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Abstract- This paper deals with the stabilizability problem of linear parameter 

varying (LPV) systems. It is assumed that LPV models affinely depend on time-varying 

uncertain and time-invariant design parameters. The uncertain parameters, their time-

derivations, and design parameters belong to polygonal convex spaces. The 

stabilizability problem of such systems is studied. Extending the stability conditions 

to stabilizability conditions generally causes nonlinearity issues due to the coupling 

between the Lyapunov and design variables. To cope with this issue, a design space 

exploration algorithm (DSEA) is proposed to accurately determine the design 

parameters with a feasibility performance similar to stability analysis approaches. 

DSEA removes the undesired parts of the design subspace that cannot stabilize the 

model. Then, it checks the corner points of the remaining subspaces to find a 

stabilizing point. This procedure continues until a stabilizing point is found or the 

whole design subspaces are detected to be undesirable. Three hundred random 

LPV systems are generated to compare the feasibility performance of DSEA 

with existing approaches. Also, the proposed approach is used to stabilize the LPV 

model of a microgrid consisting of several distributed generation units and energy 

storage systems. The simulation results show the superiority of DSEA over the 

existing approaches. 
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1. Introduction 

The linear parameter varying (LPV) framework is widely applicable for equivalently 

or approximately modeling of time-varying or nonlinear dynamic behaviors of 

control systems [1]. Various methods are employed to convert control systems into 

LPV systems [1]. Among these methods, performing exact mathematical 

transformations to model nonlinear dynamics in varying parameters [2], 

approximating the Jacobian linearization of nonlinear systems around some 

equilibrium interest points [3], and exploiting data-driven identification [4] have 

gained the utmost importance. Recently, the LPV framework has been widely 

utilized in the modeling of real applications involving aviation [5], aero-elastic 

dynamics [6], robotics [7], and biological systems [8].  

The stability analysis and control of LPV systems is of paramount interest in 

literature [9]-[14]. Generally, convex spaces are considered for the system’s 

parameters and their time-differentiation to analyze the system stability or design a 

proper controller. Lyapunov-based approaches with parameter-dependent Lyapunov 

functions are frequently used for these purposes in previous studies [15]. In these 

methods, the candidate Lyapunov function explicitly depends on the system’s time-

varying parameters [15].  

Various types of parameter-dependent Lyapunov functions are developed, namely 

affine [16]- [17], piecewise [18], and polynomial functions [19]. Although these 

approaches certainly include conservativeness, the negativity condition of their time-

derivatives along system’s trajectories is not naturally convex. This implies that the 

negativity conditions cannot be easily implemented by semidefinite programming 



(SDP) solvers such as Linear Matrix Inequality (LMI)-based software [15]. 

Furthermore, some of these approaches have an infinite-dimensional issue which is 

related to their special Lyapunov function structure [17].  

To overcome the above-mentioned difficulties, relaxation techniques have been used 

to convert the non-convex conditions to LMIs in parameter-dependent Lyapunov 

approaches [17]. Among many of them, one can list sum of squares [20], Polya’s 

theorem [21], slack variable [22], and partitioning the uncertain space [23]. In [15], 

a relaxation technique is used which introduces two new slack variables and 

proposes LMI stability conditions based on affine parameter-dependent Lyapunov 

functions. However, these techniques affect the feasibility performance of the 

approaches as they sufficiently convert the non-convex conditions into LMIs.  

The aforementioned approaches are only applicable to LPV systems in which the 

parameters and their time-derivative belong to convex spaces [24]. The gridding-

based approaches can handle the non-convex spaces through defining the novel 

parameter-dependent Lyapunov functions. These approaches usually do not develop 

a systematic way to find their candidate Lyapunov functions. To cope with this issue, 

[24] exploits a Haar transform to systematically select the candidate Lyapunov 

functions.  

The coupling between the Lyapunov and design variables is the major drawback of 

the previous stabilizability-based approaches. It is mainly because the stability 

conditions contain some coupling terms between the Lyapunov and design 

parameters. Hence, the final stability conditions (after the relaxation technique) are 

not inherently in terms of LMIs due to the mentioned coupling. To deal with this 

issue, previous studies have used a group of numerical approximations or LMI 

tricks; however, these methods usually lead to conservative results. Although several 

pieces of research have been carried out on the stabilizability of LPV systems, a 



systematic approach that leads to less conservative results is still lacking and can 

benefit from further research. 

Motivated by aforementioned challenges, this paper develops a novel approach to 

deal with the stabilizability problem in LPV systems. The LPV model under study 

affinely depends on two groups of parameters which are time-varying uncertain and 

design parameters. The uncertain and design parameters are assumed to belong to 

uncertain and design spaces which are convex polygonal. The main aim of this paper 

is to systematically determine design parameters inside the given design space that 

stabilizes the LPV model. To this end, an algorithm is proposed that iteratively 

searches the design space to find an appropriate design vector. The algorithm is 

known as design space exploration algorithm (DSEA) in this paper. 

It is worth mentioning that the idea of removing the undesired parts of the design 

space enables us to overcome the coupling issue between the Lyapunov and design 

variables. Furthermore, DSEA only removes the undesired parts. This implies that 

DSEA does not omit any stabilizing point. A theorem is presented to mathematically 

investigate DSEA’s convergence in this paper.  

The proposed algorithm is directly applicable to a wide range of LPV systems whose 

closed loop system’s matrices affinely depend on the uncertain and design 

parameters. The algorithm can be used to solve all LPV control problems in which 

controllers do not explicitly depend on the uncertain parameters. However, the 

method can be extended to systems with non-affine matrices using an over-

parameterization technique.   

The rest of this paper is organized as follows. Section 2 presents the LPV system 

under study and its related definitions and assumptions. Section 3 presents the 

related preliminaries of the DSEA. Section 4 proposes the main contributions of this 



paper which is the DSEA. The simulation examples are presented in Section 5. 

Finally, Section 6 concludes the paper.  

Notations: The basic notations of this paper are presented in Table 1. 

Table 1. Basic notations used in this paper 

Notation Definition 𝑅𝑅 Real number space. 𝑅𝑅𝑛𝑛×𝑚𝑚 Space of real matrices with 𝑛𝑛 rows and 𝑚𝑚 columns. 𝑅𝑅+ Space of positive real numbers. 𝜌𝜌(𝑡𝑡) Time-varying parameters of LPV models. 𝛼𝛼 Design parameters of LPV models. Ω0 Space of time-varying parameters. Ω1 Space of time-derivative of time-varying parameters. 𝜙𝜙 Primary design space. 𝐴𝐴(𝜌𝜌(𝑡𝑡),𝛼𝛼) State matrix of LPV models. 𝑑𝑑(𝑠𝑠,𝜌𝜌,𝛼𝛼) Characteristic polynomial of LPV models, considering 𝜌𝜌 as a 

constant 𝑐𝑐𝑐𝑐{∙, … ,∙} Convex combination operator. 

 

2. System description 

Consider the following linear parameter varying (LPV) system: �̇�𝑥(𝑡𝑡) = 𝐴𝐴(𝜌𝜌(𝑡𝑡),𝛼𝛼)𝑥𝑥(𝑡𝑡)               (1) 

where 𝑥𝑥(𝑡𝑡) ∈ ℝ𝑛𝑛 is the state vector and 𝑛𝑛 is the number of states. 𝜌𝜌(𝑡𝑡) ∈ ℝ𝑝𝑝 denotes 

the time-varying parameters that are assumed to belong to a convex polygonal space Ω0 ⊂ ℝ𝑝𝑝 which is known as the parameter space. Additionally, the time-derivative 

of these parameters �̇�𝜌(𝑡𝑡) are assumed to be inside another convex polygonal space Ω1 ⊂ ℝ𝑝𝑝 that is known as time-derivative parameter space.   



In (1), 𝛼𝛼 ∈ ℝ𝑑𝑑 is a vector of some unknown and time-invariant design parameters 

that should be precisely adjusted to establish LPV system’s stability. It is assumed 

that 𝛼𝛼 belongs to a given convex polygonal space 𝜙𝜙 ⊂ ℝ𝑑𝑑 that is denoted by the 

design space.  

In (1), the system matrix 𝐴𝐴(𝜌𝜌(𝑡𝑡),𝛼𝛼) ∈ ℝ𝑛𝑛×𝑛𝑛 is assumed to be an affine function of 

the time-varying parameters 𝜌𝜌(𝑡𝑡) that can be written as follows: 𝐴𝐴(𝜌𝜌(𝑡𝑡),𝛼𝛼) = 𝐴𝐴0(𝛼𝛼) + ∑ 𝐴𝐴𝑖𝑖(𝛼𝛼)𝜌𝜌𝑖𝑖(𝑡𝑡)𝑝𝑝𝑖𝑖=1               (2) 

where 𝜌𝜌𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ entry of 𝜌𝜌 and {𝐴𝐴𝑖𝑖(𝛼𝛼)}𝑖𝑖=0𝑝𝑝 ⊂ ℝ𝑛𝑛×𝑛𝑛 is a set of matrix functions 

that affinely depend on the design parameters 𝛼𝛼.  

Obviously, for the stability analysis of this system, we need to show the system (1) 

is stable for time-varying 𝜌𝜌(𝑡𝑡). This paper utilizes the concept of instability since 

the instability analysis of system (1) can be shown even if the system is unstable for 

a specific constant �̅�𝜌. This means, if we demonstrate that the system is unstable for 

a special constant uncertain point, we can conclude that special point is totally 

unstable. Let 𝑑𝑑(𝑠𝑠, �̅�𝜌 ,𝛼𝛼) = |𝑠𝑠𝐼𝐼𝑛𝑛 − 𝐴𝐴(�̅�𝜌 ,𝛼𝛼)| be the system’s characteristic 

polynomial that can be defined upon the consideration of 𝜌𝜌 and 𝛼𝛼 which are time-

independent.  

To summarize the assumptions of LPV model (1), the model’s conditions are briefly 

listed in the following: 

• Matrix 𝐴𝐴(𝜌𝜌(𝑡𝑡),𝛼𝛼) should be an affine function of system’s parameters 𝜌𝜌(𝑡𝑡). 

• Matrix 𝐴𝐴(𝜌𝜌(𝑡𝑡),𝛼𝛼) should affinely depend on design parameters 𝛼𝛼. 

Remark 1. The results of this paper are also applicable to state matrices 𝐴𝐴(𝜌𝜌(𝑡𝑡),𝛼𝛼) 

that does not affinely depend on 𝜌𝜌(𝑡𝑡). In fact, the nonlinear terms of 𝜌𝜌 in 𝐴𝐴(𝜌𝜌(𝑡𝑡),𝛼𝛼) 

can be replaced by members of an over-parameterized vector �̅�𝜌(𝑡𝑡) that are 



appropriately defined based on 𝜌𝜌. In this case, spaces Ω0 and Ω1 should be redefined 

based on the over-parameterized vector �̅�𝜌(𝑡𝑡) such that �̅�𝜌 ∈ Ω�0 and �̇̅�𝜌 ∈ Ω�1. 

3. DSEA’s preliminaries 

DSEA searches a given design space to find a feasible point which is able to stabilize 

the LPV model. DSEA considers an initial design convex space and checks the 

feasibility of its corner points. The algorithm detects the undesired parts of the design 

space (the subspaces that certainly do not include any feasible point) and divides the 

remaining into smaller subspaces. DSEA iteratively continues until finding a 

feasible corner point or all design subspaces are detected to be undesirable.  

To detect the undesired parts, two indicators are exploited which are Indicator Point 

(IP) and Admissible Closed Path (ACP). These indicators enable DSEA to detect the 

undesirability of a design subspace that are described in this section.  

An IP is a specific point in the uncertain space such as �̅�𝜌 ∈ Ω0 which is constant and 

fixed. In fact, a design subspace can be concluded to be undesirable if the LPV model 

is unstable for all its internal points considering 𝜌𝜌(𝑡𝑡) = �̅�𝜌 for all times. An IP is used 

to detect the undesirability of a design space through the characteristic polynomial 

concept.  

ACP is a periodic closed path in the uncertain space Ω0 which its time-derivation 

belongs to Ω1, as well. A continuous function is considered as a candidate that 

increments at each period of an ACP. This result can directly conclude the instability 

of the delay model which is described in the next section. In fact, an ACP is 

considered to detect the undesirability of a design subspace via exploiting these 

ACPs.  



In the following, the ACP is introduced. The time-varying vector 𝜌𝜌(𝑡𝑡) can freely 

move inside the parameter space Ω0 such that �̇�𝜌(𝑡𝑡) ∈ Ω1. The ACP is defined exactly 

in the following definition. 

Definition 1. Periodic continuous function 𝐶𝐶:ℝ+ → Ω0 is an ACP if �̇�𝐶(𝑡𝑡) belongs 

to Ω1 for all 𝑡𝑡 ∈ ℝ+.  

According to Definition 1, an ACP determines an admissible path that belongs to the 

defined Ω0 and its derivative  has some important properties including periodicity, 

continuity and admissibility. To clarify the ACP concept, the following example is 

provided. Consider an arbitrary LPV system (1) with the following spaces Ω0 and Ω1: Ω0 = {𝜌𝜌 ∈ 𝑅𝑅2|   𝜌𝜌𝑇𝑇𝜌𝜌 ≤ 4}                 (3) Ω1 = 𝑐𝑐𝑐𝑐{[−10  − 10]𝑇𝑇, [−10   10]𝑇𝑇 , [10  − 10]𝑇𝑇 , [10   10]𝑇𝑇}           (4) 

Then, two different ACPs are presented in the following:  𝐶𝐶1(𝑡𝑡) = {𝜌𝜌 ∈ 𝑅𝑅2|   𝜌𝜌1 = 1.5 cos(2𝜋𝜋𝑡𝑡),   𝜌𝜌2 = 1.5 sin(2𝜋𝜋𝑡𝑡)}           (5) 

𝐶𝐶2(𝑡𝑡) = ⎩⎪⎨
⎪⎧ [−1   2𝑟𝑟𝑡𝑡2 − 1]𝑇𝑇 ,                0 ≤ 𝑟𝑟𝑡𝑡 < 1

[2(𝑟𝑟𝑡𝑡 − 1)2 − 1   1]𝑇𝑇,       1 ≤ 𝑟𝑟𝑡𝑡 < 2

[1   1− 2(𝑟𝑟𝑡𝑡 − 2)2]𝑇𝑇     , 2 ≤ 𝑟𝑟𝑡𝑡 < 3

[1 − 2(𝑟𝑟𝑡𝑡 − 3)2   − 1]𝑇𝑇 , 3 ≤ 𝑟𝑟𝑡𝑡 < 4

              (6) 

where 𝑟𝑟𝑡𝑡 is the reminder after division of 𝑡𝑡 by 4. Paths (5) and (6) satisfy the ACP’s 

properties shown on Figs. 1 and 2 that indicate 𝐶𝐶1 and 𝐶𝐶2 and their time-derivatives: 



 

Fig. 1. Parameter space (3) and ACPs 𝐶𝐶1 and 𝐶𝐶2 defined in (5) and (6) 

 

Fig. 2. Parameter time-derivative space (4) and time-derivatives of ACPs 𝐶𝐶1 and 𝐶𝐶2 defined in 

(5) and (6) 

Assume 𝐶𝐶 and 𝜌𝜌(𝑡𝑡) are an ACP and its arbitrary member at instant time 𝑡𝑡. Then, the 

time-derivative vector �̇�𝜌(𝑡𝑡) can be explicitly obtained based on 𝜌𝜌(𝑡𝑡). This means �̇�𝜌 

only depends on 𝜌𝜌 for all 𝜌𝜌 ∈ 𝐶𝐶 and this relation can be easily obtained upon 

derivation of ACP 𝐶𝐶. For instance, consider ACP 𝐶𝐶1 defined in (5), in which �̇�𝜌 equals 

to [−2𝜋𝜋𝜌𝜌2   2𝜋𝜋𝜌𝜌1]𝑇𝑇 for all 𝜌𝜌 = [𝜌𝜌1   𝜌𝜌2]𝑇𝑇 inside 𝐶𝐶1. 
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4. Proposed Approach for Control Parameters Design  

This section finally proposes the DSEA as a main contribution. DSEA initially 

meshes the design space to obtain a set of small simplexes which are known as 

design subspaces. Then, it checks the stabilizability status of the corner points of 

each design subspace. If there exists a corner point that stabilizes the model, the 

algorithm terminates (note that, it suffices to check stability of the LPV model at a 

specific and known design vector which is a stability analysis problem). Otherwise, 

DSEA checks the undesirability of the design subspaces and removes the undesired 

subspaces and divides the rest of them into two smaller sub-simplexes (If a design 

subspace does not contain any stabilizing point, it is labeled to be undesirable). 

DSEA repeats these steps to reach a stabilizable corner deign point or the whole 

generated subspaces are detected to be undesirable. 

The main idea of this paper is to determine the design parameters via eliminating the 

undesired parts and checking the corner points of the rest. The undesired parts are 

the design subspaces of the original design space 𝜙𝜙 that do not surely contain any 

stabilizing point. 

To detect the undesirability of an individual design subspace, two indicators are used 

which are noted by indicator point (IP) and ACP. An IP is a specific time-invariant 

vector in the uncertain space that assesses the total instability of the LPV model for 

the design subspace. The other indicator is ACP which is an allowable closed path 

in the uncertain space such that its time-derivative belongs to the supposed the time-

derivative uncertain space. The IPs and ACPs aim to detect the undesirability of a 

design subspace with constant and periodic trajectories in the uncertain space. If they 

successfully detect the undesirability of a design subspace, the design space is 

instantly removed. Otherwise, the subspace is halved to two smaller subspaces that 

will be checked in the next algorithm’s iterations. It is apparent that the failure of 



these indicators to exactly detect the undesirability of design subspace influences the 

computational time of the algorithm, but not its feasibility performance. The 

indicators should be simple, since they are evaluated for all generated design 

subspaces and they should have an acceptable level of conservativeness to control 

the computational time of the algorithm. In order to achieve a trade-off between the 

level of conservativeness and the computational burden, the above-mentioned 

indicators are considered in this paper. 

4.1. Undesirability checking via IPs 

The LPV system (1) will be converted into an LTI system through the following 

assumptions. First, vector 𝜌𝜌(𝑡𝑡) is assumed to be time-invariant that equals to �̅�𝜌 inside Ω0. Second, vector 𝛼𝛼 is assumed to belong to a convex polygonal subspace 𝜑𝜑 inside 𝜙𝜙, (i.e. 𝜑𝜑 ⊂ 𝜙𝜙). Using these assumptions, the LPV system (1) can be converted into 

the following uncertain LTI system: 

 �̇�𝑥(𝑡𝑡) = 𝐴𝐴(�̅�𝜌,𝛼𝛼)𝑥𝑥(𝑡𝑡): 𝛼𝛼 ∈ 𝜑𝜑              (7) 

It should be emphasized that 𝛼𝛼 plays the uncertainty role in the LTI system (7). 

Therefore, 𝛼𝛼 is noted by the uncertain vector to highlight the uncertain nature of the 

LTI system (7). It is assumed that the characteristic polynomial of LTI system (7) 

affinely depends on the uncertain parameters. This means that the characteristic 

polynomial 𝑑𝑑(𝑠𝑠, �̅�𝜌,𝛼𝛼) = |𝑠𝑠𝐼𝐼𝑛𝑛 − 𝐴𝐴(�̅�𝜌,𝛼𝛼)| is an affine function of the uncertain vector 𝛼𝛼.  

Remark 2. The characteristic polynomial of the closed loop system requires to be 

an affine function of the uncertain parameters only to exploit the IPs. It is not needed 

to be satisfied for all cases. In fact, ACPs can be used to detect the undesirability 

whenever the characteristic polynomial is not affine. 



The uncertain LTI system (7) is totally unstable if and only if 𝑑𝑑(𝑠𝑠, �̅�𝜌,𝛼𝛼) is a non-

Hurwitz polynomial for all 𝛼𝛼 ∈ 𝜑𝜑. Hence, the main aim of this subsection will be 

followed through Theorem 1 that proposes a set of conditions to evaluate total non-

Hurwitzness of 𝑑𝑑(𝑠𝑠, �̅�𝜌,𝛼𝛼). Before we proceed with Theorem 1, Definition 2 and 

Lemma 1 are presented. 

Definition 2. A real coefficient polynomial is said to be critical if it has pure 

imaginary roots. 

Lemma 1 [25]. Assume 𝑝𝑝(𝑠𝑠) and 𝑞𝑞(𝑠𝑠) are two real coefficient polynomials with the 

same orders. There exists a critical polynomial on the polynomial segment 𝑐𝑐𝑐𝑐{𝑝𝑝(𝑠𝑠), 𝑞𝑞(𝑠𝑠)} if and only if there exists a real number 𝜔𝜔 that satisfies the following 

conditions: 𝑝𝑝𝑟𝑟(𝜔𝜔)𝑞𝑞𝑖𝑖(𝜔𝜔) = 𝑝𝑝𝑖𝑖(𝜔𝜔)𝑞𝑞𝑟𝑟(𝜔𝜔)              (8) 𝑝𝑝𝑟𝑟(𝜔𝜔)𝑞𝑞𝑟𝑟(𝜔𝜔) + 𝑝𝑝𝑖𝑖(𝜔𝜔)𝑞𝑞𝑖𝑖(𝜔𝜔) < 0            (9) 

Based on Definition 2 and Lemma 1, Theorem 1 will be presented in the following. 

Theorem 1 [25]. The characteristic polynomial 𝑑𝑑(𝑠𝑠, �̅�𝜌,𝛼𝛼) = |𝑠𝑠𝐼𝐼𝑛𝑛 − 𝐴𝐴(�̅�𝜌,𝛼𝛼)| is 

totally non-Hurwitz for all 𝛼𝛼 ∈ 𝜑𝜑 (𝜑𝜑 is a convex polygonal subspace of 𝜙𝜙) if the 

following conditions hold: ∀𝛼𝛼 ∈ 𝜕𝜕𝑐𝑐(𝜑𝜑):     𝑑𝑑(𝑠𝑠, �̅�𝜌,𝛼𝛼)  𝑖𝑖𝑠𝑠 𝑛𝑛𝑐𝑐𝑡𝑡 𝐻𝐻𝐻𝐻𝑟𝑟𝐻𝐻𝑖𝑖𝑡𝑡𝐻𝐻           (10) ∀(𝛼𝛼1,𝛼𝛼2) ∈ 𝜕𝜕𝑒𝑒(𝜑𝜑):  𝑐𝑐𝑐𝑐{𝑑𝑑(𝑠𝑠, �̅�𝜌,𝛼𝛼1),𝑑𝑑(𝑠𝑠, �̅�𝜌,𝛼𝛼2)}  𝑑𝑑𝑐𝑐𝑑𝑑𝑠𝑠 𝑛𝑛𝑐𝑐𝑡𝑡 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑐𝑐𝑖𝑖𝑛𝑛 𝑐𝑐𝑛𝑛𝑎𝑎 𝑐𝑐𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑐𝑐𝑐𝑐𝑎𝑎𝑛𝑛𝑐𝑐𝑚𝑚𝑖𝑖𝑐𝑐𝑐𝑐      (11) 

Remark 3. Conditions (10) and (11) can be easily investigated by computing roots 

of corner polynomial {𝑑𝑑(𝑠𝑠, �̅�𝜌,𝛼𝛼)}𝛼𝛼∈𝜕𝜕𝑐𝑐(Ω0) and checking the existence of any critical 



polynomial on exposed edges of �𝑐𝑐𝑐𝑐{𝑑𝑑(𝑠𝑠, �̅�𝜌,𝛼𝛼1),𝑑𝑑(𝑠𝑠, �̅�𝜌,𝛼𝛼2)}�
(𝛼𝛼1,𝛼𝛼2)∈𝜕𝜕𝑒𝑒(𝜑𝜑)

 via 

applying (8) and (9) in Lemma 1.  

Theorem 1 can check the total non-Hurwitzness of the characteristic polynomial 𝑑𝑑(𝑠𝑠, �̅�𝜌,𝛼𝛼) that means it can assess the total unstability of uncertain LTI system (7).  

Theorem 2 proposes conditions to check the undesirability of design subspace 𝜑𝜑 ⊂𝜙𝜙 for �̅�𝜌. 

Theorem 2. Design subspace 𝜑𝜑 is undesirable for LPV model (1) if there exists �̅�𝜌 ∈Ω0 that holds the following condition: 

 ∀𝛼𝛼 ∈ 𝜑𝜑:   𝐴𝐴(�̅�𝜌,𝛼𝛼) 𝑖𝑖𝑠𝑠 𝐻𝐻𝑛𝑛𝑠𝑠𝑡𝑡𝑐𝑐𝑢𝑢𝑐𝑐𝑑𝑑            (12) 

Proof. Assume �̅�𝜌 ∈ Ω0 forces 𝐴𝐴(�̅�𝜌,𝛼𝛼) to be unstable for all 𝛼𝛼 ∈ 𝜑𝜑. Obviously, LPV 

system (1) is converted into an LTI system at special case 𝜌𝜌(𝑡𝑡) = �̅�𝜌. In this special 

case, system �̇�𝑥(𝑡𝑡) = 𝐴𝐴(�̅�𝜌,𝛼𝛼)𝑥𝑥(𝑡𝑡) will be entirely unstable for all 𝛼𝛼 ∈ 𝜑𝜑 because its 

system matrix 𝐴𝐴(�̅�𝜌,𝛼𝛼) is supposed to be unstable. This fact implies the statement of 

the theorem and completes the proof.  

Remark 4. The feasibility of the condition given in (12) can be investigated by 

Theorem 1. In fact, this condition is applicable via checking the corners and exposed 

edges of 𝜑𝜑 based on Theorem 1. 

4.2. Undesirability checking via ACPs 

This subsection exploits the ACPs to detect the undesired parts of the design space. 

For this purpose, Theorem 3 is presented in the following. 

Theorem 3. Assume 𝐶𝐶 is an ACP with a period of  𝑇𝑇 and 𝐷𝐷 ⊂ ℝ𝑛𝑛 is a compact space 

that contains the origin. Then, design subspace 𝜑𝜑 is undesirable for the LPV model 



(1) if there exist continuous positive function 𝑉𝑉(𝑥𝑥,𝜌𝜌) ∈ 𝐷𝐷 × 𝐶𝐶 → ℝ+ and continuous 

function 𝑊𝑊(𝑥𝑥,𝜌𝜌) ∈ 𝐷𝐷 × 𝐶𝐶 → ℝ that satisfy the following conditions: ∀𝑡𝑡 ∈ [0,𝑇𝑇]:   𝑉𝑉�0,𝐶𝐶(𝑡𝑡)� = 0              (13) ∀𝑥𝑥 ∈ 𝐷𝐷\{0}:   ∫ 𝑊𝑊�𝑥𝑥,𝐶𝐶(𝑡𝑡)�𝑑𝑑𝑡𝑡𝑇𝑇0 > 0              (14) 

∀𝛼𝛼 ∈ 𝜑𝜑,∀𝑥𝑥 ∈ 𝐷𝐷,∀𝑡𝑡 ∈ [0,𝑇𝑇]:
 𝜕𝜕𝜕𝜕�𝑥𝑥,𝐶𝐶(𝑡𝑡)�𝜕𝜕𝑥𝑥 𝐴𝐴(𝐶𝐶(𝑡𝑡),𝛼𝛼)𝑥𝑥 +

 𝜕𝜕𝜕𝜕�𝑥𝑥,𝐶𝐶(𝑡𝑡)�𝜕𝜕𝜕𝜕 �̇�𝐶(𝑡𝑡) ≥𝑊𝑊(𝑥𝑥,𝐶𝐶(𝑡𝑡))               (15) 

Note that 𝑥𝑥(0) ≠ 0. 

Proof. Assume 𝑆𝑆𝜀𝜀 = {𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛| ‖𝑥𝑥‖ ≤ 𝜀𝜀} is a hyper-sphere around the origin with 

radius 𝜀𝜀 > 0. Obviously, one can find a sufficient small number 𝜀𝜀 such that the 

following conditions hold: 𝑆𝑆𝜀𝜀 ⊂ 𝐷𝐷                  (16) 𝑥𝑥(0) ∉ 𝑆𝑆𝜀𝜀                  (17) ∀𝑥𝑥 ∈ 𝑆𝑆𝜀𝜀 ,∀𝑡𝑡 ∈ [0,𝑇𝑇]:       𝑉𝑉�𝑥𝑥,𝐶𝐶(𝑡𝑡)� ≤ 𝑉𝑉�𝑥𝑥(0),𝜌𝜌(0)�           (18) 

Note that since 𝐷𝐷 is a compact space around the origin, 𝑉𝑉(𝑥𝑥, 𝜌𝜌) is continuous over 𝐷𝐷 × 𝐶𝐶 and (13). 

Assume the LPV model is asymptotically stable which implies system’s trajectory 𝑥𝑥(𝑡𝑡) asymptotically reaches the origin. Hence, system’s trajectory reaches the hyper-

sphere 𝑆𝑆𝜀𝜀 in a finite period of time that is denoted by 𝜏𝜏 in this proof. It results in the 

following inequality considering 𝜌𝜌(𝑡𝑡) = 𝐶𝐶(𝑡𝑡) for all 𝑡𝑡 ∈ [𝑘𝑘𝑇𝑇, 𝑘𝑘𝑇𝑇 + 𝑇𝑇] and 𝑘𝑘 ∈
{1,2,3 … }: 

  ∀𝑡𝑡 ≥ 𝜏𝜏:      𝑥𝑥 ∈ 𝑆𝑆𝜀𝜀 →  𝑉𝑉(𝑥𝑥,𝜌𝜌(𝑡𝑡)) ≤ 𝑉𝑉�𝑥𝑥(0),𝜌𝜌(0)�                 (19) 



Now, assume 𝑘𝑘 is an arbitrary positive integer number. Using (15), one can easily 

obtain the following inequality: ∫ �̇�𝑉�𝑥𝑥(𝑡𝑡),𝜌𝜌(𝑡𝑡)�𝑑𝑑𝑡𝑡𝑘𝑘𝑇𝑇+𝑇𝑇𝑘𝑘𝑇𝑇 ≥ ∫ 𝑊𝑊�𝑥𝑥(𝑡𝑡),𝜌𝜌(𝑡𝑡)�𝑑𝑑𝑡𝑡𝑘𝑘𝑇𝑇+𝑇𝑇𝑘𝑘𝑇𝑇                     (20) 

Inequality (20) obviously implies the following condition: 𝑉𝑉�𝑥𝑥(𝑘𝑘𝑇𝑇 + 𝑇𝑇),𝜌𝜌(𝑘𝑘𝑇𝑇 + 𝑇𝑇)� − 𝑉𝑉�𝑥𝑥(𝑘𝑘𝑇𝑇),𝜌𝜌(𝑘𝑘𝑇𝑇)� ≥ ∫ 𝑊𝑊�𝑥𝑥(𝑡𝑡),𝜌𝜌(𝑡𝑡)�𝑑𝑑𝑡𝑡𝑘𝑘𝑇𝑇+𝑇𝑇𝑘𝑘𝑇𝑇       (21) 

According to (14) and (21), one obtains that 𝑉𝑉�𝑥𝑥(𝑘𝑘𝑇𝑇),𝜌𝜌(𝑘𝑘𝑇𝑇)� ≥ 𝑉𝑉�𝑥𝑥(0),𝜌𝜌(0)�. Let 𝑘𝑘 >
𝜏𝜏𝑇𝑇 that implies 𝑉𝑉�𝑥𝑥(𝑘𝑘𝑇𝑇),𝜌𝜌(𝑘𝑘𝑇𝑇)� is larger than 𝑉𝑉�𝑥𝑥(0),𝜌𝜌(0)� which clearly 

contradicts (19).          □ 

Remark 5. It is worth mentioning that the continuous function 𝑉𝑉(𝑥𝑥,𝜌𝜌) in the 

statement of Theorem 3 is not needed to be radially unbounded. Additionally, the 

compact space 𝐷𝐷 can be a very small space which may reduce the conservativeness 

of conditions (13-15) in some special cases. 

The periodic nature of the ACPs guarantees that the system’s state vector does not 

reach the origin at all. The reason is that the candidate Lyapunov function is positive 

everywhere except at the origin of the state space model and it increases at all points 

of the ACP’s trajectory in the uncertain space. It should be noted that the ACP should 

satisfy conditions 𝜌𝜌 ∈ 𝛺𝛺0 and �̇�𝜌 ∈ 𝛺𝛺1 that suffices to be checked only at one period 

of the ACP. 

Theorem 3 proposes conditions to investigate the undesirability of a given design 

subspace 𝜑𝜑. Notice that, conditions (13-15) cannot be directly investigated by 

mathematical tools due to their generality issue. To cope with this issue, another 

lemma is presented that relaxes these conditions to obtain required LMIs by 

considering a special function form.  



Lemma 2. Assume 𝐶𝐶 is an ACP with 𝑇𝑇 > 0 as its period. Then, design subspace 𝜑𝜑 ∈𝜙𝜙 is undesirable for the LPV model (1) if there exist a sufficiently large integer 

number 𝑁𝑁 and symmetric matrices {𝑃𝑃𝑖𝑖}𝑖𝑖=0𝑝𝑝 ∈ ℝ𝑛𝑛×𝑛𝑛 and {𝑋𝑋𝑖𝑖}𝑖𝑖=0𝑝𝑝 ∈ ℝ𝑛𝑛×𝑛𝑛 such that 

following conditions are satisfied: ∀𝑡𝑡 ∈ �𝑇𝑇𝑁𝑁 ,
2𝑇𝑇𝑁𝑁 , … ,𝑇𝑇�:      𝑃𝑃0 + ∑ 𝑃𝑃𝑖𝑖𝐶𝐶𝑖𝑖(𝑡𝑡)𝑝𝑝𝑖𝑖=1 > 0           (22)  

∀𝛼𝛼 ∈ 𝜕𝜕𝑐𝑐(𝜑𝜑),∀𝑗𝑗 ∈ {1, … ,𝑁𝑁},∀𝑡𝑡, 𝑡𝑡̅ ∈ �(𝑗𝑗 − 1)𝑇𝑇𝑁𝑁 ,
𝑗𝑗𝑇𝑇𝑁𝑁�:  

 𝐻𝐻𝑑𝑑��𝑃𝑃0 + ∑ 𝑃𝑃𝑖𝑖𝐶𝐶𝑖𝑖(𝑡𝑡)𝑝𝑝𝑖𝑖=1 �𝐴𝐴(𝐶𝐶(𝑡𝑡̅),𝛼𝛼)� + ∑ 𝑃𝑃𝑖𝑖�̇�𝐶𝑖𝑖(𝑡𝑡)𝑝𝑝𝑖𝑖=1 > 𝑋𝑋0 + ∑ 𝑋𝑋𝑖𝑖𝐶𝐶𝑖𝑖(𝑡𝑡)𝑝𝑝𝑖𝑖=1         (23) 𝑋𝑋0𝑇𝑇 + ∑ 𝑋𝑋𝑖𝑖 ∫ 𝐶𝐶𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇0𝑝𝑝𝑖𝑖=1 ≥ 0             (24) 

where 𝐶𝐶𝑖𝑖(𝑡𝑡) is the 𝑖𝑖𝑡𝑡ℎ entry of ACP 𝐶𝐶. 

Proof. It is obvious that conditions (22-23) will result in the following conditions 

for a sufficiently large integer 𝑁𝑁: ∀𝑡𝑡 ∈ [0,𝑇𝑇]:      𝑃𝑃0 + ∑ 𝑃𝑃𝑖𝑖𝐶𝐶𝑖𝑖(𝑡𝑡)𝑝𝑝𝑖𝑖=1 > 0              (25)  ∀𝛼𝛼 ∈ 𝜕𝜕𝑐𝑐(𝜑𝜑),∀𝑡𝑡 ∈ [0,𝑇𝑇]: 

 𝐻𝐻𝑑𝑑��𝑃𝑃0 + ∑ 𝑃𝑃𝑖𝑖𝐶𝐶𝑖𝑖(𝑡𝑡)𝑝𝑝𝑖𝑖=1 �𝐴𝐴(𝐶𝐶(𝑡𝑡),𝛼𝛼)� + ∑ 𝑃𝑃𝑖𝑖�̇�𝐶𝑖𝑖(𝑡𝑡)𝑝𝑝𝑖𝑖=1 > 𝑋𝑋0 + ∑ 𝑋𝑋𝑖𝑖𝐶𝐶𝑖𝑖(𝑡𝑡)𝑝𝑝𝑖𝑖=1         (26) 

Let 𝑉𝑉(𝑥𝑥, 𝜌𝜌) = 𝑥𝑥𝑇𝑇�𝑃𝑃0 + ∑ 𝑃𝑃𝑖𝑖𝜌𝜌𝑖𝑖𝑝𝑝𝑖𝑖=1 �𝑥𝑥 and 𝑊𝑊(𝑥𝑥,𝜌𝜌) = 𝑥𝑥𝑇𝑇�𝑋𝑋0 + ∑ 𝑋𝑋𝑖𝑖𝜌𝜌𝑖𝑖𝑝𝑝𝑖𝑖=1 �𝑥𝑥 that are 

defined over ℝ𝑛𝑛 × 𝐶𝐶. Clearly, conditions (22) and (25-26) imply (13-15), that means 

the undesirability of the design subspace 𝜑𝜑 based on Theorem 3. 

4.3. Stabilizability checking of a design point 

This section investigates the stability of an individual point in the design space. 

Indeed, it has been investigated whether the special point 𝛼𝛼 ∈ 𝜙𝜙 is able to stabilize 



the LPV system (1) through an existing theorem. The theorem suggests a set of 

stability conditions for this purpose based on LMIs.  

Theorem 4 [26]. The special point 𝛼𝛼� ∈ 𝜙𝜙 is a stabilizing point for LPV system (1) if 

and only if there exists a symmetric matrix function 𝑃𝑃(𝜌𝜌) ∈ Ω0 → ℝ𝑛𝑛×𝑛𝑛 that satisfies 

the following conditions: ∀𝜌𝜌 ∈ Ω0:    𝑃𝑃(𝜌𝜌) > 0                (27)  ∀𝜌𝜌 ∈ Ω0,∀�̇�𝜌 ∈ Ω1:    𝐻𝐻𝑑𝑑{𝑃𝑃(𝜌𝜌)𝐴𝐴(𝜌𝜌,𝛼𝛼�)} + ∑ 𝜕𝜕𝜕𝜕(𝜕𝜕)𝜕𝜕𝜕𝜕𝑖𝑖 �̇�𝜌𝑖𝑖𝑝𝑝𝑖𝑖=1 < 0          (28)  

Since the matrix function 𝑃𝑃(𝜌𝜌) has a general form, it is not possible to check 

conditions (27-28) by convenient mathematical solvers. To overcome this problem, 

the following lemma is presented that relaxes these conditions by considering a 

special form of the matrix function 𝑃𝑃(𝜌𝜌). In the following lemma, an over-

parameterized vector �̅�𝜌 is used to cope with the existent bilinear terms of the 

uncertain parameters 𝜌𝜌 in (28). 

Lemma 3. The special point 𝛼𝛼 ∈ 𝜙𝜙 is a stabilizing point for LPV model (1) if there 

exists a set of symmetric matrices {𝑃𝑃𝑖𝑖}𝑖𝑖=0𝑝𝑝
 that hold the following conditions: ∀𝜌𝜌 ∈ 𝜕𝜕𝑐𝑐(Ω0):    𝑃𝑃0 + ∑ 𝑃𝑃𝑖𝑖𝜌𝜌𝑖𝑖𝑝𝑝𝑖𝑖=1 > 0              (29)  ∀𝜌𝜌, �̅�𝜌 ∈ 𝜕𝜕𝑐𝑐(Ω0),∀�̇�𝜌 ∈ 𝜕𝜕𝑐𝑐(Ω1):     𝐻𝐻𝑑𝑑��𝑃𝑃0 + ∑ 𝑃𝑃𝑖𝑖𝜌𝜌𝑖𝑖𝑝𝑝𝑖𝑖=1 �𝐴𝐴(�̅�𝜌,𝛼𝛼)� + ∑ 𝑃𝑃𝑖𝑖�̇�𝜌𝑖𝑖𝑝𝑝𝑖𝑖=1 < 0            (30)  

Proof. Assume 𝑃𝑃(𝜌𝜌) = 𝑃𝑃0 + ∑ 𝑃𝑃𝑖𝑖𝜌𝜌𝑖𝑖𝑝𝑝𝑖𝑖=1 . Then, conditions (29)-(30) directly imply 

conditions (27)-(28) in Theorem 4. According to Theorem 4, 𝛼𝛼 is a stabilizing point 

for the LPV model. 

4.4. DSEA presentation 



The DSEA iteratively eliminates the undesired parts of the design space 𝜙𝜙 until it 

finds a stabilizing point. DSEA exploits Theorem 2 and Lemma 2 to determine 

whether a design subspace is undesirable or not. The undesired parts are omitted and 

DSEA searches the remained parts. Before presenting the DSEA’s steps, the 

following definition should be mentioned: 

Definition 3. Set 𝐼𝐼𝑃𝑃 = �𝜌𝜌(𝑖𝑖)�𝑖𝑖=1𝑁𝑁 ⊂ Ω0 and 𝐼𝐼𝐶𝐶 = �𝐶𝐶(𝑖𝑖)�𝑖𝑖=1𝑀𝑀
 contain the indicator 

points and indicator ACPs in which 𝜌𝜌(𝑖𝑖) ∈ Ω0 and 𝐶𝐶(𝑖𝑖) ⊂ Ω0 are the 𝑖𝑖𝑡𝑡ℎ indicator 

point and 𝑖𝑖𝑡𝑡ℎ ACP. 

Then, DSEA’s steps can be briefly presented in the following: 

Design Space Exploration Algorithm (DSEA): 

1. Initialize design space 𝜙𝜙 and sets 𝐼𝐼𝑃𝑃 and 𝐼𝐼𝐶𝐶. 

2. Set 𝐷𝐷 = {𝜙𝜙}, 𝜑𝜑(0) = 𝜙𝜙 and 𝑘𝑘 = 0. 

3. If 𝑘𝑘 > |𝐷𝐷|, return “there is not any stabilizing points.”. 

4. If there exists a stabilizing point in the corner set of 𝜑𝜑(𝑘𝑘) based on Lemma 3, 

return this point as the feasible solution. 

5. Check the existence of any 𝜌𝜌 ∈ 𝐼𝐼𝑃𝑃 or 𝐶𝐶 ∈ 𝐼𝐼𝐶𝐶 that guarantee the undesirability of 𝜑𝜑(𝑘𝑘) for LPV model (1) based on Theorem 2 and Lemma 2, respectively.  

6. If 𝜑𝜑(𝑘𝑘) is detected to be undesirable or volume of 𝜑𝜑(𝑘𝑘) is smaller than threshold 

value 𝛿𝛿, set 𝑘𝑘 = 𝑘𝑘 + 1 and go to Step 3. 

7. Divide 𝜑𝜑(𝑘𝑘) into two smaller convex polygonal subspaces 𝜑𝜑1(𝑘𝑘)
 and 𝜑𝜑2(𝑘𝑘)

 . 

8. Insert 𝜑𝜑1(𝑘𝑘)
 and 𝜑𝜑1(𝑘𝑘)

 into 𝐷𝐷, set 𝑘𝑘 = 𝑘𝑘 + 1 and go to Step 3. 

Furthermore, a flowchart is provided to schematically describe the procedure of the 

DSEA that is shown in Fig. 3. 



 

Fig. 3. DSEA’s flowchart 

 

The DSEA is initialized by assumptions of 𝜙𝜙, 𝐼𝐼𝑃𝑃 and 𝐼𝐼𝐶𝐶 to be the design space, 

indicator point and indicator ACP sets in Step 1. In Step 2, 𝐷𝐷 = {𝜙𝜙}, 𝜑𝜑(0) = 𝜙𝜙 and 𝑘𝑘 = 0 which are the set of generated convex-polygonal subspaces, current design 

subspace and the iteration number. Note that, each iteration separately investigates 

one design subspace to detect its undesirability or existence of at least one stabilizing 

corner point. This design space is called the current design subspace. 



 Set 𝐷𝐷 contains the whole generated design subspaces in all previous iterations. 

Notation 𝜑𝜑(𝑘𝑘) stands for the current design subspace in the current iteration that is 

indexed by  𝑘𝑘. Step 3 checks the existence of any design subspace in 𝐷𝐷 that is not 

already investigated in previous iterations. If the whole subspaces are undesirable, 

the algorithm returns “there is not any feasible solution.” and terminates. Otherwise, 

the algorithm goes to Step 4 to check the existence of any indicator point in 𝐼𝐼𝑃𝑃 or 

any ACP in 𝐼𝐼𝐶𝐶 that can establish the undesirability of current design subspace 𝜑𝜑(𝑘𝑘). 

If the current design subspace is detected to be undesirable or its volume is smaller 

than threshold value 𝛿𝛿, DSEA increases 𝑘𝑘 by one and goes to Step 3. Otherwise, 𝜑𝜑(𝑘𝑘) will be divided into two smaller sub-simplexes 𝜑𝜑1(𝑘𝑘)
 and 𝜑𝜑2(𝑘𝑘)

, the generated 

subspaces 𝜑𝜑1(𝑘𝑘)
 and 𝜑𝜑2(𝑘𝑘)

 are added to 𝐷𝐷 and DSEA goes to Step 3. 

It is worth mentioning that the algorithm will certainly terminate because the volume 

of the generated design subspaces is limited by threshold value 𝛿𝛿. It forces the new 

subspaces to be larger than a specific volume to guarantee the termination of the 

algorithm. 

Finally, Theorem 5 analyzes the DSEA’s convergence through proving its ability to 

find any existing stabilizing point in the primary design space 𝜙𝜙. In fact, this theorem 

proves that if design space 𝜙𝜙 contains any stabilizing point, the algorithm will find 

it. This convergence analysis mathematically reveals DSEA’s feasibility 

performance.  

Theorem 5. Assume there exists convex polygonal 𝑅𝑅 in the primary design space 𝜙𝜙 

such that its internal points can be detected to be stabilizing by Lemma 3. If volume 

of 𝑅𝑅 is larger than 𝛿𝛿, then DSEA assuredly reaches a stabilizing point (the reach 

point may be inside 𝑅𝑅 or not).   



Proof. It is apparent that DSEA will terminate if one of these two possible cases 

occur which are discussed in the following. First, DSEA converges to a stabilizing 

point that reveals the correctness of the theorem. Second, DSEA may not find any 

feasible solution in its iteration. In this case, the whole design space 𝜙𝜙 will be divided 

into smaller subspaces which are shown by notations 𝑆𝑆1 and 𝑆𝑆2. Set 𝑆𝑆1 contains the 

generated subspaces that are detected to be undesirable by DSEA. Set 𝑆𝑆2 includes 

the subspaces which their volumes are smaller than 𝛿𝛿. Notice that, the whole 

subspaces are generated in DSEA’s iterations before it stops. Since 𝑅𝑅 is a subspace 

of 𝜙𝜙 which consists of stabilizing points, none of 𝑆𝑆1’s subspaces belong to 𝑅𝑅. Hence, 

space 𝑅𝑅 is fully included in the union of 𝑆𝑆2’s subspaces. It clearly implies the 

following result: 𝑅𝑅 ⊂ ⋃ 𝜑𝜑𝜑𝜑∈𝑆𝑆2                  (31) 

Subspace 𝑅𝑅 cannot fully belong to only one of the subspaces of 𝑆𝑆2. It is mainly 

because volume of 𝑆𝑆1’s subspaces is smaller than 𝛿𝛿, whereas volume of 𝑅𝑅 is larger 

than 𝛿𝛿 based on the hypothesis of the theorem. Therefore, subspace 𝑅𝑅 will certainly 

contain at-least one corner point of one subspace of 𝑆𝑆2. Let 𝜑𝜑 ∈ 𝑆𝑆2 and 𝛼𝛼 ∈ 𝜕𝜕𝑐𝑐(𝜑𝜑) 

be the subspace and its corner point that is concluded to be inside 𝑅𝑅. Since 𝑅𝑅 contains 

only the points that can be detected to be stabilizing by Lemma 3 and 𝛼𝛼 ∈ 𝑅𝑅, this 

corner point should be detected to be stabilizing, as well.  

It should be noted that the whole corner points of the generated subspaces including 𝛼𝛼 was checked to be stabilizing by Lemma 3 in DSEA’s iterations. Hence, corner 

point 𝛼𝛼 was checked and detected to be not stabilizing by Lemma 3. Clearly, this 

fact contradicts the membership of 𝛼𝛼 to 𝑅𝑅 and it proves the theorem. 

Remark 6. DSEA’s feasibility performance only depends on the feasibility 

performance of Lemma 3. Indeed, DSEA can totally overcome the nonlinearity issue 



which rises whenever the stability conditions are extended to stabilizability 

conditions for LPV models (the coupling between the Lyapunov and design 

variables). Thus, proposing a new stability condition that is less conservative than 

Lemma 3 can directly improve the DSEA’s feasibility performance via replacing 

Lemma 3 by the new one in DSEA’s steps.  

5. Simulation results 

Three detailed simulation examples are provided in this section. Example 1 

illustrates the notations and basic definitions of this paper for a sample LPV model. 

Example 2 and 3 compare the feasibility performance of the suggested algorithm to 

some previous approaches.  

Example 1. Consider the following LPV model: �̇�𝑥 = (𝐴𝐴0(𝛼𝛼) + 𝐴𝐴1𝜌𝜌1 + 𝐴𝐴2𝜌𝜌2)𝑥𝑥             (32) 

where 𝜌𝜌 = [𝜌𝜌1   𝜌𝜌2]𝑇𝑇 is the vector of time-varying uncertain parameters, 𝛼𝛼 is the 

vector of design parameters that should be precisely adjusted to establish LPV 

system’s stability and 𝑥𝑥 ∈ ℝ2 is the state vector. Matrices 𝐴𝐴0(𝛼𝛼), 𝐴𝐴1 and 𝐴𝐴2 are 

supposed to be as follows: 

𝐴𝐴0(𝛼𝛼) = � 0 1𝛼𝛼1 𝛼𝛼2� , 𝐴𝐴1 = �0.1 0

0 0.1
� , 𝐴𝐴2 = �0 1

1 0
�         (33) 

In this example, the design spaces Ω0 ⊂ ℝ2 and Ω1 ⊂ ℝ2 are assumed to be as given 

below: 

Ω0 = 𝑐𝑐𝑐𝑐 � [−0.4  − 0.4]𝑇𝑇 , [−0.4   0.4]𝑇𝑇 ,

[0.4  − 0.4]𝑇𝑇, [0.4   0.4]𝑇𝑇         
�            (34) 

Ω1 = 𝑐𝑐𝑐𝑐 �[−2  − 2 ]𝑇𝑇, [−2   2]𝑇𝑇,

[2 − 2]𝑇𝑇 , [2   2]𝑇𝑇          
�             (35) 



Also, the design space is supposed to be as follows, in this example: 𝜙𝜙 = 𝑐𝑐𝑐𝑐{[−160   0]𝑇𝑇 , [0  − 160]𝑇𝑇 , [160    160]𝑇𝑇}             (36) 

In this example, five IPs and two ACPs are used which are shown in Fig. 4: 

 

Fig. 4. Parameter space Ω0 defined in (3) and IPs and ACPs utilized in Example 1 

The characteristic polynomial of this LPV model will be obtained as follows: 𝑑𝑑 = 𝑠𝑠2 − (𝛼𝛼2 + 0.2𝜌𝜌1)𝑠𝑠 + 0.1𝛼𝛼2𝜌𝜌1 − 𝜌𝜌2 − 𝛼𝛼1𝜌𝜌2 − 𝛼𝛼1 + 0.01𝜌𝜌12 − 𝜌𝜌22                (37) 

Due to (37), LPV model (32) satisfies the whole assumption of LPV model (1).  

Fig. 5 shows the searching procedure of DSEA to solve the design problem. In these 

figures, the highlighted simplex presents the selected simplex in the current iteration, 

not-filled simplexes refer to undesired subspaces that are detected by IPs or ACPs 

and the transparent simplexes show the spaces that are generated in previous 

iteration, but not checked until this iteration. 



 

Fig. 5. Design space defined in (41) and DSEA’s current space at some iterations (highlighted) 

It should be noted that DSEA is successful in finding an appropriate feasible 

stabilizing point and the following point is obtained at its twelfth iteration: 𝛼𝛼 = [−80  − 80]𝑇𝑇                  (38) 

Example 2. This example compares the feasibility performance of DSEA to some 

existing ones. Three hundred models are randomly generated. These models have 

different number of states and parameters. Then, DSEA and previous methods in 

[14], [15], [27], and [28] are evaluated for each generated system. The generated 

models are supposed to have the following structure: �̇�𝑥(𝑡𝑡) = �𝐴𝐴0 + ∑ 𝐴𝐴𝑖𝑖𝜌𝜌𝑖𝑖(𝑡𝑡)2𝑖𝑖=1 �𝑥𝑥(𝑡𝑡) + �𝐵𝐵0 + ∑ 𝐵𝐵𝑖𝑖𝜌𝜌𝑖𝑖(𝑡𝑡)2𝑖𝑖=1 �𝐻𝐻(𝑡𝑡)         (39) 𝐻𝐻(𝑡𝑡) = 𝐾𝐾𝑥𝑥(𝑡𝑡)                 (40) 



where 𝑥𝑥 ∈ ℝ𝑛𝑛 and 𝐻𝐻 ∈ ℝ𝑛𝑛𝑢𝑢 are the state vector and control input that is supposed to 

be single. Matrices {𝐴𝐴𝑖𝑖}𝑖𝑖=02 ∈ ℝ𝑛𝑛×𝑛𝑛 and vector {𝐵𝐵𝑖𝑖}𝑖𝑖=02 ∈ ℝ𝑛𝑛×𝑛𝑛𝑢𝑢 are constant 

matrices that are randomly generated. The controller aim is to precisely design 

feedback gain 𝐾𝐾 to stabilize the closed loop model presented in the following: �̇�𝑥(𝑡𝑡) = �𝐴𝐴0 + 𝐵𝐵0𝐾𝐾 + ∑ (𝐴𝐴𝑖𝑖 + 𝐵𝐵𝑖𝑖𝐾𝐾)2𝑖𝑖=1 𝜌𝜌𝑖𝑖(𝑡𝑡)�𝑥𝑥(𝑡𝑡)          (41) 

The parameter spaces Ω0 and Ω1 are considered to be as follows for the whole 

generated systems: 

Ω0 = 𝑐𝑐𝑐𝑐 � [−0.5  − 0.5]𝑇𝑇 , [−0.5   0.5]𝑇𝑇 ,

[0.5  − 0.5]𝑇𝑇, [0.5   0.5]𝑇𝑇         
�            (42) 

Ω1 = 𝑐𝑐𝑐𝑐 �[−0.1  − 0.1 ]𝑇𝑇, [−0.1   0.1]𝑇𝑇,

[0.1 − 0.1]𝑇𝑇 , [0.1   0.1]𝑇𝑇          
�            (43) 

The number of systems which are stabilized by DSEA and exiting methods are 

mentioned in Table 2. Fifty models are generated for each system’s order and the 

number of feasible cases are mentioned for each method. The details of the results 

are available at https://figshare.com/s/48bbd3d53f2a3f737fd3. 

Table 2. Number of feasible models  

System order Method 

in [15] 

Method 

in [14] 

Method 

in [27]  

Method 

in [28]  

IDA 𝑛𝑛 = 2,𝑛𝑛𝑢𝑢 = 1 30 24 26 33 46 𝑛𝑛 = 3,𝑛𝑛𝑢𝑢 = 1 21 8 11 25 42 𝑛𝑛 = 3,𝑛𝑛𝑢𝑢 = 2 43 21 33 45 47 𝑛𝑛 = 4,𝑛𝑛𝑢𝑢 = 1 8 0 8 20 41 𝑛𝑛 = 4,𝑛𝑛𝑢𝑢 = 2 35 9 36 41 44 𝑛𝑛 = 6,𝑛𝑛𝑢𝑢 = 1 0 0 0 3 36 

 



Table 2 demonstrates that DSEA is more appropriate in stabilizing the LPV models 

than the existing approaches. In the sixth row of Table 2, DSEA stabilizes 36 

systems, while the previous methods stabilize none of them. 

Example 3  (Microgrid model). This example evaluates the ability of the proposed 

algorithm to stabilize a sample microgrid model, borrowed from [29]. The model 

involves Photovoltaic (PV), Wind Turbine (WT), Fuel Cell (FC), Diesel Generator 

(DEG), Gas Turbine (GS), Battery Energy System (BES), and Flywheel Energy 

System (FES) as shown in Fig. 6. Each of these systems are modeled by a simple 

first-order transfer function, but the time constant in the model is considered as a 

varying parameter in order to consider the model nonlinearity. The aim of this 

example is to design a stabilizing controller which damps the frequency deviation in 

the microgrid. 

 

Fig. 6. The schematic diagram of a microgrid model [29] 



The values of the system’s parameters and their definitions are given in Table 3. 

Table 3. Microgrid model’s parameters 

Parameter Definition Value Parameter Definition Value 𝑻𝑻𝑮𝑮𝑻𝑻  GT time 

constant 
2 𝑠𝑠 𝑇𝑇𝐵𝐵𝐵𝐵𝑆𝑆 BES time 

constant 
0.1 𝑠𝑠 𝑻𝑻𝑫𝑫𝑫𝑫𝑮𝑮 DEG time 

constant 
2 s 𝑇𝑇𝐹𝐹𝐵𝐵𝑆𝑆 FES time 

constant 
0.1 𝑠𝑠 𝑻𝑻𝑭𝑭𝑭𝑭 FC time 

constant 
4 𝑠𝑠 𝑇𝑇𝑊𝑊𝐵𝐵𝐶𝐶 WEC time 

constant 
1.5 𝑠𝑠 𝑻𝑻𝑷𝑷𝑷𝑷 PV time 

constant 
1.8 𝑠𝑠 𝐷𝐷 Power system 

gain 
0.012(𝑝𝑝𝐻𝐻
/𝐻𝐻𝐻𝐻) 𝑴𝑴 Power system 

time constant 
0.2(𝑝𝑝𝐻𝐻
/𝑠𝑠) 

   

 

 

According to Fig. 6, the state space model of the microgrid can be obtained as 

follows: �̇�𝑥𝑠𝑠(𝑡𝑡) = 𝐴𝐴�𝜌𝜌(𝑡𝑡)�𝑥𝑥𝑠𝑠(𝑡𝑡) + 𝐵𝐵�𝜌𝜌(𝑡𝑡)�𝐻𝐻(𝑡𝑡) 𝑎𝑎(𝑡𝑡) = 𝐶𝐶𝑥𝑥𝑠𝑠(𝑡𝑡)                  (44) 

where 𝑥𝑥𝑠𝑠(𝑡𝑡) = [Δ𝑃𝑃𝑊𝑊𝐵𝐵𝐶𝐶 Δ𝑃𝑃𝜕𝜕𝜕𝜕 Δ𝑃𝑃𝐷𝐷𝐵𝐵𝐷𝐷 Δ𝑃𝑃𝐹𝐹𝐶𝐶 Δ𝑃𝑃𝐷𝐷𝑇𝑇 Δ𝑃𝑃𝐵𝐵𝐵𝐵𝑆𝑆 Δ𝑃𝑃𝐹𝐹𝐵𝐵𝑆𝑆 Δ𝑓𝑓]𝑇𝑇 is 

the vector of internal states and 𝐻𝐻(𝑡𝑡) and 𝑎𝑎(𝑡𝑡) are the input and output of the model. 

The state vector respectively consists of the power deviation of WEC, PV, DEG, 

GT, BES, FES, and the frequency deviation of the grid. Also, system matrices 𝐴𝐴�𝜌𝜌(𝑡𝑡)�, 𝐵𝐵�𝜌𝜌(𝑡𝑡)�, and 𝐶𝐶 are as follows: 

𝐴𝐴 =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
−𝜌𝜌1 0 0 0 0 0 0 0

0 −𝜌𝜌2 0 0 0 0 0 0

0 0 −𝜌𝜌3 0 0 0 0 0

0 0 0 −𝜌𝜌4 0 0 0 0

0 0 0 0 −𝜌𝜌5 0 0 0

0 0 0 0 0 −𝜌𝜌6 0 𝜌𝜌6
0 0 0 0 0 0 −𝜌𝜌7 𝜌𝜌71𝑀𝑀 1𝑀𝑀 1𝑀𝑀 1𝑀𝑀 1𝑀𝑀 1𝑀𝑀 1𝑀𝑀 − 𝐷𝐷𝑀𝑀⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
                                    (45) 



𝐵𝐵 = [0 0 𝜌𝜌3 𝜌𝜌4 𝜌𝜌5 0 0 0]𝑇𝑇              (46)  𝐶𝐶 = [0 0 0 0 0 0 0 1]                  (47)  

where 𝜌𝜌 = [𝜌𝜌1   𝜌𝜌2   …   𝜌𝜌7]𝑇𝑇 is the vector of uncertain parameters defined as 

follows: 𝜌𝜌1(𝑡𝑡) =
1𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊 𝑣𝑣1(𝑡𝑡), 𝜌𝜌2(𝑡𝑡) =

1𝑇𝑇𝑃𝑃𝑃𝑃 𝑣𝑣2(𝑡𝑡), 𝜌𝜌3(𝑡𝑡) =
1𝑇𝑇𝐷𝐷𝑊𝑊𝐷𝐷 𝑣𝑣3(𝑡𝑡),𝜌𝜌4(𝑡𝑡) =

1𝑇𝑇𝐹𝐹𝑊𝑊 𝑣𝑣4(𝑡𝑡)  

𝜌𝜌5(𝑡𝑡) =
1𝑇𝑇𝐷𝐷𝐺𝐺 𝑣𝑣5(𝑡𝑡), 𝜌𝜌2(𝑡𝑡) =

1𝑇𝑇𝐵𝐵𝑊𝑊𝐵𝐵 𝑣𝑣6(𝑡𝑡), 𝜌𝜌3(𝑡𝑡) =
1𝑇𝑇𝐹𝐹𝑊𝑊𝐵𝐵 𝑣𝑣7(𝑡𝑡)         (48) 

where {𝑣𝑣𝑖𝑖(𝑡𝑡)}𝑖𝑖=17  represent the time-dependent uncertain nature of the microgrid 

model. These uncertain functions are supposed to satisfy |𝑣𝑣𝑖𝑖(𝑡𝑡)| ≤ 𝑣𝑣 and |�̇�𝑣𝑖𝑖| ≤ 𝑣𝑣𝑑𝑑 

in which 𝑣𝑣 and 𝑣𝑣𝑑𝑑 determines the scale of uncertainty in this model.  

The controller is assumed to have a dynamic output feedback form as given in (49): �̇�𝑥𝑐𝑐(𝑡𝑡) = 𝛼𝛼1𝑥𝑥𝑐𝑐(𝑡𝑡) + 𝑎𝑎(𝑡𝑡)  𝐻𝐻(𝑡𝑡) = 𝛼𝛼2𝑥𝑥𝑐𝑐(𝑡𝑡) + 𝛼𝛼3𝑎𝑎(𝑡𝑡)                (49) 

where 𝑥𝑥𝑐𝑐 is the internal state of the controller and 𝛼𝛼 = [𝛼𝛼1  𝛼𝛼2  𝛼𝛼3] is the control 

parameter.  

Using (44) and (49), the closed loop system is obtained as follows: 

�̇�𝑥(𝑡𝑡) = �𝐴𝐴(𝜌𝜌) + 𝛼𝛼3𝐵𝐵(𝜌𝜌)𝐶𝐶 𝛼𝛼2𝐵𝐵(𝜌𝜌)𝐶𝐶 𝛼𝛼1 � 𝑥𝑥(𝑡𝑡)            (50) 

It is obvious that the system matrix of the closed loop model is an affine function of 

both design and uncertain parameters. Thus, the proposed algorithm can be simply 

applied to this model. For this simulation example, 𝑣𝑣 = 0.1, 𝑣𝑣𝑑𝑑 = 10, and the 

primary design space 𝛼𝛼 ∈ 𝜙𝜙 is assumed to be as given in (51): 𝜙𝜙 = 𝑐𝑐𝑐𝑐{[105  0   0], [0  105  0], [0  0   0], [−105  − 105  − 105]}          (51) 



The proposed algorithm iteratively searches the above primary design space and it 

finally finds the following feasible point: 𝛼𝛼 = [−37.9137    2714    − 336]                (52) 

According to (49) and (52), the appropriate controller is obtained as follows: �̇�𝑥𝑐𝑐(𝑡𝑡) = −37.9137𝑥𝑥𝑐𝑐(𝑡𝑡) + 𝑎𝑎(𝑡𝑡)  𝐻𝐻(𝑡𝑡) = 2714𝑥𝑥𝑐𝑐(𝑡𝑡)− 336𝑎𝑎(𝑡𝑡)                (53) 

In the following, the closed loop model is simulated for some cases of the uncertain 

parameters. The results are shown in Figs. 7 and 8: 

 

Fig. 7. The simulation results of model (44) considering controller (53) with constant 𝜌𝜌 



 

 

Fig. 8. The simulation results of model (44) considering controller (53) with sinusoidal 𝜌𝜌 

Figs. 7 and 8 reveal the stability of the closed loop model which is controlled by 

(53). According to these figures, the obtained controller is able to stabilize the closed 

loop model with uncertain parameters shapes involving special cases of constant and 

sinusoidal uncertain parameters. 

6. Conclusion 

This paper investigates the stabilizability problem of LPV systems with a particular 

emphasis on coupling issue between Lyapunov and design variables. The LPV 

model is supposed to affinely depend on the design and uncertain parameters. An 



algorithm is presented to find an appropriate point in the design space via iteratively 

removing the undesired design subspaces and checking the stabilizability of the 

generated subspaces corner points. It has been shown that the proposed algorithm 

does not remove any feasible solution and it converges to the existed feasible point 

at some special situations. Three simulation examples are provided to compere 

feasibility performance of the proposed algorithm with the existing methods. The 

simulation results reveal the superiority of the proposed algorithm in stabilizing 

control design for LPV systems.  
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