)

∂r
+
∂(ρUz)

∂z
= 0. (6)

The perturbations of the magnetic field and plasma velocity, b =

(br, bφ, bz) and u = (ur, uφ, uz), are described by the linearised
MHD equations in the cold plasma approximation,

∂u

∂t
+ (U · ∇)u + (u · ∇)U =

1

µ0ρ
(∇ × b) × B, (7)

∂b

∂t
= ∇ × (u × B + U × b), (8)

∇ · b = 0, (9)

where µ0 is the magnetic permeability of free space.
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3. Derivation of governing equation

We first introduce the plasma displacement ξ = x − x0, where
x(t, a) is the trajectory of the plasma element and a is the initial
position. The components perpendicular to magnetic field lines
of the displacement and velocity are given by

ξ⊥ = ξrb0z − ξzb0r u⊥ = urb0z − uzb0r. (10)

We assume that Bz > 0. Then, since the magnetic flux tube is
thin, we can approximate ψ by its first terms of a Taylor’s expan-
sion. In addition, we consider the tube axis as the magnetic field
line ψ = const. at r = 0. Therefore, without loss of generality,
we assume that ψ = 0 at r = 0, and we have from Equation (3)
that

ψ =
1

2
r2h(z). (11)

Ruderman et al. (2017) showed that

h(z)R2(z) = C = const. (12)

It is easy to see that the analysis of Ruderman et al. (2017) is
still valid up to Equation (57) therein. Thus, we use Equations
(53)–(57) of Ruderman et al. (2017) and take perturbations pro-
portional to eim̃φ, where m̃ is the azimuthal wavenumber, to ob-
tain

O(ǫ2) = rB2 ∂w

∂ψ
+

im̃B2ξφ

r
+ Bz

w

r
, (13)

ũ⊥ =
1

B

∂w

∂T
+

Uz

rB

∂rw

∂Z
, (14)

ũφ =
∂ξφ

∂T
+ rUz

∂

∂Z

(ξφ
r

)
, (15)

∂ũ⊥
∂T
+ rUBz

∂

∂Z

(
ũ⊥
rB

)
=

rBBz

µoρ

∂

∂Z

(
Bz

r2B2

∂rw

∂Z

)
− rB3

ρ

∂Q

∂ψ
+O(ǫ2),

(16)

∂ũφ

∂T
+

Uz

r

∂rũφ

∂Z
=

Bz

µ0ρr

∂

∂Z

[
r2Bz

∂

∂Z

(ξφ
r

)]
− im̃B2Q

ρr
. (17)

Now, eliminating ξφ, ũ⊥, and ũφ, and only keeping the leading
terms with respect to ǫ, the system of equations with the respect
to Q and w transforms to

Q =
1

µ0m̃2B

∂

∂Z

(
r2B

∂2W

∂ψ∂Z

)

− ρ

m̃2B2

(
r2 ∂

∂T
+ U

∂

∂Z
r2

)(
∂2W

∂T∂ψ
+ U

∂2W

∂ψ∂Z

)
, (18)

(
∂

∂T
+ r2UB2 ∂

∂Z

1

r2B2

)(
∂W

∂T
+ U

∂W

∂Z

)

=
r2B3

µ0ρ

∂

∂Z

(
1

r2B

∂W

∂Z

)
− r2B4

ρ

∂Q

∂ψ
, (19)

where W = rw = Brξ⊥. Then, since ρ, B, and U are quantities
that are independent of r and thus of ψ, employing Equation (11)
we obtain

Q =
2ψ

m̃2h

∂

∂ψ

[
1

µ0

∂2W

∂Z2
− ρ

h2

(
∂

∂T
+hU

∂

∂Z

1

h

)(
∂W

∂T
+U

∂W

∂Z

)]
, (20)

(
∂

∂T
+ hU

∂

∂Z

1

h

)(
∂W

∂T
+ U

∂W

∂Z

)
=

h2

µ0ρ

∂2W

∂Z2
− 2ψh3

ρ

∂Q

∂ψ
. (21)

After differentiating Equation (21) with respect to ψ and employ-
ing Equation (20), we have

4ψ
∂

∂ψ

(
ψ
∂Q

∂ψ

)
− m̃2Q = 0. (22)

The solutions to Equation (22) must decay as ψ → ∞ and be
regular at ψ = 0. Therefore, as a result we have

Q =

{
Qi(T,Z)ψm̃/2, 0 ≤ ψ ≤ ψi,

Qe(T,Z)ψ−m̃/2, ψ ≥ ψe,
, (23)

where Qi and Qe are arbitrary functions. The internal and exter-
nal boundaries are respectively defined by the equations ψ = ψi

and ψ = ψe, where ψi and ψe are constants. Next, it follows from
Equations (11) and (12) that

ψi =
C

2

(
1 − l

2

)2

, ψe =
C

2

(
1 +

l

2

)2

. (24)

It follows from Equations (21) and (23) that in the core layer of

the magnetic flux tube W = ψm̃/2W̃(T,Z), where W̃(T,Z) is an
arbitrary function. Now, we substitute Equation (23) in Equation
(21) to obtain

(
∂

∂T
+ hUi

∂

∂Z

1

h

)(
∂Wi

∂T
+ Ui

∂Wi

∂Z

)
− h2

µ0ρi

∂2Wi

∂Z2
= −

m̃ψ
m̃/2

i
h3Qi

ρi

,

(25)

(
∂

∂T
+ hUe

∂

∂Z

1

h

)(
∂We

∂T
+Ue

∂We

∂Z

)
− h2

µ0ρe

∂2We

∂Z2
=

m̃h3Qe

ρeψ
m̃/2
e

, (26)

where Wi and We are calculated at ψ = ψi and ψ = ψe, respec-
tively. We now introduce the new variable

η =
1

R(z)
ξ⊥. (27)

In the case m̃ = 1, we note that ξ⊥ is independent of r; therefore,
the magnetic flux tube oscillates as a solid. In addition, Equa-
tions (25) and (26) reduce to the ones obtained by Ruderman
et al. (2017). We now introduce jumps to this new variable and
the magnetic pressure perturbation across the transitional layer:

δη = η
∣∣∣
ψ=ψe
− η

∣∣∣
ψ=ψi

, δP = P
∣∣∣
ψ=ψe
− P

∣∣∣
ψ=ψi

. (28)

We have the estimates δη = O(l), δP = O(l). Then, employing
Equation (23) we obtain

Wi = C(1 − l/2)η, We = C[(1 + l/2)η + δη],

ψ
m̃/2

i
h3Qi =

ǫ−2C

R2
P
∣∣∣
ψ=ψi

, ψ−m̃/2
e h3Qe =

ǫ−2C

R2
P
∣∣∣
ψ=ψe

.
(29)

Now, let us multiply Equation (25) by ρi, Equation (26) by ρe,
add the results, using Equations (12), (28), and (29), and return
to the original non-scaled independent variables, yielding

ρi

(
∂

∂t
+

Ui

R2

∂

∂z
R2

)(
∂η

∂t
+ Ui

∂η

∂z

)

+ ρe

(
∂

∂t
+

Ue

R2

∂

∂z
R2

)(
∂η

∂t
+ Ue

∂η

∂z

)
− 2B2

µ0

∂2η

∂z2
= L, (30)
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with

L = m̃δP

R2
+

B2

µ0

∂2δη

∂z2

− ρe

(
∂

∂t
+

Ue

R2

∂

∂z
R2

)(
∂

∂t
+ Ue

∂

∂z

)
(
lη

2
+ δη)

+ ρi

(
∂

∂t
+

Ui

R2

∂

∂z
R2

)(
∂

∂t
+ Ui

∂

∂z

)
lη

2
. (31)

For 0 ≤ ψ ≤ ψi we have
(
∂

∂t
+

Ui

R2

∂

∂z
R2

)(
∂η

∂t
+ Ui

∂η

∂z

)
− B2

µ0ρi

∂2η

∂z2
=

(
r̂

1 − l/2

)m̃−1 ((
∂

∂t
+

Ui

R2

∂

∂z
R2

)(
∂ηi

∂t
+ Ui

∂ηi

∂z

)
− B2

µ0ρi

∂2ηi

∂z2

)
, (32)

whereas for ψ ≥ ψe we have
(
∂

∂t
+

Ue

R2

∂

∂z
R2

)(
∂η

∂t
+ Ue

∂η

∂z

)
− B2

µ0ρe

∂2η

∂z2
=

(
1 + l/2

r̂

)m̃−1 ((
∂

∂t
+

Ue

R2

∂

∂z
R2

)(
∂ηe

∂t
+ Ue

∂ηe

∂z

)
− B2

µ0ρe

∂2ηe

∂z2

)
,

(33)

ξφ =
ir

m̃

∂rw

∂ψ
,

(34)

where r̂ = r/R(z) = (ψ/ψi)
1/2, ηi = η(ψi), and ηe = η(ψe). Equa-

tions (30) – (33) govern oscillations of the magnetic flux tube for
m̃ > 0 in the absence of a transitional layer (i.e. l = 0). This sys-
tem is valid both for standing waves and propagating waves. In
the case l , 0 the system is not closed, and the jumps across the
transitional layer δη and δP should be determined to close the
governing system. We should also note that, in the case m̃ = 1,
Equation (32) is fulfilled identically since η is independent of the
r-component. In this case the above system of governing equa-
tion coincides with that obtained by Ruderman et al. 2017; the
detailed investigation carried out is available in Shukhobodskiy
& Ruderman (2018), Shukhobodskiy et al. (2018), Ruderman
et al. (2019), and Ruderman & Petrukhin (2019), among others.

3.1. Fluting modes in the absence of transitional layer

We assume that the magnetic tube has a sharp boundary, mean-
ing that l = 0. Since the transitional layer is absent in this equi-
librium, we use Equation (30) with the right-hand side equal to
0. Hence, we rewrite Equation (30) as

ρi

(
∂

∂t
+

Ui

R2

∂

∂z
R2

)(
∂η

∂t
+ Ui

∂η

∂z

)
+

ρe

(
∂

∂t
+

Ue

R2

∂

∂z
R2

)(
∂η

∂t
+ Ue

∂η

∂z

)
− 2B2

µ0

∂2η

∂z2
= 0. (35)

Using Equation (32), we reduce it to
(
∂

∂t
+

U

R2

∂

∂z
R2

)(
∂η

∂t
+ U

∂η

∂z

)
− B2

µ0ρ

∂2η

∂z2
=

= r̂m̃−1

((
∂

∂t
+

Ui

R2

∂

∂z
R2

)(
∂ηi

∂t
+ Ui

∂ηi

∂z

)
− B2

µ0ρi

∂2ηi

∂z2

)
. (36)

These equations are governing for fluting oscillations and con-
tain general information regarding the system in the absence of
transitional layer. Now we employ these equations in order to
facilitate the analysis.

3.2. Eigenvalue problem in the presence of stationary flow:
General analysis

In this section we assume that the density and flow velocity are
both independent of time and that the external plasma is at rest
(i.e. Ue = 0). Since we assume that the characteristic scale of
variation of the equilibrium quantities in the radial direction is
the same as in the axial direction, we can neglect their radial
variation inside the tube in the thin tube approximation. Then,
it follows from the mass conservation in Equation (6) that the
density and flow speed are related by

ρiUR2 = const, (37)

where we have dropped the subscript ‘i’ for the internal flow
speed U. It follows from the magnetic flux conservation that

BR2 = const. (38)

Below, we consider standing waves and assume that the mag-
netic flux tube ends are fixed at the dense photosphere. Thus, we
impose the boundary conditions

η = 0 at z = ±L/2, (39)

where L is the tube length. We look for stationary solutions, so
we take η ∝ e−iωt. Then, Equation (36) reduces to

(
B2

µ0

− ρiU
2
i

) (
∂2η

∂z2
− r̂m̃−1 ∂

2ηi

∂z2

)
+

(
2iωρiUi −

ρiUi

R2

∂UiR
2

∂z

)
×

(
∂η

∂z
− r̂m̃−1 ∂ηi

∂z

)
+

(
2iωρiUi

R

∂R

∂z
+ ω2ρi

) (
η − r̂m̃−1ηi

)
= 0.

(40)

This equation, with the boundary conditions Equation (39), con-
stitute an eigenvalue problem. Here we now study the gen-
eral properties of this problem. We are interested in the con-
ditions for which the tube will be stable with respect to long
flute perturbations. Thus, we assume that µ0ρiU

2 < 2B2, that is
U2 < 2V2

Ai
≡ 2B2/µ0ρi, and this condition is satisfied for all

z ∈ [−L/2, L/2]. Then, we make the variable substitution

η − r̂m̃−1ηi = q exp(−iωσ(z)), σ =

∫ z

−L/2

µ0ρiU dz′

B2 − µ0ρiU2
. (41)

Now, multiplying the obtained equation by R4, we rewrite Equa-
tion (40) as

d

dz

[
R4

(
B2

µ0

− ρiU
2

)
dq

dz

]
+ ω2W(z)q = 0, (42)

where

W(z) =
R4ρiB

2

B2 − µ0ρiU2
. (43)

Equation (42) with the boundary conditions Equation (39)
constitute the classical Sturm-Liouville problem with the eigen-
value ω2. It follows from the general theory of the Sturm-
Liouville problem (e.g. Coddington & Levinson 1955) that the
eigenvalues are real and constitute a monotonically increasing
unbounded sequence. The first eigenvalue is the square of the
fundamental frequency, and the corresponding eigenfunction has
no nodes in (−L/2, L/2). All other eigenvalues are the squares of
frequencies of corresponding overtones. The eigenfunction cor-
responding to the nth overtone has n − 1 nodes in (−L/2, L/2).
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It is clear that we can always take q to be real. Multiplying
Equation (42) by q, integrating the obtained equation, and using
Equation (43) we obtain

ω2

∫ L/2

−L/2

W(z)q2 dz =

∫ L/2

−L/2

R4

(
B2

µ0

− ρiU
2

) (
dq

dz

)2

dz. (44)

Since W(z) > 0, it follows from this equation that ω2 > 0, mean-
ing that all the eigenfrequencies are real. This also implies that
the inequality U2 < V2

Ai
is a sufficient condition for stability in-

side the tube with respect to long flute perturbations. To obtain
an equation describing the boundary, we follow the analysis of
Ruderman et al. (2017) to determine whether the stability con-
dition on the boundary is different, with a sufficient condition
U2 < 2V2

Ai
. We note that this condition is sufficient but not neces-

sary. On the other hand, this analysis does not prove that the tube
is stable if the condition U2 < V2

Ai
is satisfied. While it guaranties

that the tube is stable with respect to long flute perturbations, it
can be unstable with respect to other types of perturbations.

4. Flute oscillations of magnetic flux tube with

slowly varying density

Below, we now consider flute oscillations of a magnetic flux
tube with slowly varying density. We assume that the magnetic
flux tube is fixed at the dense photosphere, which means that the
boundary condition in Equation (40) is satisfied. In addition, we
also assume that the characteristic time of density variation, tch,
is much greater than the characteristic time of oscillations. We
note that this is not a very restrictive assumption.

4.1. Derivation of adiabatic invariant

We denote the ratio of tch to the characteristic time of oscillations
as ν−1, where ν ≪ 1. Hence, the characteristic time of oscilla-
tions is νtch. On the other hand, it is also of the order of the loop
length divided by the characteristic flute speed, which is equal to
L/(B/

√
µ0ρch), where ρch is the characteristic density. We have,

as a result,

B ∼ ν−1 √µ0ρch

L

tch

. (45)

Following this estimate, let us now introduce the scaled magnetic

field B̃ = νB. Then, we rewrite Equations (33) and (42) as

ν−2B̃2

µ0

− ρiU
2
i


(
∂2η

∂z2
− r̂m̃−1 ∂

2ηi

∂z2

)
+

(
2iωρiUi −

ρiUi

R2

∂UiR
2

∂z

)
×

(
∂η

∂z
− r̂m̃−1 ∂ηi

∂z

)
+

(
2iωρiUi

R

∂R

∂z
+ ω2ρi

) (
η − r̂m̃−1ηi

)
= 0,

(46)


ν−2B̃2

µ0

− ρeU2
e


(
∂2η

∂z2
− r̂1−m̃ ∂

2ηe

∂z2

)
+

+

(
2iωρeUe −

ρeUe

R2

∂UeR2

∂z

) (
∂η

∂z
− r̂1−m̃ ∂ηi

∂z

)
+

+

(
2iωρeUe

R

∂R

∂z
+ ω2ρe

) (
η − r̂1−m̃ηe

)
= 0. (47)

Now, we use the Wentzel-Kramer-Brillouin (WKB) method (e.g.
Bender & Orszag 1978) and look for solution to this equation in
the form

η = S (t, r, z) exp[ν−1Θ(t)]. (48)

Then, we expand S in the series

S = S 0 + νS 1 + . . . (49)

We substitute Equation (48) in Equations (46) and (47), using
Equation (49), and collecting terms of order ν−2 we obtain

∂2S̃ 0

∂z2
+
Ω2

Ṽ2
Ai

S̃ 0 = 0 (50)

and

∂2Ŝ 0

∂z2
+
Ω2

Ṽ2
Ae

Ŝ 0 = 0, (51)

where

S̃ 0 = S 0(t, r, z) − r̂m̃−1S 0(t,R(z), z),

Ŝ 0 = S 0(t, r, z) − r̂1−m̃S 0(t,R(z), z),

Ω =
dΘ

dt
, Ṽ2

Ai =
B̃2

µ0ρi

Ṽ2
Ae =

B̃2

µ0ρe

. (52)

Inside the magnetic flux tube r̂m̃−1 << 1 and outside the flux tube
r̂1−m̃ << 1, hence adding Equations (50) and (51), we obtain

∂2S 0

∂z2
+
Ω2

C̃2
k

S 0 = 0, (53)

where

C̃2
k =

2B̃2

µ0(ρi + ρe)
. (54)

Since we assume that the magnetic flux tube is fixed in the dense
photosphere (i.e. there is line-tying) we now have that

S 0 = 0 at z = ±L/2. (55)

Therefore, Equations (53) and (55) constitute the classical
Sturm-Liouville problem as a result. An approximation of such
order is called the approximation of geometrical optics (e.g. Ben-
der & Orszag 1978). The Sturm-Liouville problem of Equations
(53) and (55) coincide with a problem obtained by Dymova &
Ruderman 2005 to describe oscillations of magnetic flux tubes
whose density varies along the tube, and by Ruderman et al.
(2008) to describe kink oscillation of magnetic tubes whose den-
sity and cross-section radius vary along the tube.
Below, we assume that Ω2 is an eigenvalue and S 0 the corre-
sponding eigenfunction. In accordance with the general theory
(e.g. Coddington & Levinson 1955),Ω2 is real. It is easy to prove
that Ω2 > 0 by multiplying equation (53) by S 0, then integrat-
ing by parts with respect to z from −L/2 to L/2 and using the
boundary condition (55). We can always assume that S 0 is a real
function.

Now, we collect terms of the order ν−1 to obtain

∂2S̃ 1

∂z2
+
Ω2

Ṽ2
Ai

S̃ 1 =
2iΩ

Ṽ2
Ai

(
∂S̃ 0

∂t
+

S̃ 0

2Ω

∂Ω

∂t
+

Ui

R

∂RS̃ 0

∂z

)
(56)

and

∂2Ŝ 1

∂z2
+
Ω2

Ṽ2
Ae

S̃ 1 =
2iΩ

Ṽ2
Ae

(
∂Ŝ 0

∂t
+

Ŝ 0

2Ω

∂Ω

∂t
+

Ue

R

∂RŜ 0

∂z

)
, (57)

where

S̃ 1 = S 1(t, r, z) − r̂m̃−1S 1(t,R(z), z) (58)
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and

Ŝ 1 = S 1(t, r, z) − r̂1−m̃S 1(t,R(z), z). (59)

Taking into account that inside the magnetic flux tube r̂m̃−1 << 1
and outside the flux tube r̂1−m̃ << 1, from Equations (56) and
(57), we have

∂2S 1

∂z2
+
Ω2

C̃2
k

S 1 =
2iΩ

C̃2
k

(
∂S 0

∂t
+

S 0

2Ω

∂Ω

∂t
+

Ue

R

∂RS 0

∂z

)
. (60)

This order of approximation is the approximation of the physical
optics. S 1 must satisfy the boundary conditions

S 1 = 0 z = ±L/2. (61)

The homogeneous counterparts of the boundary value prob-
lem constituted by Equations (53) and (60), and the boundary
condition Equations (55) and (61) have the non-trivial solution
S 1 = S 0. This implies that the boundary value problem deter-
mining S 1 has a solution only if the right-hand side of Equation
(60) satisfies the compatibility condition, which is the condition
that it should be orthogonal to S 0. To obtain this condition we
multiply Equation (60) by S 0, then integrate with respect to z
from −L/2 to L/2. After some algebra we obtain that

∫ L/2

−L/2

1

C2
k

∂ΩS 2
0

∂t
dz = −Ω

2

∫ L/2

−L/2

Ui

R2C2
k

∂(S 2
0
R2)

∂z
dz. (62)

Using integration by parts, and some algebra, we eventually ob-
tain

ω

∫ L/2

−L/2

S 2
0

C2
k

dz = const, (63)

where

ω = ν−1Ω, C2
k =

2B2

µ0(ρi + ρe)
. (64)

The left-hand side of Equation (63) is an adiabatic invariant.
Equation (63) states that this invariant is conserved. It is easy
to see that the derivation for adiabatic invariant and approxima-
tions of the 0th order on the boundary presented by Ruderman
et al. 2017 are still valid. It is also worth noting that the adiabatic
invariant is the same as that obtained by Ruderman (2011a) for
oscillations of magnetic tubes with constant cross-section radius.
Hence, the tube expansion only affects the temporal evolution
of flute oscillations of magnetic flux tubes with varying density
through Ck, VAi, VAe, and S 0 that all depend on R(z).

4.2. Effect of cooling on flute oscillations of coronal magnetic
loops

The main cause of cooling of a coronal loop is radiation. The in-
tensity is proportional to the plasma density squared for optically
think plasmas. The energy deposition that can cover the losses of
energy in the rarefied external plasma could be too small to cover
the energy loss in the internal region of a magnetic flux tube.
Therefore, we can assume that the plasma temperature remains
constant outside the magnetic flux tube. As was found in As-
chwanden & Nightingale (2005), and Morton & Erdélyi (2010),
the temperature evolution inside the loop is approximated by ex-
ponentially decaying function,

T (t) = T0 exp(−t/tcool), (65)

where we assume that, at the initial time t = 0, the cooling be-
gins. In addition, we assume that the plasma temperature is the
same at this initial time in the external and internal regions, so
that the temperature of the external plasma remains equal to T0.
In what follows we consider a magnetic flux tube that has a semi-
circular shape. We neglect the effect of flux tube curvature on
fluting oscillations. The shape of the loop determines the density
variation along the loop only as a result, t. The density of the
external plasma is given by the barometric formula

ρe(z) =
ρ f

ζ
exp

(
−L

πH0

cos
πz

L

)
, (66)

where ρ f is the plasma density at the footpoints inside the mag-
netic flux tube, which is assumed to be constant, and ζ is the ratio
of internal to external plasma densities at initial time,

H0 =
kBT0

mg
, (67)

kB is the Boltzmann constant, g is the gravity acceleration, and
m is the mean mass per particle equal to one-half of the proton
mass for a proton-electron plasma. The flow inside the magnetic
flux tube is caused by plasma cooling.
It is easy to show that the analysis of Ruderman (2011b) still
holds true even for fluting modes described in the model pre-
sented in this manuscript. Thus, the effect of the flow on the
plasma density is fairly weak for the typical coronal conditions
and the observed cooling times. Therefore, the barometric for-
mula provides a sufficiently good approximation of the plasma
density in the internal region of the magnetic flux tube. We have

ρi(z) = ρ f exp

(
−L

πH(t)
cos

πz

L

)
, (68)

where

H(t) =
kBT (t)

mg
. (69)

Since the background magnetic field is straight and not twisted,
we can describe the variation of cross-section radius of the tube
with the same expression as in Ruderman et al. (2008),

R(z) = R fλ

√
cosh(L/2lc) − 1

cosh(2L/2lc) − λ2 + (λ2 − 1) cosh(z/lc)
, (70)

where R f is the cross-section radius of the magnetic flux tube
at the footpoints, lc is an arbitrary positive constant with the di-
mension of length, and λ = R(0)/R f . Ruderman et al. (2008)
showed that for the z-component of the magnetic field to be pos-
itive everywhere in the region |z| ≤ L/2, the expansion factor
must satisfy the inequality λ < λm, where

λ2
m ≈

1.4 cosh(L/2lc)

1 + 0.4 cosh(L/2lc)
. (71)

Here λm is a monotonically increasing function of L/lc, such that
λm → 1 as L/lc → 0, and λm → 1.87 as L/lc → ∞. Since the
expansion of coronal loop factor does not exceed 1.5, the careful
choice of the ration L/lc allows us to cover the entire range of
the expansion factor variation.
Now, we introduce the following dimensionless variables and
parameters

Z =
2z

L
, τ =

t

tcool

, ̟ =
ωL

C f

, κ =
L

πH0

,

Λ =
R

RF

, S ′0 =
S 0

R f

, (72)
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where the kink speed at the footpoints is

C2
f =

2ζB2
f

µ0ρ f (ζ + 1)
. (73)

Therefore, we can reduce Equation (53) to

∂2S 0

∂Z2
+
̟2Λ4(Z)S 0

4(ζ + 1)

× [ζ exp(−κeτ cos(πZ/2) + exp(−κ cos(πZ/2)] = 0. (74)

We have dropped the prime in Equation (74). We should also
note that in order to obtain solutions for the plasma displace-
ment in the internal region and in the external region, which
both depend on radial component, we first need to find a solu-
tion for the plasma displacement at the boundary of Equation
(74). We also know that W = rR(z)Bη, implying that inside the
tube W = ψm̃/2W̃(t, z) and in the external region, in the vicinity
of the magnetic flux tube, W = ψ−̃m/2Ŵ(t, z), where Ŵ(t, z) is an
arbitrary function. Therefore we obtain

η =
1

2

(
ψm̃−1

ψi

) 1
2

W̃(t, z) for 0 ≤ r ≤ R(z) and

η =
1

2

(
1

ψm̃+1ψi

) 1
2

W̃(t, z) for r ≥ R(z). (75)

The eigenfunction S 0 is accurately determined up to the multi-
plication of the arbitrary function of τ, and the dependence on
ψ is determined by equation (75). We can always fix its value to
one particular point. We assume X(τ,Z) to be an eigenfunction
corresponding to the fundamental mode, which satisfies the con-
dition X(τ, 0) = 1. Then, the general solution to the eigenvalue
problem of the fundamental mode is S 0(τ,Z, ψ) = A(τ, ψ)X(τ,Z),
where A(τ, ψ) is the oscillation amplitude at Z = 0. With the aid
of equation (75) we derive

S 0 =
1

2

(
ψm−1

ψi

) 1
2

Â(τ)X(τ,Z) for 0 ≤ r ≤ R(Z) and (76)

S 0 =
1

2

(
1

ψm+1ψi

) 1
2

Ã(τ)X(τ,Z) for r ≥ R(Z), (77)

where

A(τ, ψ) =
1

2

(
ψm−1

ψi

) 1
2

Â(τ) 0 ≤ r ≤ R(Z) and (78)

A(τ, ψ) =
1

2

(
1

ψm+1ψi

) 1
2

Ã(τ) r ≥ R(Z). (79)

Therefore, we rewrite equation (63) as

̟A2(τ, ψ)

∫ 1

−1

X2Λ4[ζ exp(−κeτcos(πZ/2))

+ exp(−κcos(πZ/2))]dZ = const. (80)

We also note that

A(τ, ψ)

A(0, ψi)
=

Â(τ)

Â(0)

(
r

R(Z)

)m−1

for 0 ≤ r ≤ R(Z) and (81)

A(τ, ψ)

A(0, ψi)
=

Ã(τ)

Ã(0)

(
R(Z)

r

)m+1

for r ≥ R(Z). (82)
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Fig. 2. Dependence of dimensionless amplitude on r/R f . The left panels
correspond to amplitude variation at the initial time τ = 0, and the right
panels correspond to amplitude variation at the final time τ = 1. The
solid, dash-dotted, and dot-dashed lines correspond to λ = 1, 1.1, and
(1.3, 1.5), respectively. From top to bottom, the panels correspond to
m̃ = 2, 3, 5, 10, and 100.

Then, we set lc = 4 so that the entire observed range of possible
λ is covered by the expansion model and solve equations (80)
– (82) numerically to obtain the dependence of dimensionless
amplitude on r for various values of m̃.

First, we note that it follows from Figure 2 that the higher the
value of λ, the lower the amplitude closer to the magnetic flux
tube core. The phenomenon that can be spotted is that the am-
plitude increases between the initial and final time. Furthermore,
the higher the expansion factor, the higher the final amplitude,
which is consistent with the result obtained by Shukhobodskiy
et al. (2018). The other pattern to be noted in Figure 2 is that
when the value of m̃ is higher, more oscillations are localised at
the tube boundary. This latter conclusion is in agreement with
Soler (2017). Furthermore, we note that the expansion factor λ
of the magnetic flux tube is of paramount importance in deter-
mining the oscillation intensity. This can be especially observed
in the bottom panels of Figure 2, where oscillations occur close
to the tube boundary magnetic field lines to such an extent, that
even the region above the boundary in the footpoints would not
oscillate at the apex of the tube for even a mildly expanding flux
tube.

It follows from Figure 3 that ζ has no effect on the initial
amplitude variation in the distance from the core region. On the
other hand, at the final time τ = 1 it is possible to observe three
separate phenomena. First of all, increasing the wave number m̃
localises the oscillation closer to the boundary. Secondly, when
the value of ζ increases, the amplification of oscillations due to
cooling become stronger. Finally, the increase in m̃ leads to a
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Fig. 3. Dependence of dimensionless amplitude on r/R f . The left panels
correspond to amplitude variation at the initial time τ = 0, and the right
panels correspond to amplitude variation at final time τ = 1. The solid,
dash-dotted, and dot-dashed lines correspond to ζ = 1, 2, and (3, 4),
respectively. From top to bottom, the panels correspond to m̃ = 2, 3, 5,
10, and 100,

reduction in the spread between the oscillation variation across
the tube for different values of ζ, preserving the trend that the
higher the value of ζ, the higher the amplification due to cooling.

Figure 4 represents the evolution of oscillation of magnetic
flux tube both through time and distance from the annulus. We
find, for both the top and bottom panels, that the amplitude in-
creases with time. Furthermore, higher values of m̃ lead to the
localisation of oscillation closer to the boundary. On the other
hand, an increasing expansion factor λ not only leads to an in-
crease in the oscillation amplitude, but also shifts the localisation
of oscillation of the magnetic flux tube further from the centre.
Therefore we conclude that not only does m̃ have an important
role in the evolution of the cooling system, but also variations
in the expansion λ and density ratio ζ, with the latter having a
significant deviation between the initial and final times. .

We also note that the above analysis is valid for any cooling
function T (t). For example, if we take

T (t) = T0(1 − α(sin(t/tcoolπ)), (83)

where

α < 1, (84)

the loop is first cooled and then heated. The parameter α in equa-
tion (84) is responsible for the strength of cooling and heating in
such temperature distributions. Therefore, as a result, it is possi-
ble to rewrite equations (74) and (80) as

Fig. 4. Dependence of dimensionless amplitude on r/R f and time τ for
ζ = 3. The orange, purple, yellow, and dark purple colour schemes
respectively correspond to m̃ = 2, 3, 4, and 5 in the top panel, and to
λ = 1.1, 1.2, 1.3, and 1.5 in bottom panel. The top panel has a fixed
value of ζ = 1.5 and the bottom panel has a fixed value of m̃ = 3

∂2S 0

∂Z2
+
̟2Λ4(Z)S 0

4(ζ + 1)

×[ζ exp(−κ(1 − α sin(τπ))−1 cos(πZ/2))+

exp(−κ cos(πZ/2))] = 0 (85)

and

̟A2(τ, ψ)

∫ 1

−1

X2Λ4[ζ exp(−κ(1 − α sin(τπ))−1cos(πZ/2))

+ exp(−κcos(πZ/2))]dZ = const. (86)

We take, for example, α = 0.9 and solve the equations (85)
and (86) numerically. It follows from Figure 5 that during the
initial cooling the amplitude increases, whereas as heating starts
the oscillation experiences damping through time. Nevertheless,
the pattern with respect to other variables is similar to that of the
initial case with exponential cooling.

5. Conclusion

In this article we studied the oscillations of fluting modes for
an expanding magnetic flux tube in the presence of a bulk flow.
The plasma density and the velocity vary both in space and with
time. However, we assume that the characteristic scale of varia-
tion of these quantities along the loop and across the loop are of
the same order and may vary in a thin transitional layer. Starting
from the linearised MHD equations and with the aid of multi-
scale expansion, we derived Equations (29) – (34), which gov-
ern the flute oscillations of a magnetic flux tube, both for stand-
ing and propagating waves. This system is closed in the absence
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Fig. 5. Dependence of dimensionless amplitude on r/R f and time τ for
ζ = 3. The orange, purple, green, and pink colour schemes respectively
correspond to m̃ = 2, 3, 4, and 5 in the top panel, and to λ = 1.1, 1.2,
1.3, and 1.5 in the bottom panel. The top panel has a fixed value of
ζ = 1.5 and the bottom panel has a fixed value of m̃ = 3

of a transitional layer. However, when the transitional layer is
present additional information is needed to solve the governing
equations since jumps in pressure and displacement may mani-
fest within the system. In order to close this system, these jumps
should be expressed in terms of the displacement.

The derived set of equations is then used to study the effect
of density variation with time on oscillations for a magnetic flux
tube. We assumed that the characteristic time of the density vari-
ation is much greater than the characteristic time of the oscilla-
tion. Via the WKB method, we were able to derive an adiabatic
invariant (the quantity conserved while plasma density evolves).
Furthermore, by considering cooling of a curved magnetic flux
tube with ends fixed to dense photosphere (i.e. imposing line-
tying) we numerically solved the system of governing equations.
First of all, we found that for all values of m the oscillation am-
plitude increases with time. The same conclusion was made pre-
viously by Ruderman et al. (2017) for kink modes. Moreover, the
higher the value of m is, the closer the oscillation is to the bound-
ary, where this effect becomes less prominent as time passes; this
is a similar conclusion to that recorded previously (e.g. Soler
2017).
We also found that the expansion factor not only shifts the os-
cillation localisation toward higher values, but also modifies the
oscillation variation pattern.
Another fascinating phenomenon found is that the higher the
density ratio is between the external and internal plasma, the
stronger the amplification is for all values of m. As a result,
higher density contrast results in stronger oscillation. Further-
more, although the higher the value of m is, the more localised
it is towards the boundary of the oscillation; nevertheless, the
increase in values of the density ratio ζ allows some compensa-
tion of these events by shifting the oscillation from the bound-
ary. This effect adds additional knowledge to the previous under-

standing of flute oscillation, which suggested that oscillation is
concentrated at the boundary of the object.
Last but not least, we note that a correct combination of a mag-
netic flux tube expansion and the ratio of internal to external den-
sity could negate the effect of increase due to higher azimuthal
wavenumber, thus making it possible for high m flute modes not
only to present properties of surface waves, but also body waves.

Flute modes in coronal loops have not yet been detected with
the currently available observational suits. However, detecting
these modes in the presence of cooling, high magnetic flux tube
expansion, and loops with denser regions will be more likely
in future observations thanks to the increased amplitude over
time. This will allow us to limit the number of objects of in-
terest, where better instruments should be used in order to have
a higher chance of discovering flute oscillations.
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