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Abstract 8 

Masonry arch bridges form an integral part of our rail infrastructure network and their safety is important 9 
for the functioning of our society. Although, there have been several studies to understand the in-service 10 
condition of masonry arch bridges, these are mainly focusing on static analyses. However, it is well 11 
known that moving vehicles exert a dynamic force on bridges as they cross them. This paper investigates 12 
the shakedown and dynamic behaviour of railway masonry arch bridges under traffic load conditions. 13 
A nonlinear, mixed discrete-finite element numerical model was developed to investigate static and 14 
dynamic response on a masonry arch bridge. Each voussoir of the masonry arch was represented by a 15 
distinct block, while the mortar joints were modelled as zero thickness interfaces which can open and 16 
close depending on the magnitude and direction of the stresses applied to them. Both static and real 17 
dynamic analyses were carried out investigate the effects of moving traffic loads. In addition, 18 
investigations into the train to bridge interaction were undertaken and the dynamic amplification factors 19 
(DAFs) were estimated. From the evaluation of the results, it was shown that as the external load passes 20 
through the bridge, plastic deformations and residual stresses exist in the arch barrel. Also, the dynamic 21 
amplification depends on the magnitude of the external load. As the load increases, non-linearity in the 22 
structure is evident, which decreases the natural frequency of the bridge. Hence the critical speed is 23 
decreasing. Observations provided here reveal new insight into the residual and load carrying capacity 24 
of masonry arch bridges.  25 
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1. Introduction 40 
Europe is sustained by a highly complex and interconnected network of transport infrastructure. 41 
Masonry arch bridges forms the backbone of European transport infrastructure network (e.g. there are 42 
approximately 200,000 masonry arch bridges still in use on the European railway network [1]) and their 43 
reliability and integrity is vital for ensuring economic activity and prosperity. The majority of masonry 44 
arch bridges were built in the 19th century, in parallel with the industrial revolution [2]. Today, these are 45 
still in-service but showing significant signs of distress. Weathering, demands of increasing axle loads 46 
and train velocities [3], plus factors such as increased frequency of flood events due to climate change 47 
have introduced extreme uncertainty in the long-term performance of such infrastructure assets. Also, 48 
much of our masonry infrastructure has significant heritage and cultural value and in many countries 49 
have a policy to “retain and repair”, rather than “demolish and replace” them [4]. Failure of such 50 
infrastructure could lead to direct and indirect costs to the economy and society and hamper rescue and 51 
recovery efforts. From the above, there is an imperative need to better understand the mechanical 52 
behaviour of masonry arch bridges and provide detailed and accurate data that will better inform 53 
maintenance programmes and asset management decisions. Without a strategic approach to caring for 54 
our ageing masonry infrastructure, we run the risk of over-investing in some areas while neglecting 55 
others that are in need of our attention.  56 

However, assessing the structural performance of ageing masonry infrastructure is a complex task. 57 
Previous research has clearly demonstrated that the assessment methods currently used by the industry 58 
are antiquated and/or over-simplistic. For example, for the assessment of masonry arch bridges, the 59 
Military Engineering Experimental Establishment (MEXE) method of assessment is still in use 60 
especially in UK. This is a semi-empirical approach based on an elastic analysis by Pippard et al. [5] 61 
who modelled the arch barrel as linear elastic, segmental in shape, pinned at its support and carrying a 62 
central point load. The method dates back to the 1940s, has very limited predictive capability, and offers 63 
little scope for future enhancement [6]. Other assessment approaches used by the industry (particularly 64 
in the UK) are: a) the static theorem of plastic limit analysis (developed into the Archie-M software) 65 
which uses simple equilibrium calculations (the self-weigh of the arch barrel and live loads are balanced 66 
by forces between the blocks); and b) the RING software which is based on the rigid block theory and 67 
uses the kinematic theorem of limit analysis to identify the collapse state with the smallest external 68 
loading and hence predict the ultimate load [7]. Although the primary focus of these methods has been 69 
on the prediction of structural failure of ageing masonry infrastructure, prediction of the service load 70 
above which incremental damage occurs is now a key priority for infrastructure owners, who are under 71 
increasing pressure to provide transport networks which are secure and resilient [8].  72 

Over the last three decades, significant efforts have been devoted to the development of numerical 73 
models to represent the complex and non-linear in-service behaviour and limit state capacity of masonry 74 
structures subjected to external loads. Such models range from considering masonry as a continuum 75 
(macro-models) to the more detailed ones that consider masonry as an assemblage of units and mortar 76 
joints (micro-models/meso-scale models); see Boothby [9] and Sarhosis et al. [10]. In particular, Choo 77 
and Gong [11] have successfully used the Finite Element Method (FEM) to developed models of 78 
masonry arch bridges to predict their ultimate load carrying capacity. However, in macro-models based 79 
on the FEM, the description of the discontinuity is limited since they consider the arch as a continuum 80 
element [10, 12]. An overview of such models can be found in Boothby [13] and Sarhosis et al. [10]. 81 
Given the importance of the masonry unit-to-mortar interface [14, 15] on the structural behaviour of 82 
aged masonry arch bridges, micro-modelling approaches (i.e. those based on Discrete-Finite Element 83 
Method) are better suited to simulating their serviceability and load carrying capacity [16-18]. 84 
Sophisticated FEM approaches (e.g. those based on the contact element techniques) were able to reflect 85 
the discrete nature of masonry e.g. those presented by Fanning and Boothby [9], Gago et al. [19], Ford 86 
et al. [20] and Drosopoulos et al. [21]. However, such methods require high computational cost, are 87 
unable to realistically predict the crack development at serviceability limit state and have convergence 88 
difficulties when blocks fall or slide excessively. Another modelling approach is the one described by 89 



the fibre-beam approach which can predict the collapse mechanism of masonry and to account for the 90 
effective material behaviour with acceptable computational effort. According to the method, the 91 
masonry arch can be modelled as a segmental fibre-beam [22]. The approach has been successfully used 92 
to study the behaviour of masonry arches and arch bridges under static and dynamic conditions [23]. 93 
Despite the simplifications in the representation of structural geometry, it was found a promising 94 
approach for preliminary assessment of the seismic capacity of masonry arch bridges. 95 

An alternative and attractive method in which the discrete nature of the masonry can be more realistically 96 
represented is the Discrete Element Method (DEM). The advantage of the DEM is that it considers the 97 
arch as a collection of separate voussoirs able to slide and rotate relative to each other. The DEM was 98 
developed by Cundall [24] to model blocky-rock systems and sliding along rock mass. The approach 99 
was recently implemented to simulate the mechanical response of masonry structures including arches 100 
[14, 16, 25-27] in which failure occurs along mortar joints. From past studies carried out using DEM to 101 
simulate the mechanical response of masonry arch bridges, it was found that the method is suitable and 102 
reliable especially in the case in which failure is dominated at masonry unit-to-mortar interface [12]. 103 
Also, an important finding from past literature review studies presented by Sarhosis et al. [10] is that the 104 
majority, if not all, of the past research is focusing on the behaviour of masonry arch bridges subjected 105 
to static loads. In such studies, to reach conclusions related to the load carrying capacity of masonry 106 
arch bridges, an increasing in magnitude point load is applied at the quarter and/or at mid-span of the 107 
masonry arch bridge.  108 

However, vehicles crossing masonry arch bridges are exerting dynamic loads on them. Most of the 109 
standards and industry guidelines [1, 3, 28, 29] suggest the use of dynamic amplification factors to take 110 
into account such effects. In this case, static analysis can be carried out, while the static response of the 111 
structure (e.g. displacements, internal forces, stresses) should be multiplied by the dynamic 112 
amplification factor. In this way, real dynamic analysis can be avoided. Also, there are several analytical 113 
[30], numerical [31-34] and experimental [35] studies investigating the dynamic response of masonry 114 
arch bridges. Smith and Acikgoz [30] investigated the dynamic behaviour of linear elastic curved beams. 115 
Partial differential equations of the vibration were derived and solved numerically. Dynamic 116 
amplification factors were determined. According to the authors, codified procedures can significantly 117 
underestimate the dynamic amplification. In addition, Ataei at al. [35] estimated the dynamic 118 
amplification factors of eleven multi-span masonry arch bridges. Vertical deflection of the crown was 119 
measured when different in speed and weight train crossed the bridge. Moreover, due to the importance 120 
of this subject, many guidelines are provided by various codes and design standards (e.g ERRI-D214 121 
[36]) for designing and performance assessment on the dynamic characteristics of bridges. However, 122 
from the above studies it is evident that assessing the in-service condition of masonry arch bridges is a 123 
rather difficult task. This is mainly due to the complexity of the problem and that recent studies have 124 
reported contradictory results. 125 

This paper aims to study the dynamic phenomena on masonry arch bridges due to vehicle load. A 126 
numerical model has been developed to analyse both static and dynamic response of masonry arch 127 
bridges with the purpose of estimating the traffic effects by means of moving loads. As a case study, the 128 
geometrical characteristics of the Prestwood bridge have been adopted in the investigations. The 129 
structural assessment and numerical analyses of the bridge were performed based on a detailed finite-130 
discrete element code. Suitable constitutive laws were considered for the mortar joints and for the 131 
backfill. The numerical results were compared against field test results. The interaction between the 132 
train and the track is considered through a simplified methodology. Two different types of static analyses 133 
(incrementally increased load at fixed points and quasi-static moving load) and real dynamic analysis 134 
were carried out. In addition, dynamic amplification factors (DAFs) were estimated. Results of this study 135 
were used to assess how train load and train speed affect the DAF on a masonry arch bridge. 136 



2. Current dynamic amplification factors for railway bridges 137 
The passage of trains on bridges exerts dynamic effects on them. Dynamic effects are able to change the 138 
structural response (e.g. the displacements, internal forces etc.) of a bridge. According to Eurocode [28], 139 
the extent of the dynamic effects on bridges depends mainly on: a) the velocity of the train; b) the number 140 
and weights of the axles; c) the span of the bridge; and d) the natural frequency (mass and stiffness) of 141 
the bridge. Other factors which may influence the dynamic effect in bridges are the railway track to train 142 
interaction and the dynamic characteristics of the ballast; but these effects are out of scope of this work. 143 
The simplified method of Eurocode (EN 1991-2:2003) for railway bridges enables the engineer to carry 144 
out static analysis with LM71 vertical load model and multiply the structural response with the dynamic 145 
amplification factors calculated as: 146 
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where L  is the determinant length in meters (see EN 1991-2: Traffic load on structures), while 2  147 

and 3  are the dynamic factors for carefully maintained tracks and tracks with standard maintenance, 148 

respectively. These formulas can only be used if: a) the first natural frequency of the structure does not 149 
exceeds the lower and upper-limit for natural frequency defined in the standard; and b) the train velocity 150 
does not exceed 200 km/h (56 m/s). It should be noted that the dynamic amplification of EN 1991-2 151 
simplified method does not depend on the velocity of the train. 152 

EN 1991-2 Annex C [28], Network Rail [29] and UIC suggest another method to calculate the dynamic 153 
amplification factor (Eq. (3) and (4)). This method takes into account not just the span and the first 154 
natural frequency of the structure, but the velocity of the train as well. The dynamic enhancement can 155 
be calculated as: 156 
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where xv  is the velocity of the train in meters per second, L  is the determinant length in meters and 157 

0n  the first natural frequency of the bridge in Hz. Equations (3) and (4) were determined in the 60’s to 158 

conservatively characterize the dynamic response of simple supported concrete and steel bridges [37]. 159 

To handle the different mode shapes of the different structural systems, determinant length ( L ) was 160 

introduced. In the case of single span arch bridges, the determinant length should be the half of the span. 161 
In Figure 1, the DAF were calculated for a 6.55 m single span arch bridge with various natural 162 
frequencies according to Eqs (3) and (4).  163 

 164 
Figure 1 – Dynamic Amplification Factor according to Network Rail [29] 165 



3. The proposed mixed discrete-continuum approach to evaluate the dynamic response of 166 
masonry arch bridges 167 

Understanding the mechanical behaviour of masonry arch bridges is a challenging task for an engineer. 168 
Even under static conditions, the mechanical behaviour of masonry arch bridges is complex and the 169 
analytical tools available by engineers to assess the life expectancy of such bridges needs refinement. 170 
The selection of the most appropriate computational method to use for the analysis of masonry 171 
structures, among other factors, should include representation of joint opening between voussoirs in the 172 
arch; sliding between the arch barrel and the soil, plastic response in the backfill above the arch etc. In 173 
case of dynamic analysis, in addition to the aforementioned factors, the computational model should 174 
include inertial and vehicle-structure interaction effects. 175 

To computationally evaluate the dynamic response of masonry arch bridges, the mixed discrete-176 
continuum element code UDEC, developed by ITASCA has been used in this study. Within UDEC, 177 
voussoirs in the barrel vault were represented by distinct linear-elastic deformable blocks separated by 178 
zero thickness interfaces at each mortar joint. The voussoirs were subdivided into finite elements so that 179 
stresses can be calculated. Backfill was represented as a linear elastic-perfectly plastic material. 180 
Deformability and non-linear behaviour of backfill was approximated with finite element discretization. 181 
The model makes use of an explicit dynamic solution scheme, which makes it able to carry out real 182 
dynamic analysis.  183 

3.1. Contact formulation and solution procedure 184 
The discrete elements can interact with each other through zero-thickness interface elements. At the 185 
interfaces, blocks are connected kinematically to each other by sets of point contacts [38, 39], along the 186 
outside perimeter of the blocks, at locations where corners or edges meet [16]. In the model, large block 187 
movements are allowed, including cases of complete detachment and re-closure when external forces 188 
are applied to them, with no attempt to obtain a continuous stress distribution through the contact 189 
surface.  190 

At each contact point, there are two spring connections. These can transfer either a normal force or a 191 
shear force from one block to the other. In the normal direction, the mechanical behaviour of the joints 192 
(i.e. the zero-thickness contact interface) is governed by the following equation (Figure 2a):  193 

n n nk u =  , (5) 

where nk  is the normal stiffness of the contact and nu  is the increment in normal contact displacement, 194 

i.e., the relative displacement between the blocks at the contact point. Similarly, in the shear direction, 195 

the mechanical behaviour is controlled by the constant shear stiffness sk  using the following expression 196 

(Figure 2b): 197 

s s sk u =  , (6) 

where s  is the change in shear stress, and su  is the increment in shear displacement.  198 

In the present research work, the contacts are assumed to follow the Mohr-Coulomb failure criterion, 199 
commonly used to represent shear failure in soils and rocks. The criterion has a limiting tensile strength, 200 

tf . If the contact normal stress exceeds the tensile strength, then the normal stress is set to zero and the 201 

interface opens. Alternatively, at those contacts undergoing compression, a small overlap will occur 202 
between block edges (Figure 2a). The amount of overlap is controlled by the normal stiffness. Similarly, 203 
in shear, in the elastic range, the response is controlled by contact shear stiffness (Figure 2b). In addition, 204 
in the shear direction, slippage between blocks occurs when the tangential or shear stress at a contact 205 

exceeds a critical value max  defined by: 206 



( ) maxtans nc    + = , (7) 

where ( )tan =  is the friction coefficient and   the angle of friction and c  the cohesive strength. 207 

After slip takes place, the shear stress is reduced according to the Mohr-Coulomb criterion, but using 208 

residual values for cohesion ( resc ) and friction ( res  ), as shown in Figure 2b. Non-associative flow rule 209 

is applied therefore the dilation angle ( ) is set to zero. After a contact breaks or slips, forces are 210 

redistributed, and it might cause adjacent contacts to break. 211 

                   212 

   (a)      (b) 213 

Figure 2 –Mechanical behaviour of contacts in (a) normal and in (b) shear direction 214 

In the presented model, the Newtonian equations of motion are solved directly by the UDEC with an 215 
explicit time stepping algorithm. The explicit scheme applies the central difference method. As a result, 216 
velocity of each node can be calculated. With the help of nodal velocities, displacements and location 217 
of the nodes can be updated. After the new position of the elements is known, contact locations and 218 
orientation can be calculated. Contact forces are updated by invoking the contact constitutive law, as 219 
described in the previous section. For the internal finite elements, nodal displacements lead to new 220 
strains, from which zone stresses ensue by applying the assumed material constitutive model. In this 221 
way, nodal forces can be assembled for the next calculation step. 222 

The central difference method is only conditionally stable. To avoid numerical instabilities arising from 223 
calculation of block deformation, a limiting timestep is evaluated for each node. This limiting timestep 224 
is depend on the mass associated with block node; the elastic properties of the block material and the 225 
size of the finite element. Moreover, another limiting timestep for the inter-block relative displacement 226 
should be calculated and it depends on the mass of the smallest block and the maximum contact stiffness 227 
in the system. The geometry of the finite elements can change during the mechanical process, hence the 228 
controlling timestep for the analysis needs to be recalculated in every calculation step.  229 

In the case of static analysis, artificial damping is applied to reach equilibrium as fast as possible. Here 230 
the role of the damping is a numerical servo-mechanism to absorb the unwanted elastic oscillations of 231 
the system. While in the case of dynamic simulation, the role of the damping is to model the energy loss 232 
of materials. Energy absorption can develop in plastic material behaviour and with frictional sliding as 233 
well. During dynamic simulations, additional Rayleigh damping was not applied. 234 

3.2. Vehicle-structure interaction 235 
Vehicle-structure interaction was implemented into UDEC via FISH programming (embedded 236 
programme language of Itasca software) as a single degree of freedom system (see Figure 3). The 237 
differential equation of the vehicle’s motion can be written as: 238 

( ) ( )( ) ( ) ( ) ( ( ) ( )my t t c y t u t k y t u t mg+ − + − =   , (8) 



where m is the mass of the vehicle. Spring stiffness and damping coefficient was obtained from [31]: 239 
159500 N/mk = and 𝑐 = 0.2 × 2√𝑘 ×𝑚, respectively. ( ), ( ), ( )y t y t y t  are the vertical displacement, 240 

velocity and the acceleration of the vehicle, while ( ), ( )u t u t  are the vertical displacement, and velocity 241 

of the track. ( )t  is intended to represent the possibility of detachment between the vehicle and the 242 

track as follows: 243 

( ) ( )
( ) ( )

0     if   ( ) ( ) ( ) ( ) 0
( )

1      if   ( ) ( ) ( ) ( ) 0

k y t u t c y t u t
t

k y t u t c y t u t


− + − = 
− + − 

 , (9) 

From Equation (9), if the force between the vehicle and the track is in tension, then the differential 244 
equation is reduced to the differential equation of free fall, while the contact force is set to zero. 245 

 246 
Figure 3 – Single degree of freedom mass-spring-damper model for vehicle-structure interaction 247 

The ordinary differential equation described in Equation (8) is solved numerically with  the forward 248 
Euler method. The initial conditions are: 249 

(0)               (0) 0

(0) 0                     (0) 0

mg
y u

k

y u

−
= =

= =
 . (10) 

The timestep used during solution is equal to the critical timestep determined by UDEC for solution. 250 
The vertical displacement and the velocity of the vehicle are calculated with Equation (11) and (12), 251 
respectively. This calculation process was done simultaneously with the built-in UDEC solution 252 
algorithm applying the same timestep. 253 
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4. Development of the numerical model 256 
Although several research, including the one from the authors of this manuscript [40, 41], have been 257 
done in the past to computationally model and understand the three dimensional mechanical behaviour 258 
of masonry arch bridges, the work presented herein uses a 2D mixed discrete-finite element approach. 259 
The reason for adopting a 2D model in this study was to understand better the basic nature of the 260 
investigated phenomena, while the released computational needs enables the authors to use more 261 
accurate (more dense) finite element mesh, and more parametric studies to be carry out in a 262 
computationally efficient manner. By using a 2D model, the possibility to analyse transverse behaviour 263 
(e.g. effect of spandrel walls, transverse load distribution) is dismissed. Moreover, other elements of a 264 
railway bridge like ballast, sleepers and rail were neglected in the model.  265 

4.1. Geometry and materials used for the development of the numerical model 266 
The geometry and material properties of the investigated structure was taken to represent the Prestwood 267 
Bridge, UK. There was no intention to model the foundations and the subsoils in detail. Page [42] carried 268 
out full scale experimental tests on Prestwood Bridge to determine the load bearing capacity of the 269 
structure. The validation of the adopted model against the field scale results is presented in [39]. Details 270 
of the geometry of the model are shown in Figure 4 and in Table 1. 271 

 272 
Figure 4 – Geometrical characteristic of the numerical model 273 

Table 1 – Geometrical characteristic of the bridge 274 
Span Rise Barrel thickness Height of the backfill 

6.550 m 1.428 m 0.220 m 0.400 m 
The foundation of the bridge and the voussoirs of the arch ring were assumed to behave in a linear elastic 275 
manner. The backfill of the arch bridge was simulated as linear elastic-perfectly plastic material, 276 
according to Mohr-Coulomb failure criterion. Material properties of typical limestone were used for the 277 
voussoirs. In addition, well-compacted sandy gravel were applied as backfill material. The material 278 
parameters were summarized in Table 2. Although geotechnical materials show significant variability, 279 
there was no intention to incorporate this effect  in the present paper. Mortar joints between voussoirs 280 
were represented as zero thickness interfaces. In this study, considering that we are dealing with ageing 281 
low bond strength masonry, the tensile and cohesive resistance of the mortar was neglected and assumed 282 
equal to zero. Only frictional sliding between the voussoirs was allowed to occur. Similarly, only 283 
frictional resistance was allowed at the interface between the voussoirs and the backfill material. Table 284 
3 shows the material properties used for the development of the contact model. Contact normal stiffness 285 
was chosen sufficiently high value to avoid significant interpenetration between the elements. Friction 286 
angles between voussoirs and for the voussoir-soil interface were chosen according to guidelines [3]. 287 

 288 

Table 2 – Material parameters used in the numerical model.  289 



Material Density 
Young 

modulus 

Poisson’s 
ratio 

Friction 

angle 
Cohesion 

Tensile 

strength 

Voussoirs 2500 kg/m3 20 GPa 0.20 - - - 
Foundation 2500 kg/m3 20 GPa 0.20 - - - 

Backfill 2000 kg/m3 0.20 GPa 0.25 37° 5 kPa 5 kPa 
Subsoil 2000 kg/m3 5 GPa 0.25 50° 500 kPa 500 kPa 

 290 

Table 3 – Contact parameters at the interfaces 291 

Contact location 
Contact 

stiffness 

Friction 

angle 

Voussoir to voussoir 100 GPa/m 40° 
Backfill to arch barrel 100 GPa/m 20° 

Backfill to subsoil 100 GPa/m 20° 
 292 

4.2. Finite Element discretization and boundary conditions 293 
UDEC is using a constant-strain triangular finite elements by default. These elements can behave 294 
excessively stiff in plane-strain problems where plastic failure occurs. Plane-strain geometries can 295 
introduce a kinematic restrain in the out of plane direction, often giving rise to overprediction of the 296 
collapse load. To eliminate the non-physical hourglass modes of deformation, a discretization scheme 297 
proposed by Marti and Cundall [43] was used. In the applied discretization scheme, the discretization 298 
for the isotropic part of the strain and stress tensors differs from the discretization for the deviatoric part. 299 

Moreover, to obtain accurate stress distribution in the voussoirs, a detailed discretization of the voussoirs 300 
implemented. In particular, the number of point contacts between the voussoirs was set high to ensure 301 
the accurate calculation of contact stresses. Convergence tests were carried out on the model to 302 
determine the appropriate number of finite elements for the voussoirs and for the backfill (Figure 5a). 303 
As a result, every voussoir was divided into 8×8×4 finite elements (Figure 5b), while the density of the 304 
FE mesh for backfill was assigned to be more dense above the crown (i.e. edge length ~5 cm) and coarser 305 
towards the sides of the model (i.e. edge length ~20 cm). The applied discretization is marked with red 306 
colour in Figure 5a. 307 

      308 

(a)       (b) 309 

Figure 5 – Finite element mesh for voussoirs and for backfill used for the development of the 310 
numerical model  311 

On the external boundaries, the velocity of the finite element nodes was set to zero. The boundaries of 312 
the model were defined sufficiently far from the structure to avoid the reflection of stresses from the 313 
boundaries during dynamic simulations. Moreover, non-reflecting viscous boundary was applied at the 314 
boundaries of the model. 315 



The present paper neglects the presence of the track. In reality, it can be assumed that the train transmits 316 
its concentrated loads to the rail. These loads are dispersed by the sleepers and the ballast. It is assumed 317 

that the load is distributed on a 1.0 mloadd =  loaded length. Triangular distribution was selected to ensure 318 

numerical stability (Figure 6). 319 

The maximum intensity of distributed load was calculated using the equation below: 320 

max

2 y

load

R
p

d
= , (13) 

where yR  is the resultant of the external load, loadd  is the length where the resultant force was 321 

distributed. 322 

 323 

Figure 6 – Distribution of the external load 324 

4.3. Types of analysis performed 325 
Both static and dynamic analysis were carried out. The aim of dynamic analysis was to determine the 326 
dynamic response of the bridge. Moreover, investigations on the effect of magnitude of the external load 327 
on the dynamic amplification were made. In every simulation, as an initial step, the self-weight of the 328 
structure was assigned and equilibrated. Criterion for equilibrium was defined as the ratio of the average 329 
unbalanced mechanical force magnitude divided by the average applied mechanical force magnitude for 330 
all grid-points in the model. When this ratio was lower than 1.0e-6, the structure was considered to be 331 
in equilibrium. At this stage, nodal velocities typically lower than 2.0e-6 m/s. Near to the state of failure, 332 
convergence of the numerical model decreases significantly. Therefore, another limit was introduced as: 333 
if the state of equilibrium cannot be reached within 300,000 calculation cycles in a single loading step, 334 
then the simulation was stopped and the corresponding load was considered as the failure load. 335 

4.3.1. Incrementally increased load at fixed positions along the span of the bridge (Type 1) 336 
Experimental and field tests carried out on full-scale masonry arch bridges are typically using vertical 337 
loads at quarter span to gain information about the structural stiffness and load bearing capacity. The 338 
advantage of using numerical simulations is that models can be developed in which parametric studies 339 
can be carried out e.g. load can be applied in several loading positions in the bridge. In this study, 340 
numerical models have been carried out in which the load position has been varied along the span of the 341 
bridge. The procedure was as follows (Figure 7b): After a fixed 𝑥/𝑠 load position was selected (in which 342 𝑥 is the distance from the edge of the arch ring of the bridge and 𝑠 is the span of the bridge); the 343 
distribution of the load was defined according to Figure 6, while the magnitude of the vertical load was 344 
incrementally increased (i.e. load increment: 1.0 kN/m) until the structure failed. The simulation was 345 
repeated in nine different loading positions, i.e. from / 0.0x s =  until / 8 /16x s = . In this way, load 346 



bearing capacity versus load position were plotted. The global minimum in the load bearing capacity 347 
versus the load position relationship can be considered as the load bearing capacity of the bridge. The 348 
flowchart for this type of simulation can be seen in Figure 7a. 349 

  350 

    (a)      (b) 351 
Figure 7 – Flowchart for incrementally increased load at fixed positions (Type 1) 352 

4.3.2. Quasi-static moving load along the span of the bridge (Type 2) 353 
It is believed that in the numerical model, the movement of a train axle might be better represented if 354 
the magnitude of the external load is kept constant while the position of the load is changing step-by-355 
step, as the load is passing through the bridge. The load model defined in Section 4.2 (Equation 16) was 356 
applied in this case as well. After the structure reached the equilibrium, the load was moved by 0.10 m. 357 
If the load could cross the bridge without causing failure of the structure, the external load magnitude 358 
was increased. If the structure reaches its ultimate state (i.e. failure) during simulation, a new simulation 359 
was started with a decreased load magnitude. The simulations were repeated until the load bearing 360 
capacity of the structure was determined with sufficient precision (+/- 1.0 kN/m). Figure 8 shows the 361 
flowchart for this type of simulation. 362 



 363 

Figure 8 – Flowchart for quasi-static moving load analysis (Type 2) 364 

4.3.3. Dynamic analysis (Type 3) 365 
During the dynamic analysis the artificial damping and mass scaling were not applied during 366 
simulations. Energy dissipation can develop within the model via frictional sliding (e.g. at the extrados 367 
of the arch barrel where backfill can slide upon the voussoirs) or via the plastic deformations of the 368 
backfill material. As a conservative assumption, Rayleigh damping was not applied during the analysis. 369 
The external load was dragged through on the bridge with constant horizontal velocity (investigated 370 
range was between 10 to 120 m/s). Simulations were ended when: (i) the external load could cross the 371 
bridge and reached / 1.60x s = without causing failure; or (ii) during the simulation the bridge failed. 372 
These simulations were repeated with different magnitude of external load. 373 

During the analysis, radial displacements of each voussoir, maximal contact stresses at the inner and the 374 
outer side of the bed joints were recorded and plotted against the position of the external load. Dynamic 375 
response of the structure was compared to the static response and dynamic amplification factors 376 
obtained. Two types of dynamic amplification factor was evaluated. These are: (a) global dynamic 377 

amplification factor ( globalDAF ) , where the highest dynamic response of the structure was selected and 378 

compared with the highest static response; and (b) local dynamic amplification ( ,local iDAF ) was defined 379 

for every voussoir as the highest dynamic response of the selected element compared to the static 380 
response of the same element: 381 
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where , ,maxdyn iy  is the maximal dynamic and , ,maxstat iy  is the maximal static response of the thi  element 382 

in a single simulation, respectively. 383 
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5. Results 385 

5.1. Results of the static analysis (Type 1 and 2) 386 
To get a first impression of the structural behaviour of the masonry arch bridge under investigation, the 387 
failure load under static conditions was determined. With respect to the load bearing capacity, Type 2 388 
analysis of moving load showed lower ultimate load by 7% (~71 kN/m) compared to Type 1 analysis 389 
(~76 kN/m). The difference might be attributed partly due to the precision of the loading procedure, i.e. 390 
the load increment was 1.0 kN/m; which can cause +/-1.5% error difference. Moreover, in the case of 391 
quasi-static moving load, the load path/load history could cause weaker behaviour by non-elastic 392 
deformation of the system. Type 2 simulation at ultimate load stopped at / 0.14x s = , which is close to 393 

the critical position obtained from Type 1 simulation ( / 0.125x s = ). 394 

 395 
Figure 9 – Ultimate load bearing capacity of the bridge 396 

With respect to Type 1 analysis, load-deflection curves were obtained. Such analyses can be used to 397 
determine the stiffness of the bridge. On the other hand, Type 2 analysis can provide valuable 398 
information about the response (e.g. stresses, displacements) of the structure when the load of the vehicle 399 
is passing from the bridge. Figure 10a-c shows the influence lines for radial displacements and contact 400 
normal stresses at ¾ span of the bridge. With the increasing magnitude of external loads, contacts can 401 
open (the normal stress decreases to 0 MPa) and close. Maximum contact stresses from influence lines 402 
in Figure 10b-c were plotted against the ratio of external load magnitude divided by the ultimate load 403 
(Figure 11). It was found that the maximum of the contact stress increases exponentially as the load 404 
increases. 405 

  406 



 407 
(a) 408 

 409 
(b) 410 

 411 
(c) 412 

Figure 10 - Influence lines for voussoir at ¾ span: (a) radial displacements; (b) contact stresses 413 
extrados side and (c) contact stresses at intrados side (Type 2 analysis) 414 



 415 
Figure 11 – Maximum contact normal stress at ¾ span. 416 

After the axle load passed through the bridge, the stresses within the structure went through 417 
redistribution: e.g. at 0.55 ultR  (40 kN/m) and above a crack appeared (normal stress decreased to 0 Pa) 418 

and remained open at ¾ span intrados after the load left the bridge. Figure 12 represents the residual 419 
stress state of the arch barrel and the backfill after one cycle of external load passed through the structure 420 
when loaded under a quasi-static manner. The residual stress state depends on the magnitude of the 421 
external load. The arch barrel of the “never loaded” structure shows uniform normal stress distribution 422 
and the stresses between the voussoirs of the arch are in compression. As the magnitude of the external 423 
load increases, the residual stress state of arch barrel contains significant bending as well.  424 
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After 1 cycle of 40 kN/m 

 
After 1 cycle of 10 kN/m 

 
After 1 cycle of 50 kN/m 

 
After 1 cycle of 20 kN/m 

 
After 1 cycle of 60 kN/m 

 
After 1 cycle of 30 kN/m 

 
After 1 cycle of 70 kN/m 

 



             
Voussoirs                          Backfill 

Figure 12 – Residual stress state after one cycle of external load crossed the structure (negative 
values mean compression – Type 2 analysis)  

Axle loads follow each other simultaneously and trains would cross the bridge typically in both 425 
directions (i.e. left to right and right to left). Figure 13 shows the normal stresses at ¾ span (extrados 426 

side), while the axle load ( 30 kN/m = 0.42y ultR R= ) crossed the bridge 10 times. The distance between 427 

the loads was chosen sufficiently large to avoid interaction between the loads). According to Figure 13, 428 
after the third cycle, additional redistribution of the stresses cannot be observed. Also, when the moving 429 
load is in backward direction, we have redistribution of stresses and maximum displacement occurs at 430 
different load position, see Figure 14a. Convergence to the shakedown state was slower in case of two 431 
directional and faster in case of one directional loading. 432 

     433 

Figure 13 – Repeated loading (Ry=30 kN/m = 0.42 Rult): influence lines for contact normal stress at ¾ 434 
span extrados: (a) two-directional; (b) one directional load path 435 

 436 

Figure 14 – Repeated loading (Ry = 30 kN/m = 0.42 Rult): influence lines for radial displacements at ¾ 437 
span: (a) two-directional; (b) one directional load path 438 



Simulations with repeated, one directional quasi-static loading were done with several external load 439 
magnitudes. If the magnitude of the external load does not exceed the ~50% of the ultimate load, then 440 
plastic deformations cease after 2-3 initial cycles and the response of the structure goes back to pure 441 
elastic with some state of residual stresses (Figure 15a-b). Similar shakedown phenomena was observed 442 
previously during the experimental test of masonry arches [44, 45]. Above ~50% of Rult , additional 443 
plastic deformations were observed in every cycle of repeated loading. Also, at 85% of Rult, equilibrium 444 
was not reached after the forth cycle which means that the structure has failed. It is worth to mention, 445 

that according to Figure 15a, the bridge which seemed to have sufficient resistance for 0.83 ultR , 446 

collapsed after the forth cycle of loading with the same loading magnitude. 447 

   448 
                                 (a)                                                                                             (b) 449 
Figure 15 – Plastic shakedown of masonry arch bridge: (a) cumulative plastic deformation at ¾ span, 450 

(b) additional plastic deformations in a single load cycle 451 

 452 

5.2. Results of dynamic analysis (Type 3) 453 
In the dynamic analysis, the effect of vehicle-structure interaction was investigated. From the results 454 
analysis it was found that the vehicle-structure interaction is not significant i.e. the contact force between 455 
the track and the vehicle does not change significantly as the load passing through (Figure 16). This 456 
finding is in accordance with the EN 1991-2 and can be explained with significantly higher mass of the 457 
structure compared to the mass of the vehicle. As the magnitude of the external load gets closer to the 458 
ultimate load bearing capacity, the difference between the static and the dynamic contact force is 459 
increasing. 460 

   461 

Figure 16 – Dynamic contact forces between the track and the vehicle 462 

Also, as described in Section 4.3.3, dynamic analysis was carried out to obtain dynamic amplification 463 
factors and compared them with the multiplication factors calculated according to Network Rail 464 
standards. The investigated range of horizontal velocities was 10 m/s to 120 m/s. To decouple the 465 
phenomena of the plastic shakedown and the dynamic enhancement and exclude plastic deformations 466 
in the structure, all of the dynamic simulation was repeated 5 times, see Figure 17a-b. Moreover, 467 



influence lines for radial displacements at ¾ span (Ry =40 kN/m=0.55Rult) were plotted and are shown 468 
in Figure 17b. As the velocity of the load increased and reached 100 m/s, radial displacements increased 469 
as well. On the other hand, for train speeds greater than 100 m/s, displacements in the structure 470 
decreased. The maximum response of the structure has a “delay” as the velocity increases compared to 471 
quasi-static analysis. The maximum value of outward (negative) radial displacement occurs when the 472 
load is at / 0.33x s = in case of quasi-static analysis, while it is around / 0.55x s =  when the velocity 473 
is 120 m/s. 474 

 475 

   (a)      (b) 476 
Figure 17 – Influence lines for radial displacements at ¾ span (Ry =40 kN/m): (a) dynamic behaviour 477 

in the first loading cycle - before shakedown; (b) dynamic behaviour after shakedown 478 

Radial displacement of every voussoir in the arch barrel was recorded and local dynamic amplification 479 
factors according to Eq (15) were calculated. From Figure 18 the DAF values are different at different 480 
parts of the arch barrel. The difference is increasing as the velocity of the external load is increasing. At 481 
Voussoir ID 1-8, significantly higher local DAFs were calculated. It should be noted, that the static 482 
response of the structure was very low at this part of the bridge. 483 

 484 

Figure 18- Local dynamic amplification factors for displacements at Ry = 40 kN/m 485 

Dynamic amplification factors for displacements were calculated from Figure 17b and plotted in Figure 486 
19. Moreover, simulations were repeated with different magnitude of external loads. The highest value 487 
of global DAF was around 210%. Critical speed – where the DAF has the highest value at a given 488 
magnitude of external load – is decreasing as the magnitude of the external load gets close to the ultimate 489 
load. Similarly, the highest value of DAF is slightly decreasing at higher level of external loads. 490 

To compare the numerically obtained DAF with the ones given in guidelines, the natural frequency of 491 
the structure investigated in this work was determined with modal analysis. From the investigations, it 492 
was shown that the first natural frequency was ~30,5 Hz, which is between the limits of EN 1991-2 493 

simplified method, hence the code is applicable 2 1.67 =  and 3 2.00 = . The dynamic enhancement 494 



according to the Network Rail standard (Eqs. 3 and 4) was calculated and shown in Figure 19. In the 495 
case of lower load levels (<40% Rult), the formulas of the Network Rail provides a reasonably precise 496 
and safe estimate for DAFs. It should be noted, that if the external load is closer to the ultimate load 497 
bearing capacity, then the standard can underestimate the dynamic enhancement. From Figure 19 and 498 
Table 4, it is evident, that the critical speed (where the DAF value is the highest) is decreasing as the 499 
magnitude of the external load is increasing. This phenomena can be explained by the nonlinear 500 
behaviour of the structure: at higher load levels, the bridge starts to behave softer, hence the natural 501 
frequency of it is decreasing which is resulted in lower critical speeds. 502 

 503 
Figure 19 – Global Dynamic Amplification Factors for displacements at different level of external 504 

load 505 

 506 

Table 4 – Critical speed at various load levels 507 

External load level Critical speed [m/s] 

0.14 ultR  >120 m/s 

0.28 ultR  >120 m/s 

0.41 ultR  110 m/s 

0.55 ultR  90 m/s 

0.69 ultR  70 m/s 

 508 

  509 



6. Conclusions 510 
The structural assessment of masonry arch bridges is of great importance due to their long service life 511 
and deterioration condition over time. Dynamic amplification factor (DAF) is a parameter which 512 
accounts for the dynamic impact of moving trains on structures by relating the static to the dynamic 513 
characteristics of a bridge. Although, accurate prediction of the DAF can provide valuable information 514 
related to sustainable management of bridges, the structural assessment of the dynamic characteristics 515 
of masonry arch bridges and predictions of DAFs are rather difficult to be obtained. This is mainly due 516 
to the complexity of the problem and that recent studies have reported contradictory results. This paper 517 
focuses on the shakedown and dynamic behaviour of railway masonry arch bridges under traffic load 518 
conditions. A nonlinear, mixed discrete-finite element was developed to investigate the static and 519 
dynamic response of the Prestwood masonry arch bridge. Each voussoir of the masonry arch was 520 
represented by a distinct block. Mortar joints were modelled as zero thickness interfaces which can open 521 
and close depending on the magnitude and direction of the stresses applied to them. The numerical 522 
model was calibrated based on field full-scale experimental test results. The bridge was subjected to two 523 
different types of static analysis and a real dynamic analysis to simulate the effects of moving load. 524 
Investigations into the train to bridge interaction was also undertaken. Finally, the local and global 525 
Dynamic Amplification Factors were studied. The major findings of the work can be summarized as 526 
follows: 527 

- Failure load of the investigated structure was determined in two different ways i.e. with 528 
monotonically increased loads at fixed positions and with quasi-static moving loads. From the 529 
results analysis it was shown that the latter reflects better the characteristic of real traffic since 530 
can take into account the interaction between the adjacent load positions. The load bearing 531 
capacity was 7% lower (71 kN/m) in case of “quasi-static moving load” type loading. 532 

- As the external load passes through the bridge, plastic deformations and residual stresses exist 533 
in the arch barrel. If the magnitude of the external load does not exceed the 50% of the ultimate 534 
load bearing capacity, the plastic deformations cease after 2-3 cycles of external load and the 535 
structure is in a shakedown state. If the magnitude of the external load exceeds the 50% of the 536 
ultimate load, continuous plastic deformations were experienced in the loading cycles. 537 

- With increasing load magnitude, the maximum contact normal stresses between the voussoirs 538 
are increasing exponentially.  539 

- A single degree of freedom vehicle-structure interaction was developed and integrated within 540 
the developed code. Numerical experiences suggested, that vehicle-structure interaction has a 541 
negligible effect on the global behaviour of the bridge. 542 

- Local and Global Dynamic Amplification Factors were introduced to have deeper insight into 543 
the dynamic enhancement. At different parts of the arch barrel, different magnitude of DAF was 544 
measured. It was shown that the dynamic amplification depends on the magnitude of the 545 
external load. As the load increases, non-linearity in the structural behaviour is evident, which 546 
decreases the natural frequency of the bridge. Hence the critical speed (i.e. where the highest 547 
DAF value can be measured) is decreasing. 548 

- In the case of typical service load levels (<40% Rult), the formulas of the Network Rail provides 549 
a reasonably precise and safe estimate for DAFs. For this particular type of structure, for a 550 
service load greater than 40% Rult the Network Rail formulas underestimate DAFs. 551 

Limitation of the current work is that it neglects those structural element of a masonry bridge (e.g 552 
spandrel walls) which makes the structural behaviour three-dimensional. Moreover, further 553 
experimental studies will be needed to investigate the effect of geometry on the dynamic behaviour of 554 
masonry arch bridges to obtain more general results. Results presented from this study can improve 555 
understanding of the dynamic behaviour of masonry arch bridge and inform repair and maintenance 556 
schemes.  557 
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